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Shadows of multi-black holes have structures distinct from the mere superposition of the shadow of a

single black hole: the eyebrow-like structures outside the main shadows and the deformation of the

shadows. We present analytic estimates of these structures using the static multi-black hole solution

(Majumdar-Papapetrou solution). We show that the width of the eyebrow is related to the distance between

the black holes and that the shadows are deformed into ellipses due to the presence of the second black

holes. These results are helpful to understand qualitatively the features of the shadows of colliding black

holes. We also present the shadows of colliding or coalescing black holes in the Kastor-Traschen solution.
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I. INTRODUCTION

One of the hottest topics in galaxy formation is the
coevolution of super massive black holes (SMBHs) with
spheroid components (bulges) of galaxies. It becomes
more and more clear that most galaxies and active galactic
nuclei have at least one SMBH and there is a strong
correlation between the SMBH mass and the bulge mass
of host galaxies [1–3]. Although a detailed mechanism of
the coevolution is not yet understood, it is almost certain
that galaxy mergers play an essential role, since it is known
that bulges or spheroid components are formed by merger
of galaxies in the hierarchical clustering scenario of struc-
ture formation. Hence, it may also be natural to consider
that the formation of SMBHs is due to mergers of smaller
black holes.

An observation clue of existence of binary black holes
was recently obtained from a detailed study of Kepler
motion of a radio emission component in the radio galaxy
3C 66B by using a technique of phase-referencing very-
long-baseline interferometry [4]. In particular, a newly
found periodic flux variation suggests that this binary
system will coalesce in 500 years [5]. Perhaps, we may
conclude that the coalescence of binary black holes often
takes place in the Universe. However, direct evidence of a
black hole merger is still missing. One of the possibilities
to see the merger process is to observe shadows of black
holes shone by the radiation from the accretion disc or star
lights behind the black holes [6]. Since two event horizons
merge into one event horizon, we expect that the shadows
must show very peculiar time evolution. Observing these
shadows, therefore, should be compelling evidence of
coalescing black holes as well as provide an intriguing
probe of general relativity with very strong gravity field.

As a first step toward the study of a realistic black
hole binary, we have recently calculated the shadows of
the Kastor-Traschen (KT) [7] cosmological multi-black
hole solutions [8]. We have found that the shadows are

deformed in the direction of the collision and that in
addition to the shadow of each black hole, eyebrow-like
structures appear as the black holes come close to each
other. In this paper, we attempt to understand these struc-
tures analytically using the Majumdar-Papapetrou (MP)
solution [9], the static multi-black hole solution with the
maximal charge to which the KT solution is reduced when
the cosmological constant is zero.
The paper is organized as follows. In Sec. II, we present

several analytic calculations of null geodesics in the ex-
treme Reissner-Nordström (RN) and MP solutions in order
to provide an analytic estimate of the eyebrow-like struc-
tures of the shadows as well as the deformation of the
shadows in the MP solution. In Sec. III, extending our
previous results [8], we present numerical results of the
shadows of the colliding or coalescing black hole binary in
the KT solution by changing the viewing angle of the
distant observer and comparing them with the shadows of
the MP solution. Section IV summarizes the results.

II. SHADOWS OF STATIC TWO BLACK HOLES:
MAJUMDAR-PAPAPETROU SOLUTION

A. Geodesics in extreme Reissner-Nordström solution

The MP solution [9] is given by

ds2 ¼ ���2dt2 þ�2ðdx2 þ dy2 þ dz2Þ;
� ¼ 1þX

i

mi

ri
;

ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2

q
;

(1)

where mi is the mass of the ith black hole located at r ¼ ri
(we use the geometrical units, G ¼ c ¼ 1). The MP
solution in the case of a single black hole is reduced to
the extremal RN solution.
First of all, we derive the relation between the deflection

angle and the impact parameter close to the unstable
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circular orbit for the extreme RN solution following
Luminet [10,11], in order to understand the shape of black
hole shadows in MP spacetime.

