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The chameleon scalar field is a matter-coupled dark energy candidate whose nonlinear self-interaction

partially screens its fifth force at laboratory scales. Nevertheless, small-scale experiments such as the

torsion pendulum can provide powerful constraints on chameleon models. Here we develop a simple

approximation for computing chameleon fifth forces in torsion pendulum experiments such as Eöt-Wash.

We show that our approximation agrees well with published constraints on the quartic chameleon, and we

use it to extend these constraints to a much wider range of models. Finally, we forecast the constraints

which will result from the next-generation Eöt-Wash experiment, and show that this experiment will

exclude a wide range of quantum-stable models.
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I. INTRODUCTION

Evidence for an accelerating cosmic expansion is
now solid [1–4]. The simplest explanation for this accel-
eration, a ‘‘cosmological constant’’ vacuum energy density
�M2

Pl which does not interact with standard model parti-

cles, remains consistent with the data; however, it must
take an extremely small value �10�120M4

Pl which is diffi-

cult to explain without fine-tuning. Alternative theories
[5–15] explain the smallness of this number dynamically,
either through tunneling to a low-energy vacuum or
through a slow reduction of the vacuum energy known as
‘‘degravitation.’’ Since the simplest of these models reduce
at low energies to effective scalar field theories possibly
coupled to known particles, it is interesting to consider
such a scalar field ‘‘dark energy’’ independently of these
more fundamental theories, and to ask how it may differ
from a cosmological constant. Generally speaking, such
differences take two forms: a slow evolution of the back-
ground energy density [16,17]; and couplings to standard
model particles, which we consider here.

Large fifth forces have not been observed, so coupled
dark energy must have some mechanism to screen such
couplings at laboratory and solar system scales. Galileon
fields invoke the nonlinear Vainshtein mechanism to reduce
their effective couplings at high densities [18–20]. Sym-
metron models decouple from matter through a symmetry
restoration at high densities, while fifth forces exist in a
symmetry-broken phase at low densities [21–23]. The first
screened scalars to be considered as dark energy candidates
are chameleon models, which evade constraints by becom-
ing massive in high-density environments [24–26]. The
current article focuses on chameleon models.

Although these scalar fields are screened, such screening
mechanisms are not perfect. Laboratory experiments are
powerful probes of residual fifth forces and new particles
which could result from coupled dark energy [27,28].
Particles of a photon-coupled scalar could be produced

through oscillation in a background magnetic field and
detected using ‘‘afterglow’’ experiments [29–36]. Fifth
forces may be probed directly through small-scale tests
of gravity such as torsion pendulum experiments and
Casimir force measurements [28,37–45].
The goal of this article is to use torsion pendulum

experiments such as Eöt-Wash [38] to constrain fifth forces
from chameleon dark energy models [44–51]. Previous
work [50] used the numerical computations of Ref. [47]
to calculate the three-dimensional (3D) field configuration
directly for the geometry of the Eöt-Wash experiment,
a powerful probe of gravitation-strength fifth forces at
submillimeter scales. In this work we develop a simple,
accurate estimate of the field profile for such experiments
by approximating the matter distribution locally as one
dimensional and planar. This one-dimensional plane-
parallel (1Dpp) approximation allows us to compute the
field on the surface of the source and test masses in a
torsion pendulum experiment, from which the energy and
torque can be found. We show that the 1Dpp approxima-
tion agrees with the numerical calculations of Ref. [47] and
the data analysis of Ref. [50] for Eöt-Wash, and we esti-
mate the constraints on a much wider range of models.
Recently it was shown that a subset of chameleon

models is ‘‘quantum stable’’ in the sense of having small
one-loop corrections to the effective mass and bulk field
value [51]. For gravitation-strength couplings, quantum-
stable models lie just beyond the bounds of Eöt-Wash.
Using our 1Dpp approximation, we forecast constraints
from the next-generation Eöt-Wash experiment and show
that it rules out a large range of such models.
The paper proceeds as follows. Section II introduces the

chameleon model and its fifth force screening mechanism.
In Sec. III we study in detail the one-dimensional planar
problem, which is exactly solvable for power law chame-
leon potentials. Solutions of this one-dimensional problem
are used to approximate the expected torsion pendulum
signal in Secs. IV and V concludes.
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II. CHAMELEON FIELDS

A. Equation of motion

The chameleon field � is a canonically normalized
scalar field with a nonlinear self interaction and a matter
coupling [24–26]. A simple matter interaction results from
the conformal coupling of the chameleon field to the
metric, as given by the action

S ¼
Z

d4x

�
�ð@�Þ2

2
� Vð�Þ þLmðc i; e

2��
MPlg��Þ

�
; (1)

in the flat-spacetime case appropriate to laboratory tests.
Here Vð�Þ is the chameleon potential, and matter is rep-
resented as Fermion fields c i with Lagrangian densityLm.
Conformal coupling of the chameleon results in a universal
coupling constant �> 0 to all Fermionic matter, a feature
which is stable with respect to quantum corrections
[52,53]. In a background matter density �ð ~xÞ the chame-
leon equation of motion is

@�@
�� ¼ @Veff

@�
; (2)

Veffð�; ~xÞ ¼ Vð�Þ þ �

MPl

�ð ~xÞ�; (3)

where Veff is the effective potential. We have neglected
terms of higher order in��=MPl since this quantity will be
small in all models of interest.

In this work we will primarily be concerned with the
static case, in which the equation of motion reduces to

r2� ¼ V0ð�Þ þ ��=MPl: (4)

Deep inside a bulk medium of constant density �0 even the
spatial derivatives vanish. The bulk field �Bð�0Þ then
satisfies V 0ð�Bð�0ÞÞ þ ��0=MPl ¼ 0. The effective mass
associated with small fluctuations about a field � is given
by meffð�Þ2 ¼ V 00ð�Þ.

The chameleon potential Vð�Þ must be chosen to fit the
cosmological data and to screen fifth forces locally.
Cosmology requires that V > 0 vary sufficiently slowly
with time, and we will see that the chameleon effect
requires V 0 < 0 and V00 > 0. Since the cosmic acceleration
is sourced by constant or slowly-varying parts of V while
laboratory experiments are sensitive only to derivatives of
V, we choose a constant plus power law potential which
splits these two regimes:

Vð�Þ ¼ M4
�

�
1þ �

�������� �

M�

��������n
�
: (5)

HereM� ¼ 2:4� 10�3 eV is the dark energy scale, so that
the constant term M4

� drives the cosmic acceleration. The

second term, in which � > 0 and n are dimensionless
numbers, can be probed in laboratory experiments. For
n ¼ 4 it is conventional to define � � 4!�. The bulk field
and mass are given by

�Bð�Þ ¼ �nM�

�
��

jnj�M3
�MPl

� 1
n�1
; (6)

meffð�Þ ¼ M�jn� 1j12ðjnj�Þ 1
2n�2

�
��

M3
�MPl

� n�2
2n�2

; (7)

where �n ¼ signð1� nÞ.
This potential is the large-field limit of the exponential

potential V ¼ M4
� expð��n=Mn

�Þ of Ref. [26]. Henceforth
we work with (5) whenever specific examples or con-
straints are presented. Furthermore, the mass does not
increase with density when 1< n< 2, and we will see that
(5) is constrained by cosmology when �1=2 & n < 1.
Thus we only consider models with n & �1=2 or n > 2.
Note that, due to our sign convention �> 0, the field �
will be negative for n > 2 and positive for n < 0. For all
such n, �Bð�Þ decreases as � increases.

