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We present the simplest possible model for a semilocal string defect in which a U(1) gauged subgroup

of an otherwise global SU(2) is broken to produce local cosmic strings endowed with current-carrying

properties. Restricting attention to type II vortices for which the non-current-carrying state is unstable, we

show that a condensate must form microscopically and macroscopically evolve towards a chiral

configuration. It has been suggested that such configurations could potentially exist in a stable state,

thereby inducing large cosmological consequences based on equilibrium angular momentum supported

loop configurations (vortons). Here we show that the current itself induces a macroscopic (longitudinal)

instability: we conclude that type II semilocal cosmic strings cannot form in a cosmological context.
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I. INTRODUCTION

Cosmic strings have long lost their status of plausible
competitors to the inflation paradigm [1]. However, from
the point of view of particle physics and high energy
models thereof, the opposite should be true: even though
it is not immediately obvious to build consistent models of
inflation based on the most natural extensions of the stan-
dard model such as supersymmetric grand unified theories
(GUT) or strings, those naturally predict vortex-like
objects, i.e. linear topological defects [2] (see however
Ref. [3]). Thus, constraints provided by cosmic string net-
work simulations are very much still of current interest,
would it be only to understand why and how one can
construct an inflation model without strings.

Assuming strings to form however is not yet the end of
the story. In practice, most research has been made under
the assumption that the vortices were not endowed with
any particular structure, and hence that the spacelike two-
dimensional worldsheet they described was well modeled
by a Nambu-Goto Lorentz-invariant action, i.e., the area
spanned by the worldsheet.

That such a model attracted attention makes full sense
since it turns out that anymore complicatedmodelwould be
essentially intractable by means of the currently available
technology. Besides, it was also shown that any Lorentz
symmetry-breaking current on the vortices could lead to
centrifugally supported equilibrium states, dubbed vortons
[4,5], whose existence merely rules out the string scenario
altogether [6], provided they are sufficiently long-lived.

Structureless Nambu-Goto strings, on the other hand, are
very difficult to produce in almost any reasonable high

energy theory. Indeed, and unless one assumes a special
sector put by hand to generate the strings themselves,
which comes very short of the original idea to describe the
high energy phenomena in a unified and consistent way, the
string-forming Higgs field present in most GUT model
must couple to scalars, fermions, or gauge fields in such a
way as to produce currents. Even the cosmic strings present
in the superstring framework do not escape this conclusion,
as they must couple to moduli, at least the volume of the
compact extra dimensions. Thus, one expects cosmic
strings to be of the current-carrying kind, as originally
introduced by Witten in 1985 [7].
Many models have since been discussed and investi-

gated by numerous authors, with the general conclusion
that the equation of state of the strings is highly nontrivial,
with specific properties such as the existence of a maximal
spacelike current, a phase frequency threshold for timelike
current above which there is no bound state anymore, and
the possibility, in all known models, to build a lightlike
current which ought to be absolutely stable, thus enhancing
the vorton excess problem [8–10]. Solutions have been
proposed, most of them based on the instabilities of
current-carrying loop configurations that would dissipate
most of the large loops before they have time to evolve into
cosmologically dangerous vortons. The present work,
although not directly concerned with this problem, sug-
gests yet another possibility, namely, that the current could
form directly in a configuration that would be unstable with
respect to longitudinal (soundlike along the string) modes.
Our model can be seen as the next-to-simple one after

the neutral Witten bosonic model, consisting of a global
U(1) condensate in a local U(1) vortex. Here we still
assume the vortex to be produced by a gauged U(1) sym-
metry breaking, but instead of adding extra symmetries,
we embed this local U(1) into an otherwise global SU(2).
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Non-current-carrying strings in this model have been in-
vestigated in Refs. [11–14], while the current-carrying case
has been discussed in Refs. [15]. This is merely the limit of
the usual would-be semilocal strings found in the standard
electroweak model, except that the measured parameters of
this model preclude their actual stability. In fact, the stabil-
ity of non-current-carrying semilocal strings does not
follow from the topology of the vacuum manifold [as it
does for the U(1) case], but from dynamical arguments.

The ratio between the gauge and Higgs boson masses
governs the stability of semilocal strings: for Higgs boson
mass larger (smaller) than the gauge boson mass semilocal
strings are unstable (stable) and in the Bogomol’nyi-Prasad-
Sommerfeld (BPS) limit a degenerate one-parameter family
of stable solutions exists [12]. The parameter corresponds
roughly to the width of the strings and as such semilocal
strings of arbitrary width have the same energy in the BPS
limit. Whenever this zero mode gets excited it leads to the
growth of the string core [16]. As such these non-current-
carrying semilocal strings have been studied in the context of
cosmological applications regarding the formation and evo-
lution of string networks [17–20] as well as implications for
the cosmic microwave backround [21]. The stability of the
current-carrying counterparts has been discussed inRef. [22]
using linear perturbation theory; there it was also found that
these embedded type II vortices have a single unstablemode,
and so it has been suggested that the current-carrying ones,
being less energetic, could be stable.We show that this is not
the case because some other instability develops.

