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Spherical collapse has turned out to be a successful semianalytic model to study structure formation in

different dark energy models and theories of gravity. Nevertheless, the process of virialization is

commonly studied on the basis of the virial theorem of classical mechanics. In the present paper, a fully

general-relativistic virial theorem based on the Tolman-Oppenheimer-Volkoff solution for homogeneous,

perfect-fluid spheres is constructed for the Einstein–de Sitter and �CDM cosmologies. We investigate the

accuracy of classical virialization studies on cosmological scales and consider virialization from a more

fundamental point of view. Throughout, we remain within general relativity and the class of Friedmann-

Lemaı̂tre-Robertson-Walker models. The virialization equation is set up and solved numerically for the

virial radius, yvir, from which the virial overdensity �V is directly obtained. Leading order corrections in

the post-Newtonian framework are derived and quantified. In addition, problems in the application of this

formalism to dynamical dark energy models are pointed out and discussed explicitly. We show that, in the

weak field limit, the relative contribution of the leading-order terms of the post-Newtonian expansion are

of the order of 10�3% and the solution of Wang and Steinhardt [Astrophys. J. 508, 483 (1998)] is precisely

reproduced. Apart from the small corrections, the method could provide insight into the process of

virialization from a more fundamental point of view.
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I. INTRODUCTION

The question of how structures form in the Universe is a
long-standing topic in theoretical cosmology and provides
a lot of room for discussion. Since the fully nonlinear
regime cannot be accessed analytically, huge N-body simu-
lations have been set up to describe structure formation
by gravitationally interacting particles in an expanding
background. However, these attempts are computationally
costly and, therefore, perturbative approaches have been
developed in order to keep the continuous character of
general relativity and the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) model and make use of methods from
fluid mechanics. A very simple semianalytic model of this
kind is the spherical collapse. A spherical, overdense patch
evolves with the background expanding universe, slows
down due to its self-gravity, turns around and collapses.
The object is stabilized by virialization which prevents it
from collapsing into a singularity. Despite its simplicity
and idealizations, this model gives a first insight into the
formation of spherical halos at all mass scales. The under-
lying formalism dates back to Gunn and Gott in 1972 [1]
but has been rediscovered and continuously extended in
recent years (see Refs. [2–15]).

In this work, we are going to use the results of Pace et al.
[12] to investigate the process of virialization and try to

find answers to some remaining questions in this context.
The virial theorem provides a powerful tool to study sys-
tems in equilibrium, but in order to clarify its role in the
framework of general relativity, a relativistic version is
needed. After giving an overview of the classical concepts
and the requirements of relativistic calculations in Secs. II
and III, we will derive a relativistic version of the virial
theorem based on the Tolman-Oppenheimer-Volkhoff
(TOV) equation (see Refs. [16,17] for the original refer-
ences) in an Einstein-de Sitter and �CDM universe (see
Secs. IV and V). In the following, this will be applied to
the virialization equation in the spherical collapse model
and a post-Newtonian expansion will be performed (see
Secs. VII and VIII). The relativistically corrected results
for the virial radius and virial overdensity will be discussed
and leading-order corrections are worked out in particular
(Sec. X). We will also dedicate a section to the problems
occurring when this formalism is applied to general dark
energy (DE) models and point out possible ways to solve
them (see Sec. IX). Throughout the paper, we will make
use of natural units, i.e., c ¼ 1.

II. VIRIALIZATION IN THE CLASSICAL
SPHERICAL COLLAPSE

In the classical treatment of virialization, there are two
major ingredients that have to be well understood. First of
all, structure formation in the present universe is highly*sven.meyer@stud.uni-heidelberg.de
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nonlinear on scales less than 10 Mpc, and an evolution
equation for the spherical patch is needed that takes this
nonlinearity into account. Secondly, the virial theorem has
to be combined with energy conservation to a virialization
condition that allows determining the time when collapse
stops and the system reaches an equilibrium. The key quan-
tities assigned to it are the virial radius normalized to the
turn-around one, yvir ¼ Rvir=Rta, and the virial overdensity
with respect to the background, �V ¼ �ðRvirÞ=�bðavirÞ.
These are general functions of redshift and provide a char-
acterization of the equilibrium state of the halo.

The nonlinear evolution equation of a spherical over-
density of pressureless dark matter has already been
treated in detail by many authors (see for example
Refs. [2,12,18]). The resulting equation
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describes the nonlinear evolution of a spherical, top-hat
density contrast �ðaÞ ¼ ���b

�b
with respect to the back-

ground dark matter density �b. EðaÞ contains all the
dynamics of the background cosmological model and
is related to the Hubble function via the expression
HðaÞ ¼ H0EðaÞ. It will be important to express the virial
overdensity �V as a function of the turn-around one
denoted by � :
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: (2.2)

The virial radius, yvir, is obtained from the virialization

equation in which the classical virial theorem �T ¼ R
2

@U
@R is

combined with the assumption of energy conservation
during collapse.1 It should be mentioned that energy con-
servation is a very common assumption in the literature
and it is not proven whether it can actually be applied.
Maor and Lahav [8,9], as well as Wang [14], pointed out
that a homogeneous DE component with w � �1, �1=3
clearly violates energy conservation between turn-around
and collapse: �

Uþ @U

@R

�
vir

¼ Uta: (2.3)

In case of an Einstein-de Sitter universe, one simply
obtains yvir ¼ 1

2 , whereas the corresponding virial over-

density (evaluated at collapse scale factor) is given by
�V ¼ 18�2 � 178 (see Ref. [14]). In the case of �CDM
and dynamical DEmodels, two major classical results have
been proposed in the literature:

(i) Wang and Steinhardt (WS) (see Ref. [13])2:

yvir ¼
1� �v

2

2þ �t � 3
2�v

:(2.4)

(ii) Wang (PW) (see Ref. [14]):

yvir ¼
1� ð1þ 3wÞ �t

2

2� ð1þ 3wÞ �t

2

¼
ðw¼�1Þ

1þ �t

2þ �t

; (2.5)

with the WS parameters �v and �t and the equation-
of-state-parameter w given by

�t ¼ 2��1 ��ðataÞ
�mðataÞ

�v ¼ 2��1

�
ata
avir

�
3 ��ðavirÞ
�mðavirÞ

w ¼ p�

��

¼ �1:

The corresponding virial overdensities become func-
tions of the collapse (virial) scale factor ac (avir) and reach
the Einstein-de Sitter (EdS) value asymptotically for small
scale factors (ac < 10�1) corresponding to the matter-
dominated era.3

III. REQUIREMENTS FOR RELATIVISTIC
CALCULATIONS

Relativistic treatment of virialization in the same way as
done in the classical case causes some trouble, because
energy conservation is not global in general relativity. A
second problem has been addressed by Komar (see
Refs. [20,21]), stating that isolated bodies like a spherical
halo can only be described exactly in asymptotically flat
spacetimes which is generally not given in the case of
FLRW models. A promising way out of these problems
is assuming that the scale r of the halo is much smaller than
the typical length scale of the background universe given
by the Hubble radius RH. If the Killing vector field of the
FLRW spacetime is considered with respect to this assump-
tion, its timelike component greatly exceeds its spatial
components, allowing us to neglect the latter and, at good
approximation, consider the Killing vector as timelike.
Figure 1 illustrates that neighboring Killing vectors are

approximately parallel on the scale of the object, which
means that the radial component ofK is extremely small on
these scales and thus negligible. A detailed quantitative
analysis of this issue is given in Appendix A.

1In the following, we will drop the bars over the time-averaged
quantities and implicitly assume time averaging.

2Horellou and Berge [19] have proposed a generalization due
to dynamical DE models, but in the �CDM model both results
agree.