B. Chameleon and thin-shell effects

Chameleon phenomenology is characterized by the pres-
ence of two regimes: a linear, or ‘‘unscreened,’’ regime, and
a nonlinear, ‘‘screened’’ regime. In the linear regime, the
potential derivative term on the right-hand side of (4) is
negligible, so the equation of motion is approximately
linear in �. Furthermore, the source term remaining on
the right-hand side is proportional to �; thus (4) in the
linear regime is similar to the Poisson equation r2� ¼
�=ð2M2

PlÞ for the gravitational potential�. Since gradients

of � and � vanish far from an object, � is equal to
2�MPl� up to an additive constant,

��ðlinÞ ¼ 2�MPl��; (8)

where the � denotes a difference between two spatial
positions. The linear regime applies, for example, to a
dense object of sufficiently small volume in a sufficiently
low-density bulk.
Suppose that the volume of such an object is increased at

constant density. For a characteristic size r the gravita-
tional potential � / �r2, and � will change with �
throughout the linear regime. As � changes from its mini-
mum, V 0ð�Þ will become large and negative, partially
canceling the source density on the right side of (4).
This cancellation, known as ‘‘screening’’ of the source, is

characteristic of the nonlinear regime of chameleonmodels.
In the nonlinear limit this screening becomes complete and
the field asymptotically approaches its bulk value �Bð�Þ.
Since the gravitational potential continues to grow linearly,
in the nonlinear regime the change in the field value will be
much smaller than the linear approximation (8),

j��ðnlÞj � 2�MPlj��j: (9)

Suppose that the chameleon field at the center of an
object in the nonlinear regime is �0, and the field far
away is �1. The gravitational potential at the center is
�0; far away, � is defined to be zero. For chameleon
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models with negative n, �0 � 0, so (9) becomes j�1j �
2�MPlj�0j. For n > 2, the opposite is true; �0 � �1, so
(9) implies j�0j � 2�MPlj�0j. The gravitational potential
of a disk of radius rdisk and thickness zdisk is approximately
�� �rdiskzdisk; Ref. [45] finds � ¼ �rdiskzdisk=ð8M2

PlÞ to
be a good approximation.

The chameleon fifth force in the nonlinear regime is
suppressed by two effects known as the chameleon and
thin-shell effects. The chameleon effect is the rapid growth
of the effective mass meff with the size and density of a
source object, which effectively converts a long-range
force into a short-range one. For example, the Compton
wavelength of a � ¼ 1, n ¼ �1, � ¼ 1 model increases
from �100 pc at cosmological densities to �0:1 mm at
laboratory densities. The thin-shell effect is due to the
screening of the interior of a source mass. If the chameleon
field is near its bulk value inside an object, and changes
only in a thin shell of matter at the outer edge of that object,
then a test mass outside that object will ‘‘see’’ only the fifth
force due to that thin shell of matter. Due to the thin-shell
effect, a chameleon with a gravitation-strength coupling
�� 1 can easily be consistent with solar system fifth
force constraints. Because of the chameleon and thin-shell
effects, a model with effective mass meff at a given density
is best probed using objects of size �m�1

eff separated by a

distance �m�1
eff .

Using the mass scaling (7), meff / �ðn�2Þ=ð2n�2Þ, we can
estimate whether a given chameleon model can best be
constrained by laboratory or cosmological experiments.
Small-scale tests of gravity can exclude unscreened
gravitation-strength fifth forces on length scales * 1 mm
at densities �� 1 g=cm3, while cosmological probes
exclude such forces on megaparsec length scales at the
cosmic background density �10�30 g=cm3. These ap-
proximate excluded regions are shaded in Fig. 1. Suppose

we have a model which can barely be probed in the
laboratory, meff � ð1 mmÞ�1, such as the models with
n ¼ 4, n ¼ �1, and n ¼ �4 shown in the figure. This
model will be too massive to probe cosmologically if the
mass at cosmological densities is greater than ð1 MpcÞ�1.

This condition is satisfied if n�2
n�1 <

1
15 log10

1 Mpc
1 mm , implying

either n & �1=2 or n > 1. The remaining models have
rapid mass scalings and are best probed cosmologically.

C. Quantum stability condition

Reference [51] derived a condition for the quantum
stability of a chameleon potential, that is, the condition
that quantum corrections to the potential be subdominant
over the range of field values probed by a fifth force
experiment. Large masses, which help a chameleon
model to evade fifth force constraints, also lead to large
quantum corrections. For a general class of potentials,

Ref. [51] found the quantum stability condition meffð�Þ<
0:0073ð�=10 g=cm3Þ1=3 eV. Quantum-stable models are
an interesting subset of all chameleon models, and we
will see that the next-generation Eöt-Wash experiment
can exclude a range of quantum-stable chameleons.
For a potential such as (5), the quantum stability condi-

tion is the requirement that the one-loop Coleman-
Weinberg corrections to the slope of the potential and to
the chameleon effective mass (that is to V 0 and V00) be
smaller in magnitude than their tree-level counterparts.
The one-loop correction to the potential is

�V1-loop ¼ V 00ð�Þ2
64	2

log

�
V 00ð�Þ
�2

0

�
; (10)

where primes denote derivatives of the potential (5) with
respect to�, and�0 is a mass scale which characterizes the
chameleon field in the experiment. Corrections to V0 and
V00 are the first and second derivatives of (10), respectively,
so the quantum stability conditions are

���������V
0
1-loop

V 0

��������;
���������V

00
1-loop

V00

��������<1: (11)