In a sense, the category of this model is more natural than
the Witten kind of models because one expects a large GUT
group to be partially broken to yield the low energy particle
physics currently tested at the LHC, so the strings, if present,
once formed, are expected to be embedded in a larger struc-
ture. It is obviouslymostly a parameter dependent question to
knowwhether the strings here describedwill form rather than
the Witten kind of strings. Finally, such a model permits
embedding a cosmic string in a non-Abelian framework in a
tractable way, contrary to what happens in the case of a pure
non-Abelian current-carrying situation [23,24].

As already mentioned above, if the ratio between the
Higgs and gauge boson masses is large, the corresponding
type II vortices are unstable. In Refs. [25,26], it was shown
that a current could build along such vortices, and that the
resulting current-carrying state was less energetic than the
structureless one. A stability analysis [22] then showed that
even though long wavelength perturbations tend to grow
exponentially, there was a limit below which the current-
carrying string state could be stable; this could imply
important cosmological consequences whenever small
loops form. The purpose of the current article is to close
this window of stability by performing a global analysis
showing the current-carrying configurations will also
develop a short wavelength instability, the so-called longi-
tudinal instability introduced by Carter [27–29].

The paper is organized as follows: In the following
Sec. II, we set up the actual model and discuss the string-
like solutions that can be expected. We then move on, in
Sec. III, to evaluating the currents that could condense in a
string core, summarizing a stability analysis first discussed
in Ref. [12]. These currents are examined thoroughly in
Sec. III B and it is shown that the lightlike current limit is
defined as the endpoint of the state parameter space in this
case, with the phase frequency threshold being at the null
point. Finally, Sec. IV shows that the corresponding equa-
tion of state leads to the longitudinal loop instabilities:
right after a condensate has formed, it should evolve to-
wards the chiral limit [30], thereby destroying many
would-be vortons [31] through emission of high energy
particles [32,33]. We conclude that type II vortices cannot
form at all in such models.

II. PARTLY GAUGED SU(2) STRING MODEL

The simplest embedded current-carrying string model is
provided by the partly ungauged version of the electroweak
theory in which the SU(2) coupling constant is made to
vanish, while the equivalent to electromagnetism U(1)
remains gauged. In practice, this amounts to starting with
the following Lagrangian:

L ¼ �g��ðD��Þy �D��� 1

4
F��F

�� � Vð�Þ; (1)

where the U(1) covariant derivative acting on the SU(2)
Higgs doublet � is D�� � ð@� � ieA�Þ�, F�� �
@�A� � @�A� is the Faraday tensor of the U(1) gauge

field, and finally the scalar field potential V is taken to be
of the symmetry-breaking kind

Vð�Þ ¼ �

2
ð�y ��� �2Þ2; (2)

so the self-coupling � combines with the vacuum expec-
tation value (vev) � of � to provide the scalar field

excitation mass as m� ¼ ffiffiffiffiffiffi
2�

p
�. The vector field also

acquires a mass mA ¼ ffiffiffi
2

p
e�, and the mass ratio is thus

defined as 2� � m2
�=mA ¼ �=e2. (Note our definition of

� differs by a factor of 2 from that of Ref. [25].)
The lowest energy configuration, having �y �� ¼ �2,

admits vortex defects of the local U(1) kind: fixing the
SU(2) gauge in which

�0 ¼
�0

0

 !
; (3)

there remains a local U(1) gauge to be fixed through the
phase of�0; if it takes the form of a nonvanishing winding,
i.e., if �0 / ein� with index n 2 Z � 0 and � a local
coordinate angle, then �0 ! 0 defines a string around
which the phase winds. One can then locally set the string
to be aligned along a z axis around which one defines the
cylindrical coordinates r and �, and the nonvanishing
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component of the Higgs field becomes �0 ¼ ’ðrÞein�,
where limr!1’ðrÞ ¼ � and ’ð0Þ ¼ 0.

The question then arises as to the actual stability of the
above configuration. An analysis similar to that in Ref. [7]
is carried out below showing that one does indeed expect a
current of the kind we discussed in the following sections.

From the Lagrangian (1), one obtains the general equa-
tions of motion for the gauge field A� as

1ffiffiffiffiffiffiffi�g
p @�

� ffiffiffiffiffiffiffi�g
p

F��
�
¼ 2e2�y ��A� þ ie�@

$�
�; (4)

and for the Higgs scalar

1ffiffiffiffiffiffiffi�g
p @�

� ffiffiffiffiffiffiffi�g
p

g��D��
�
¼ ieA�D��þ�

dVð�Þ
dð�y ��Þ ; (5)

with the Hermitian conjugate equation applying for �y.
These give, for the background configuration (3) with the
potential (2),

d2’

dr2
þ 1

r

d’

dr
¼
"
Q2

r2
þ �ð’2 � �2Þ

#
’; (6)

and

d2Q

dr2
� 1

r

dQ

dr
¼ 2e2’2Q; (7)

after setting Q ¼ n� eA� to account for the winding
number. We now assume—see the following sections—
that we have (numerical) solutions for the functions ’ðrÞ
and QðrÞ.