3It has to be mentioned for completeness that this is only true
for dynamical DE models that have negligible contribution in the
matter- dominated era. Counterexamples are early DE models
(see results in Ref. [12] and references therein).
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From this argument, we can infer three major conclu-
sions essential for the following considerations:

(i) Since r � RH, it is possible to introduce a region
that is huge compared to the scale of the object but
still small with respect to the Hubble radius and scale
of spatial curvature of the universe. Therefore, it can
be claimed locally flat, and a coordinate frame can be
found that covers this region such that energy-
momentum conservation

r�T
�� ¼ 0; (3.1)

can be approximated by partial derivatives in a suf-
ficiently large environment of the halo,

@�T
�� ¼ 0: (3.2)

Since the virialization equation, Tvir þUvir ¼ Uta, rep-
resents energy conservation, this condition is essential.
The last statement needs particular clarification.
Starting from r�T

�� ¼ 0, projection on the four-
velocity u yields the continuity equation u�r��þ
ð�þ pÞr � u ¼ 0. Given Eq. (3.2) (which we require
to hold within the locally flat region) and the local rest

frame (u0 ¼ 1, ui ¼ vi), this equation becomes _�þ
ð�þ pÞð ~r � ~vÞ ¼ 0. Integrating over a sufficiently
large volume including the halo implies (such a volume
can be found since the locally flat region is chosen
bigger than r but still much smaller than RH)Z

V
_�dVþ

Z
V
ð�þpÞð ~r� ~vÞdV¼0

) @

@t

Z
V
�dVþ

Z
V
ð�þpÞð ~r� ~vÞdV¼0: (3.3)

Invoking Gauss’s theorem and defining the total energy
to be E ¼ R

V �dV, we have

@

@t
Eþ

Z
@V
ð�þ pÞ ~v � d ~A ¼ 0: (3.4)

Since r � RH and much smaller than the scale of
spatial curvature, we can assume that the object can
be approximately treated as perturbation in Minkowski
spacetime such that for a volume V enclosing the total
halo, the second integral can be claimed to vanish by

virtue of this approximation. Thus, we can approxi-
mately infer _E ¼ 0, supporting the statement above.

(ii) Since, in virtue of this approximation, a sufficiently
large, local environment of the halo exists that can
be considered flat, isolated objects can be defined in
general relativity and the halo mass M is well
defined in the sense of a Komar integral. For a
detailed treatment of the spherical collapse in local
coordinates in which perturbations due to the FLRW
metric are damped with ðr=RHÞ2, the reader is re-
ferred to Creminelli et al. [5] and Nicolis et al. [22].

(iii) On scales that are small compared to the Hubble
radius, there exists an approximately timelike
Killing vector field K of the FLRW metric that also
fulfills the Frobenius condition4 within an accuracy
of at least 0.9%. Thus, we can insert and compare
static solutions at turn-around and virial redshift in
the virialization equation Tvir þUvir ¼ Uta. Since
the virial theorem will be applied to the final state
which is static by definition (within the timescales we
consider), this approximation holds, in particular, for
the turn-around being a critical point but not a static
one in the exact treatment. For a detailed discussion
of this issue, the reader is referred to Appendix A.

IV. TOV EQUATION FOR MATTER IN THE
PRESENCE OF A COSMOLOGICAL CONSTANT

Relying on the assumptions of the previous section, we
can set up a spherically symmetric, static spacetime with
the metric:

ds2 ¼ �e2aðrÞdt2 þ e2bðrÞdr2 þ r2d�2: (4.1)

In addition, we consider a system of two fluid compo-
nents described by

T�� ¼ TðmÞ
�� þ Tð�Þ

�� ¼ ð�T þ pTÞu�u� þ pTg��; (4.2)

in which

�T ¼ �m þ ��; pT ¼ pm þ p�:

FIG. 1. Killing vector field on the spacelike hypersurface of the universe compared to an object of much smaller radius.

4For ! being the corresponding dual vector to K, the
Frobenius condition states that ! ^ d! ¼ 0, which turns out
to be equivalent to K being orthogonal to the spacelike sections
spanned by suitably chosen spatial coordinates (see Ref. [23]).
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The equation of state of the cosmological constant fluid
corresponds to w ¼ p�

��
¼ �1.

Energy and momentum are locally conserved for the
total system as well as for each component separately,
which means

r�T
�� ¼ 0 and r�T

��ðmÞ ¼ 0; r�T
��ð�Þ ¼ 0:

Projecting the conservation equation of the (clustering)
matter component onto the space perpendicular to the time
direction leads to the relativistic Euler equation for the
matter fluid

h��r�T
��ðmÞ ¼ 0 with h�� ¼ g�� þ u�u�: (4.3)

Working that out, one finds5

ð�þ pÞruu ¼ �r�pþ urup: (4.4)

In case of a static configuration (rup ¼ 0) and with the
help of Eqs. (4.1) and (4.4) reduces to

a0 ¼ �p0

�þ p
: (4.5)

The field equations for the given metric are

G�� ¼ 8�GT��;

1

r2
� e�2b

�
1

r2
� 2b0

r

�
¼ 8�Gð�þ ��Þ; (4.6)

� 1

r2
þ e�2b

�
1

r2
þ 2a0

r

�
¼ 8�Gðp� ��Þ; (4.7)

e�2b

�
a00 �a0b0þa02þa0 �b0

r

�
¼8�Gðp���Þ: (4.8)

Combining Eqs. (4.6) and (4.7) with (4.5) leads to

e�b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8�G

3 ð�þ ��Þr2
q ; (4.9)

� p0 ¼ 4�G

3
r � ð�þ pÞð�þ 3p� 2��Þ

1� 8�G
3 ð�þ ��Þr2

: (4.10)

Equation (4.10) is the TOVequation for the �CDM model
in the case of homogeneous densities. For solving it, we
assume the matter pressure to vanish at the boundary
pðr ¼ RÞ ¼ 0.6

This leads to

pðrÞ ¼ �ðfð1�Ar2

1�AR2Þ1=2 � 1Þ þ 2��

3� fð1�Ar2

1�AR2Þ1=2
; (4.11)

where

A ¼ 8�G

3
ð�þ ��Þ; f ¼ 1� 2��

�
; �� ¼ �

8�G
:

(4.12)

Inserting Eqs. (4.10) and (4.11) into the hydrostatic equi-
librium condition [Eq. (4.5)] and integrating with the
boundary aðRÞ ¼ 1=2 lnð1� AR2Þ (Schwarzschild-de
Sitter solution) gives

ea ¼ ð1� AR2Þ1=2 3� ð1�Ar2

1�AR2Þ1=2f
3� f

; (4.13)

and, thus, the full metric inside the sphere can be written as

ds2¼�ð1�AR2Þ
�3�ð1�Ar2

1�AR2Þ1=2f
3�f

�
2
dt2þ dr2

1�Ar2
þr2d�2;

(4.14)

which represents the metric of the interior Schwarzschild-
de Sitter spacetime.
The well-known exterior Schwarzschild-de Sitter

solution

ds2 ¼ �
�
1� 2GM

r
��r2

3

�
dt2 þ dr2

1� 2GM
r � �r2

3

þ r2d�2;

(4.15)

matches continuously with Eq. (4.14) at r ¼ R. In this
particular case, it has to be mentioned that asymptotic flat-
ness can only be reached approximately as discussed in
Sec. III. Since the scale of the halo is much smaller than
the Hubble radius (r=RH � 10�3), we can still assume the
object to be nearly isolated.We decided to embed the sphere
into the Schwarzschild-de Sitter spacetime instead of an
FLRW spacetime, because spacetime around the object can
be assumed to be approximately static as well (due to the
approximated timelike Killing vector field on these scales).
In the ordinary Tolman-Oppenheimer-Volkhoff solution
(see Ref. [16]), the perfect fluid sphere is embedded into
the vacuum described by the Schwarzschild solution. In
order to be consistent with this approach, the generalization
including a cosmological constant is embedded into the
Schwarzschild-de Sitter spacetime. Nevertheless, it will
turn out that the virial radius and overdensity can be pre-
dicted consistently with this approach, although a dark
matter contribution outside the sphere is neglected (see
Sec. X and the weak-field limits in Secs. VII and IX.

V. DERIVATION OF THE RELATIVISTIC
VIRIAL THEOREM

The pressure profile in Eq. (4.11) contains the radial
dependence of the pressure in a sphere consisting of a
cosmological constant fluid and collapsed dark matter
embedded into a background Schwarzschild-de Sitter
spacetime. When virialization starts, the system can be
approximately assumed to be in equilibrium, which means

5In the following sections, we define �m � � and pm � p.
6In the derivation of Eq. (2.1), the assumption of pressureless

dark matter is a crucial argument. Nevertheless, for consistency
with the TOV equation, we have to allow a pressure profile for
the interior of the sphere. This issue will be discussed below.
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that it can really be described by Eq. (4.10).7 In order to
derive a virial theorem from that, one can take the first
spatial moment which should usually lead to the virial
theorem after time-averaging. This means that small fluc-
tuations around the equilibrium state are averaged out over
time such that only time-averaged quantities (energy ex-
pressions) are left in the virial theorem. Since the system is
already in equilibrium and the TOV equation has no time-
dependences, the time integral drops naturally and all
quantities can be interpreted as time-averaged.

