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In the theories of generalized modified gravity, the acceleration equation is generally fourth order. So, it

is hard to analyze the evolution of the Universe. In this paper, we present a class of generalized modified

gravity theories which have the acceleration equation of a second-order derivative. Then both the cosmic

evolution and the weak-field limit of the theories are easily investigated. We find that, not only the big

bang singularity problem, but also that the current cosmic acceleration problem could be easily dealt with.

DOI: 10.1103/PhysRevD.86.103512 PACS numbers: 98.80.Cq, 98.65.Dx

I. MOTIVATION

In history, the motivation for modifying general relativ-
ity (GR) mainly comes from the fact that GR is not
renormalizable. So, it cannot be conventionally quantized.
In the first place, Utiyama and DeWitt showed that the
renormalization at one loop requires the higher order cur-
vature terms in the action of gravity theories [1]. Secondly,
Stelle showed the corresponding gravity theories with
these higher order terms are indeed renormalizable [2].
Finally, when quantum effects or string theory are taken
into account, the effective low energy gravitational action
also requires higher order curvature invariants [3–5]. So, it
was generally believed that the modifications to GR would
be important only at the scales of very close to the Planck
length or Planck energy. Consequently, both the big bang
singularity and black hole singularity are expected to be
absent in the modified gravity theories [6–11]. This was the
belief before 1998.

However, with the discovery of cosmic acceleration in
1998 [12,13], one realized that GR may also need to be
modified on a very large scale or at very low energy (or
very weak gravitational field). These constitute the infrared
modifications to GR, for example, the Dvali-Gabadadze-
Porrati (DGP) model [14], the 1=Rmodified gravity model
[15], and so on. Here we shall not produce an exhaustive
list of references on modified gravity, but we prefer the
readers to see the review paper by Sotiriou and Faraoni
[16] and the references therein. In general, the equations of
motion for the generalized modified gravity are of fourth
order and one can expect the particle content of the theory
to have eight degrees of freedom: two for the massless
graviton, one in a scalar excitation, and five in a ghostlike
massive spin two field [17]. The presence of a ghost leads
one to accept unphysical negative energy states in the
theory and the property of unitarity is lost [18]. This ghost
problem is closely related to the higher order property of
the theories.

So the purpose of this paper is to seek the second order
theories of gravity, at least in the background of a spatially

flat Friedmann-Robertson-Walker (FRW) universe. Except
for satisfying the requirement of second order, the theories
also meet ghost-free conditions. Due to the property of the
second order of the acceleration equation, the resulting
Friedmann equation remains first order and the cosmic
evolution of the universe is easily deal with.
The paper is organized as follows. In Sec. II, we briefly

review the generalized modified gravity theories. The
equations of motion are presented. In Sec. III, we propose
the Lagrangian for the generalized modified gravity which
are both ghost free and second order (in the background of
a spatially flat FRW universe). In Sec. IV, we investigate
the cosmic evolution of some specific models of a
Lagrangian. In Sec. V, we investigate the weak-field limit
of these models. Section IV gives the conclusion and
discussion.
We use the system of units G ¼ c ¼ ℏ ¼ 1 and the

metric signature ð�;þ;þ;þÞ throughout the paper.

II. GENERALIZED MODIFIED GRAVITY

The generalized modified gravity theories have the ac-
tion of the form [19]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�
½Rþ fðR; P;QÞ� þLm

�
; (1)

where f is a general function of the Ricci scalar R and two
curvature invariants,

P � R��R
��; Q � R����R

����; (2)

which are of the lowest mass dimension and parity con-
serving. R�� and R���� are the Ricci tensor and the

Riemann tensor, respectively.Lm is the Lagrangian density
for matters.
If we define

fR � @f

@R
; fP � @f

@P
; fQ � @f

@Q
; (3)

then we obtain the generalized Einstein equations [19]*gaocj@bao.ac.cn
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�
�R��

þ2fQR����R
���

�þg��r2fR�r�r�fR

�2r�r�½fPR�
ð��

�
�Þ�þr2ðfPR��Þ

þg��r�r�ðfPR��Þ�4r�r�½fQR�
ð��Þ

��¼8�T��:

(4)

G�� is the generalized Einstein tensor, G��. The same as

the Einstein tensor, it satisfies the Bianchi identity

G ��
;� ¼ 0: (5)

Different from the Einstein tensor, which is up to second-
order derivative, G�� is up to fourth order. So, Eq. (4) are

usually a set of fourth-order differential equations except
for the case of a cosmological constant f ¼ 2�. The
existence of higher derivatives in the equation of motion
suggests that one would always find ghosts in a linearized
analysis. Actually, it can be argued by considering the
Cauchy problem, the gauge symmetries, and constraints
on the theory (see for instance Ref. [17]), that the gener-
alized modified gravity will contain at most eight degrees
of freedom: two for the usual massless graviton, one for a
scalar field, and five for ghostlike massive spin two exci-
tation. The ghost problem leads one to accept negative
energy states in the theory. So the property of unitarity is
lost [18].

However, Comelli [20] and Navarro and Acoleyen [21]
showed that with a suitable choice of parameters, the
theory would be ghost free. Actually, they showed that
the general Lagrangian of the form L ¼ LðR; P� 4QÞ
are ghost free. So in this case it is left with only an extra
scalar degree of freedom to the gravitational sector. In the
next section, we shall seek the Lagrangian, which gives the
acceleration equation of the second-order derivative and
the corresponding theories are ghost free.

III. THE LAGRANGIAN

The spatially flat FRW metric is given by

ds2 ¼ �dt2 þ aðtÞ2ðdr2 þ r2d�2Þ; (6)

where aðtÞ is the scale factor. Given the metric, we could
calculate the Ricci scalar R and the curvature invariants,
P, Q,

R ¼ 6ð _H þ 2H2Þ;
P ¼ 12½ð _H þH2Þ2 þH2ðH2 þ _HÞ þH4�;
Q ¼ 12½ð _H þH2Þ2 þH4�; (7)

where H � _a=a is the Hubble parameter and dot denotes
the derivative with respect to the cosmic time t.

The second derivative of the scale factor, €a (in _H), is
present inR, P,Q. If f / R, the corresponding equations of
motion are the Einstein equations. They are second-order

differential equations. In this scenario, _H appears linearly
in the Lagrangian. However, if _H appears nonlinearly in
the Lagrangian, just as contributed by R2, P and Q, the
corresponding equations of motion would be fourth-order
differential equations.
It is not hard to conjecture that, if we are able to make _H

disappear in the Lagrangian f such that it is uniquely the
function of Hubble parameter H, the resulting equation of
motion must be of second-order differential equation. Then
how do we make _H disappear? We can examine the proper
combination of R2, P, Q.
To this end, let us calculate

I��R2þ�Pþ	Q

¼12ð3�þ�þ	Þ _H2þ12ð12�þ3�þ2	ÞðH2 _HþH4Þ:
(8)

So, if we let

12�þ 3�þ 2	 ¼ 0; (9)

namely,

	 ¼ �6�� 3

2
�; (10)

we would obtain

I ¼ �ð36�þ 6�Þ _H2: (11)

Is _H negative or positive? In order to answer this question,
let us resort to the Einstein equation in FRW universe,

_H / �ð
þ pÞ; (12)

where 
, p are the total cosmic energy density and pres-
sure, respectively. It is apparent _H is nonpositive in the
history of the Universe which mainly covers three epochs
dominated by radiation, matter, and cosmological constant,
respectively. Therefore, we assume

_H � 0; (13)

in the following. Thus,ffiffiffi
I

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�36�� 6�
p ð� _HÞ: (14)

It is apparent that � and � should obey

� 36�� 6� � 0: (15)

If we define J as follows,

J � 1ffiffiffiffiffiffi
12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�36�� 6�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R2 þ �Pþ 	Q

qs
; (16)

then we have

J ¼ H;

in the background of FRW universe.
Now we could conclude that, for the general function of

fðJÞ, the Lagrangian density
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L ¼ 1

16�
½Rþ fðJÞ� þLm; (17)

always leads to the second-order equation of motion in the
background of a spatially flat FRWuniverse. Of course, we
have assumed the energy-momentum tensor contributed by
the matters is up to second order.