Because the Higgs doublet is coupled with itself, and
even though finite energy solutions of Eqs. (6) and (7)
exist, one needs to verify that these are stable. Following
Witten [7], we set an arbitrary perturbation� ¼ �0 þ ��
with

�� ¼ 0
	ei!t

� �
; (8)

where 	 ¼ 	ðrÞ depends on the radial coordinate only.
Plugging Eq. (11) into (5) and keeping only first order
terms, one gets the Schrödinger-like equation

��2	þV ðrÞ	 ¼ !2	; (9)

where �2 ¼ @2x þ @2y ¼ @2r þ r�1@r þ r�2@2� is the two-

dimensional Laplacian and the effective potentialV reads

V ðrÞ ¼ ½n�QðrÞ�2
r2

þ �½’2ðrÞ � �2�: (10)

This potential is shown in Fig. 1 for different values of the
parameter � � �=ð2e2Þ. One expects from the figure that
there could be bound states provided � is large enough.

Since limr!0V ðrÞ ¼ ���2 is negative and V � n2=r2

asymptotically, the potential satisfies the usual quantum
mechanical conditions for having a bound state: a range of
values for the parameter � can be found for which there
exist solutions of Eq. (9) with !2 < 0, and hence an
instability of the background solution (3) should develop.

With the nonlinear terms taken fully into account, the
instability translates into a condensate that can carry a
current. Comparison with Ref. [12] shows that for �> 1

2 ,

i.e., � > e2, one expects a condensate to form: according to
the usual classification, this means that type I vortices are
absolutely stable (no condensate) while type II vortices
spontaneously form a current-carrying state. Note also that
since type II vortices are energetically favored to occur
with unit winding number, we shall for now on restrict
attention to the case n ¼ 1. The question now is whether or
not these current-carrying solutions can lead to the stable
enough configurations (for cosmological purposes) dis-
cussed in Ref. [22].
It should be remarked at this stage that the mere exis-

tence of an instability does not guarantee that it has an
endpoint which one then identifies with the current-
carrying state. The numerical solutions obtained below
show that it does, and because the field equations stem
from minimizing the energy per unit length to be mini-
mized, they provide more stable configurations satisfying
the boundary conditions. As we shall see, these solutions
will turn out to initiate another instability.

III. THE CURRENT-CARRIER CONDENSATE

From now on, we follow Ref. [22] and assume a con-
densate did form and we write the Higgs doublet as

� ¼ ’ðrÞein�þic ðz;tÞ

	ðrÞeim�þi
ðz;tÞ

" #
; (11)

where n 2 Z is the winding number of the string, m 2 Z
leaves the possibility for the perturbation to wind as well,

FIG. 1 (color online). The potential (10), rescaled so as to be
dimensionless, appearing in the Schrödinger equation (9) for
various values of the parameter � ¼ �=ð2e2Þ as a function of
the dimensionless distance to the string core � ¼ ffiffiffi

2
p

e�r
(see Sec. IVC for details on the numerics).
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and the phases c and 
 only depend on the internal string
coordinates. This field can then source A�, Az, and At, all
being functions of the radius r only in order for the
worldsheet to be localized. Note that the form (11) assumes
no modes are present in the transverse direction, i.e., the
phases c and 
 do not depend on r, so we consider neither
ingoing nor outgoing waves: the field configuration we are
investigating is at equilibrium, and hence may only have
excitations along the worldsheet. We shall also occasion-
ally use a latin index to denote worldsheet coordinates fz; tg
collectively.

A. State parameters

With the ansatz (11), the field equations now read

A00
a þ 1

r
A0
a þ 2e½ð@ac � eAaÞ’2 þ ð@a
� eAaÞ	2� ¼ 0;

(12)

for the internal gauge fields,

Q00 � 1

r
Q0 ¼ 2e2½Q’2 þ ðQþm� nÞ	2�; (13)

with the same convention as before that Q ¼ n� eA�,

’00 þ 1

r
’0 ¼

�
P2
c þQ2

r2
þ �ð’2 þ 	2 � �2Þ

�
’; (14)

with P2
c ¼ ð@zc � eAzÞ2 � ð@tc � eAtÞ2,

	00 þ1

r
	0 ¼

�
P2

þ

ðQþm�nÞ2
r2

þ�ð’2þ	2��2Þ
�
	;

(15)

where P2

 is defined in a similar fashion as Pc , namely,

P2

 ¼ ð@z
� eAzÞ2 � ð@t
� eAtÞ2. Finally, the phases

represent massless modes propagating along the string, as
is clear from their equations of motion

ð@2t � @2zÞc ¼ �ab@a@bc ¼ 0 ¼ �ab@a@b
: (16)

In Eqs. (12) to (16), we have set a prime to denote a
derivative with respect to the radial distance r.