Eq. (4.10) is multiplied with r and integrated (averaged)
over the spacetime volume element (hence, taking the
spatial moment and time-averaging are performed in one
step):

� lim
T!1

1

T

Z
p0r�

¼ lim
T!1

1

T

Z
�

�
4�G

3
r2
ð�þpÞð�þ3p�2��Þ

1�Ar2

�
; (5.1)

which becomes

�4� lim
T!1

1
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Z T
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Z R

0
p0r3eaþbdtdr

¼4� lim
T!1
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T

�
Z T

0

Z R

0

�
4�G

3
r4 � ð�þpÞð�þ3p�2��Þ

1�Ar2
eaþb

�
dtdr:

(5.2)

Since all the quantities in the integral do not depend on
time, the evaluation of the time integral cancels naturally
and, while interpreting the given quantities as time-
averaged, this becomes

� 4�
Z R

0
p0r3eaþbdr

¼ 4�
Z R

0

�
4�G

3
r4 � ð�þ pÞð�þ 3p� 2��Þ

1� Ar2
eaþb

�
dr:

(5.3)

Looking at the LHS of this equation in Euclidean space
and performing a partial integration, we see that

� 4�
Z R

0
p0r3dr ¼ ½�4�pr3�R0 þ

Z R

0
12�r2dr

¼
Z

3pdV � 2T: (5.4)

In consistency with the Euclidian case, we can propose
that

2T � 2T ¼ �4�
Z R

0
p0r3eaþbdr: (5.5)

Consequently, we define

2T ¼ 4�
Z R

0

�
4�G

3
r4 � ð�þ pÞð�þ 3p� 2��Þ

1� Ar2
eaþb

�
dr:

(5.6)

Inserting Eqs. (4.11) and (4.1) into Eq. (5.6), we obtain

2T ¼ 16�2G

3ð3� fÞ ð1� AR2Þ1=2ð2�þ 2��Þ2

Z R

0

r4

ð1� Ar2Þ3=2 �
ð1�Ar2

1�AR2Þ1=2f
3� ð1�Ar2

1�AR2Þ1=2f
dr: (5.7)

This is one version of a fully relativistic virial theorem
for clustering dark matter in a �CDM-background model.
Of course, other attempts exist in the literature to derive a
relativistic virial theorem for several purposes.
Chandrasekhar [24] derived a post-Newtonian version of
the tensor virial theorem by investigating the post-
Newtonian hydrodynamic equations consistently with
Einstein’s field equations. Bonazzola [25] has proposed
an integral identity consistent with general relativity in
an asymptotically flat, stationary and axisymmetric space-
time. Vilain [26] considers a scalar generalization of the
virial theorem to general relativity which is valid for
spherically symmetric, asymptotically flat spacetimes and
has been successfully applied to stability studies of perfect
fluid spheres. In addition, Vilain’s work allows us to inter-
pret the result of Bonnazzola geometrically in the spherical
case. Bonazzola and Gourgoulhon [27] extended the work
of 1973 to any stationary, asymptotically flat spacetime in
general. Straumann [23] proposes a virial expression in the
case of a spherically symmetric, static spacetime based on
the Komar integral and asymptotic flatness. Except
Ref. [24], these remarkable results have in common that
asymptotical flatness is a crucial assumption to the space-
time which is necessary in order to define isolated objects
in the sense of a Komar integral (see Refs. [20,21]). We
want to emphasize at this point that, strictly speaking, this
condition has to be valid in our case as well. However, we
make use of the fact that an isolated object can be approxi-
mately defined in the FLRW spacetime by assuming the
scale of the halo to be much smaller than the corresponding
Hubble radius.

VI. RELATIVISTIC GRAVITATIONAL
POTENTIAL ENERGY

The modified TOV solution can also be applied to find a
relativistic expression for the gravitational potential energy
of a spherical body. The derivation is inspired by the
considerations of Straumann (see Ref. [23]), but since it
is quite technical, we refer to Appendix B and quote here
only the final result:

7The TOV equation represents the equation of motion of the
system in equilibrium.
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T ¼
Z R

0
4�r2	

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ar2

p dr; (6.1)

U ¼
Z R

0
4�r2�

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ar2
p

�
dr; (6.2)

with 	 denoting the relativistic kinetic energy density
which is defined in Eq. (B10) (see Appendix B).

In case of small gravitational fields given for an object
having a radius r, which is much larger than its
Schwarzschild radius (this corresponds to Ar2 � 1), we
can expand Eqs. (6.1) and (6.2) to first order:

T ¼ 4�R3

3
	þ 2�	AR5

5
þOðA2Þ

¼ M�M0 þ 2�	AR5

5
þOðA2Þ

U ¼ � 2��A

5
R5 þOðA2Þ

¼ � 3

5

GM2

R
� 4�G

5
M��R

2 þOðA2Þ:

The kinetic energy will reduce to the special-relativistic
result if gravitational effects are neglected to zeroth order.
The potential energy contains the Newtonian self-energy
of a homogeneous sphere as a leading-order term. Thus,
classical limits can be reproduced showing that Eqs. (6.1)
and (6.2) are consistently defined.

VII. VIRIALIZATION EQUATION

Assuming that energy conservation still holds during
collapse, the virialization equation states

½T þU�vir ¼ Uta: (7.1)

Let us now insert all derived energy expressions and
perform a change of variable r ! y � r=Rta. After sim-
plifying the result, we end up with

Tvir ¼ 8�2GR5
ta

3ð3� fÞ ð1� Aviry
2
virR

2
taÞ1=2ð2�vir þ 2��Þ2

�
Z yvir

0

y4

ð1� Aviry
2R2

taÞ3=2
�

�
1�Aviry

2R2
ta

1�Aviry
2
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R2
ta

�
1=2

f

3�
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2R2
ta

1�Aviry
2
vir
R2
ta

�
1=2

f

dy;

(7.2)

Uvir ¼ 4��virR
3
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Z yvir

0
y2
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Aviry
2R2

ta

p
�
dy; (7.3)

Uta ¼ 4��taR
3
ta

Z 1

0
y2
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Atay
2R2

ta

p
�
dy; (7.4)

with the definitions

Avir ¼ 8�G

3
ð�vir þ ��Þ; Ata ¼ 8�G

3
ð�ta þ ��Þ;

f ¼ 1� 2��

�vir

; �vir ¼ 3M

4�y3virR
3
ta

; �ta ¼ 3M

4�R3
ta

:

Equation (7.1) has to be solved numerically for yvir at
different redshifts (see Fig. 2 for the results). The turn-
around radius, Rta, can be obtained by using the solution of
Eqs. (2.1) and (2.2):

�¼ �ðRtaÞ
�b
mðataÞ

¼1þ�ðataÞ; �ðRtaÞ¼ 3M

4�R3
ta

;

�b
mðataÞ¼ 3H2

0

8�G
�ð0Þ

m a3ta

)Rta¼ata �
�

2GM

H2
0�

ð0Þ
m ð1þ�ðataÞÞ

�
1=3

: (7.5)

Let us consider the classical limit with respect to two
assumptions:
(i) The sphere’s radius is much larger than its

Schwarzschild radius RS¼AR3�R, i.e., AR2 � 1.
(ii) The cosmological-constant density is much smaller

than the dark matter density inside the sphere. Since
�� is of the order of the critical density and � ¼
�V�cr with �V � 95–180,8 this can be assumed
safely in our case.

Expanding Eq. (7.2) to first order in AR2 and ��=�, and
simplifying it, we end up with

y2vir ¼
�ta þ ��

1
2�vir þ 2��

: (7.6)

Writing this in terms of the Wang-Steinhardt parameters
�t and �v,

9 this becomes

� 2�vy
3
vir þ ð2þ �tÞyvir � 1 ¼ 0: (7.7)

Equation (7.7) can be solved approximately by

yvir ¼
1� �v

2

2þ �t � 3
2�v

: (7.8)

Thus, Eq. (7.2) reduces to the WS limit under the given
assumptions.