Although we can choose �0 to make �V1-loop zero at any

given field value, a fifth force experiment will probe a
range of field values. � and meff can vary by an order of
magnitude or more in a typical experiment, so quantum
corrections will not be zero everywhere. When we consider
the quantum stability of a model in a specific experimental
setup in Sec. IV, we will choose �0 from among the
chameleon masses in the experiment so as to minimize
quantum corrections.
As an estimate of quantum corrections, we may set the

log term in (10) to unity and evaluate (11) at the bulk field
�Bð�0Þ corresponding to some density �0. For the poten-
tial (5) the stability conditions are
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FIG. 1 (color online). Mass scalings of various chameleon
models. Laboratory constraints are most suitable for probing
models with n & �1=2 and n > 2, while cosmological fifth
force constraints probe the models �1=2 & n < 1 in which
meff grows most rapidly with density.
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�
3

n�1

�
��0

jnjM3
�MPl

�n�4
n�1

<
32	2

jnðn� 1Þ2ðn� 2Þj ; (12)

�
3

n�1

�
��0

jnjM3
�MPl

�n�4
n�1

<
32	2

jnðn� 1Þðn� 2Þð2n� 5Þj : (13)

Note that quantum stability imposes an upper bound on the
self-coupling � for n > 2 and a lower bound for n < 0.
In the case n ¼ 4 the density-dependent term disappears,
and (12) and (13) imply 4! � � ¼ � < 32	2=3 � 105.
Casimir force constraints can rule out quantum-stable
n ¼ 4 chameleons with strong matter couplings � * 106

[45]; however, quantum-stable models with gravitation-
strength couplings �� 1 remain allowed.

III. FIELD PROFILE IN PLANAR SYSTEMS

A. Planar slab in vacuum

The field profile in the vacuum outside an infinitely thick
planar slab can be found exactly [45,47]. Let �ðzÞ ¼
�0�ð�zÞ where � is the step function. Thus � is positive
for z < 0 and zero for z > 0; the face of the slab is the xy
plane, and its normal is ẑ. The static equation of motion (4)
in the vacuum, d2�=dz2 ¼ dV=d�, is solved for the
potential (5) by

�ðzÞ ¼ �sv

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðn� 2Þ2�M4�n

�

s
�

n�2
2
sv z

�� 2
n�2
; (14)

where�sv is the field value on the surface z ¼ 0 of the slab

in vacuum. Using d2�
dz2

¼ 1
2

d
d�

d�
dz to integrate the equation of

motion, we find

1

2

�
d�

dz

�
2
���������sv

�i

¼ Veffð�sv; �Þ � Veffð�i; �Þ: (15)

Choosing �i ¼ �Bð�0Þ, corresponding to z ! �1 and
� ¼ �0, yields one equation relating �sv to d�ð0Þ=dz;
choosing �i ¼ �Bð0Þ, corresponding to z ! 1 and
� ¼ 0, yields another. Combining the two, and noting
that d�=dz ! 0 as z ! 	1, gives the simple result

�sv ¼
�
1� 1

n

�
�Bð�0Þ: (16)

An exact, closed-form solution is not available inside the
thick slab. However, we can linearize the equation of
motion around �Bð�0Þ and require �ðzÞ to be continuous
at z ¼ 0:

�thickðzÞ � �Bð�0Þ þ ½�sv ��Bð�0Þ
emeff ð�0Þz: (17)

The case of a thin slab is slightly more complicated.
Suppose that the slab is centered at z ¼ zc with a half
thickness of 
z. Guess a value �C ¼ �ðzcÞ. The equation
of motion linearized about�C, and its solution 
�thinðzÞ ¼
�ðzÞ ��C inside the slab, are

d2
�

dz2
� Veff;�ð�C; �0Þ þmeffð�CÞ2
� (18)

) 
�thinðzÞ �
Veff;�ð�C; �0Þ
meffð�CÞ2

½coshðmeffð�CÞzÞ � 1
:
(19)

Replacing �sv by �C þ 
�thinðzc þ 
zÞ in (14), we can
find the exterior solution corresponding to this guess �C.
When the correct value of �C is chosen, d�=dz as well as
� will be continuous at zc þ 
z. However, if we consider
thicker and thicker slabs, we cannot be sure that such a
solution will exist.

B. Planar gap

Consider a planar gap with � ¼ �v bounded on the left,
z � 0, by a thick slab of density �mL, and on the right,
z � �z, by a thick slab of density �mR. That is, �ðzÞ ¼
�mL�ð�zÞ þ �v�ðzÞ�ð�z� zÞ þ �mR�ðz��zÞ. There
are four unknowns: the surface field values �L and �R at
z ¼ 0 and �z, respectively; the maximum field value �g

inside the gap; and zg, the point at which � ¼ �g.

Equation (15) can be applied to any interval
½�ðziÞ; �ðzjÞ
 over which � is constant. The intervals

½�Bð�mLÞ; �L
 and ½�L; �g
 give, respectively,
1

2

�
d�

dz

�
2
���������L

¼ Vð�LÞ � Vð�Bð�mLÞÞ

þ ��mLð�L ��Bð�mLÞÞ
MPl

(20)

� 1

2

�
d�

dz

�
2
���������L

¼ Vð�gÞ � Vð�LÞ þ
��vð�g ��LÞ

MPl

:

(21)

Adding the two yields a relation between �L and �g.

A similar procedure can be applied to the plane on the
right. Thus we have

�L ¼ �mL�Bð�mLÞ � �v�g

�mL � �v

þ Vð�Bð�mLÞÞ � Vð�gÞ
�M�1

Pl ð�mL � �vÞ
;

(22)

�R ¼ �mR�Bð�mRÞ � �v�g

�mR � �v

þ Vð�Bð�mRÞÞ � Vð�gÞ
�M�1

Pl ð�mR � �vÞ
:

(23)

Next, we apply (15) to ½�ðzÞ; �g
 for some arbitrary z

between 0 and zg in order to find d�=dz inside the gap:

d�

dz
¼ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð�Þ � Vð�gÞ þ ��v

MPl

ð���gÞ
s

: (24)

We can integrate with respect to � between �L and �g to

determine zg in terms of �g:

AMOL UPADHYE PHYSICAL REVIEW D 86, 102003 (2012)

102003-4



zg ¼
Z �g

�L

d�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�M4�n

�

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�jn � j�gjn � jnjj�Bð�vÞjn�1ð�g ��Þ

q

¼ X1
i¼0

Xi
j¼0

ð�1Þj�i
n�ð12Þðjnjj�Bð�vÞjn�1Þi�i�j

g

�ð12 � iÞj!ði� jÞ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�M4�n

�

q Z j�gj

j�Lj
j�jjdj�j

ðj�jn � j�gjnÞiþ1=2

¼
ffiffiffiffiffiffiffi
n�1
2n

q
meffð�gÞ

X1
i¼0

Xi
j¼0

ð�1Þj�i
n�ð12Þjnji

�ð12 � iÞj!ði� jÞ!
���������Bð�vÞ

�g

��������iðn�1Þ
B

1�j�g
�L

jn
�
1

2
� i;

1

2
þ i� 1þ j

n

�

� Zgapð�g; �L; �vÞ; (25)

where Bxða; bÞ ¼
R
x
0 t

a�1ð1� tÞb�1dt is the incomplete
beta function, and we have defined the shorthand Zgap

for this expression as a function of the gap field�g, surface
field �L, and gap density �v. Repeating this procedure for
the right side of the gap, zg < z < �z,

�z� zg ¼ Zgapð�g; �R; �vÞ; (26)

which is similar to (25) but with �L replaced by �R in the
incomplete beta function.