The metric of the extreme RN solution is given by

ds2 ¼ �
�
1�M

R

�
2
dt2 þ

�
1�M

R

��2
dR2

þ R2ðd�2 þ sin2�d�2Þ; (2)

and the horizon is at R ¼ M. The radial coordinate R
is related to the isotropic coordinate r in Eq. (1) as R ¼
rþM. From the spherical symmetry, we may restrict
ourselves to the equatorial plane without loss of generality.
In terms of two conserved quantities, i.e., the energy E ¼
ð1� M

RÞ2 _t and the angular momentum L ¼ R2 _�, the null

geodesics satisfy the energy equation

1

2
_R2 þ VðRÞ ¼ 1

2
E2; VðRÞ ¼ L2

2R2

�
1�M

R

�
2
; (3)

where _t ¼ dt=d� with � being the affine parameter. VðRÞ
is shown in Fig. 1. The null geodesics with E2=2 being
larger than L2=32M2, which is the local maximum of VðRÞ
at R ¼ 2M, fall into the black hole. In terms of the impact
parameter b ¼ L=E, the light rays with b < 4M fall into
the black hole. Thus, the shadow of the extreme RN black
hole is the disk of radius 4M.

Let us investigate the behaviors of the null geodesics
approaching the unstable circular orbit at R ¼ 2M.
In terms of u � 1=R, Eq. (3) is written as�

du

d�

�
2 ¼ �u2ð1�MuÞ2 þ 1

b2
� fðuÞ: (4)

For b > 4M, the quartic equation fðuÞ ¼ 0 has four dis-
tinct roots, three of which are positive. Arranging the
ordering of the roots as u1 < 0< u2 < u3 < u4, 1=u2 cor-
responds to the periastron distance. Then the solution of
Eq. (4) can be written as

�1¼
Z u2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð 1
4Mþ1

bÞ�Mð 1
2M�uÞ2gfMð 1

2M�uÞ2�ð 1
4M�1

bÞg
q ;

¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

bþ4M

s �
KðkÞ�F

�
�

4
;k

��
; (5)

where the origin of � is chosen at the periastron passage
when u ¼ u2 and k is given by

k2 ¼ 8M

bþ 4M
: (6)

Fð’; kÞ is the elliptic integral of the first kind defined by

Fð’; kÞ ¼
Z ’

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2�

p ; (7)

and KðkÞ ¼ Fð�=2; kÞ is the complete elliptic integral of
the first kind.
The solution can be used to obtain the asymptotic

behavior of �1 for 1=u2 ! 2M. If we write 1=u2 ¼
2Mð1þ �Þ with � � 1, then from fðu2Þ ¼ 0 in Eq. (4),

b ¼ 4Mð1þ �2Þ and hence k2 ¼ 1� �2

2 . Using the

asymptotic relation KðkÞ ! 1
2 lnð16=ð1� k2ÞÞ for k ! 1,

we obtain

�1 ¼ 1ffiffiffi
2

p ln
25

ð ffiffiffi
2

p þ 1Þ2�2
: (8)

Therefore, the light rays with the impact parameter
b ¼ 4Mð1þ �2Þ are deflected by the black hole by the
angle � ¼ 2�1 � � with the relation

b ¼ 4Mþ 27M

ð ffiffiffi
2

p þ 1Þ2 e
� �ffiffi

2
p
e
� 1ffiffi

2
p �

: (9)

For those geodesics that go round the black hole n times,
the deflection angle can be written as �þ 2n�.
Accordingly, we have

b ¼ 4Mþ 27M

ð ffiffiffi
2

p þ 1Þ2 e
� �ffiffi

2
p
e
� 1ffiffi

2
p ð�þ2n�Þ

: (10)

B. Shadows of the MP solution

Next, we study the shadows of two black holes in the MP
spacetime. We consider a two equal mass black hole
system in the MP spacetime, Eq. (1). The black holes are
located at z ¼ �‘=2 with mass m ¼ M=2. Because of the
axial symmetry, there exists a conserved quantity Lz

(corresponding to the angular momentum integral) for
the geodesics as well as the energy integral which are
defined in the spherical coordinate by

E ¼ ��2 _t; Lz ¼ �2r2sin2� _�: (11)

We calculate the null geodesics from the observer
located far from the black holes. The geodesics that fall
into the black hole form the shadow of the black holes. In

L 2/32M2

M 2M

V(R)

RO

FIG. 1. The effective potential VðRÞ for the extreme RN black
hole.