VIII. POST-NEWTONIAN EXPANSION
OF THE VIRIALIZATION EQUATION

The post-Newtonian expansion of the virialization equa-
tion can be done by simply performing a Taylor expansion
of Eq. (7.2); however, we choose a more elegant way

8See Pace et al. [12] for their results in the �CDM case.
9See Wang and Steinhardt [13] and Sec. II
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including the equation of motion of the collapsing
sphere.10

We begin with a nonstatic, spherically symmetric space-
time described by

ds2 ¼ �e2aðr;tÞdt2 þ e2bðr;tÞdr2 þ r2d�2; (8.1)

and use again the energy-momentum tensor of an ideal
fluid with two components

T��¼TðmÞ
�� þTð�Þ

�� ¼ð�mþ��þpmþp�Þu�u�
þðpmþp�Þg��: (8.2)

The � component satisfies an equation of state given by

p� ¼ ���: (8.3)

Consider a comoving reference frame in which the four-
velocity u has the components

u0 ¼ e�a ui ¼ 0 for i ¼ 1; 2; 3:

The relativistic Euler equation for the (clustering) matter

component h��r�T
��;ðmÞ ¼ 0 states (in that frame)11:

a0 ¼ � p0

�þ p
) ea ¼ 1

�þ p
� 1

y
: (8.4)

If we combine this relation with the field equations for
the metric, we obtain the relativistic equation of motion for
a spherically symmetric object (first derived by Misner and
Sharp [28] in 1964 and applied by Collins [29] in 1978):

y
d

dt

�
y
dr

dt

�
¼ � 1

�þ p

dp

dr

�
1þ y2 _r2 � 2GMðrÞ

r

�

�GMðrÞ
r2

� 4�Gpr: (8.5)

In the presence of a cosmological constant � with an
equation of state like Eq. (8.3), this is slightly modified
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FIG. 2 (color online). Virial radius and virial overdensity obtained by the relativistic virialization equation and its post-Newtonian
expansion as a function of collapse redshift for EdS and �CDM cosmologies. The upper panels show the virial radius for three
different halo masses obtained by solving the full relativistic virialization equation [Eqs. (7.1), (7.2), (7.3), and (7.4)] and its post-
Newtonian expansion [Eqs. (8.23), (8.24), (8.25), and (8.26)] using the two cosmological models. The lower panels show the
corresponding virial overdensity obtained by Eq. (2.2). The classical solutions of Wang and Steinhardt (1998) and Wang (2006) are
plotted for reference. The region close to zc ¼ 0 has been scaled up to sufficiently small redshifts in order to illustrate the dependence
on the halo mass.

10This equation was first derived by Misner and Sharp (see
Ref. [28]). 11In the following, we define again �m � �, pm � p.
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y
d

dt

�
y
dr

dt

�
¼ � 1

y

dp

dr

�
1þ y2 _r2 � 8�G

3
ð�þ ��Þr2

�

� 4�G

3
ð�� 2��Þr� 4�Gpr: (8.6)

In case of equilibrium, Eqs. (8.5) and (8.6) reduce to the
TOV equations with or without a cosmological constant:

� p0 ¼ 4�G

3
r
ð�þ pÞð�þ 3pÞ

1� 8�G
3 �r2

; (8.7)

� p0 ¼ 4�G

3
r
ð�þ pÞð�þ 3p� 2��Þ
1� 8�G

3 ð�þ ��Þr2
: (8.8)

If only small oscillations of the system around its equi-
librium are considered, we can assume that _r2=c2 � 1.
Terms of this kind will be neglected in the following. After
performing a Taylor-expansion up to the first post-
Newtonian order Oð 1

c2
Þ and inserting the zeroth-order

expansion of the TOV equation [Eq. (8.8)],

� p0 ¼ 4�Gr

3
�ð�� 2��Þ þO

�
1

c2

�
; (8.9)

we arrive at

�y2 €r ¼ �p0 � 4�Gr

3
�ð�� 2��Þ

�
�
4�Gr

3
ð�� 2��Þ þ 4�G�r

�
p

�
�
32�2G2r3

9
�ð�2 � ��� � 2�2

�Þ
�
: (8.10)

Since the derivation of the virial theorem requires an
integration over the spacetime volume element, the metric
has to be expanded as well. In our case, spacetime is
described by the TOV metric given by

ds2 ¼ �ð1� AR2Þ
�3� ð1�Ar2

1�AR2Þ1=2f
3� f

�
2
dt2

þ dr2

1� Ar2
þ r2d�2; (8.11)

where

A ¼ 8�G

3
ð�þ ��Þ; f ¼ 1� 2��

�
:

An expansion up to Oð1=c2Þ leads to

ds2 � �
�
1� 2AR2 � f

ð3� fÞAðR
2 � r2Þ

�
dt2

þ ð1þ AR2Þdr2 þ r2d�2: (8.12)

The canonical volume form becomes

�¼ ffiffiffiffiffiffiffi�g
p

dVT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�AR2

1�Ar2

��3�ð1�Ar2

1�AR2Þ1=2f
3�f

�
2

vuut
dVT

�
�
1þA

2
ðr2�R2Þþ f

2ð3�fÞAðr
2�R2Þ

�
dVT; (8.13)

with dVT ¼ dt ^ dV being the total volume element for a
flat spacetime in spherical polar coordinates

dVT ¼ r2 sin
 � dt ^ dr ^ d
 ^ d�: (8.14)

In the following, we will also apply the definition of the
canonical volume form of the spacelike three-hypersurface
� described by the spatial coordinates

dV� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�gj�

q
r2 sin
 � dr ^ d
 ^ d�: (8.15)

Taking the first spatial moment (multiplying with r and
integrating over the spatial volume) leads to the post-
Newtonian version of Lagrange’s identity (see Ref. [29]):

Z
�y2 €rrdV�

¼ �
Z

rp0dV� �
Z 4�Gr2

3
ð�� 2��Þ�dV�

�
Z �

4�Gr2

3
ð�� 2��Þ þ 4�G�r2

�
pdV�

�
Z 32�2G2r4

9
ð�2 � ��� � 2�2

�Þ�dV�: (8.16)

In analogy to the classical case, we interpret12

1

2

d2Ir
dt2

�
Z

�y2 €rrdV� 2T � �
Z

rp0dV�:

Using these definitions, Lagrange’s identity becomes the
familiar expression

1

2

d2Ir
dt2

¼ 2T�
Z 4�Gr2

3
ð�� 2��Þ�dV�

�
Z �

4�Gr2

3
ð����Þþ 4�G�r2

�
pdV�

�
Z 32�2G2r4

9
ð�2 ���� � 2�2

�Þ�dV�: (8.17)

Dropping the corrections in 1=c2, the classical version of
Lagrange’s identity is

1

2

d2Ir
dt2

¼ 2T þUm � 2U�: (8.18)

12Ir is defined to be the relativistic generalization of the
classical moment of inertia. For a homogeneous sphere it is
classically defined by I ¼ 1

2

R
V �r

2dV (see Refs. [9,29]).
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Performing the time average will lead to the post-
Newtonian virial theorem, because motions like oscilla-
tions around the equilibrium configuration are averaged
out. Since we have to apply

lim
T!1

Z T

0
ð. . .Þeadt; (8.19)

the volume element of the averaged form changes dV� ¼
ebdV ! eaþbdV ¼ ffiffiffiffiffiffiffi�g

p
dV while the time integration is

performed.
Dropping all terms of Oð1=c4Þ, the post-Newtonian

virial theorem is

2T¼
Z 4�Gr2

3
ð��2��Þ�dV

þ
Z �

4�Gr2

3
ð��2��Þþ4�G�r2

�
pdV ðIÞ

þ
Z 32�2G2r4

9
ð�2�����2�2

�Þ�dV ðIIÞ

þ
Z 2�Gr2

3
ð��2��Þ

�
1þ f

3�f

�
Aðr2�R2Þ�dV ðIIIÞ:

(8.20)

It can be seen that the correction terms contain
(i) pressure contributions (I), since pressure acts as a

source of gravity
(ii) backreaction terms (II) between the fluid compo-

nents and the geometry of spacetime (due to the
nonlinearity of general relativity)

(iii) metric expansion terms (III), since a nonvanishing
energy-momentum tensor changes the metric (due
to the field equations)

The potential energy given by Eq. (6.2) can be expanded
in the same way:

U ¼ �4��
Z R

0

�
A

2
r4 þ 3

8
A2r6

�
dr: (8.21)

Performing the angular integration for the kinetic energy
expression leads to

T ¼
Z R

0

8�2Gr4

3
ð�� 2��Þ�dr

þ
Z R

0

�
8�2Gr4

3
ð�� 2��Þ þ 8�2G�r4

�
pdr

þ
Z R

0

64�3G2r6

9
ð�2 � ��� � 2�2

�Þ�dr

þ
Z 32�3G2r4

9
ð�� 2��Þð�þ ��Þ

� �

�
1þ f

3� f

�
ðr2 � R2Þdr: (8.22)

Now, we rewrite some variables13

r ¼ y � Rta; Rvir ¼ yvir � Rta;

and the virialization equation becomes

½T þU�vir ¼ Uta; (8.23)

with the terms

Uvir ¼ �4��vir

Z yvir

0

�
Avir

2
y4 þ 3

8
A2
viry

6R2
ta

�
R5
tady;

(8.24)

Uta ¼ �4��ta

Z 1

0

�
Ata

2
y4 þ 3

8
A2
tay

6R2
ta

�
R5
tady; (8.25)

and

Tvir ¼
Z yvir

0

8�2Gy4R5
ta

3
ð�vir � 2��Þ�virdyþ

Z yvir

0

�
8�2Gy4R5

ta

3
ð�vir � 2��Þ þ 8�2G�viry

4R5
ta

�
pvirdy

þ
Z yvir

0

64�3G2y6R7
ta

9
ð�2

vir � �vir�� � 2�2
�Þ�virdy

þ
Z yvir

0

32�3G2y4R7
ta

9
ð�3

vir � �2
vir�� � 2�vir�

2
�Þ
�
1þ f

3� f

�
ðy2 � y2virÞdy: (8.26)

In addition, we have applied the following definitions:

�vir ¼ 3M

4�y3virR
3
ta

; �ta ¼ 3M

4�R3
ta

; Avir ¼ 8�G

3
ð�vir þ ��Þ; Ata ¼ 8�G

3
ð�ta þ ��Þ:

As for the fully relativistic version, Eq. (8.23) has to be solved for yvir numerically.