One now needs to look at the boundary conditions to
restrict attention to the physically meaningful cases. In
particular, noting that limr!0QðrÞ ¼ n and assuming P2




to be regular at the string core location, Eq. (15) implies
the following: setting 	’	0þ	0

0rþ 1
2	

00
0r

2þ��� , the

expansion

	00
0

�
2�m2

2

�
þ	0

0

r
ð1�m2Þþm2	0

r2
P2

ð0Þ	0þOðrÞ¼ 0;

should hold. In order for the r�2 term to be regular,
one must impose either m ¼ 0 or demand that 	0 ¼ 0. In
the latter case, assuming m�0, one finds that m2¼1 and
m2 ¼ 4 simultaneously, which is self-contradictory. Hence,

we must set m ¼ 0 and limr!0	
0ðrÞ¼0. Moreover,

asymptotically, i.e., when Q!0, 	!0 and ’!�,
Eq. (12) becomes

A00
a þ 1

r
A0
a þ 2e�2ð@ac � eAaÞ ¼ 0; (17)

the solution of which can be made to vanish—i.e., we
demand limr!1AaðrÞ ¼ 0 in order for the total energy of
the configuration to befinite—only provided@ac ¼ 0. As c
must now be a constant, it can, without lacking generality, be
set to zero by means of a global SU(2) gauge transformation
(which can also remove any constant part that would be
present in 
 as well). The general solution of (16) then reads


 ¼ 
�ðz� tÞ þ 
þðzþ tÞ þ kz�!t; (18)

where
� represent the left and rightmasslessmodesmoving
along the string and the last term represents a coherentmode,
that can, in the usual case, be built as a superposition of left
and right movers. If a string segment is considered, the left
and rightmovingmodes are responsible for the leaking out of
the current; again, following Ref. [22], we shall in what
follows consider a z-independent string (approximating a
closed loop when setting periodic boundary conditions),
assuming it can somehow be formed in the first place and
thus neglect thesemodes;we shall accordingly set
� ! 0 in
what follows.
Because of Eq. (18), the phase gradient term of Eq. (17)

is a constant. This implies that the two functions Pa �
eAa � @a
 satisfy the same linear equation and hence are
merely proportional to one another for all values of r. One
then has Pz / Pt, the proportionality constant being found
by taking the asymptotic limit of this relation for which we
want the gauge field Aa to vanish. This yields Pz ¼
�kPt=!, and thus Az ¼ �kAt=!. We are now in a posi-
tion to define the relevant degree of freedom as

A2
z � A2

t ¼
�
k2

!2
� 1

�
A2
t ¼

�
1�!2

k2

�
A2
z � wP2;

with w the state parameter, and the function P dimension-
less. The fields Az and At are then related to P through

At ¼ !P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

k2 �!2

r
; and Az ¼ �kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

k2 �!2

r
;

note that w has dimensions of a squared mass. In view of
this, one needs to complement the system with yet another
independent—and dimensionless—parameter b, represent-
ing the bias between the gauge fields and the phase gra-
dient, through

k2 �!2 ¼ wb2:

The sign of w determines that of the phase gradient, so the
current is described by two positive parameters and a sign.
For w> 0 (respectively, w< 0), the current is spacelike
(respectively, timelike), and the equation of motion for P is
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P00 þ 1

r
P0 ¼ 2e2Pð’2 þ 	2Þ þ 2eb	2; (19)

where we assume b > 0.
Having constructed the current-carrying configuration

and taking account of all the symmetries, we now turn to
the range of parameters that one should investigate to fully
describe such strings.

B. The lightlike current limit

The ordinary—neutral [34] or charged [35]—current-
carrying cosmic string is known to have a maximum charge
density (timelike current) above which it is energetically
favored for the condensed particles to form ingoing and
outgoing massive radial modes. In the model here dis-
cussed, such a phase frequency threshold is also acting,
and as it turns out, it prevents the timelike currents from
forming altogether.

With the degrees of freedom as obtained in the previous
section, we can rewrite Eq. (15) as

	00 þ1

r
	0 ¼

�
P2

þ

ðQ�nÞ2
r2

þ�ð’2þ	2��2Þ
�
	; (20)

where now P2

 ¼ wðbþ ePÞ2. In the asymptotic regime,

one is left with

	00 þ 1

r
	0 �

�
wb2 þ n2

r2

�
	; (21)

as 	 decreases to vanishingly small values. The general
solution for this Bessel equation is

	� aIInðb
ffiffiffiffi
w

p
rÞ þ a KKnðb

ffiffiffiffi
w

p
rÞ; (22)

for constant aI and aK, with In and Kn the modified Bessel
functions of order n. For w> 0, the field is a condensate
provided we set aI ¼ 0.