YUMOTO et al. PHYSICAL REVIEW D 86, 103001 (2012)

103001-2



Fig. 2, the shadows of two black holes in the MP spacetime
are shown. The observer is located at the equatorial plane
(� ¼ �=2). Here we have defined the celestial coordinate
of an observer, ð�;�Þ, as

� ¼ limr!1 � rPð�Þ

PðtÞ ; � ¼ limr!1
rPð�Þ

PðtÞ ; (12)

where Pð�Þ are the momenta in the local inertial frame.
We find that there appears an additional eyebrow-like

structure in the outer region of the main shadow. The
eyebrow grows as the distance between the black holes
becomes closer. Although not discernible in the figure, in
fact there appears the fine structure of the eyebrows: infi-
nitely many thinner eyebrows at the outer region of these
eyebrows as well as at the inner region of the main shadow.

Moreover, the distance between the main shadows is
slightly larger than the real distance between the black
holes, and the shapes of the shadows are suppressed in
the � direction and are slightly elongated in the � direc-
tion. Note that the radius of the shadow of a single black
hole is 4mi. Take the ‘ ¼ 2M case as an example. If the
other black hole is absent, the shadow should be located at
�=M ¼ �1 with the radius 4m ¼ 2M. However, because
of the presence of the second black hole, the inner edge of
the shadow is shaved and the outer edge is stretched toward
larger � instead. In the following, we study how these
structures, which are different from the superposition of
the shadow of a single black hole, appear.

C. Eyebrow in black hole shadow

First, we try to explain how the eyebrows are formed. We
restrict ourselves to the � ¼ 0 plane. The schematic pic-
ture of null geodesics for the silhouette of the eyebrows is
shown in Fig. 3. The geodesics coming in with impact
parameter bþ and b�ð<bþÞ are deflected by the left black

hole. The geodesics with bþ go into the unstable circular
orbit of the right black hole from the outside, while inside
for those with b�. The geodesics with the impact parame-
ters between b� and bþ form the eyebrow of the shadow.
Hence, the width of the eyebrow�b ¼ bþ � b� is directly
related to the distance between the hole ‘.1

Then we calculate the relation between the deflection
angle and the impact parameter and the distance. We
assume the distance is so large ‘ � m that the effect of
the second black hole on the spacetime may be treated as a
perturbation to a single black hole. The mass of the black
holes is assumed to be equal with m ¼ M=2. From Figs. 4
and 5, we find that the deflection angle�� of the geodesics
with the impact parameter b� is given by

�þ ¼ �

2
þ bþ � 4m

‘
; �� ¼ �

2
þ b� þ 4m

‘
: (13)

Then from Eq. (9)

�b

m
¼ bþ � b�

m
¼ 27

ð ffiffiffi
2

p þ 1Þ2 e
� �ffiffi

2
p ðe��þffiffi

2
p � e

���ffiffi
2

p Þ

¼ 27m

ð ffiffiffi
2

p þ 1Þ2 ffiffiffi
2

p
‘
e
� 3�

2
ffiffi
2

p
�
��b

m
þ 8

�
: (14)

Hence, we obtain to the first order in m=‘:

FIG. 2. Shadows of two black holes in the MP spacetime for
several distances ‘ between the black holes.

FIG. 3. Null geodesics for the eyebrow of black hole shadows.
The geodesics coming in with the impact parameter bþ and
b�ð<bþÞ are deflected by the left black hole. Then they go into
the unstable circular orbit of the right black hole: the one with bþ
from the outside, while inside with b�. The geodesics with the
impact parameters between b� and bþ form the eyebrow of the
shadow.

1Likewise, the fine structure of the eyebrows may be under-
stood as those null geodesics that are captured by the one hole
after going around the other hole several times.
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�b ¼ 210m2

ð ffiffiffi
2

p þ 1Þ2 ffiffiffi
2

p
‘
e
� 3�

2
ffiffi
2

p ’ 1:1
M2

‘
: (15)

We numerically compute the width of the eyebrow �b
for several ‘. The results are shown in Fig. 6. The least
square fit of the numerical data for 102 � ‘=M � 104

gives

ln
�b

M
¼ 0:96–0:99 ln

�
‘

M

�
; (16)

or �b=M ¼ 2:6ð‘=MÞ�0:99. Apart from the slight offset,
the power index is in good agreement with the analytic
estimate, Eq. (15).

D. Deformation of black hole shadow

Next, we study how the shadows are deformed and are
shifted toward a larger separation.