In general, the above theories of gravity would contain
the massive spin two ghost field in addition to the usual
massless graviton and the massive scalar [16]. But the
fðRÞ theories of gravity are found to be ghost free.
Reference [22] and Refs. [20,21] showed that the models
given by

L ¼ 1

16�
½Rþ fðR; 4P�QÞ�; (18)

are also ghost free. In view of this point, we should let

�

	
¼ �4: (19)

Taking account of Eq. (10), we have

� ¼ � 24

5
�; 	 ¼ 6

5
�: (20)

So, J is found to be

J ¼ 1ffiffiffiffiffiffi
12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð4P�QÞ � 5R2

qr
: (21)

Using the Gauss-Bonnet invariant

G ¼ R2 � 4PþQ; (22)

we have

J ¼ 1ffiffiffiffiffiffi
12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 6G

pq
: (23)

Then we recognize that the Lagrangian

L ¼ 1

16�
½Rþ fðJÞ�; (24)

is actually the modified Gauss-Bonnet gravity which has
been studied in Ref. [23]. In general, the acceleration
equation in the modified Gauss-Bonnet gravity is fourth
order. However, for our specific case [Eq. (23)], we would
obtain a second-order acceleration equation from the
Lagrangian Eq. (24). We note that, in Eq. (24), J is
the function of R, P, Q or R, G according to Eq. (23). In
the background of four-dimensional FRW universe, we
have J ¼ H. But it is not the case for other spacetimes.

Here, we would like to point out that the above con-
clusion is valid only for the four-dimensional FRW uni-
verse. If the dimension of spacetime is greater than four,
the variation of Eq. (24) would lead to a fourth-order
acceleration equation. The reason could be understood as
follows. In the Gauss-Bonnet gravity, if the dimension of
spacetime is four, the Gauss-Bonnet term turns out to be a

topological invariant and so it makes no contribution to the
equation of motion. In higher dimensions, the Gauss-
Bonnet term is not topologically invariant and so it would
contribute to the equation of motion. For the modified
Gauss-Bonnet gravity, the equation of motion is usually
fourth order even in the four dimensions.
Actually, the Gauss-Bonnet term is generalized in the

Lovelock gravity theory [24]. It is found that the equations
of motion in Lovelock gravity are of second order in any
spacetime with any dimensions, needless to say in the
background of the four-dimensional FRW universe.
However, there is a notable difference between the
Lovelock gravity and the generalized modified gravity in
Eq. (24). The Lovelock gravity is an ultraviolet modifica-
tion to general relativity and is unable to achieve the
infrared modification to gravity.

IV. SECOND-ORDER ACCELERATION EQUATION
AND THE FRIEDMANN EQUATION

In this section, we shall derive the acceleration equation
and the Friedmann equation from the Lagrangian density
Eq. (17) or Eq. (24). In the background of the spatially flat
FRW universe, the Lagrangian function is given by

L ¼ a3
�

1

16�
½Rþ fðJÞ� þLm

�
: (25)

Substituting the Lagrangian function into the Euler-
Lagrange equation,

d2

dt2

�
@L

@ €a

�
� d

dt

�
@L

@ _a

�
þ @L

@a
¼ 0; (26)

we obtain the acceleration equation

2 _Hþ 3H2 � 1

2
Hf0 þ 1

2
f� 1

6
_Hf00 ¼ �8�p; (27)

where the prime denotes the derivative with respect toH. It
is obvious that the acceleration equation belongs to the
second-order differential equations.
Using the acceleration equation, we could obtain

the Friedmann equation from the energy-conservation
equation

d


dt
þ 3Hð
þ pÞ ¼ 0 (28)

as follows:

3H2 þ 1

2
f� 1

2
Hf0 ¼ 8�
: (29)

The left-hand side of the Friedmann equation is only the
function of Hubble parameter. It is remarkably simple in
the investigation of the evolution of the Universe.
Equations (27)–(29) and the equation of state for

matters,

p ¼ pð
Þ; (30)
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constitute the main equations which govern the evolution
of the Universe. Among the four equations, only three of
them are independent. For convenience, we always focus
on Eqs. (28)–(30).