The energy contained in this solution converges expo-
nentially fast far from the string core provided w> 0; for
w< 0, instead the general solution is a combination of
oscillatory Bessel functions. In the usual Witten current-
carrying case [27,34], there is a similar transition for a
given, nonzero negative value wth of w that leads to a
logarithmic divergence in the equation of state in the limit
w ! wth. Here however, the threshold would be for a
lightlike current, with wth ¼ 0; the would-be divergence
is regularized by the w prefactor that enters into the defi-
nition of the energy per unit length and tension (see
Sec. IV) and the result is perfectly finite; there is no phase
frequency threshold1 in this case; the current can, from a
spacelike configuration, smoothly evolve towards an al-
most lightlike situation.

In fact, Eq. (22) also gives the behavior of 	 with w in
the limit w ! 0. First, setting w ¼ 0 into Eq. (21) yields
	� Ar�n þ Brn, with A and B unknown constants; a
necessary condition for the condensate to be localized on
the vortex is that B ¼ 0. On the other hand, taking directly
the solution (22) with aI ¼ 0 and expanding the Bessel
function Kn in the neighborhood of w� 0 (we assume an
analytic continuation with n ! nþ 
 and take afterwards
the limit 
 ! 0 to handle the singularity), one obtains

Knðb
ffiffiffiffi
w

p
rÞ � 2�1�nbnrnwn=2�ð�nÞ

þ 2�1þnb�nr�nw�n=2�ðnÞ;
so that, providing wn=2 converges to zero faster than the
pole in the � function, one can identify

aK ¼ ðb ffiffiffiffi
w

p Þn
2n� 1ðn� 1Þ!A;

where A, although arbitrary at this stage, is independent
of w as it comes from the solution for w ¼ 0. Therefore,

in the small (but finite) w limit, we have that 	 /
wn=2Knðb

ffiffiffiffi
w

p
rÞ whose asymptotic behavior gives 	 /

wn=2�1=4e�b
ffiffiffi
w

p
r=

ffiffiffi
r

p
. It is this behavior that implies the

chiral current limit to be well-defined.
We now move on to evaluating the integrated quantities

leading to this equation of state.

IV. INTEGRATED QUANTITIES

In order to describe the network of strings that will be
generated by the single strings here considered, one needs
to integrate over the transverse directions in order to be
able to approximate each defect by means of an actually
zero thickness object. This means we should derive the
current and stress-energy tensor associated with the solu-
tions obtained above. As we will then show the string to be
unstable with respect to longitudinal perturbations, the
worldsheet these integrated quantities suppose will not
actually last; assuming its presence is however necessary
for calculation purposes.

A. Current

Among the integrated quantities of interest, the current,
defined as

J� � 1

2e

�L
�A�

; (23)

provides two independent ways to verify that the following
configurations obtained numerically are indeed solutions
and not mere artifacts. With the framework of model (1),
this is

J� ¼� i

2
½�y � ð@��Þ�ð@��yÞ ����eA��y ��; (24)

which gives, using the explicit form (11) in terms of the
components of �,

1Rather, one could say that there is a frequency threshold as in
the usual case, but the asymptotic mass of the current carrier
vanishes since it is akin to a Goldstone mode here, so the
threshold does not imply a divergent behavior of either the
energy per unit length or the tension.
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Jr ¼ 0 and J� ¼ Q’2 þ ðQ� nÞ	2; (25)

for the transverse components, and

Ja ¼ 	2ð@a
� eAaÞ � 2e’2Aa; (26)

with a 2 fz; tg for the longitudinal, worldsheet
components.

Integration over the transverse degrees of freedom yields
two macroscopically defined quantities, namely, the rota-
tional current flux around the string

I� �
Z

d2x?J� ¼ 2�
Z
½Q’2 þ ðQ� nÞ	2�rdr ¼ 2�n

e2
;

(27)

when the field equation (13) with m ¼ 0 is used, and the
Lorentz-invariant current scalar J along the worldsheet
defined through

J2 �
�Z

d2x?Jz
�
2 �

�Z
d2x?Jt

�
2
; (28)

which is readily evaluated in terms of the underlying field
solution previously derived as

J ¼ 2�
ffiffiffiffi
w

p Z
½eP’2 þ ðbþ ePÞ	2�rdr; (29)

because the difference of the integrals is itself a squared
integral, as expected for Lorentz symmetry reasons along
the string. Making use of the field equation (19) then yields
J ¼ 0, so this definition cannot account for a conserved
current along the worldsheet. This stems from the fact that
the current is now supported by both components of the
doublet, whereas in the usual Witten situation, there is only
one field that carries the current.

Although mostly useless for physical purposes, the cur-
rent components (27) and (29) can be used as a measure of
the validity of the numerical calculation: once the fields are
calculated, evaluating the integrals should reproduce the
analytic results above.