We assume that two black holes are located at z ¼ 0 and
z ¼ ‘. In the spherical coordinate, � is given by

� ¼ 1þm

r
þm0

r0
� 1þm

r
þ c ðr; �Þ;

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ‘2 � 2‘r cos�

p
:

(17)

We assume ‘ � m, m0, in order to treat the effect of the
black holem0 at z ¼ ‘ as a perturbation to the black holem
at z ¼ 0.
In addition to the conserved quantities E and Lz

[Eq. (11)], we also define the quantity Q which corre-
sponds to the Carter constant for a single black hole

Q � P2
� þ cot2�L2

z ¼ L2
x þ L2

y; (18)

where P� ¼ �2r2 _�. Introducing 	2 � Q=E2, 
 � Lz=E,
we have for the null geodesics

1

E2
_r2 ¼ 1� 	2 þ 
2

�4r2
� RðrÞ: (19)

Note that 	 (or Q) is no longer conserved due to the
presence of the black hole m0. In fact, from the null
geodesic equation for �, we have

d	2

d�
¼ 4��;�P�: (20)

Introducing � � cos�, then in terms of the derivative with
respect to r, Eqs. (19) and (20) can be written as�

d�

dr

�
2 ¼ 	2 � ð	2 þ 
2Þ�2

r4�4 � ð	2 þ 
2Þr2 ; (21)

d	2

dr
¼ 4r2�3�;�

d�

dr
: (22)

The equations determining the unstable orbits are

R ¼ 1� 	2 þ 
2

�4r2
¼ 0; (23)

FIG. 5. The relation between b�, ��, and ‘.

FIG. 4. The relation between bþ, �þ, and ‘.
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 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000  10000

∆
b/

M

l/M
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FIG. 6 (color online). The width of the eyebrow �b as a
function of the distance between the holes. The numerical results
(red dotted line) and its linear fit (black solid line). The dashed
(blue) line is the analytic relation, Eq. (15).
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dR
dr

¼ � 1

r2�4

d	2

dr
þ 	2 þ 
2

r4�8

d

dr
ðr2�4Þ ¼ 0: (24)

Equations (23), (24), and (22) are combined to give

	2 þ 
2 ¼ r2�4; (25)

�þ 2r�;r ¼ 0: (26)

Denoting the solution to the above equations as rc, rc
describes the shape of the photon sphere deformed by the
second black hole.

We set m ¼ 1 and m0 ¼ � and measure the length in
units ofm for notational simplicity. Then for a single black
hole, the radius of the photon sphere rc is rc ¼ 1 and the
radius of the black hole shadow is 4.

We expand 	 according to the order of 1=‘ for fixed r,

	 ¼ 	0 þ 	1 þ 	2 þ � � �: (27)

The radius of the photon sphere rc is also expanded

rc ¼ 1þ �1 þ �2 þ � � �: (28)

We consider the observer located at �� �=2. Then
r�=‘ � 1 holds everywhere on the unstable orbit. So c
in Eq. (17) can be expanded in terms of �,

c ðr;�Þ ¼ c 0ðrÞ þ c 1ðrÞ�þ 1

2
c 2ðrÞ�2

þ 1

3!
c 3ðrÞ�3 þ � � �; (29)

where

c 0 ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ‘2

p ; c 1 ¼ c 0

‘r

r2 þ ‘2
;

c n ¼ c 0ð2n� 1Þ!!
�

‘r

r2 þ ‘2

�
n
:

(30)

For the observer located at ðr; �;�Þ ¼ limr!1ðr; �=2; 0Þ, 

and 	 are related to the celestial coordinates � and �
[Eq. (12)] as 
 ¼ �, 	0ðr ! 1Þ ¼ � [11].

As explained in the Appendix, it is shown that up to
Oð1=‘Þ, 	 satisfies the following equation:

d	

dr
¼ �2�c ;�: (31)

1. Zeroth order

From Eq. (31), 	0 satisfies

d	0
dr

¼ �2c 1; (32)

where we have neglected 1=r as a small perturbation. Since
	0 ! � as r ! 1, the solution is

	0 ¼ �þ 2�‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ‘2

p : (33)

We need to determine rc to calculate 	0. From Eq. (26),
rc ¼ 1 to the zeroth order and then 	0 ¼ �þ 2�. Hence,
using Eq. (25), we find

