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We discuss the damping of tensor modes due to anisotropic stress in inflation. The effect is negligible in

standard inflation and may be significantly large in inflation models which involve drastic production of

free-streaming particles.
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I. INTRODUCTION

The spatial flatness and homogeneity of the present
Universe strongly suggest that a period of de Sitter expan-
sion or inflation had occurred in the early Universe [1].
During inflation, quantum fluctuations of the inflaton
field may give rise to energy density perturbations (scalar
modes) [2], which can serve as the seeds for the formation
of large-scale structures of the Universe. In addition,
a spectrum of gravitational waves (tensor modes) is pro-
duced from the de Sitter vacuum [3].

Gravitational waves are very weakly coupled to matter,
so once produced, they remain as a stochastic background
until today, and thus provide a potentially important probe
of the inflationary epoch. Detection of these primordial
waves by using terrestrial wave detectors or the timing
of millisecond pulsars [4] would indeed require an experi-
mental sensitivity of several orders of magnitude beyond
the current reach. However, like scalar perturbation,
horizon-sized tensor perturbation induces large-scale tem-
perature anisotropy of the cosmic microwave background
(CMB) via the Sachs-Wolfe effect [5]. The recent seven-
year WMAP anisotropy data has placed an upper limit on
the contribution of tensor modes to the CMB anisotropy, in
terms of the tensor-to-scalar ratio, which is r < 0:36 [6].
More stringent limits, r < 0:17–0:19, have been made by
combining several other cosmological measurements [7].
In addition, the tensor modes uniquely induce CMBB-mode
polarization which is the primary aim of ongoing and future
CMB experiments [8].

As is well known, gravitational waves propagate freely in
the expanding Universe [9]. This is under the assumption
that the Universe is a perfect fluid. In the presence of non-
vanishing anisotropic stress, an additional source term to the
gravitational wave equation should be included [10]. The
effect of anisotropic stress on cosmological gravitational
waves due to free-streaming neutrinos after the neutrino-
matter decoupling in the early Universe was first numerically
calculated in Ref. [11], and incorporated in an integrodiffer-
ential equation for the wave propagation [12]. In fact, this
equation can be also applied for any unknown free-streaming
relativistic particles [13]. It was found that the anisotropic

stress reduces the wave amplitude, thus lowering the tensor-
mode induced CMB anisotropy and polarization [11–14].
In this paper, we will discuss the effect of anisotropic

stress on tensor modes in inflation. Here, the anisotropic
stress is due to free-streaming relativistic particles pro-
duced during inflation. The generating source of these
relativistic particles could be de Sitter quantum fluctua-
tions of the inflaton itself in standard slow-roll inflation [2],
a thermal component in warm inflation [15], isolated bursts
of instantaneous massless particle production [16], particle
production in trapped inflation in which the inflaton rolls
slowly down a steep potential by dumping its kinetic
energy into light particles at the trapping points along the
inflaton trajectory [17,18], or electromagnetic dissipation
in natural inflation [19,20].

II. PARTICLE PRODUCTION IN INFLATION

Here, we assume a flat Friedmann-Robertson-Walker
metric,

ds2 ¼ dt2 � a2ðtÞdx2 ¼ a2ð�Þðd�2 � dx2Þ; (1)

where að�Þ and d� ¼ dt=aðtÞ are the scale factor and
conformal time respectively. For simplicity, we treat the
inflaton energy density �� as approximately constant, and

then we have

a ¼ � 1

H�
; H2 ¼ 8�G

3
��: (2)

We denote the energy density of the free-streaming rela-
tivistic particles � produced during inflation by �� and

define a ratio,

f � ��

��

: (3)

In the standard slow-roll inflation, a candidate for the �
particle is any weakly interacting field whose quanta are
gravitationally produced during inflation. These de Sitter
quantum fluctuations have a characteristic energy density
roughly equal to �� �H4 [2], so we have f�GH2. The