Thus we have �L, �R, and zg in terms of �g, while the

sum of (25) and (26) implicitly defines �g as a function of

the known gap size �z. By guessing �g, comparing the

resulting �z to the known value, and iteratively refining
our guess, we can find �g. Once �g is known, we can

integrate (24) to find �ðzÞ within the gap. For example,
given any �0 ¼ �ðz0Þ between �L and �g, we obtain for

zg � z0 a formula similar to (25) with �L replaced by �0.

The series sums in (25) and (26) will converge quickly
unless �g is close to �Bð�vÞ. In that case, the fifth force

on each slab will be small anyway; the gap is large
enough that the opposite slab does not pull �g very far

from its bulk vacuum value. When fifth forces are large,
even the i ¼ 0 term alone is a reasonable approxima-

tion:
ffiffiffiffiffiffiffi
2n
n�1

q
meffð�gÞ�z � B1�ð�g=�LÞnð1=2; 1=2� 1=nÞ þ

B1�ð�g=�RÞnð1=2; 1=2� 1=nÞ. Henceforth, in our numeri-

cal calculations, we truncate Zgap after the i ¼ 5 terms.

To summarize, we have shown how to compute the
surface field �Rð�zÞ as a function of gap size �z in a
planar system. This result will be essential to our approxi-
mation for torsion pendulum experiments in Sec. IV.

C. Thin slab in planar gap

Before proceeding to experiments we study one final
planar configuration, the thin slab inside a planar gap. This
will allow us to calculate the chameleon screening caused
by the electrostatic shielding foil between source and test
masses in short-range fifth force experiments.

Figure 2 shows the geometry considered here. A central
slab of width �zC and density �mC sits between two thick
slabs, one on the left at a distance �zL with a density �mL,

and another on the right at a distance �zR with a density
�mR. Gap 1, between the left and central slabs, has a
‘‘vacuum’’ with density �v1, while gap 2, between the
central and right slabs, has a density �v2; we assume
�v1; �v2 � �mL; �mC; �mR. Field values deep inside the
left and right slabs are �BL ¼ �Bð�mLÞ and �BR ¼
�Bð�mRÞ, respectively. Without loss of generality, let
z ¼ 0 be the face of the left slab. Given these values, we
wish to find �L1 ¼ �ð0Þ; �g1, the maximum inside gap 1;

�C1 ¼ �ð�zLÞ; �C, the minimum inside the central slab;
�C2 ¼ �ð�zL þ�zCÞ; �g2, the maximum inside gap 2;

�R2 ¼ �ð�zL þ�zC þ �zRÞ; and the positions zg1, zc,

and zg2 at which the local extrema �g1, �C, and �g2,

respectively, are attained.
For these ten unknowns we have ten equations. Two are

obtained by applying (15) to intervals ½�L1; �g1
 and

½�g1; �C1
; two more by evaluating the thin-slab lineariza-

tion (19) at z ¼ �zL and �zL þ�zC; and two more by
applying (15) to intervals ½�C2; �g2
 and ½�g2; �R2
. The
final four are found by applying (25) and (26) to the

∆z1 ∆z2

ρ(z)
φ(z)

∆zC

φBL=
φB(ρmL)

φL1

φg1

φC1

φC

φC2

φg2

φR2

φBR=φB(ρmR)

ρmL

ρv1

ρmC

ρv2

ρmR

FIG. 2 (color online). Density (shaded yellow region) and field
profile (solid blue line) for a thin planar slab inside a gap
between two thick planar slabs. The horizontal axis shows the
z coordinate, the distance normal to the planes, while the vertical
axis shows � and � in arbitrary units. Distances, densities, and
field values are labeled.
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intervals ½0; zg1
, ½zg1;�zL
, ½�zL þ �zC;�zL þ �zC þ
zg2
, and ½�zL þ�zC þ zg2;�zL þ �zC þ�zR
, that

is, to the left and right sides of gaps 1 and 2. The ten
equations are

0 ¼ Veffð�;�mLÞj�L1

�BL
þ Veffð�;�v1Þj�g1

�L1
; (27)

0 ¼ Veffð�;�v1Þj�C1

�g1
þ Veffð�;�mCÞj�C

�C1
; (28)

�C1 ¼ �C þ 
�thinð�zLÞ; (29)

�C2 ¼ �C þ 
�thinð�zL þ�zCÞ; (30)

0 ¼ Veffð�;�mCÞj�C2

�C
þ Veffð�;�v2Þj�g2

�C2
; (31)

0 ¼ Veffð�;�v2Þj�R2

�g2
þ Veffð�;�mRÞj�BR

�R2
; (32)

zg1 ¼ Zgapð�g1; �L1; �v1Þ; (33)

�zL ¼ Zgapð�g1; �C1; �v1Þ þ zg1; (34)

zg2 ¼ Zgapð�g2; �C2; �v2Þ þ �zL þ �zC; (35)

�zR ¼ Zgapð�g2; �R2; �v2Þ þ zg2 ��zL � �zC: (36)

Note that if �g1, �g2, and �C are specified, then

(27)–(36) immediately give the other seven unknowns.
We also obtain gap sizes �z0L and �z0R and slab thickness
�z0C; however, these will not necessarily match the givens

�zL, �zR, and �zC. In order to find the correct �g1, �g2,

and �C, we minimize ð�z0L � �zLÞ2 þ ð�z0R ��zRÞ2 þ
ð�z0C ��zCÞ2 numerically.

In the symmetric case, �mL ¼ �mR, �v1 ¼ �v2, and
�zL ¼ �zR, the problem simplifies considerably.
Matching the field derivative at the surface of the
central slab gives ð
�0

thinð�zC=2ÞÞ2=2 ¼ Veffð�C þ

�thinð�zC=2Þ; �v1Þ � Veffð�g1; �v1Þ, where the prime

denotes d=dz. Thus �g1 determines �C. We need only

solve numerically for the value of �g1 which gives the

right gap size �zL using (33) and (34).