�2 þ ð�þ 2�Þ2 ¼ 16: (34)

In the zeroth order, the shape of the black hole shadow is a
circle with the radius of 4, which is the same as a single
black hole. However, the center is shifted toward the�< 0
direction by�2�. This explains why the distance between
the main shadow is slightly larger than the real distance
between the black holes. The reason is simple: the null
geodesics with �> 0 are attracted not only to the black
hole at z ¼ 0 but also to the black hole at z ¼ ‘ in the
opposite direction, so they are deflected less, while for
�< 0 the null geodesics are attracted by both black holes
in the same direction, so they are deflected more. Hence,
this feature should not be limited to the MP spacetime, but
should be present for uncharged black holes.

2. First order

From Eq. (31), 	1 satisfies

d	1
dr

¼ d	0
dr

�
1

r
þ c 0 þ c 2

c 1

�

�
: (35)

In terms of 
 defined by r ¼ ‘ tan
, it is rewritten as

d	1
d


¼ � 2�

‘
ðcos
þ � sin
 cos
þ 3‘�sin2
 cos
Þ:

(36)

The integration of the third term is

3‘
Z 


�=2
�sin2
cos
d
¼‘�sin3
�‘

Z 


�=2
sin3


d�

d

d
;

¼‘�sin3
þ
Z 


�=2
	0hsin
d
;

’‘�sin3
�	0 cos
; (37)

where we have set h ¼ 1 as explained in the Appendix.
Hence, the solution is

	1 ¼ 2�

‘
ð1� sin
Þ � �2

‘
cos2


þ 2�

‘
	0 cos
� 2��sin3
: (38)

Since the radius of the photon sphere is rc ’ 1, 
 ’ r=‘
and the last term can be neglected. Hence, we have

	1 ¼ ð2�þ 3�þ 2Þ�; (39)

where we have introduced � � �=‘. Moreover, from
Eq. (26), we find rc ¼ 1� �. Putting these into Eq. (25)
gives up to the first order

�2 þ ð�þ 2�Þ2 þ 2�ð�þ 2�Þð2�þ 3�þ 2Þ
¼ 16ð1þ 2�Þ: (40)
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Namely, the shadow is now the ellipse suppressed in the �
direction and elongated in the � direction. If only one of a
binary black hole is observed, the shape of its shadow
determines not only its mass but also the information of
the other black hole, � ¼ �=‘. The other black hole should
exist in the direction where the shadow is suppressed.

In Fig. 7, we show Eq. (40) superimposed on the black
hole shadows for several ‘ with � ¼ 1. We find excellent
agreement.

III. SHADOWS OF COLLIDING BLACK HOLES:
KASTOR-TRASCHEN SOLUTION

Finally, we study the shadows of colliding black holes in
the KT solution [7]. The KT solution is a time-dependent
generalization of the MP solution and describes an arbi-
trary number of extremely charged black holes in a de
Sitter universe. It is reduced to the MP solution when the
positive cosmological constant� ¼ 0 and is reduced to the
extremely charged (Q ¼ M) Reissner-Nordström-de Sitter
solution.

The metric in the cosmological coordinate is given by

ds2 ¼ �a2��2d�2 þ a2�2ðdx2 þ dy2 þ dz2Þ; (41)

a ¼ eHt ¼ � 1

H�
; H ¼ �

ffiffiffiffi
�

3

s
; � ¼ 1þX

i

mi

ari
;

(42)

where, � and t denote conformal time and physical time,
respectively. Here, H > 0 (H < 0) corresponds to expan-
sion (contraction). In the contracting universe (H < 0) the
KT solution describes the collision of black holes.

Let us consider the situation where an observer is near
inside the cosmological horizon (robs ! rþ) in the con-
tracting coordinate. The cosmological horizon rþ of
Q ¼ M Reissner-Nordström-de Sitter solution in the
cosmological coordinate is given by

arþ ¼ 1

2jHj ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4MjHj

p
Þ �M: (43)

We define the following parameters, which form the
celestial coordinate system, as

� � �arobsP
ð�Þ

Pð�Þ ; � � arobsP
ð�Þ

Pð�Þ ; (44)

where Pð�Þ are the momenta in the local inertial frame and
arobs is the physical distance between the observer and the
center of the coordinate.