WMAP results [6] have set an upper limit on the inflation
scale which means that f < 10�10. We will see below that
this small f implies anisotropic stress too weak to affect the
tensor modes in the standard slow-roll inflation.
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However, some inflation models which involve particle
production via interactions between � and � may allow a
relatively large value for f. For example, in the trapped
inflation model with an interaction of the type
g2ð���iÞ2�2

i [17], when � rolls slowly down a steep
potential by dumping its kinetic energy into �i particles
at each trapping point at �i along the inflaton trajectory,
a roughly constant energy density of all �i’s, �� ¼ P

i��i
,

is maintained. This energy density can be estimated as
�� � k4� with k� being a characteristic energy scale given

by k� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðd�=dtÞp

, where d�=dt is the inflaton rolling
speed. To have a successful trapped inflation, it is required
that f < 0:1. Also, it is shown that the scattering rate of
�i particles, which is given by �� k4�=E3 with E being
the energy of �i, is sufficiently slower than the expansion
rate, � � H [21]. Thus, in this model, the de Sitter vacuum
may be populated with free-streaming �i particles which
generate significantly large anisotropic stress to damp the
tensor modes.

Another example which also provides us with a constant
�� during inflation involves an interaction, �=MF�� ~F��,

where � is a massless Uð1Þ gauge field, F�� is its field
strength, and M is a mass scale [19,20]. The growth
solution for the Fourier mode of the vector potential withþ
circular polarization is found as

Aþð�; kÞ ’ 1ffiffiffiffiffi
2k

p
�

k

2�aH

�
1=4

e���2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k=ðaHÞ

p
(4)

in the interval ð8�Þ�1 & k=ðaHÞ & 2�, where � �
2ðd�=dtÞ=ðMHÞ is treated as constant. Hence, the energy
density of the produced gauge quanta is given by

�� ¼ 1

4�2a4

Z
dkk2ðjdAþ=d�j2 þ k2jAþj2Þ

’ 6!

219�2

H4

�3
e2��: (5)

These gauge quanta, in turn, source inflaton fluctuations
which are highly non-Gaussian. The WMAP bound
on non-Gaussianity implies that � & 3 [20]. When �¼3,
f ’ 6:6� 103 GH2 � 1. However, the value of � gets to
increase toward the end of inflation. If � ¼ 5:16 near
the end of inflation and GH2 ¼ 10�10, then we will have
f ’ 0:1. The gauge quanta, once produced, scatter with the
inflaton fluctuations with a rate given by

�� 	n
� &
H2

M4
� ��

H
� 10�4 e

2��

�3

�
H

M

�
4
H; (6)

where the energy of the gauge particle is of order H as
shown in Eq. (4) and the number density of inflaton fluc-
tuations is approximated as n
� & n�. As long as � < 5:16

and H < 10�2M, we reach the condition �<H, under
which the gauge quanta freeze out and decouple from the
background.

III. GRAVITATIONALWAVE EQUATION

In the weak field approximation, small metric fluctua-
tions are ripples on the background metric:

g�� ¼ a2ð�Þð��� þ h��Þ; h�� � 1; (7)

where ��� is the Minkowski metric and Greek indices run

from 0 to 3. In synchronous gauge, h00 ¼ h0i ¼ 0, where
i runs from 1 to 3. The remaining hij contain a transverse,

traceless (TT) tensor which corresponds to a gravitational
wave or tensor mode. Henceforth, we will work in the TT
gauge, i.e., hkk ¼ @ih

ij ¼ 0 and denote the two independent
polarization states of the wave asþ,�. The propagation of
gravitational waves in an expanding space-time is well
studied. In the presence of anisotropic stress, the Fourier
mode equation is given by [10]

d2 ~hij

d�2
þ 2

a

da

d�

d~hij
d�

þ k2 ~hij ¼ 16�Ga2�ij; (8)

where �ij is the Fourier mode of the TT part of the

anisotropic stress tensor.

IV. ANISOTROPIC STRESS TENSOR

In this section, we will derive the evolution of the
anisotropic stress tensor of the free-streaming relativistic
particles �. We will follow the methodology in Ref. [10],
taking into account the particle production in inflation and
assuming that the produced � particles are decoupled from
the background. Let N�ðx;p; tÞ be the phase space density
of � particles; then, the physical energy density of �
particles is given by

��ðtÞ ¼ a�4ðtÞ 1
V

Z
V
d3xd3pjpjN�ðx;p; tÞ: (9)

In light of the results in Sec. II, in the following, we will
assume that the physical energy density is constant during
inflation: d��ðtÞ=dt ¼ 0. This suggests that we should deal

with a rescaled phase space density instead, defined by

n�ðx;p; tÞ � a�4ðtÞN�ðx;p; tÞ: (10)