V. SOME EXAMPLES

In this section, we shall study some specific and inter-
esting forms of fðHÞ.

A. �CDM Model

If f ¼ �16�� with � a constant, we obtain from
Eq. (29),

3H2 ¼ 8�ð
þ�Þ: (31)

This is the Friedmann equation for a � cold dark matter
(�CDM) universe. Although the �CDM model provides
an excellent fit to the wealth of high-precision observatio-
nal data, on the basis of a remarkably small number of
cosmological parameters [25], it is plagued with the well-
known cosmological constant problem and the cosmic
coincidence problem which prompted cosmologists to
look for other explanation for the observed accelerated
expansion.

B. Power law for f

Assume the energy density contributed by f is the form
of a power law �Hn with � a positive constant and n an
integer. Then from the Friedmann equation (29), we have

� 1

2
fþ 1

2
Hf0 ¼ 8��Hn: (32)

Thus, f is derived as

f ¼ 16��
Hn

n� 1
: (33)

When n ¼ 1, we have

f ¼ 16��H lnH: (34)

Now we have the conclusions as follows.
(1) When f ¼ 16��J lnJ (for n ¼ 1), we have the

following Friedmann equation:

3H2 ¼ 8�ð
þ �HÞ: (35)

It is the same as the Friedmann equation given by
the DGP modified gravity [26]. The equation can be
rewritten as

3H2 ¼ 8�
þ 1

6
�2 þ 1

6
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 96�


q
: (36)

If we define

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
I=�

q
=4; (37)

we have

3H2 ¼ 8�

�

þ 
I

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I

2

�
2
þ 
I

2

�s �
: (38)

Here 
I is a constant energy density. The 
I terms
are investigated as the candidate of dark energy in
many literatures, for example, Ref. [27] and refer-
ences therein. Different from the cosmological con-
stant, this dark energy density increases with the
increasing of background energy density 
. So, the
cosmic coincidence problem is greatly relaxed. But
it is argued that the DGP model is disfavored by the
history of cosmic structure formation [28] because
of the fast increasing of dark energy density with
redshifts.

(2) When f ¼ ��J�2 (for n ¼ �2) with � a constant,
we obtain from Eq. (29),

3H2 � 3

2
�H�2 ¼ 8�
: (39)

The above equation can be rewritten as

3H2 ¼ 4�
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2
2 þ 9

2
�

s
: (40)

If we define

� � 128

9
�2
2

I ; (41)

then Eq. (40) can be rewritten as

3H2 ¼ 4�ð
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 4
2

I

q
Þ: (42)

It is apparent 
I plays the role of a constant energy
density. When 
 � 
I, it restores to the standard
Friedmann equation. When 
 � 
I, the Universe
evolves into a de Sitter phase. We have shown that
this model could interpret the current acceleration of
the Universe [29]. Different from the DGP model,
the dark energy density in this scenario decreases
with the increasing of redshifts. So, the cosmic
coincidence problem is also relaxed.

(3) When f ¼ 16��J4=3 (for n ¼ 4), we have the
Friedmann equation as follows:

3H2 ¼ 8�ð
þ �H4Þ: (43)

It is a quadratic equation of H2. Mathematically, we
would have two roots for H2. But physically, only
one of which could reduce to the standard
Friedmann equation in the limit of small 
. So, the
physical root takes the form of

3H2 ¼ 3

16��
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 256�2
�

q
Þ: (44)

Define
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� � 9

128�2
U

; (45)

with 
U some positive constant. The Friedmann
equation (44) turns out to be

3H2 ¼ 8�
U

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2



U

s �
: (46)

Here 
U plays the role of a constant energy density.
It is apparent 
 should obey 
 � 
U. So, to the
zeroth order of 
=
U, we obtain the standard
Friedmann equation. To the first order of 
=
U,
we obtain the Friedmann equation in the Randall-
Sundrum brane world model [30]

3H2 ¼ 8�

�

þ 
2

2
U

�
: (47)

Putting


U ¼ 1; 
 ¼ 1

a4
; (48)

and using Eq. (46), we plot the evolution of the scale
factor a and the Hubble parameter H in Fig. 1,
respectively. It shows that the Universe is created
in finite time with finite a scale factor and a finite
Hubble parameter. So, the big bang singularity is
avoided.