A. Shadows of colliding black holes

Let us consider a two black hole system as an example
of colliding black holes. Each black hole is located at
z ¼ �‘=2 in the comoving coordinate. We set an observer
at a fixed point inside a cosmological horizon in the
physical coordinate. First we take �obs ¼ �=2 in terms of
the polar coordinate.
We then numerically calculate the null geodesics from

the observer in the expanding coordinate. The null geo-
desics which eventually fall into the black hole horizons
are regarded as shadows. Note that the time reverse is the
null geodesics going from the black hole to the observer in
the contracting universe.
Figure 8 shows the shadows of two black holes with the

same masses m1 ¼ m2 at each physical time t seen by
observers at �obs ¼ �=2 with � � ajHjðrþ � robsÞ ¼
0:01. We take M ¼ m1 þm2 ¼ 0:1=jHj. The separation
of two black holes is chosen as a‘ ¼ 4	 10�3=jHj at
t ¼ 0. Here, the celestial coordinates � and � are normal-
ized by �M in order to keep the shape of the shadows
independent of a location of the observer.
At t ¼ 0 and t ¼ 1:6=jHj, the black holes are mutually

away enough. However, one can find that their shapes
are a little bit elongated in the � direction and squeezed

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2

α/
m

β/m

l/m = 20

-6 -4 -2 0 2

l/m = 10

-6 -4 -2 0 2

l/m = 4

FIG. 7 (color online). The analytic solutions Eq. (40) (red solid
lines) superimposed on the black hole shadow for ‘=m ¼ 20, 10,
4 with m ¼ m0.
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-4

-2

0

2

4

-8 -4 0 4 8
β/(εM)

α
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M
)

t=7.6

-8 -4 0 4 8

t=16.1

FIG. 8. The black hole shadows for the two black hole system
in the KT solution plotted in �-� space normalized by �M with
each physical time at the observer t=jHj�1 ¼ 0, 1.6, 3.2, 4.6, 7.6,
16.1.
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in the � direction from the circles with a radius of

4mi�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4mijHjp � 1:82�M when they are considered

as single black holes in �-� space. This deformation is
caused by the existence of the other black hole in the
opposite side as explained in Sec. II D

At t ¼ 3:2=jHj (and even at t ¼ 1:6=jHj), an eyebrow-
like structure around each black hole appears. This kind
of structure is quite unique to the multi-black hole sys-
tem. The reason why these structures appear is explained
in Sec. II C. If the impact parameter of the null geodesics
is slightly smaller than the radius of the photon sphere,
these geodesics will eventually fall into a black hole
horizon. On the other hand, for a slightly larger impact
parameter, the winding geodesics will gradually increase
the distance to the black hole and eventually go away
from the black hole, or fall into the horizon of the other
black hole. The latter case creates the eyebrow-like
shadow along the main shadow. The situation is quite
similar to the orbits of the null geodesics in the
Majumdar-Papapetrou solution.

At t ¼ 4:6=jHj and at t ¼ 7:6=jHj, the eyebrow-like
structures grow and the main shadows come close to
each other. One can find there still remains a region where
photons can go through between the main shadows. The
reason why such a region remains is the following. In a
single black hole system, a black hole horizon is enclosed
with the photon sphere. On the other hand, in a two black
hole system, two photon spheres intersect at the x-z plane
where the null geodesics cannot fall into either one of the
black holes. Accordingly the null geodesics can go through
this plane, which corresponds to � ¼ 0 in the celestial
coordinate until two black holes merge and form a horizon.
Even at t ¼ 16:1=jHj, there still remains a region where
photons can go through between the main shadows.2

According to Ref. [12], a common apparent horizon
encompassing two black holes appears when a‘ &
10�2=jHj. Since we consider the null geodesics in the
contracting universe, the geodesics coming into the ob-
server at t can go near the black holes at the time much
earlier than t when the distance between the black holes a‘
is much larger than 0:01=jHj so that the geodesics can go
through in between. In fact, some of the null geodesics
observed at t ¼ 16:1=jHj pass through the middle of
the black holes at t ’ �2:2=jHjwhen the distance between
the black holes is a‘ ’ 0:036=jHjð>10�2=jHjÞ and there
is no common apparent horizon (See Fig. 9).

Overall, the shapes of these shadows look quite similar
to those in Fig. 2.