In the absence of collisions, the rescaled phase space
density satisfies a Boltzmann equation in a metric gijðx; tÞ,

@n�
@t

þ @n�

@xi
pi

p0
þ @n�

@pi

pjpk

2p0

@gjk
@xi

¼ 0; (11)

where pi ¼ gijpj and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijpipj

q
. We now consider

small perturbation,

gij ¼ a2
ij þ 
gij; n� ¼ �n�ðap0Þ þ 
n�; (12)

where �n�ðpÞ with p ¼ jpj is just the rescaled local phase

space density, which has a well defined energy spectrum as
exemplified in Eq. (5). To first order in metric and density
perturbation, Eq. (11) reads
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@ �n�ðpÞ
@t

¼ 0; (13)

@
n�
@t

þ p̂i

a

@
n�

@xi
¼ p

2

@ �n�ðpÞ
@p

p̂ip̂j

@

@t

�

gij

a2

�
; (14)

where p̂i ¼ pi=p.
Using Eq. (7) for the metric perturbation, we write down

the tensor component of Eq. (14) as

@
n�
@t

þ p̂i

a

@
n�

@xi
¼ p

2

@ �n�ðpÞ
@p

p̂ip̂j

@hij
@t

: (15)

Let us introduce a dimensionless rescaled intensity pertur-
bation defined by

���Jðx; p̂; tÞ �
Z

dp4�p3
n�ðx;p; tÞ; (16)

��� �
Z

dp4�p3 �n�ðpÞ: (17)

Then, Eq. (15) becomes

@J

@t
þ p̂i

a

@J

@xi
¼ �2p̂ip̂j

@hij
@t

; (18)

where we have used integration by part and assumed that
�n�ð0Þ ¼ �n�ð1Þ ¼ 0. We can then construct the spatial

component of the stress tensor perturbation as


Ti
�j ¼

Z
d3p
n�ðx;p; tÞpp̂ip̂j; (19)

which contributes to the anisotropic stress tensor �ij.

Following the same steps in Ref. [10], the free-streaming
solution for the anisotropic stress tensor of � particles in
the presence of gravitational waves is found as

��
ij ¼ �4 ���

Z �

�i

Kðk�� k�0Þd
~hijð�0Þ
d�0 d�0; (20)

where �i is some initial time and the kernel is given by

KðuÞ ¼ j2ðuÞ
u2

¼ � sinu

u3
� 3 cosu

u4
þ 3 sinu

u5
: (21)

The integrodifferential equation (8) with �ij given by

Eq. (20) has been solved for the case in which � particles
are free-streaming neutrinos in the early Universe [12–14].
One would anticipate that the free-streaming solution of
the anisotropic stress tensor (20) is a backreaction to the
wave equation and thus reduces the wave amplitude.

In trapped inflation [17] or axionic inflation with 105

Uð1Þ gauge fields [19], the time scale of particle production
is much shorter than the expansion time,H�1. For instance,
trapped inflation produces particles in a time scale of order
k�1� � H�1. Therefore, inflation begins very shortly after
particles are copiously produced. Let �i be the moment
when inflation begins. The initial condition, �

�
ijð�iÞ ¼ 0,

which we have assumed in Eq. (20) is then justified.

Note that generically anisotropic stress should exist
before inflation, i.e., �ijð�iÞ � 0, due to the fact that we

do not really know the initial condition for inflation since
here we do not have a physical model before inflation.
However, soon after inflation starts, this preexisting aniso-
tropic stress has decayed and become vanishingly small.
Since we are mainly interested in � particles produced
during inflation, we have assumed that the generic aniso-
tropic stress is absent at the beginning of inflation, namely
�ijð�iÞ ¼ 0. Otherwise, we will need to consider the effect

of this generic anisotropic stress on gravitational waves in
a brief period after the start of inflation.

V. DAMPING IN INFLATION

Let us decompose

~hijð�;kÞ ¼ ð8�GÞ12Hk�3
2hð�;kÞ�ijðk;�Þ; (22)

where �ijðk;�Þ is the polarization tensor with � ¼ þ, �.