An alternative way to define the current is obtained by
recalling that it physically comes from the phase gradient
along the string. In other words, what really matters is the
current-carrying phase instead of the field itself, so that a
suitable worldsheet covariant—but not SU(2) covariant—
definition is

J a ¼ � 1

2
�ab

�L
�@b


; (30)

where �ab � diagð�1; 1Þ is the internal Minkowski metric
in the string. Since the action only depends on the phase
gradient and not on the phase itself, this current is auto-
matically conserved. With the definition (30), one can
construct an integrated current I which is merely one part
of that given in (29); namely, one finds, using the same
integration procedure as in (28) (with the replacements
J ! I and Ja ! J a)

I ¼ 2�
ffiffiffiffi
w

p Z
ðbþ ePÞ	2rdr: (31)

The nonzero value of this quantity also explains the differ-
ence between the spacelike and timelike eigenvalues of the
stress-energy tensor to which we now turn.

B. Worldsheet stress-energy tensor

From the Lagrangian (1), one also derives the stress-
energy tensor

T�� ¼ �2
�L
�g�� þ g��L; (32)

leading to the worldsheet components

Ttt ¼ 2e2’2A2
t þ2	2ð@t
�eAtÞ2þA02

t �Lð’;	;Q;PÞ;
(33)

Tzz¼ 2e2’2A2
z þ2	2ð@z
�eAzÞ2þA02

z þLð’;	;Q;PÞ;
(34)

Tzt ¼ 2e2’2AzAt þ 2	2ð@z
� eAzÞð@t � eAtÞ þ A0
zA

0
t;

(35)

where we have made use of the symmetries discussed in
the previous sections, and the Lorentz-invariant part stems
from the background Lagrangian

Lð’;	;Q; PÞ ¼ �’02 � 	02 �Q2’2

r2
� ðQ� nÞ2	2

r2

� w½e2’2P2 þ ðbþ ePÞ2	2�

� 1

2

�
wP02 þ Q02

e2r2

�

� �

2
ð’2 þ 	2 � �2Þ2: (36)

We assume the other components, i.e., in the transverse
direction, vanish once integrated along the radial coordi-
nates for the on-shell solution [36]. Following Ref. [37],
we write

Tab ¼
AþB C

C �AþB

 !
; (37)

whereA ¼ �Lð’;	;Q; P;w ! 0Þ, i.e., that part ofL of
Eq. (36) without the variations along the vortex, and

B ¼ ’2e2ðA2
z þ A2

t Þ þ 	2½ðk� eAzÞ2 þ ð!þ eAtÞ2�
þ 1

2
ðA02

z þ A02
t Þ; (38)

and the nondiagonal component reads

C¼ 2’2e2AzAt � 2	2ðk� eAzÞð!þ eAtÞ þA0
zA

0
t: (39)

Diagonalization of Tab with respect to �ab ¼ diagð�1; 1Þ
the two-dimensional Minkowski metric yields the eigen-
values E�. Those are
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E� � A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
¼ A� w

�
1

2
P02 þ e2P2’2 þ ðbþ ePÞ2	2

�
; (40)

from which one derives the energy per unit length U and
tension T by integration over the transverse degrees of
freedom, namely,

U ¼ 2�
Z

EþðrÞrdr and T ¼ 2�
Z

E�ðrÞrdr: (41)

Note at this point that since the quantity appearing in the
diagonalizing solution Eq. (40) is a perfect square, the
integration and diagonalization procedures commute, just
as in the case of the current for which (29) could be
straightforwardly derived, so the resulting macroscopic
quantities are really defined in an unambiguous way.

In order to evaluate the actual behavior of the equation
of state relating the energy per unit length and the tension,
and in particular the stability of the resulting current-
carrying string, we now discuss the numerical solutions.

C. Numerics

Solving numerically the system of equations (13), (14),
(19), and (20) requires that we cancel out the dimensions of

the relevant quantities. Setting � ¼ ffiffiffi
2

p
e�r the radius in

units of the gauge vector mass, and rescaling the fields and
state parameter through

’ ¼ �Xð�Þ; 	 ¼ �Yð�Þ; and w ¼ 2�2 ~w;

we obtain the dimensionless equations of motion in the
form

€Xþ 1

�
_X ¼

�
~wP2 þQ2

�2
þ �ðX2 þ Y2 � 1Þ

�
X; (42)

€Q� 1

�
_Q ¼ QX2 þ ðQ� nÞY2; (43)

€Yþ 1

�
_Y¼

�
~wð�þPÞ2þðQ�nÞ2

�2
þ�ðX2þY2� 1Þ

�
Y;

(44)

€Pþ 1

�
_P ¼ PðX2 þ Y2Þ þ �Y2; (45)

where a dot denotes differentiation with respect to the
rescaled radius � and the constants are defined by � �
b=e and � � �=ð2e2Þ.