13Rta is again calculated using Eq. (7.5).
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IX. THE RELATIVISTIC FORMALISM AND
DYNAMICAL DARK ENERGY

Even though we have spent some effort to generalize our
method to dynamical DE models, certain problems occur
which will be described in the following: Consider a two-
component fluid described by

TðmÞ
�� ¼ ð�þ pÞu�u� þ pg��; (9.1)

TðQÞ
�� ¼ ð�Q þ pQÞu�u� þ pQg��; (9.2)

T�� ¼ TðmÞ
�� þ TðQÞ

�� ; (9.3)

where the densities � and �Q are assumed to be constant

and the quintessence component has an equation of state
pQ ¼ w�Q with constant w. Energy-momentum conserva-

tion is separately fulfilled for each fluid component

r�T
��;m ¼ 0; (9.4)

r�T
��;Q ¼ 0: (9.5)

The static, spherically symmetric field equations for this
setup are

G�� ¼ 8�GT��;

1

r2
� e�2b

�
1

r2
� 2b0

r

�
¼ 8�Gð�þ �QÞ; (9.6)

� 1

r2
þ e�2b

�
1

r2
þ 2a0

r

�
¼ 8�Gðpþ w�QÞ; (9.7)

e�2b

�
a00 �a0b0 þa02þa0 �b0

r

�
¼8�Gðpþw�QÞ: (9.8)

It turns out that, in case ofw � �1, Eqs. (9.6), (9.7), and
(9.8) are no longer consistently solvable and lead to contra-
dictory solutions (see Appendix C for a detailed proof).
This means that a model based on

(i) staticity
(ii) spherical symmetry
(iii) matter model (two-component fluid consisting of

clustering dark matter and homogeneous DE with
equation of state pQ ¼ w�Q)

does not lead to a consistent description. Static, spherically
symmetric solutions with w � �1 can, therefore, only be
given approximately. In order to achieve exact solutions in
the general case, we need to drop at least one of the model
assumptions. Since spherical symmetry is dictated by the
spherical collapse model and we want to fix the matter

model, we can only stick to time-dependent problems and
drop staticity.14

A physical explanation for this constraint on w is local
energy-momentum conservation. Since we assume that
it has to be valid for each component separately and the
field equations are constructed in a way that energy and
momentum are locally conserved, a static quintessence
component with w � �1 violates this requirement.
Consider a perfect fluid with T�� ¼ ð�Q þ pQÞu�u� þ

pQg��; which has to obey local energy-momentum con-

servation

r�T
��;Q ¼ 0: (9.9)

Projecting this onto the three-space perpendicular to the
mean-fluid flow, we obtain the relativistic Euler equation

ðg�� þ u�u�Þr�T
��;Q ¼ 0; (9.10)

which leads to

ð�Q þ pQÞruu ¼ �gradpQ � urupQ: (9.11)

In the case of a static configuration [u ¼ ð1; 0; 0; 0Þ,
pQðr; tÞ ¼ pQðrÞ] and the metric ansatz from Eq. (4.1),

we are left with

� p0
Q ¼ a0ð�Q þ pQÞ; (9.12)

which becomes for the given equation of state pQ ¼ w�Q:

0 ¼ a0�Qð1þ wÞ: (9.13)

Since a0 is nonzero in general, we have to require
w ¼ �1 in order to satisfy local energy-momentum con-
servation. Thus, a quintessence fluid with constant density
and w � �1 violates local energy-momentum conserva-
tion in case of a static configuration.
Energy and momentum are certainly conserved for a

time-dependent DE density which scales like15 �Q ¼
�ð0Þ
Q a�3ð1þwÞ. In this case, the only time-independent DE

density is the cosmological constant representing the only
possible static, quintessence fluid configuration with con-
stant equation of state that satisfies local energy-
momentum conservation. In our approach, we restricted
ourselves to homogeneous DE that evolves independently
from the matter component. In fact, it can be seen by our
consideration that, on relevant halo scales, DE cannot be
treated consistently as a homogeneous fluid. Therefore, as
an alternative to a nonstatic solution, one might also

14It has to be mentioned for completeness that there exist static
exterior solutions describing a Schwarzschild black hole sur-
rounded by a quintessence fluid (see Refs. [30,31]). However, in
these cases �Q is constrained to be radial dependent: �QðrÞ �
r�3ð1þwÞ.
15Of course, this is only true for constant equation-of-state
parameter w. In the general case, �Q evolves like �Q ¼
�ð0Þ
Q gðaÞ with gðaÞ ¼ expð�3

R
a
1ð1þ wða0ÞÞd lna0Þ (see, for ex-

ample, Ref. [3]).
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consider DE to cluster or interact with dark matter on these
scales. In case of clustering DE (see Refs. [4,5,8,9,11]) or
even models considering interactions between the two
fluids (see Refs. [7,15]), our formalism will significantly
change and might allow an application to these models. In
contrast to the homogeneous case, clustering DE models
require a coupled system of two evolution equations for
the density contrasts �m and �DE and allow virialization of
the DE component as well. The TOV equation, therefore,
has to be formulated in the total pressure p ¼ pm þ pQ

and solved with the boundary condition pðr ¼ RÞ ¼ w�Q.

The same would be required in models that include inter-
action between dark matter and DE, because energy-
momentum conservation will no longer be fulfilled for
each fluid component separately but only for the total fluid.
In this case, we would have

r�T
��;m ¼ Q�; (9.14)

r�T
��;Q ¼ �Q�; (9.15)

with the interaction four-vector Q� but still

r�T
�� ¼ 0 with T�� ¼ T��;m þ T��;Q: (9.16)

Nevertheless, while treating DE as homogeneous at
small scales, it might be possible to quantify the error
made by using this assumption in the spherical collapse
approach. Even though a solution obtained from Eqs. (9.6)
and (9.7) is inconsistent with Eq. (9.8), a TOVequation and
a virial theorem can be derived for w � �1 in the exact
same manner as for the cosmological constant case.
Having generalized our formalism to make it applicable to
the clustering case, comparison of the unphysical, homo-
geneous DE fluid with the physical, inhomogeneous one
might be possible on relevant halo scales.

X. RESULTS

The relativistic virialization equation and its post-
Newtonian expansion are solved for the virial radius.
Figure 2 shows the virial radius and overdensity as a
function of the collapse redshift zc for three different
halo masses in EdS and �CDM cosmologies. All quanti-
ties at virialization are evaluated at the exact virial redshift
zvir. It is a common approximation in the spherical collapse
model to insert the potential energy evaluated at the col-
lapse redshift. As already investigated analytically by Lee
and Ng [6], the result of the virial overdensity changes
significantly16 by inserting the exact virial redshift
instead. We have developed and applied an iterative
method to obtain zvir numerically and the results of Lee
and Ng are nicely reproduced. The derivation is postponed
to Appendix D.

It can be seen clearly in both figures that the Wang-
Steinhardt limit is precisely recovered. This is expected,
because the expressions for the potential energy and the
kinetic energy derived in Sec. V contain the WS solution as
limit to zeroth order. Since the halo mass no longer cancels
out naturally on both sides of the virialization equation, the
spherical collapse becomes mass dependent. Therefore
each result is plotted for three different masses, namely
1013M	, 1014M	 and 1015M	. Nevertheless, it can be seen
that the results for M ¼ 1013M	 and M ¼ 1015M	 differ
from each other by only 10�3%.
Since, averaged over sufficiently large timescales, the

final state of a virialized cluster is static,17 it can be
considered as a homogeneous, static perfect-fluid sphere
such that the Tolman-Oppenheimer-Volkoff solution can
be applied. We have constructed the virialization equation
based on the TOV solution instead of using the classical
approach from Friedmann’s equations. A few points have
to be discussed concerning this method:
(i) As an important approximation, we have assumed

that the Killing vector field K of the FLRW universe
is timelike on halo scales. Since the final state is
static anyway, this is most relevant for the turn-
around, which is described by a static solution as
well. As shown in Appendix A, the spacelike com-
ponent of K is, by at least two orders of magnitude,
smaller than the timelike one. Looking at the small
corrections in first post-Newtonian order in Table I
being five orders of magnitude smaller than the
classical term, it remains an open question whether
a time-dependent approach that does not obey that
approximation would have a non-negligible effect on
the results.