Here, we have introduced a dimensionless wave amplitude
h which is assumed to be the same for both polarizations.
Then, Eq. (8) becomes

d2h

du2
� 2

u

dh

du
þ h ¼ � 24f

u2

Z u

ui

Kðu� u0Þ dh
du0

du0; (23)

where f ¼ ���=�� is a constant. The homogeneous solu-

tion of Eq. (23) is known. Selecting the Bunch-Davis
vacuum [22], it is given by

h0 ¼ �ð1þ iuÞe�iu: (24)

At the end of inflation (i.e., u ! 0), jh0j ! 1. This repro-
duces the scale-invariant power spectrum predicted in
standard slow-roll inflation.
Since the damping effect is expected to be secondary,

we can make the Born approximation to replace dh=du0 in
the damping term in Eq. (23) by dh0=du

0. Then, we use the
retarded Green’s function method to find the particular
solution,

hp ¼ �24f
Z u

ui

du0

u02
Gðu� u0Þ

Z u0

ui

du00Kðu0 � u00Þ dh0
du00

;

(25)

where the Green’s function is constructed from the homo-
geneous solution, given by

Gðu�u0Þ¼ u

u0

��
1þ 1

uu0

�
sinðu�u0Þ�u�u0

uu0
cosðu�u0Þ

�
:

(26)

Now, we set a ¼ 1 at the time when inflation starts. This
fixes ui ¼ �k=H with k=H ¼ 1 corresponding to the
length scale which crosses the horizon at the onset of
inflation. We then numerically evaluate the integral (25)
by letting u ! 0 to obtain hp for a range of values of k=H.
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In Fig. 1, assuming that 24f ¼ 1, we plot the total wave
amplitude, jhj ¼ jh0 þ hpj, at the end of inflation (u ! 0)

against the wave number, k=H. The figure shows that the
wave amplitude is reduced and becomes asymptotically
flat at large k.

Apparently, thewave amplitude is enhanced for k=H < 3.
However, we do not expect that the present work would give
precise results for these low k modes. The enhancement
should be an artifact due to the use of the approximation,
dh=du0 ’ dh0=du

0, and the choice of the Bunch-Davis
vacuum near the initial time, ui. A quick way to resolve
this problem, albeit artificial, is to integrate the damping
effect on each k mode for the time interval from the start
of inflation to the horizon crossing time, which means by
setting u ¼ �1 in Eq. (25). As such, jhj ¼ 1 for k=H ¼ 1
by default. Some improvements can also be made such as
using an advanced solving method for the integrodifferential
equation (8) and considering a smooth transit to the infla-
tionary phase.

VI. CONCLUSION

We have discussed the damping effect of anisotropic
stress on tensor modes due to free-streaming relativistic
particles produced during inflation. The damping increases
with the ratio of the particle energy density and the de
Sitter vacuum energy, which ranges from 10�10 in standard

inflation to about 0.1 in inflation models which involve
drastic particle production such as the trapped inflation or
axionic inflation. In these inflation models, the particle
production may significantly reduce the amplitude of the
tensor modes.
Recently, new sources of gravitational waves during

inflation have been proposed. They are anisotropic
stress induced by quantum energy stress of conformal
fields [23] and their associated fluctuations [24], by the
Bremsstrahlung from the particle production events [21],
and by the produced gauge field quanta which couple to
inflaton [25,26]. All of these produced gravitational waves
may experience the damping effect considered in the
present work if copious free-streaming relativistic particles
are also produced during inflation. As such, to properly
take into account the damping, one needs to consider the
full integrodifferential equation,

d2 ~hij

d�2
þ 2

a

da

d�

d~hij
d�

þ k2 ~hij þ 64�Ga2 ���

�
Z �

�i

Kðk�� k�0Þ d
~hijð�0Þ
d�0 d�0 ¼ 16�Ga2�new

ij ;

(27)

where the damping term is taken from Eq. (20) and �new
ij

denotes a new source term for the anisotropic stress. When
f � 1, the damping term can be neglected, and the
equation reduces to that considered in Refs. [21,23–26].
Otherwise, Eq. (27) should be solved self-consistently to
obtain the damped tensor power spectrum. At last, we note
that in Ref. [26], the authors have considered the produc-
tion of gravitational waves at the interferometric scales
during the final stage of inflation when �� 5–6. This large
value of � may imply that f� 1, thus resulting in a large
damping on the tensor modes.
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