B. Shadows of ‘‘coalescing’’ black holes

Finally, we consider the situation where one observes
black holes from arbitrary azimuthal directions to mimic

the coalescing binaries. We have calculated shadows for
several different values of angle �obs at t ¼ 3:7 in Fig. 10.
As we decrease �obs from �=2, the left main shadow of
Fig. 8 becomes elongated, and eventually merges with the
eyebrow-like structure of the right side and forms a ring
structure surrounding the right main shadow. For compari-
son, in Fig. 11, the shadows of the MP solution for several
different angles �obs are shown. Again, we find that both
look similar.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2  0  2  4  6  8  10  12
t [×1/|H|]

Apparent horizon

t=7.6 t=12.2 t=16.1

a(
t)

x

FIG. 9. The behavior of the null geodesics observed in the
direction � ¼ � ¼ 0 at t ¼ 7:6, 12.2, 16:1=jHj. The dashed
curve is the evolution of the common apparent horizon
enclosing the two black holes. The vertical axis is aðtÞx. The
null geodesics go through the middle of the black holes (x ¼ 0)
at t ’ �2:2=jHj. Later, the black holes get closer and a common
apparent horizon appears at t ’ 0:3=jHj. The null geodesics
with t ¼ 16:1 stay close to (but just outside) the horizon for a
while and then reach the observer when t ¼ 16:1=jHj.

FIG. 10. The shadows of two black holes in the KT solution at
t ¼ 3:7=jHj viewed by the observer at �obs ¼ �=2, �=3, �=6, 0.

2The merger of the shadows found in Ref. [8] is due to the low
resolution of the numerical calculation.
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IV. SUMMARY

We have studied the null geodesics in the static or
dynamic multi-black hole solutions: the MP solution and
the KT solution. We have calculated the shadows of these
multi-black holes and found that the shadows have struc-
tures distinct from the mere superposition of the shadow of
each black hole: the eyebrow-like structures outside the
main shadows and the deformation of the shadows. We
have presented analytic estimates of these structures using
the MP solution to show that the width of the eyebrow is
related to the distance between the black holes and that the
shadows are deformed into ellipses due to the presence of
the second black holes and that the separation between the
shadows is larger.

These analytic results help us to have qualitative under-
standing of the features of the shadows of colliding black
holes which were studied in our previous paper. We expect
that following two features of black hole shadows are
general and appear in a more realistic situation. The first
one is the eyebrow-like structurewhich shows up during the
merger process. The second is the deformation of the main
shadow and the larger separation than the true distance.

These features in the shadows can be used as probes to
find the multi-black hole system at the final stage of its
merger process. For that purpose, we have presented the
shadows of the colliding black holes in the KT solution by
changing the direction of the observer to mimic the coales-
cence of the binary black holes. In order to study the
shadows of a realistic black hole binary, the effects of the
accretion disk should also be considered, which is left for
our future study.
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APPENDIX: DERIVATION OF EQ. (31)

In this Appendix, we show that up to Oð1=‘Þ 	 satisfies
Eq. (31).
First we prove the following relation:

j�j< j	j
r

þOð1=‘Þ: (A1)

For convenience, we introduce � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 
2

p
. First, note

that since 	2 � �2�2 
 0 from Eq. (21), we have � ¼ 0
for 	 ¼ 0. Therefore, it suffices to prove the relation for
� � 0 (or 	 � 0).
Since � ! 	=r for r ! 1, from Eq. (21) we have for

r ! 1,

d�

dr
¼ � 	

r2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2=	2

1� �2=ðr2�4Þ

s
: (A2)

The sign of the right-hand-side changes at �2�2 ¼ 	2 or
�2 ¼ r2�4. The latter corresponds to the turning point of
the orbit [Eq. (19)]. Before reaching the turning point,
there can be several points r such that �2�2 ¼ 	2.
Denoting the largest one among such r as r1, we first prove
the relation for r 
 r1. The relation is then consistent for
r < r1, because � takes a maximum value 	=� at r1.
The function h defined by

h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2=	2

1� �2=ðr2�4Þ

s
(A3)

takes the minimum h ¼ 0 at r ¼ r1 and asymptotes h ¼ 1
for r ! 1 (0 � h < 1). Using h, Eqs. (A2) and (22)
become

d�

dr
¼ � 	

r2�2
h; (A4)

d	

dr
¼ �2�c ;�h: (A5)