D. Force suppression due to shielding foil

Forces at short ranges between small source and test
masses in a fifth force experiment will typically be domi-
nated by electrostatic effects. Even electrostatic forces
between stray charges can swamp gravitation-strength
forces. Thus most such experiments stretch a thin,
grounded conducting foil between the source and test
masses to shield the test mass from these electrostatic
forces. Such a foil can screen the chameleon fifth force
as well, so we study it here.

First, consider a system with two thick planar slabs.
Let the slab on the left be the source mass and the one
on the right the test mass. A change in the position of the
source will change the surface value of the field on the test
mass by some amount ��ðno foilÞ. The change in the fifth
force on the test mass, the experimental signal, is propor-
tional to ��ðno foilÞ.
Now suppose that another slab, corresponding to the

shielding foil, is placed between the source and test
masses. In the limit that this central slab is thick, it will
completely screen chameleon fifth forces. The field at its
center will be close to its bulk value, and the field on the
side facing the test mass will be very weakly dependent on
the field at the opposite face. In the case of a thin slab,
however, this screening will not be total. The results of
Sec. III C provide an excellent approximation to the sur-
face field in the presence of a shielding foil. The change in
source mass position will result in a change��ðfoilÞ in the
field on the surface of the test mass.
Figure 3 shows the suppression factor fsup � ��ðfoilÞ=

��ðno-foilÞ for a �zC ¼ 10 �m foil at the center of a
gap with �zL þ �zR þ�zC ¼ 100 �m. The density of
each slab is 10 g=cm3 and the density in the gaps is
10�12 g=cm3, corresponding to air at room temperature
and a pressure of & 10�6 torr. ��ðfoilÞ is found by vary-
ing �zL by 10 �m in either direction and using (27)–(36)
to find the change in �R2. fsup is approximately equal to

sechð2meff�zCÞ, where meff is evaluated at �Bð�mCÞ.
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FIG. 3 (color online). Factor fsup by which the chameleon fifth
force is suppressed by a shielding foil. For a large range of
chameleon parameters �, n, and �, the suppression factor, shown
by points on the plot, is a function of the foil thickness �zfoil in
Compton wavelengths. fsup is well approximated by the function

sechð2meffzfoilÞ (solid line). The thin-slab calculation of fsup,

from Refs. [27–36], is shown by blue plus-shaped points; the
scatter at large meff�zfoil is due to numerical error, since
��ðfoilÞ is the difference of two nearly equal numbers. Solid
black circles show fsup computed directly from arbitrary-

precision numerical integration of the equations of motion.
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At large meff�zfoil, fsup is the difference between two

nearly-equal numbers. The resulting numerical error is
responsible for the scatter in the plus-shaped points at
meff�zfoil * 5 in Fig. 3. In order to verify our approxima-
tion for fsup in this regime, we integrated the equation of

motion numerically using the Class Library for Numbers
arbitrary-precision arithmetic package [54]. The resulting
fsup values, shown as filled circles in the figure, agree well

with fsup � sechð2meff�zfoilÞ.

IV. TORSION PENDULUM EXPERIMENTS

A. 1D plane-parallel approximation

Thus far we have studied planar configurations because
exact solutions exist. However, torsion pendulum experi-
ments such as Eöt-Wash do not measure fifth forces in the ẑ
direction between planar slabs. A better approximation is a
pair of slabs with features such as holes or grooves. The z
positions of both slabs are fixed, and the source slab is
moved in a direction parallel to the planes which we call x̂.
As features in the source mass move past those in the test
mass, forces are exerted in the 	x̂ direction.

Reference [47] computed the field numerically for such
a density configuration. The field � was discretized on a
three-dimensional grid of points and the Hamiltonian was
minimized with respect to this discrete set of field values.
Figure 4 shows the field configuration when the features
on the source and test masses are circular holes. Once the
field is known, the force on the test mass, occupying
a volume V , can be computed directly from the gradient

of the interaction potential, ~F ¼ �R
V d3xð ~r�Þ�M�1

Pl .

However, solving for the field over a range of x positions,
for large ranges of �, n, and � values, is computationally
expensive. Accurately accounting for force suppression
due to the shielding foil requires discretizing space on
length scales � 10 �m, yet covering a region of size

�10 mm. Thus Ref. [50] restricted itself to n ¼ 4 and
� � 1.
Here we make a series of approximations to which we

refer collectively as the 1Dpp approximation. Consider two
parallel slabs as in Fig. 5 (top panel), with a hole or groove
in the lower (source) slab. Our goal is to estimate the field
at each point on the surface of the source and test masses
by approximating the matter distribution near that point as
a planar gap. We use the results of Sec. III B, which found
the surface field �Rð�zÞ as a function of planar gap size
�z. At any point on the surface of either slab, let �z be the
distance to the nearest point on the opposite slab, and
approximate the surface field as �Rð�zÞ. Using this field
profile, we compute the energy. The force in the x̂ direction
is the rate of change of this energy as a hole on the source
mass passes by one on the test mass.
Let the distance between the source and test slabs be

�zS-T, and consider points p, q, and r on the surface
of the test slab, as shown in Fig. 5 (top panel). Our
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FIG. 4 (color online). Chameleon field for a hole in the source
mass moving past another one in the test mass. The chameleon
potential is Vð�Þ ¼ �
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4 with � ¼ 1, equivalent to (5) with
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FIG. 5 (color online). One-dimensional plane-parallel approxi-
mation. Top panel: A feature, such as a groove or hole, on
the source mass faces the test mass. Three points, p, q, and r,
are labeled on the test mass, and �zðpÞ, �zðqÞ, and �zðrÞ are
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one-dimensional plane-parallel calculation makes the
following approximations:

(1) Each slab is thick enough that the chameleon attains
its bulk value deep inside.

(2) The field at points such as p, which are not directly
across from the hole on the opposite slab, is equal to
the surface field�R in a one-dimensional planar gap
of width �zðpÞ ¼ �zS-T as studied in Sec. III A.

(3) The field at a point such as q or r, which is directly
across from the hole in the opposite mass, is equal to
the surface field�R in a planar gap with �z equal to
the distance to the nearest point on the opposite slab.
For example, � at q is equal to the surface field in a
gap of size �zðqÞ shown in the figure.

(4) Since the surface field should not change on length
scales larger than the Compton wavelength, we
neglect the energy due to a transition region of width
m�1

eff at the edge of the region across from a hole.

(5) When computing the total energy of a configuration,
only the field inside the source and test masses will
be counted; changes in the field profile inside holes
in each disk, as well as in the gap between disks, are
neglected.

(6) A shielding foil of thickness �zfoil between source
and test masses reduces the force by a factor of
fsup ¼ sechð2meff�zfoilÞ where meff is the effective

mass of the chameleon field at the bulk density of
the foil.