(ii) As can be seen in Table I, the normalized contribu-
tions to the first post-Newtonian order are of about
10�3%, being almost independent of the type of
contribution. This can be expected due to a simple

TABLE I. The three relative post-Newtonian contribution
terms with respect to the classical Newtonian term are consid-
ered in EdS and �CDM cosmology for zc ¼ 0 and M ¼
1015M	.

Einstein-de Sitter

Pressure term 1:274132394� 10�5

Backreaction term 3:18533352� 10�5

Metric expansion 9:5560225� 10�6

�CDM

Pressure term 1:2893437� 10�5

Backreaction term 2:7275899168� 10�5

Metric expansion 7:073241606� 10�6

16In the EdS case �VðzcÞ � 178 changes into �VðzvirÞ � 146.

17Oscillations around the virial radius can be expected to
average out.
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estimate. Let us assume a typical massive galaxy
cluster with a mass of 1015M	 and a virial radius of
1 Mpc. The gravitational potential �=c2, being the
ratio of its Schwarzschild radius and virial radius,
has the value

�

c2
¼ GM

c2Rvir

� 5 � 10�5: (10.1)

Thus, the post-Newtonian terms which are of the order
ð�=c2Þ2 must have absolute values of about 10�10 which
corresponds to a relative contribution of 10�5 (10�3%)
with respect to the classical term.

The key question remains why the relativistic calcula-
tion reduces to the WS limit instead of the result of PW.
The ansatz of a static, spherically symmetric metric re-
duces Einstein’s field equations to a coupled system of
three ordinary differential equations with respect to the
radius r [see Eqs. (4.6), (4.7), and (4.8)]. Equation (4.6) is
already decoupled from Eqs. (4.7) and (4.8) such that the rr
component of the metric is constrained to be

grr ¼ e2b ¼ 1

1� Ar2
; A ¼ 8�G

3
ð�þ ��Þ: (10.2)

It has to be mentioned that Eq. (10.2) does not contain
any pressure term. Straumann’s self energy expression
derived in Appendix B is based on the number density
nðrÞ of dark matter particles that is integrated over the
covariant volume element restricted to the hypersurface
� spanned by the spatial coordinates:

�j� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�gj�

q
drd
d� ¼ r2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ar2
p drd
d�: (10.3)

Finally, the result becomes

U ¼
Z R

0
4�r2�

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ar2
p

�
dr

� � 3

5

GM2

R
� 4�G

5
M��R

2 þOðA2Þ; (10.4)

which perfectly reproduces the potential energy used by
Wang and Steinhardt in their model.

The TOV equation for the pressure profile pðrÞ is a
generalization of the Newtonian hydrostatic equation.
Pressure is contained as an additional source of gravity,
but the post-Newtonian expansion of the resulting virial
theorem in Eq. (8.20) shows clearly that the limit of WS is
reproduced to zeroth order. Horellou and Berge have
shown in 2005 (see Ref. [19]) that, from a classical point
of view, the Wang-Steinhardt solution is exactly valid in
the �CDM case. This means that for the classical self-
energy expression of a matter sphere in a �CDM back-
ground inserted into the classical virialization equation
(see Sec. II), the solution of Wang and Steinhardt is
recovered.

To conclude this section, we can state the following:
Based on the assumptions of a static, spherically
symmetric spacetime and separately fulfilled energy-
momentum conservation equations for matter and cosmo-
logical constant,18 the field equations and the resulting
TOV equation provide a relativistic virial theorem that
contains the Wang-Steinhardt result as limit to zeroth
order. It remains an open question whether a nonstatic
approach to relativistic gravitational collapse that might
also be adapted to dynamical DE models would still re-
cover this result.

XI. REMARKS ON THE REQUIRED
PRESSURE PROFILE

As already mentioned by Oppenheimer and Snyder in
1939 (see Ref. [32]), there does not exist any static, spheri-
cally symmetric solution of the field equations with van-
ishing pressure. If no positive pressure profile is present,
nothing will prevent the spherical object from collapsing
into a singularity. Therefore, in the classical spherical
collapse, the virialization condition is introduced to define
an equilibrium. In our case, gravity forces the system to
build up a pressure profile to prevent the sphere from
collapsing into a singularity. In fact, the process of virial-
ization must convert ordered motion from the collapse into
unordered motion and the kinetic energy associated with
the unordered motion corresponds to pressure. Thus, an
equilibrium is reached by a positive pressure profile that
can be related directly to the mean kinetic energy of the
system [see Eq. (5.5). This might be a first step toward a
more fundamental theory of virialization avoiding the
interpretation of an enforced equilibrium.
The nonlinear density evolution equation [see Eq. (2.1)]

is still based on extended Newtonian theory.19 In order to
achieve full consistency, a relativistic evolution equation
for either the density or the radius is recommended.
Nevertheless, these equations will retain their full validity
if dark matter is assumed to be pressureless during the
evolution and the pressure profile is built up instantane-
ously at virialization.20 The appearance of a pressure pro-
file in this context is a direct consequence of the spherical
collapse model, itself. Strictly speaking, virialization is a
tool in the spherical collapse model in order to achieve an
equilibrium state. The pressure is directly related to the
mean kinetic energy of the system, which is again related
to the potential energy by the virial theorem. Since the last

18The cosmological constant fluid trivially fulfills energy-
momentum conservation, since the continuity equation reduces
to _�� ¼ 0.
19Velocities and gravitational potentials are assumed to be
small compared to c2 and pressure is included as a source of
gravity.
20Nevertheless, we have to admit that the assumption of an
instantaneously appearing pressure profile at virial redshift is a
highly idealized concept.
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two quantities cannot vanish, in general, neither can the
pressure. Thus, the virial theorem, which is combined with,
but in no way related to, the nonlinear density evolution,
requires a pressure profile, even if the latter is based on
cold dark matter.

XII. CONCLUSION AND OUTLOOK

We propose a way to set up a fully relativistic method to
obtain the virial radius and the virial overdensity for the
EdS and �CDM cosmology. Within the assumption of an
approximately timelike Killing vector field of the FLRW
metric, static solutions for perfect fluid spheres in general
relativity (namely the Tolman-Oppenheimer-Volkoff equa-
tion) have been successfully applied to extend the virial
theorem in a consistent manner. The result has been in-
serted into the virialization equation which can be solved
for the virial radius to find the corresponding virial over-
density. It turns out that the solution of Wang and
Steinhardt [13] for the virial radius in a�CDM cosmology
is almost perfectly reproduced by our formalism which can
also be shown analytically by performing the weak-field
limit. The first-order post-Newtonian expansion has been
investigated, and the leading-order corrections have been
worked out and calculated numerically. We found out that
they have a relative contribution of 10�3% with respect to
the classical term, which is of very small but expected size.
Although these corrections are of limited astrophysical
interest, the concept, itself, is a small step toward a more
fundamental understanding of virialization of spherical
halos in the presence of DE. In addition, an iterative
method has been set up to calculate the exact virial redshift
numerically. The results of Lee and Ng [6] are reproduced
extremely well.

Naturally, galaxies and galaxy clusters are far more
complex than homogeneous and isotropic spheres, but
the spherical collapse model provides a very simple semi-
analytic method that already suffices to estimate important
parameters like the virial radius and virial overdensity. The
process of virialization, itself, is an additional condition
that has been introduced to prevent a spherical overdensity
of pressureless dark matter from collapsing into a singu-
larity. A pressure profile, which a relaxed continuous
spherical object must obey due to general relativity, can
provide new insight into the process of virialization, itself.

There are certainly some topics this paper cannot ad-
dress, because they are far beyond its scope. Although the
spherical collapse models are powerful tools to obtain
estimates of the evolution of structures in the universe,
they are limited by their simplicity. In particular, the fact
that the spherical overdensity is in no way embedded
continuously into the background Friedmann universe is
still very idealized and dissatisfying. Secondly, DE cannot
be described yet in a self-consistent way with general
relativity, since local energy-momentum conservation,
which is required by the theory, is not fulfilled and a

coordinate representation of the two fluids is missing.
Approaches based on the Lemaı̂tre-Tolman-Bondi models
(see Refs. [33–38]) as well as the presented work of Misner
and Sharp (see Ref. [28]) are promising candidates for
following investigations.