It is apparent the energy density is also finite from
Eq. (46). Then, how about the pressure and its higher
derivatives? If they are irregular, some weak singularities
would appear. We find that they are regular and that there
are no weak singularities. The proof is as follows. Taking
account of Eq. (48) and the energy conservation equation,
we obtain the pressure p ¼ 
=3. Since 
 is regular, p is
also regular. Then, with the help of energy conservation
equation, we find the higher derivatives of pressure are
regular.

C. Past de Sitter universe

In the last part of Sec. VB, we find that the Universe
could be created in finite time with a finite scale factor and
a finite Hubble parameter. So, it seems there exists a
starting point of time. Different from this case, in this
section, we present a past de Sitter universe. In this sce-
nario, the Universe starts from a de Sitter phase. So the
history of the Universe is infinite. In other words, there
does not exist a starting point of cosmic time.
In order to construct a past de Sitter universe, we could

explore

f ¼ 6J2 � 4J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6�
U

p
tanh�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3J2

8�
U

s �
; (49)

where 
U is a constant energy density. Substituting it into
Eq. (29), we obtain

3H2 ¼
�
1� 3H2

8�
U

�
8�
; (50)

or

3H2 ¼ 8�



1þ 
=
U

: (51)

To the zero order of 
=
U � 1, it restores to the
Friedmann equation in general relativity. To the first order
of 
=
U, we have

3H2 ¼ 8�

�

� 
2


U

�
: (52)

It is the Friedmann equation in the theory of loop quantum
gravity [31,32].
On the other hand, when 
=
U � 1, we obtain

3H2 ¼ 8�
U: (53)

This is for a de Sitter universe. Taking into account all
matter sources which include relativistic matter (radiation),
baryon matter, dark matter, and the cosmological constant,
we can rewrite the Friedmann equation (51) as follows:

h2 ¼
�r0

a4
þ �m0

a3
þ��

1þ
�r0

a4
þ�m0

a3
þ��

�U

: (54)

Observations show that �r0 ¼ 8:1 � 10�5, �m0 ¼ 0:27,
�� ¼ 0:73, which are the ratios of energy density for
radiation, matter (including baryon matter and dark
matter), and cosmological constant in the present-day
Universe. The dimensionless Hubble parameter h is
defined by

h ¼ H

H0

; (55)

0.5

1

1.5

2

2.5

3

3.5

4

H a

0 0.2 0.4 0.6 0.8 1
t

FIG. 1. The evolution of the scale factor a and the Hubble
parameter H with respect to the cosmic time t. It shows that the
Universe is created in finite time with a finite scale factor and a
finite Hubble parameter. So the big bang singularity is avoided.
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with H0 the present-day Hubble parameter. �U is the
dimensionless energy density contributed by 
U.

Taking �U ¼ 10123 (which represents 
U is Planck
energy density), we plot the evolution of the rescaled
dimensionless Hubble parameter M � log10h with respect
to the rescaled scale factor N � lna in Fig. 2. There are
three epochs A, B, C in the total life of the Universe. The
epoch of A corresponds to the de Sitter phase. The
Universe exponentially expands (inflating) in this period.
Then the inflation stops around the redshift of z	 1030.
The epoch of B is dominated firstly by the radiation and
then by the matter. It stops around the redshift of z	 0.
The epoch of C is dominated by a small cosmological
constant. It is the future de Sitter phase.