Figure 5 (bottom panel) shows this 1Dpp approximation at
point r. The geometry of Fig. 5 (top panel) at r is replaced
by a one-dimensional planar gap in which the field can be
calculated simply.

Several of these approximations cause us to underesti-
mate the force somewhat. In particular, the approximation
3 above adds matter near the opposite mass. This means
that even in nonoverlapping regions, the field in the 1Dpp
approximation will be closer to its bulk value. Thus the
energy difference as the source mass moves is underesti-
mated, leading to an underestimated force. Furthermore,
aligning holes in the source and test masses will lower the
energy associated with the field inside the holes and gaps
as well as inside the material of the slabs themselves.
Approximation 5 ignores this energy change, leading to
an underestimate of the force. Approximations 1 and 6 also
lead to slight underestimates.

By its nature, the one-dimensional plane-parallel
approximation will predict no torque in Eöt-Wash due to
a massless field, hence no sensitivity to a 1=r2 force such as
Newtonian gravity. At large �zS-T we can use (14) to

approximate meff ��ðn�2Þ=2 � 1=�zS-T. Thus the chame-
leon becomes effectively massless in the limit that�zS-T is
much larger than the sizes of the features in the disks.
Since Eöt-Wash is sensitive to Newtonian torques, the
1Dpp approximation will underestimate the torque in this

limit. Such an underestimate is not significant in Eöt-Wash,
whose chameleon constraints are dominated by separation
distances �zS-T much smaller than the diameters of the
holes. However, it does mean that the 1Dpp approximation
will substantially underestimate the signal in a ‘‘chameleon
lightning rod’’ experiment such as that suggested by
Ref. [55].
On the other hand, approximation 2 potentially leads to

an underestimate of the energy at points such as p, which
are not directly across from the hole on the source slab. If p
is within a few Compton wavelengths of the edge of the
hole, then the field there will be somewhat larger than
expected for a gap of width �zS-T, hence its energy will
be somewhat greater. Thus approximation 2 increases the
energy difference between overlapping and nonoverlapping
regions, leading to an overestimate of the force.We shall see
in Secs. IVC and IVD that this overestimate is small for the
current-generation Eöt-Wash experiment but nontrivial for
the next-generation experiment. Additionally, the size of
the transition region in approximation 4 is just an estimate;
it could be 1.5 or 2 Compton wavelengths rather than one.
Our choice above will lead to a slight overestimate of the
force for the lowest chameleon couplings.

B. Torsion pendulum

Here we apply the 1Dpp approximation of the previous
section to a hypothetical torsion pendulum similar to the
Eöt-Wash experiment [38]. Such an experiment consists of
a pair of parallel, rotating disks with matching holes at
regular intervals, as in Fig. 6. The lower disk, the source
mass or ‘‘attractor’’, is mounted on a turntable which keeps
it rotating uniformly. The upper disk, the test mass or
‘‘detector,’’ is a torsion pendulum allowed to rotate freely.
If there is a fifth force, then the test mass will experience
small torques as the holes on the source mass move in and
out of alignment with those on the test mass.
The chameleon fifth force which results from moving a

hole on the source disk past one on the test disk is the

FIG. 6. Geometry of disks used in Eöt-Wash torsion pendulum
experiment (from Ref. [47]; not to scale). Left: Current
experiment, with two rows of 21 holes in each disk. Right:
Next-generation experiment, with 120 radial grooves in each
disk.
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energy cost per unit distance of the change in the field

configuration. Using the 1Dpp approximation, we can

estimate the field configuration on the surface of each

disk as one hole of radius rSh on the source disk rotates

past another of radius rTh on the test disk. Assume that both

disks have the same density �m. Let the origin of the

coordinate system be the point on the source disk directly

across from the center of the test disk hole, with ẑ parallel
to the rotation axis of the disks and x̂ in the direction of

motion of the source hole (that is, the tangential direction).

If the source hole is far away, then the field at a position

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
on the surface z ¼ 0 of the source disk is the

surface field in a gap of size�z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�zS-TÞ2 þ ðrTh � rÞ2p
.

Since �z >�zS-T, the field � will be greater on the

portion of the source disk across from the test disk hole.

Thus � will be farther away from its energy-minimizing

value �Bð�mÞ. On the other hand, if the source and test

holes overlap, then �z ¼ �zS-T over the maximum pos-

sible area on both disks, minimizing the energy.
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FIG. 7 (color online). Field on the surface of the source mass,
with source and test holes offset, for Vð�Þ ¼ �

4!�
4, � ¼ 1,

� ¼ 1, and �zS-T ¼ 0:2 mm. The horizontal axis shows the
tangential direction, and x ¼ 0 coincides with the center of the
test mass hole. The 1Dpp approximation agrees quite well with
the 3D numerical calculation of Ref. [47].
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Figure 7 shows the field profile �ðx; 0; 0Þ on the surface
of the source disk when the source hole is displaced from
the test hole. The 1Dpp approximation is in close agree-
ment with the three-dimensional numerical calculation of
Ref. [47] except for a transition region at the edge of the
hole. Figure 8 compares the 1Dpp approximation and the
3D numerical calculation for a range of geometries and
models. In all cases the two agree reasonably well.

Now that the 1Dpp approximation has given us the field
�sðx; y; 0Þ on the surface of the source disk, we may find
the energy. Assuming that the disk is a thick slab, we
approximate the field inside it using the thick-slab lineari-
zation (17). Then the energy inside the region of the source
disk across from the test mass hole, assuming that the
source hole is far away, is

Eh ¼
Z rTh

0
2	rdr

Z �1

0
dz

�
1

2
j ~r�j2 þ Vð�Þ

�

¼
Z rTh

0

	rdr

2meff

�
2m2

effð�s ��BÞ2e2meffz þ
��������@�@r

��������2
�
;

(37)

where �B and meff are evaluated at the disk density �m.
The subscript h denotes the region of the source disk across
from the hole.

Next, consider a region of the source disk far from any
hole on the test disk. In that region, the two disks will look
like a pair of parallel planes with a separation �zS-T, so �s

will be a constant on the surface. Let Enh be the energy of a
region of the same size, where the subscript nh is short for
‘‘no hole.’’ Then �ES ¼ Eh � Enh is the energy cost in the
source disk associated with each hole in the test disk.
Similarly, we may compute �ET, the energy cost in the
test disk.