APPENDIX A: APPROXIMATELY TIMELIKE
KILLING VECTOR FIELD OF FLRW

SPACETIME ON HALO SCALES

Let us start with the FLRW spacetime given by the
metric

ds2 ¼ �dt2 þ a2ðtÞ
ð1þ kr2

4 Þ2
ðdr2 þ r2d�2Þ: (A1)

This model is based on isotropy and homogeneity of the
three-dimensional spacelike hypersurfaces describing a
space of constant curvature k.
Isotropy requires the existence of a coordinate frame in

which spatial rotations are isometries. Given that frame,
the most general ansatz for a Killing vector field of
Eq. (A1) is:

K ¼ Aðr; tÞ@t þ Bðr; tÞ@r; (A2)

with A and B being arbitrary scalar functions of radius and
time.
Equation (A2) has to be inserted into the Killing equa-

tion to obtain any relation between A and B.

ðLKgÞ�� ¼ 0: (A3)

The Lie derivative of a rank (0, 2) tensor can be
written as

K�@�g�� þ g��@�K
� þ g��@�K

� ¼ 0: (A4)

Inserting Eq. (A2) into Eq. (A4), the following three
constraints can be obtained:

ðLKgÞ00: 2 _A ¼ 0; (A5)

ðLKgÞ11: ð2 _aAþ 2aB0Þ
�
1þ k

4
r2
�
� kraB ¼ 0; (A6)

ðLKgÞ22: ð2 _aAr2þ2arBÞ
�
1þk

4
r2
�
;�kr3aB¼0; (A7)

ðLKgÞ01: A0 ¼ a2

ð1þ kr2

4 Þ2
_B; (A8)

ðLKgÞ33 ¼ sin2
ðLKgÞ22 ¼ 0: (A9)

If Eqs. (A6) and (A7) are combined, we can obtain a
differential equation in B

B0 ¼ B

r
: (A10)
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Let us now apply the following approximation: At scale
factors we consider

ac; ata �Oð1Þ �Oð10�1Þ; (A11)

the Hubble radius RH ¼ 1=H is much bigger than the scale
r of the halo. From Friedmann’s first equation we can infer

�kðaÞ ¼ � k

H2ðaÞ ¼ 1��mðaÞ ���ðaÞ: (A12)

Therefore,

kr2 ¼ �H2ðaÞr2ð1��mðaÞ ���ðaÞÞ

¼ �
�

r

RHðaÞ
�
2ð1��mðaÞ ���ðaÞÞ: (A13)

Since r=RH � 1 and cosmological parameter measure-
ments from WMAP or SDSS21 indicate 1��mðaÞ �
��ðaÞ & 10�2, we can safely assume

r2 �
��������
1

k

��������: (A14)

Given Eq. (A14), the constraints obtained from the
Killing equation reduce to

_A ¼ 0; (A15)

B0 ¼ B

r
; (A16)

A0 ¼ a2 _B: (A17)

Since we want to consider K on scales much smaller
than RH, we expand Aðr; tÞ and Bðr; tÞ to first order in rH:

Aðr; tÞ ¼ A0 þ A1rH þOððrHÞ2Þ; (A18)

Bðr; tÞ ¼ B0 þ B1rH þOððrHÞ2Þ; (A19)

with constant expansion coefficients A0, A1, B0 and B1.
Inserting Eqs. (A18) and (A19) into Eqs. (A15)–(A17), the
following constraints can be obtained:

A1
_Hr ¼ 0 ) A1 ¼ 0; (A20)

B1H ¼ B0

r
þ B1H ) B0 ¼ 0; (A21)

B1r _H ¼ 0 ) B1 ¼ 0: (A22)

Thus, we can conclude that

Aðr; tÞ ¼ A0 þOððrHÞ2Þ; (A23)

Bðr; tÞ ¼ OððrHÞ2Þ: (A24)

In the spherical collapse model, we consider parameters
given within the following range:

r� 1� 10Mpc RHðaÞ � 3 � 102–3 � 103 Mpc:

Thus, Eqs. (A23) and (A24) imply

jBj
jAj � 0:09%–0:9%; (A25)

which means that the Killing vector field is timelike and
approximately fulfills the Frobenius condition on relevant
halo scales being small compared to the Hubble radius:

K � A0@t: (A26)

At this point, we want to emphasize that we do not
intend to give an exact timelike solution to the Killing
equation. It is well known that, apart from a static or a de
Sitter solution, there does not exist a timelike Killing
vector field for a general FLRW metric. Consequently,
Eq. (A2), even though motivated by spacetime symmetries,
does not generally solve the Killing equation. Instead, we
expand the time- and spacelike coefficients in r=RH, derive
an approximate, first-order solution and obtain the space-
like component to be smaller than the timelike one by
Oððr=RHÞ2Þ.
To conclude this section, the main results will be sum-

marized again:
(i) On scales being much smaller than the Hubble radius

of the cosmological background model, we have
negligible spatial curvature, and an approximate
solution K of the Killing equation can be obtained
to first order in r=RH.

(ii) As a major property of this solution on small scales,
the spatial component of K is suppressed by
ðr=RHÞ2. Thus, K is timelike

hK;Ki ¼ gðK;KÞ ¼ �A2 þ a2B2 < 0; (A27)

and even points, approximately, into the direction of
the cosmic time (with an accuracy of at least 0.9%).
Thus, on halo scales, K is approximately orthogonal
onto the underlying hypersurfaces spanned by the
three spatial coordinates. This allows an approxi-
mate description of the halo by static solutions of
Einstein’s field equations.

APPENDIX B: DERIVATION OF THE
RELATIVISTIC POTENTIAL ENERGY

The following derivation is essentially taken from
Straumann [23] and will be only slightly modified for our
purposes: Let us consider a particle representation of dark
matter and compare the total mass M of the spherical halo
with the rest mass of the gravitationally interacting dark
matter particles. The total rest mass of all dark matter
(DM) particles is given by

M0 ¼ NmN; (B1)21See Refs. [39,40] for reference.
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with N being the total number of particles and mN the rest
mass of a single particle. Let us define a current density J
as a one-form such that we can express the number of
particles via a surface integral:

N ¼
Z
t¼const


J: (B2)

J can be expressed as

J ¼ J�

� ) 
J ¼ J� 
 
� ¼ J��

� with �� ¼ 

�;
(B3)

with respect to an arbitrary dual basis f
�g.
We transform the integral by evaluating the Hodge dual

explicitly:22

Z
t¼const


J ¼
Z
t¼const

J��
� ¼

Z
t¼const

J0�
0

¼
Z
t¼const

J0 
 
0: (B4)

Assuming the metric ansatz given in Eq. (4.1) and
defining the dual basis like


0 ¼ eadt; 
1 ¼ ebdr;


2 ¼ r2d
; 
3 ¼ r2sin2
d�;

(B5)



0 can be evaluated:



0 ¼ ea 
 dt ¼ ebr2 sin
dr ^ d
 ^ d� ¼ 
1 ^ 
2 ^ 
3:

(B6)

Since, in a static configuration, the 
� are an orthonor-
mal system, the above result can be expected. Thus, we are
left with

N ¼
Z
t¼const

J0

1 ^ 
2 ^ 
3

¼
Z
t¼const

J0e
br2 sin
dr ^ d
 ^ d�

¼
Z R

0
4�r2J0e

bdr: (B7)

The number density nðrÞ can be obtained by projection
of J onto the four-velocity u� being ð1; 0; 0; 0ÞT in the
chosen coordinate frame:

nðrÞ ¼ �u�J� ¼ J0; (B8)

such that we get

N ¼
Z R

0
4�r2nðrÞebðrÞdr: (B9)

We can define the proper DM energy density (total
energy density with subtracted particle rest energy density)

	ðrÞ ¼ �ðrÞ �mNnðrÞ; (B10)

which corresponds to an intuitive proper internal energy of

E ¼ M�M0 ¼ M� NmN: (B11)

The proper internal energy can be decomposed into a
total kinetic and a total potential energy of the system such
that T þ V ¼ M�M0. Let us insert the integral for the
particle number given by Eq. (B7)

mNN ¼
Z R

0
4�r2ebmNnðrÞdr

¼
Z R

0
ð�ðrÞ � 	ðrÞÞ4�r2ebdr ¼ M� T � V

¼
Z R

0
4�r2�ðrÞdr� T � V; (B12)

where we have assumed that the total mass is simply the
volume integral of the density profile

M ¼
Z R

0
4�r2�ðrÞdr: (B13)

Solving Eq. (B12) for T þ V, we obtain

T þ V ¼
Z R

0
4�r2eb	ðrÞdrþ

Z R

0
4�r2�ðrÞð1� ebÞdr:

(B14)

This leads to the definition

T ¼
Z R

0
4�r2	ðrÞebdr; (B15)

U ¼
Z R

0
4�r2�ðrÞð1� ebÞdr: (B16)

Consider a top-hat density profile and a two-component
fluid consisting of DM and a cosmological constant such
that

e2b ¼ 1

1� Ar2
with A ¼ 8�G

3
ð�þ ��Þ: (B17)

Thus, we finally end up with

T ¼
Z R

0
4�r2	

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ar2

p dr; (B18)

U ¼
Z R

0
4�r2�

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ar2
p

�
dr: (B19)

APPENDIX C: STATIC, SPHERICALLY
SYMMETRIC FIELD EQUATIONS WITH

HOMOGENEOUS DE

Consider a two-component fluid described by

TðmÞ
�� ¼ ð�þ pÞu�u� þ pg��; (C1)

22Since we consider a static configuration, we can find a
coordinate frame in which the Ji components vanish. We will
assume that in the following without loss of generality.
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TðQÞ
�� ¼ ð�Q þ pQÞu�u� þ pQg��; (C2)

T�� ¼ TðmÞ
�� þ TðQÞ

�� ; (C3)

where the densities � and �Q are assumed to be constant

and the quintessence component has an equation of state
pQ ¼ w�Q with constant w. Energy-momentum conserva-

tion is fulfilled separately for each fluid component:

r�T
��;m ¼ 0; (C4)

r�T
��;Q ¼ 0: (C5)

The static, spherically symmetric field equations of this
setup are

G�� ¼ 8�GT��

1

r2
� e�2b

�
1

r2
� 2b0

r

�
¼ 8�Gð�þ �QÞ;

(C6)

� 1

r2
þ e�2b

�
1

r2
þ 2a0

r

�
¼ 8�Gðpþ w�QÞ; (C7)

e�2b

�
a00 �a0b0 þa02þa0 �b0

r

�
¼8�Gðpþw�QÞ: (C8)

We have to find out whether there are conditions for the
solvability of the field equations without using any con-
crete solution for a and b such that effects resulting from
boundary conditions are excluded. With the help of
Eq. (C6), we can express b0:

b0 ¼ 1

2r
ð1� ð1� 8�Gð�þ �QÞr2Þe2bÞ: (C9)

In the same way, Eq. (C7) can be solved for a0:

a0 ¼ � 1

2r
ð1� ð1þ 8�Gðpþ w�QÞrÞe2bÞ: (C10)

If we add Eqs. (C6) and (C7), we will get

a0 ¼ �b0 þ 4�Gð�þ pþ �Qð1þ wÞÞre2b: (C11)

If Eq. (C9) is inserted into that expression, we will
obtain Eq. (C10), so the first two field equations are con-
sistent. Energy-momentum conservation for the matter
component of the fluid means

r�T
��;m ¼ 0: (C12)

Projecting this onto the space perpendicular to the
velocity flow, we obtain the relativistic Euler equation

ðg�� þ u�u�Þr�T
�� ¼ 0; (C13)

which becomes

ð�þ pÞruu ¼ �gradp� urup: (C14)

In case of a static configuration, we are left with

� p0 ¼ a0ð�þ pÞ; (C15)

which is basically the hydrostatic equilibrium condition
for the matter configuration of our system. Consider the
derivative of Eq. (C10)

a00 ¼ 1

2r2
ð1þ e2bf�1þ 8�Gðpþ w�QÞr2 þ 8�Gp0r3

þ 2b0rð1þ 8�Gðpþ w�QÞÞr2gÞ: (C16)

Inserting Eqs. (C9), (C10), and (C15) into Eq. (C16) and
simplifying leads to

a00 ¼ 1

2r2
þ 1

2r2
e2b4�Gð5pþ 4w�Q þ �Þr2

� 1

2r2
e4bð1þ 8�Gðpþ w�QÞr2Þ

� ð1� 4�Gð�� pþ 2�QÞr2Þ: (C17)

On the other hand, a00 can be expressed with the help of
Eq. (C8)

a00 ¼ a0b0 � a02 � a0 � b0

r
þ 8�Gðpþ w�QÞe2b: (C18)

If we plug in Eqs. (C9) and (C10), we can obtain (after
some algebra)

a00 ¼ 1

2r2
þ 1

2r2
e2b½4�Gð�þ�QÞr2þ20�Gðpþw�QÞr2�

� 1

2r2
e4bð1þ8�Gðpþw�QÞr2Þ

�ð1�4�Gð�þ�Q�p�w�QÞÞ: (C19)

For Eqs. (C6)–(C8) being consistent, Eqs. (C17) and
(C19) have to be identical which means that each coeffi-
cient belonging to the same order of e2b has to be equal for
each radius r.
(i) 0th order:

1

2r2
¼ 1

2r2
trivially fulfilled:

(ii) 1st order:

1

2r2
4�Gð5pþ 4w�Q þ �Þr2

¼ 1

2r2
½4�Gð�þ �QÞr2 þ 20�Gðpþ w�QÞr2�

) 5pþ �þ 4w�Q ¼ �þ �Q þ 5pþ 5w�Q

) 4w ¼ ð1þ 5wÞ ) w ¼ �1:
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(iii) 2nd order:

1

2r2
ð1þ 8�Gðpþ w�QÞr2Þ
� ð1� 4�Gð�� pþ 2�QÞr2Þ

¼ 1

2r2
ð1þ 8�Gðpþ w�QÞr2Þ

� ð1� 4�Gð�� pþ �Q � w�QÞr2Þ:

If we require that p � �w�Q � 1=ð8�Gr2Þ, which
we have to assume in the general case, we can say

4�Gð�� pþ 2�QÞ ¼ 4�Gð�� pþ �Q � w�QÞ
) 2�Q ¼ �Qð1� wÞ
) w ¼ �1:

Thus, Eqs. (C6)–(C8) necessarily require w ¼ �1 in order
to be consistently solvable.

APPENDIX D: ITERATIVE METHOD TO
FIND THE VIRIAL REDSHIFT

Consider Eq. (2.1) and solve this for the nonlinear
density contrast �ðaÞ. Once this is done, Eq. (2.2) can be
used

�ðr; aÞ � �ðrÞ
�bðaÞ ¼ �

�
x

y

�
3 ¼ 1þ �ðaÞ: (D1)

This allows us to express yðaÞ with the help of �

yðaÞ ¼ a

ata
�
�

�

1þ �ðaÞ
�
1=3

: (D2)

Using Eq. (D2) and the virialization equation
[Eqs. (2.3), (7.1), and (8.23)], an iterative method can be
constructed to find the virial scale factor avir.

Starting from að0Þ ¼ ac, we will proceed in the following
way

að0Þ !ð2:3Þyð0Þvir !
ðD2Þ

aðyð0ÞvirÞ ¼ að1Þ

að1Þ !ð2:3Þyð1Þvir !
ðD2Þ

aðyð1ÞvirÞ ¼ að2Þ

að2Þ !ð2:3Þyð2Þvir !
ðD2Þ

aðyð2ÞvirÞ ¼ að3Þ

..

. ..
. ..

.

aðnÞ !ð2:3ÞyðnÞvir !
ðD2Þ

aðyðnÞvir Þ ¼ aðnþ1Þ (D3)

In each step, the quantity aðyðiÞÞ is needed which is given
by the root of the equation

yðaÞ � yðiÞvir ¼ 0 ! aðyðiÞvirÞ; (D4)

and which can be found numerically in each step i.
It turns out that this method converges, so that the

following condition can be applied to stop the iteration:

��������
aðnþ1Þ � aðnÞ

aðnÞ

��������� tol; (D5)

with an appropriate tolerance tol. Given a tolerance of
tol� 10�7, the iteration can be stopped within three to
four steps. Thus, the final result can be defined as

aðnþ1Þ � avir ) zvir ¼ 1

avir
� 1: (D6)

It will turn out that the virial overdensity changes sig-
nificantly if the exact quantities are evaluated at z ¼ zvir:
Let us calculate �V at redshift zc ¼ 0 in the EdS model,
which corresponds to a virial redshift of zvir ¼ 0:065 and a
turn-around redshift of zta ¼ 0:587.
(i) Case 1 (z ¼ zc):

�V ¼
�
3�

4

�
2ð1þ ztaÞ3

�
1

yvir

�
3 ¼ 177:518: (D7)

(ii) Case 2 (z ¼ zvir):

�V ¼
�
3�

4

�
2
�
1þ zta
1þ zvir

�
3
�
1

yvir

�
3 ¼ 146:958: (D8)

This has also been predicted analytically by Lee and Ng
(see Ref. [6]).
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