Introducing g� � �� 	
r , from Eqs. (A4) and (A5), g�

satisfies

dg�
dr

¼ 	

r2
ð�1� h=�2Þ � 2

�

r
c ;�h: (A6)

The second term is

FIG. 11. The shadows of two black holes in the MP solution
with ‘ ¼ 2M viewed by the observer at �obs ¼ �=2, �=3,
�=6, 0.
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2
�

r
c ;�h ¼ 2‘��

ðr2 þ ‘2 � 2‘r�Þ3=2 h > 0: (A7)

Then the integration of the second term is

0< A � �
Z r

1
2
�

r
c ;�hdr <�

Z r

1
2
�

r
c ;�dr;

¼ �2�
Z r

1
‘dr

ðr2 þ ‘2Þ3=2
�
1þ 1

r
þOð1=‘Þ

�
;

¼ 2�

‘

�
1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ‘2
p

�
þOð1=‘2Þ; (A8)

which shows that it is the first order quantity.
Noting g� ! 0 for r ! 1, the integration of Eq. (A6)

gives

ðgþ þ AÞðg� � AÞ ¼ �
�Z r

1
	

r2
dr

�
2 þ

�Z r

1
	

r2
h

�2
dr

�
2
:

(A9)

Using Eq. (A5), the integrals in the right-hand side of
Eq. (A9) can be rewritten as

Z r

1
	

r2
dr¼ 	

Z r

1
1

r2
drþ2

Z r

1
�c ;�h

�Z r

1
1

r2
dr

�
dr

¼�	

r
þA;

Z r

1
	

r2
h

�2
dr¼ 	

Z r

1
h

r2�
drþ2

Z r

1
�c ;�h

�Z r

1
h

r2�2
dr

�
dr:

(A10)

The last term in Eq. (A10) is less than A because of 0 �
h=�2 < 1, therefore this term is the first order quantity.
Substituting these integrals into Eq. (A9), we obtain

ðgþþAÞðg��AÞ¼�	2
��Z r

1
1

r2
dr

�
2�

�Z r

1
h

r2�2
dr

�
2
�

þOð1=‘Þ: (A11)

From 0 � h=�2 < 1, we find that the first term in the right-
hand side of Eq. (A11) is negative. Therefore, since
A�Oð1=‘Þ,

gþg� <Oð1=‘Þ: (A12)

Hence, we have

j�j< j	j
r

þOð1=‘Þ; (A13)

the relation holds at least up to the turning point of the
orbit.

Next, we show using the relation (A1) that Eq. (A5) can
be simplified to give Eq. (31). Using the relation (A1) and
Eq. (A5), we have the inequality for r > �,

�2�c ;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1��=ðr2�2Þ

s
<
d	

dr
<�2�c ;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=r2

1��2=ðr2�2Þ

s
:

(A14)

We denote r, which satisfies r ¼ �ðrÞ as r�. Note that � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 
2

p �Oð1Þ. Since the denominator in the square
root at r ¼ � is 1� 1=�2 �Oð1Þ, there exists constants
c1 and c2 of Oð1Þ, for 0< r�=r � 1 so that

1þ c2ðr�=rÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� �2=ðr2�2Þ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=r2

1� �2=ðr2�2Þ

s
� 1þ c1ðr�=rÞ2:

(A15)

Then we show that the second term in the integral

�2
Z r

1
�c ;�ð1þ ciðr�=rÞ2Þ; i ¼ 1; 2; (A16)

is of the second order.
The second term becomes, neglecting higher order

terms,

� 2
Z r

1
�c ;�ðr�=rÞ2dr

¼ �2�
Z r

1
‘r

ðr2 þ ‘2Þ3=2 ð1þ 1=rÞðr�=rÞ2dr;

¼ �2�
r2�

‘2

Z 


�=2
sin
ð1þ cot
=‘Þcot2
d


’ �2�
r2�

‘2
ln

r

2‘
; (A17)

where we have introduced r ¼ ‘ tan
. Hence, the integral
is of order Oð1=‘2Þ.
For r < r�, from Eq. (A5), we have

	ðrÞ � 	ðr�Þ �Oð1=‘2Þ: (A18)

Therefore, up to Oð1=‘Þ, Eq. (A5) is simplified by setting
h ¼ 1

d	

dr
¼ �2�c ;�:

This is Eq. (31).
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