Finally, we may compute the total energy and torque.
The amplitude of the total energy Etot will be half of the
total energy change �ES þ �ET, multiplied by the total
number Nholes of holes, which is 42 for Eöt-Wash. Let � be
the rotation angle, and define � ¼ 0 to be the angle at
which source and test disk holes are perfectly overlapping.
For equally-spaced holes in Nrows ¼ 2 rows, the frequency
with which Etot varies is �h ¼ Nholes=Nrows. Multiplying
by the force suppression factor fsup, we obtain the total

energy and torque,

Etot ¼ � 1

2
Nholesfsupð�ES þ�ETÞ cosð�h�Þ; (38)

� ¼ 1

2
Nholes�hfsupð�ES þ�ETÞ sinð�h�Þ: (39)

Figure 9 compares (39) to the three-dimensional numeri-
cal computation of Ref. [47]. The 1Dpp approximation
underestimates the torque by a factor of about 2.5.
Figure 10 demonstrates that this underestimate becomes
worse by a factor of about two at separations around a few
millimeters, the diameters of the source and test holes, as

expected from Sec. IVA. However, since the torque itself
falls off rapidly with separation distance, constraints will
be dominated by small �zS-T. Thus this worsening of the
1Dpp approximation at large �zS-T will not have a signifi-
cant effect on the final constraints.

C. Constraints

Using the 1Dpp approximation developed above, we
may quickly estimate constraints on power law chameleon
models from the current-generation Eöt-Wash experiment.
This experiment has Nholes ¼ 42, Nrows ¼ 2, rTh ¼
2:4 mm, and rSh ¼ 1:6 mm. The source and test disks
were made of molybdenum, with a density �m ¼
10 g=cm3, while the laboratory vacuum density was
�v ¼ 10�6 torr� 10�12 g=cm3. Eöt-Wash probes torques
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FIG. 9 (color online). Comparison between the 1Dpp approxi-
mation and the 3D numerical computation of Ref. [47] for a �4
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over a range of disk separations; however, here we ap-
proximate the experiment as excluding torques greater than
0:003 fN �m at �zS-T ¼ 0:1 mm.

Figure 11 shows our approximate 1Dpp Eöt-Wash con-
straints. In particular, Fig. 11 (top panel) compares 1Dpp
constraints to the more precise numerical calculation of
Ref. [50] for the�4 chameleon. In the range 0:01 � � � 1
covered by both sets of constraints, the 1Dpp exclusion
lower bound on � agrees well with the more precise
calculation.

The 1Dpp calculation underestimates constraints near
� ¼ 1 due to approximation 5 of Sec. IVA, which neglects
the contribution to the total energy of the field in the gap
between disks. We could potentially correct for this under-
estimate by including an extra factor in (38) and (39)
and using the numerical computations of Ref. [47] to cali-
brate this factor. Meanwhile, around � ¼ 0:01, the 1Dpp
calculation overestimates constraints. Approximation 4 of
Sec. IVA assumes a transition region of width m�1

eff asso-

ciated with each test and source mass hole, but this is just
an estimate. We could potentially include another factor
parameterizing the number of Compton wavelengths in the

transition region, and then adjust it to match Ref. [47] more
closely.
Since the goal of the present work is an estimate of

Eöt-Wash constraints rather than a rigorous data analysis,
we do not fit these two ‘‘fudge factors’’ to Ref. [47]. We
have chosen an Eöt-Wash exclusion limit of 0:003 fN �m
such that the 1Dpp constraints approximately match those
of Ref. [50], which is equivalent to estimating a value for
the first of these factors. Our choice is roughly consistent
with the Eöt-Wash data presented in Ref. [38], and the
resulting 1Dpp constraints are a slight underestimate in the
strongly nonlinear regime � * 1. Meanwhile, we do not
adjust the second factor at all.
Models in Fig. 11 (top panel) above the dashed line have

large quantum corrections; they fail the quantum stability
conditions discussed in Sec. II C. For a range of matter
couplings 1 & � & 100, Eöt-Wash excludes all quantum-
stable n ¼ 4 chameleon models.
Constraints on the n ¼ �1 chameleon are shown in

Fig. 11 (bottom panel). A more rigorous analysis such as
Ref. [50] does not exist for this model. The quantum
stability conditions do not exclude any models shown
here; quantum corrections are � 20% of the tree-level
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FIG. 12 (color online). Excluded region in the �, n plane, for
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values in the bottom right corner of the plot, and smaller
elsewhere. For � ¼ 1, the model in which the power law
term in the potential (5) has the same energy scale as the
dark energy, Eöt-Wash excludes 0:01<�< 15 in the
1Dpp approximation.

Figure 12 shows constraints in the �, n plane for several
�. For n ¼ 4, the self-coupling � ¼ 10 corresponds to
� ¼ 240, a rather large number for which the chameleon
effect is very strong. Thus there are no constraints for this
value in Fig. 12 (top panel).

Both plots in Fig. 12 show that constraints vanish at
large jnj. We can see why by computing the maximum
possible force per unit area between two planar slabs of
density �m. If the distance separating them is small, then
the field at the center of the gap will be �g � �Bð�mÞ. If
each slab is sufficiently thick, then the field on the side
facing away from the other slab will be �sv ¼ �Bð�mÞ�
ð1� 1=nÞ. Then the magnitude of the attractive force
between them is F ¼ ��mj�Bð�mÞ ��svj=MPl ¼
ð��m=MPlÞj�Bð�mÞ=nj ! ��mM�=jnMPlj at large n.
Suppose that we also include a force suppression factor

sechð2meff�zfoilÞ. At large jnj, meff �
ffiffiffiffiffiffiffiffiffiffi
�jnjp

, so the sup-
pression factor decreases quickly. Thus large-jnj models
will be difficult to exclude.

As a final note, we have used the 1Dpp approximation to
study the effects on these constraints of a degraded labo-
ratory vacuum. We find that the chameleon fifth force at
�zS-T ¼ 0:1 mm is extremely insensitive to the vacuum
quality; even conducting the experiment at atmospheric
pressure does not noticeably reduce the chameleon fifth
force. At �zS-T ¼ 10 mm, the largest disk separation
probed by Eöt-Wash, constraints at atmospheric pressure
are �10% worse than those in a vacuum for n ¼ �1.

D. Forecasts

The geometry of the next-generation Eöt-Wash source
and test disks is shown in Fig. 6 (right). In order to visual-
ize such a disk, one can imagine a pie cut into 240 equal
wedges, with every other wedge removed, and a circular
region excised from the center. We approximate each disk
as having an inner radius of 13 mm and an outer radius of
23 mm. Each of the Nwedges ¼ 120 wedges has a thickness

�zw ¼ 50 �m and a height �yw ¼ 10 mm. As in
Ref. [47], we approximate each wedge as a rectangular
sheet of width �xw ¼ 2	ravg=ð2NwedgesÞ ¼ 0:47 mm,

where ravg ¼ 18 mm is the average of the inner and outer

radii. Each wedge has a density �m ¼ 20 g=cm3, and they
are mounted on a glass disk of density 2 g=cm3.