VI. WEAK-FIELD LIMIT

In this section, we shall study the weak-field limit of the
above modified gravity theories. Following Refs. [20,21],
we expand the action in powers of the curvature perturba-
tions. Then it can be shown that at the bilinear level, the
linearization of the theory over a maximally symmetric
spacetime, will be the same as the theory obtained in
Refs. [17,33],

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p 1

16�

�
R��þ �Rþ 1

6m2
0

R2

� 1

2m2
2

C����C
����

�
; (56)

where C���� is the Weyl tensor and we have defined

� � hf� RfR þ R2ðfRR=2� fP=4� fQ=6Þ
þ R3ðfRP=2þ fRQ=3Þ
þ R4ðfPP=8þ fQQ=18þ fPQ=6Þi0; (57)

� � hfR � RfRR � R2ðfRP þ 2fRQ=3Þ
� R3ðfPP=4þ fQQ=9þ fPQ=3Þi0; (58)

m�2
0 � h3fRR þ 2fP þ 2fQ þ Rð3fRP þ 2fRQÞ

þ R2ð3fPP=4þ fQQ=3þ fPQÞi0; (59)

m�2
2 � �hfP þ 4fQi0: (60)

Here h� � �i0 represent the values of the corresponding

quantities in the background of some spacetime and FRR �
@2f
@R2 , etc. It is apparent for the action, Eq. (24), that the

inverse of mass squared of the ghost is m�2
2 ¼ 0. Thus,

there is no ghost in the spectrum. But there is still an extra
scalar with the mass m0. The � term behaves as the
vacuum energy and the � term contributes the variation
of the gravitational constant,

�G

G
¼ ��

1þ �
’ ��: (61)

In Tables I and II, we calculate the parameters for the five
models:
(a) f ¼ �16��;
(b) f ¼ 16��J lnJ;
(c) f ¼ ��J�2;
(d) f ¼ 16��J4=3;

(e) f ¼ 6J2 � 4J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6�
U

p
tanh�1ð

ffiffiffiffiffiffiffiffiffi
3J2

8�
U

q
Þ,

in the background of de Sitter spacetime and Minkowski
spacetime (by taking the limit of� ! 0). From Table I, we
see that the models a, b, c contribute the nonvanishing
cosmological constant terms. For models d and e, the �

0

20

40

60
A

M

–100 –80 –60

B

–40 –20 0 20

C

40
N

FIG. 2. There are three epochs A, B, C in the total life of the
Universe. The epoch of A corresponds to the de Sitter phase. The
Universe exponentially expands (inflating) in this period. Then
the inflation stops around the redshift of z	 1030. The epoch of
B is dominated firstly by the radiation and then by the matter. It
stops around the redshift of z	 0. The epoch of C is dominated
by a small cosmological constant. C is the future de Sitter phase.

TABLE I. The parameters of five models in the background of de Sitter spacetime.

Models � � m�2
0 m�2

2

(a) � 0 0 0

(b) � ffiffiffiffiffiffiffiffiffi
�
I

p ð9 ln2þ 3 ln�þ 3 ln�� 8� 3 ln3Þ=16 � ffiffiffiffiffiffiffiffiffiffiffiffi

I=�

p ð�3 ln3þ 4þ 9 ln2þ 3 ln�þ 3 ln�Þ=32 m0 ¼ 0 0

(c) 
2
I =� �
2

I =ð4�2Þ m0 ¼ 0 0

(d) 0 0 m0 ¼ 0 0

(e) 0 0 m0 ¼ 0 0
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terms are zero because they are the ultraviolet modification
to GR. In the column of �, we see the models b, c
contribute the nonvanishing gravitational constant terms.
Except for the model of a, there exists a scalar degree of
freedom with vanishing mass in b, c, d, e.

In the background of Minkowski spacetime, we see from
the Table II that, except for the model of c, the other
models make no contribution to vacuum energy and gravi-
tational constant. The reason for this is that the model c is
essentially a modification with inverse curvature invari-
ants. So, the Minkowski spacetime does not solve the
corresponding equations of motion.

VII. CONCLUSION AND DISCUSSION

In the theories of generalized modified gravity, the ac-
celeration equation is generally fourth order. So, it is hard
to analyze the evolution of the Universe [15]. On the other
hand, these theories are also plagued with the ghost prob-
lem. So, the property of unitary of the theory is lost [18]. In
view of this point, we present a class of generalized modi-
fied gravity theories which have the acceleration equation
of a second-order derivative and are ghost free. Then
we explore some specific examples for the Lagrangian
function. We find that both the cosmic evolution and the
weak-field limit of the theories are easily investigated.
Furthermore, not only the big bang singularity problem,
but also the current cosmic acceleration problem, could be
easily dealt with.
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