A point worth discussing in relation with these equations
concerns the evolution of the condensate as the state pa-
rameter increases. Expanding the field functions around
the string core as X / �m þ � � � , Y � Y0 þ 1

2
€X0�

2 þ � � � ,
Q� nþ 1

2
€Q0�

2 þ � � � , and P� P0 þ 1
2
€P0�

2 þ � � � ,
where we have taken into account the regular boundary

conditions, the zeroth order expansion of Eqs. (42) to (45),
one gets that

€P 0 ¼ Y2
0

2
ð�þ P0Þ; (46)

implying that �� � P0 � 0; if P0 > 0, then (46) implies
that €P0 > 0, and hence P, should be a growing and positive
function of �, which is inconsistent with the requirement
that lim�!1P ¼ 0 (we assume, following the figures, that

the functions are monotonic). If P0 <��, then €P0 < 0 and
the same argument applies with a negative and decreasing
function. Equation (42) tells us that m ¼ n, as usual, while
Eq. (43) is trivially satisfied at the lowest order with the
given expansion. However, Eq. (44) translates into

€Y 0 ¼ Y0

2
½ ~wð�þ P0Þ2 þ �ðY2

0 � 1Þ�;

so that, demanding €Y0Y0 < 0 for the reasons just discussed
for P, one finds that

Y2
0 � 1� ~w

�
ð�þ P0Þ2; (47)

indicating that for large values of ~w, assuming P0 to
depend only mildly on ~w (indeed, P0 ! 0 in this limit),
the available range for Y0 abruptly shrinks to zero when
~w� ~wmax��=�2, or in other words forw�wmax���2=b:
the range of variations for the state parameter is automati-
cally constrained, as in the ordinary Witten case [34].
The finite range of variation of the state parameter can

be understood in the following way. Imagine a region along
the string network where a statistical fluctuation on the
phase gradient implies the condensate should form with a
very large value of w. This gives the would-be condensate
enough momentum to pass over the potential barrier (10),
and hence blocks the instability to effectively take place
until the fluctuation goes to a more reasonable value below
the maximum ð@
Þ2 � wmax.
These equations are derivable from the dimensionless

action Sþ, where

S� ¼
Z �

_X2 þ _Y2 þ ~w _P2 þ
_Q2

�2
� ~w½X2P2

þ ð�þ PÞ2Y2� þQ2X2 þ ðQ� nÞ2Y2

�2

þ 1

2
�ðX2 þ Y2 � 1Þ2

	
�d�; (48)

which is used to produce the numerical solutions shown in
Fig. 2 that are discussed below. The quantities S� serve to
define the energy per unit length and tension through

U ¼ 2��2Sþ and T ¼ 2��2S�: (49)

We also derive the currents in terms of dimensionless
variables as
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I ¼ �

e
�

ffiffiffiffiffiffiffi
2 ~w

p Z
ð�þ PÞY2�d�: (50)

It is shown in Fig. 3 as functions of ~w. The limit provided
by Eq. (47) compares with our numerical calculations in
the sense that the would-be current (50) obtained in
Sec. IVA abruptly vanishes when ~w exceeds the critical
value above which the condensate does not form at all.
The other currents, i.e., the constraints stemming from

Eqs. (27) and (29), are numerically verified to hold, hence
ensuring our field functions to solve their equations of
motion.
Equations (48) and (49) permit to show explicitly, using

the asymptotic behaviors derived above for 	, that the
energy and tension are both well behaved at the
would-be phase frequency threshold w ! 0. In terms of
dimensionless variables, we have, for � 	 1, that Yð�Þ
behaves as Y � fð ~wÞ ~wn=2�1=4e��

ffiffiffi
~w

p
�=

ffiffiffiffiffiffiffi
��

p
, where fð ~wÞ is

an unknown function of ~w whose behavior for small values
of the state parameter lim~w!0fð ~wÞ is a constant.
Now, in this small w regime, it is a simple matter to

evaluate the leading behavior of the integrated quantities,
as most of the field hardly depends on w; as shown in
Fig. 4, the condensate value at the string core and the
current gauge function P, as well as the background fields
X and Q, are essentially independent of w. The only term
that really matters for the variation of the integrals with w
is the asymptotic behavior of the current carrier	; as in the
ordinary Witten case, the condensate tends to spread
around the string around the phase frequency threshold,
i.e., here in the almost chiral case. Thus, assuming the
asymptotic behavior to hold from a distance �M on, the
dominant contribution � comes from the Y terms in
Eq. (48), namely,

�� ¼
Z 1

�M

�
_Y2 � ~wð�þ PÞ2Y2 þ ðQ� nÞ2

�2
Y2

þ �ðX2 � 1ÞY2 þ 1

2
�Y4

�
�d�:

For � > �M, one can further make the assumption that the
other fields have reached their asymptotic regime; namely,

FIG. 2 (color online). Rescaled fields around the vortex: Xð�Þ
(full line) and Yð�Þ (dashed) are the Higgs field components in
units of the Higgs vev �, while the vector field fluxQð�Þ (dotted)
renders the vortex local and Pð�Þ (dash-dotted) condenses in
such a way as to support the current otherwise induced by
condensation of Y. This figure is obtained for parameter values
� ¼ 1, � ¼ 3, and ~w ¼ 0:1�=�2.