Figure 13 shows this 1Dpp approximation along with the
more accurate three-dimensional numerical simulation.
Agreement between the two is not as close as it was in
Figs. 7 and 8. This is because edge effects are larger when
the features in the disks are long, narrow grooves rather
than circular holes. However, our approximation reprodu-
ces the qualitative features of the field, and particularly the

difference in the surface field between regions which do
and do not overlap a wedge on the opposite disk. This field
difference determines the energy difference, hence the
predicted torque.
Let the gap between source and test disks be �zS-T.

We can immediately apply the 1Dpp approximation to
determine the energy associated with the overlap between
wedges on opposite disks,

E ¼
Z

dxdydz

�
1

2
j ~r�j2 þ Vð�Þ

�

¼ �ywfz
2meff

Z �xw
2

0
dx

�
2m2

effð�s ��BÞ2 þ
��������d�s

dx

��������2
�
;

(40)

where fz ¼ 1� expð�meff�zwÞ corrects for the finite
wedge thickness; as in (37), meff and �B are evaluated at
the bulk density �m. In the case of perfect overlap,�sðxÞ is
a constant equal to the surface field in a gap of size �zS-T.
In the case of no overlap, �sðxÞ is the surface field in a gap
of size

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�zS-TÞ2 þ ð�xw=2� xÞ2p
.

After integrating to find the energy difference �E
between the overlapping and nonoverlapping configura-
tions, we may proceed as before to find the torque,

� ¼ N2
wedgesfsup�E sinðNwedges�Þ: (41)

This 1Dpp approximation is compared to the three-
dimensional numerical calculation in Fig. 14. 1Dpp over-
estimates the correct torque by� 50%. This is likely due to
approximation 2 in Sec. IVA, which artificially flattens out
the field in the region x * 0 in Fig. 13, which overlaps the
test wedge. This leads to an overestimate of the energy
difference and torque.
As with the current experiment, we assume that the next-

generation experiment places an upper bound on the torque
of 0:003 fN �m at a separation distance �zS-T ¼ 0:1 mm.
We also assume an identical shielding foil. The resulting
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FIG. 13 (color online). Field on the surface of a wedge on the
source disk, for � ¼ 100, � ¼ 10, and �zS-T ¼ 0:1 mm.
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forecasts are shown in Fig. 15 (top panel) for the �4

potential. In particular, we note that for a range of matter
couplings 0:1 & � & 1000, Eöt-Wash will be able to
exclude all �4 chameleon models satisfying the quantum

stability condition of Sec. II C. This is an improvement of
two orders of magnitude relative to the current experiment.
Figure 15 (bottom panel) forecasts constraints on the

n ¼ �1 chameleon. Constraints themselves are not sub-
stantially stronger than those of the current experiment.
However, differences in the geometry and the density mean
that quantum corrections are larger. All quantum-stable,
nonlinear n ¼ �1 chameleons with 0:07<�< 5 will be
excluded by this experiment.
Constraints on models with large jnj at � ¼ 1, shown in

Fig. 16, will improve dramatically relative to those of the
current experiment. In the case of n > 2, the next-
generation Eöt-Wash will exclude all quantum-stable cha-
meleon models with 0:1<�< 1000. For n � �1, it will
exclude all such chameleon models with 0:1<�< 20.
This is consistent with the claim of Ref. [51] that an
order-unity improvement relative to the current-generation
experiment would allow Eöt-Wash to exclude all quantum-
stable chameleon models with matter couplings near unity.
Since the 1Dpp approximation underestimates the

torque in the current experiment but overestimates it in
the next-generation experiment, it is possible that the
forecasts presented here are an overestimate. As discussed
in the previous section, we could introduce a correction
factor to be calibrated using the numerical solutions of
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FIG. 15 (color online). Forecast constraints from the next-
generation Eöt-Wash apparatus. The light green shaded region
is excluded; models in the black region are linear inside the
disks. Top panel: n ¼ 4. Models inside the long-dashed blue
curve are excluded by the current Eöt-Wash experiment, while
models above the short-dashed purple line have large quantum
corrections. Bottom panel: n ¼ �1. Models below the short-
dashed purple curve have large quantum corrections.
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Ref. [47]. It is also possible that the experimental sensi-
tivity is somewhat worse than that of the current experi-
ment, or that the next-generation Eöt-Wash probes a
somewhat different distance scale �zS-T. Figure 17 shows
the constraints which would result for �4 theory if the
distance or sensitivity differ from our assumed values.

V. CONCLUSION

Modern torsion pendulum experiments, designed to test
Newtonian gravity on submillimeter distance scales, are
capable of uncovering new physics at the dark energy
scale of M� ¼ 2:4� 10�3 eV� ð1=0:1 mmÞ. We have
developed an approximation allowing us to estimate the
chameleon-mediated fifth force which would result in a
torsion pendulum experiment such as Eöt-Wash as a func-
tion of the chameleon model parameters. This is accom-
plished by mapping the geometry of the source and test
masses locally onto a one-dimensional plane-parallel prob-
lem, which can be solved exactly in a series expansion.
This approximation accurately reproduces the chameleon
field on the surface of each mass and allows us to compute
the expected torque signal as a function of rotation angle,
correct to a factor of �2. Furthermore, it agrees well with
published constraints on �4 chameleon fifth forces using
the current-generation Eöt-Wash experiment.

We have used this approximation to extend Eöt-Wash
constraints to a much wider range of chameleon models, as
shown in Figs. 11 and 12. Of particular interest is the
quantum stability condition described in Ref. [51] and
Sec. II C, which argues that current torsion pendulum
experiments are on the verge of excluding all chameleon
models with small loop corrections and gravitation-
strength matter couplings �� 1. The current experiment
can exclude such quantum-stable chameleons for certain
specific models, but constraints on them remain weak for
inverse power law self interactions.
Additionally, we have forecast constraints from the next-

generation Eöt-Wash experiment. This experiment is
expected to be powerful enough to exclude a large range
of models satisfying the quantum stability condition. We
show in Fig. 15 (top panel) that the next-generation
Eöt-Wash will exclude all quantum-stable �4 chameleons
with matter couplings in the range 0:1 & � & 1000, an
improvement by two orders of magnitude relative to the
current experiment. For unit self-interactions, the next-
generation experiment will exclude all quantum-stable
n � 2 models with 0:1<�< 1000 and all such
n � �1 models with 0:1<�< 20, as illustrated in
Fig. 16. With the potential to detect or exclude a vast
range of quantum-stable power-law chameleon models
with gravitation-strength couplings, the next-generation
Eöt-Wash experiment will be a powerful probe of dark
energy candidates at the laboratory scale.
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