FIG. 3. Variation of the internal current eI=� as a function of
the rescaled state parameter ~w for � ¼ 1 and various values of �
(same as in Fig. 5).

FIG. 4. Values of the condensate functions P0ð0Þ and Y0ð0Þ
in the string core (� ¼ 0) as functions of the rescaled state
parameter ~w for � ¼ 1 and various values of � (same as
in Fig. 5).
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we can set ðP;QÞ ! 0 and X ! 1, so the only important
contributions end up being

� ¼
Z 1

�M

�
_Y2 � ~w�2Y2 þ n2

�2
Y2 þ 1

2
�Y4

�
�d�;

which can be explicitly calculated. Neglecting irrelevant
constant terms and keeping only the leading contributions,
this gives, for n ¼ 1 (the general case leads to similar
conclusions but is merely more involved and, as discussed
above, not relevant to the current discussion since the type
II vortices here considered are unstable for n > 1, splitting
into n unit winding vortices),

�� A� B ~wþ C
ffiffiffiffi
~w

p þD ~w ln ~w;

where A, B, C, and D can be evaluated as asymptotic
integrals over the fields that do not depend on ~w.

What makes U different from T as functions of ~w is, in
the above expression, the second term involving B. In the
limit ~w ! 0, this term rapidly becomes negligible, and the
dominant contribution thus implies that U and T evolve in

similar ways with respect to ~w, the unique parameter
describing the string state. As a result, variations of the
tension with the energy per unit length are always positive,
so the longitudinal perturbation velocity

c2L � � dT

dU
� 0 (51)

is negative in the limit ~w ! 0. Numerical calculation
shown in Fig. 5 for the full range of available variations
of ~w shows that, in fact, Eq. (51) is valid for all possible
states attainable by the strings under scrutiny here.

V. DISCUSSION AND CONCLUSION

We have investigated a specific model of embedded
type II gauged vortices coming from the gauging of a
U(1) subgroup of an otherwise global SU(2). When the
U(1) symmetry is broken through a Higgs doublet acquir-
ing a nonvanishing vacuum expectation value, another
component of the same doublet can be excited because
of a well-known condensate instability. This leads to pos-
sible current-carrying string states as the phase gradient of
the carrier part of the doublet varies along the string; at
least at the time when the condensate forms, variations
from one point to another are subject to fluctuations over
distances larger than the correlation length, i.e., the inverse
mass of the Higgs field.
Because type II vortices exhibit only a single unstable

mode, it was suggested in Ref. [22] that those thus formed
could be stable provided they appear as sufficiently small
loops so that the unstable long wavelength microscopic
perturbations do not take over the dynamics. It remained
to understand whether these loops could be macroscopi-
cally stable, and this requires that we solve the internal
string structure in order to be able to integrate over the
irrelevant degrees of freedom. This is achieved by means of
a numerical integration of the field equations and a calcu-
lation of the relevant integrated quantities forming the
stress-energy tensor, to be later coupled to gravity, and
the currents. We found that contrary to the original Uð1Þ 

Uð1Þ Witten model [7,34,35] for which a large region of
stability with timelike, lightlike, and spacelike currents
could be identified, here only a spacelike current could be
constructed. This relies on the fact that the condensate is
essentially a massless Goldstone mode, so that any timelike
excitation would be energetically favored to move away
from the string. The lightlike limit, however, appears to be
reasonably well-defined.
We obtained another crucial difference with the usual

current-carrying string models: the spacelike current con-
figurations happen to be unstable with respect to longitu-
dinal (sound-wave-like) perturbations. As a result, our
investigation closes the window of possible stability zones
opened in Ref. [22], and we are led to the definite con-
clusion that type II vortices cannot form, or if they do, they
will spontaneously decay in such a way that their cosmo-
logical relevance is vanishing.

FIG. 5. Energy per unit length U (full lines) and tension T
(dashed lines) of the semilocal string in units of the squared
Higgs vev �2 for � ¼ 1 as in Fig. 2, and different values of � as
indicated on the curves. This shows explicitly the absence of a
phase frequency threshold at ~w ¼ 0; i.e., the null current limit is
perfectly regular. The functions end abruptly for a maximum
value of ~w, as indicated in Eq. (47) after which the condensate
identically vanished. It is also seen that U and T vary in the same
way with w for all values of w, so that dT=dU > 0, and hence the
longitudinal perturbation velocity c2L is always negative, signal-

ing an unstable behavior of the string seen as a macroscopic
object; the relevant string evolution presumably leads to a chiral
behavior independently of the initial value of the cosmological w
distribution at the string network formation time.
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Let us finally point out that the non-current-carrying
semilocal strings share some features with BPS D-term
string solutions [38], in particular the BPS D-term string
solutions possess a zero mode—very similar to semilocal
strings. While the zero mode can also be excited [39] one
might wonder whether any of the results obtained in our
paper would also be valid in this case and whether this
could lead to any consequence in inflationary models
rooted in string theory.
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