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The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from

orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We

solve the coupled post-Newtonian equations describing the joint evolution of S and the stellar angular

momenta Lj, j ¼ 1 . . .N in spherical, rotating nuclear star clusters. In the absence of gravitational

interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S

about the total angular momentum vector of the system and (2) damped precession, leading, in less than

one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a

certain distance from the SBH, the time scale for angular momentum changes due to gravitational

encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the

Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters

and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close

to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform

precession of the SBH about the cluster’s rotational axis, with an increasingly important stochastic

contribution when SBH masses are small. Spin precessional periods are predicted to be strongly

dependent on nuclear properties, but typical values are �107–108 yr for low-mass SBHs in dense nuclei,

�108–1010 yr for SBH masses �108M�, and �1010–1011 yr for the most massive SBHs. We compare

the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.

DOI: 10.1103/PhysRevD.86.102002 PACS numbers: 04.80.Cc, 98.62.Js, 98.35.Jk

I. INTRODUCTION

An accretion disk fed by gas whose angular momen-
tum is misaligned with that of the central supermassive
black hole (SBH) will experience Lense-Thirring [1]
precession. Viscous torques near the SBH align the gas
with the SBH equatorial plane [2]; farther out, the gas
remains inclined, producing a constant torque that causes
the SBH spin axis to precess. Such precession has been
invoked as an explanation for changes in the direction of
radio jets in active galaxies [3,4]. Continued accretion
of gas from a misaligned plane will eventually reorient
the SBH, although the time required for realignment is
uncertain [5].

Accretion disks are believed to be associated with only a
small fraction of SBHs. Here we consider the more generic,
and perhaps simpler, case of a rotating SBH embedded in a
nuclear cluster of stars or stellar remnants. If the cluster has
a net angular momentum that is misaligned with the SBH
spin, a mutual torque will be exerted between stars and
SBH, even if the spatial distribution of the stars is precisely
spherical.

In the simplest such model, the stars move indepen-
dently of each other. Differential precession (‘‘phase
mixing’’) will nevertheless cause stellar orbits near the
SBH to distribute their angular momentum vectors Lj

uniformly about the spin S, decreasing the torque that
they exert on the hole. The angular momentum associated
with stars farther out can remain misaligned, leading to a
forced precession of the SBH, similar to what occurs in the
case of misaligned accretion disks.
By solving the coupled post-Newtonian equations

describing a spinning SBH and a rotating cluster, we verify
that such an outcome is possible, at least starting from
certain initial conditions. However, we find a second evolu-
tionary mode as well, in which differential precession
causes the inner system to reach alignment with the total
(spin plus orbital) angular momentum, resulting in a steady
state with no subsequent precession of the hole.
Stars also interact with each other gravitationally; these

encounters lead to changes in stellar angular momenta, on
time scales that can be short compared with Lense-Thirring
times. Unlike changes due to frame-dragging, evolution of
the Lj due to encounters is essentially random. There is a

region near the SBH, the ‘‘sphere of rotational influence,’’
in which encounter times are long compared with frame-
dragging times. Within this region, stellar orbits precess
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uniformly, while outside of it, changes in the Lj are due

primarly to encounters and are random. The size of this
sphere varies from �10�3 pc in the nuclei of galaxies like
the Milky Way to �101 pc in nuclei containing the most
massive SBHs. We develop a stochastic model for the
evolution of S that includes the effects of encounters on
the Lj. In this model, net alignment of the stellar angular

momenta with the SBH spin is less efficient, and the
SBH typically continues to precess about the mean L
of the stellar cluster, although its instantaneous preces-
sion rate can vary stochastically due to the stochastically
changing Lj.

Evolution of SBH spins due to torquing from stars has
many parallels with evolution due to torquing from an
accretion disk, surprisingly so given that one process is
energy conserving and the other is dissipative. We compare
and contrast the two sorts of evolution in the Discussion
section, where we also summarize observational and
theoretical evidence for nuclear rotation and discuss the
implications of our results for the experimental determi-
nation of black hole spins.

Throughout this paper we ignore the contribution of
stellar captures to the evolution of S.

II. SPIN-ORBIT EQUATIONS

AKerr black hole of massM� has gravitational radius rg
given by

rg � GM�
c2

� 4:8� 10�8

�
M�

106M�

�
pc (1)

and spin angular momentum S, which we write in terms of
the dimensionless spin parameter � as

S ¼ �
GM2�
c

; j�j � 1: (2)

To lowest post-Newtonian (PN) order, the spin evolves
(precesses) in response to torques from orbiting stars
according to [6]

dS

dt
¼ 2G

c2
XN
j¼1

mj

r3j
ðxj � vjÞ � S; (3)

where mj 	 M� is the mass of the jth star, whose instan-

taneous position and velocity relative to the SBH (assumed
fixed at the origin) are fxj;vjg, and rj � jxjj. Equation (3)

is invariant to the choice of spin supplementarity condition
[6]. It can be written in the equivalent form

_S ¼ !S � S; !S ¼ 2G

c2
X
j

Lj

r3j
; (4)

where

L j � mjðxj � vjÞ (5)

is the Newtonian angular momentum of the jth star.

We are mainly interested in changes that take place on
time scales long compared with stellar orbital periods, P,
where

P ¼ 2�a3=2ffiffiffiffiffiffiffiffiffiffiffi
GM�

p � 2:96

�
a

mpc

�
3=2

�
M�

106M�

��1=2
yr: (6)

Here a is the orbital semimajor axis and mpc ¼ 10�3 pc.
Accordingly, each of the j terms on the right-side of Eq. (4)
can be averaged over the unperturbed (Keplerian) orbit,
whose semimajor axis and eccentricity are aj and ej. Using

r�3 ¼ a�3ð1� e2Þ�3=2 (7)

and fixing Lj during the averaging, the spin evolution

equation becomes

�_S ¼ �!S � S; (8a)

�!S ¼ 2G

c2
X
j

Lj

a3j ð1� e2j Þ3=2
: (8b)

Henceforth, averaging over the Keplerian motion will be
understood unless otherwise indicated.
Stellar orbits also precess in response to frame-dragging

torques from the spinning SBH. Working again to lowest
PN order and averaging over the unperturbed motion
yields the standard expression for the Lense-Thirring [1]
precession,

_Lj ¼ !j � Lj; (9a)

!j ¼ 2GS

c2a3j ð1� e2j Þ3=2
: (9b)

For fixed S, precession described by Eq. (9) has the form of
uniform advance of the line of nodes, the latter defined as
the intersection of the orbital plane with the equatorial
plane of the SBH. We denote the nodal angle by �; thus

in the orbit-averaged approximation, _�j ¼ !j. Orbits also

experience precession of the argument of periastron due to
both the Schwarzschild and Kerr components of the SBH
metric, but such precession leaves the Lj unchanged.

In the absence of interactions between stars, the coupled
equations (8) and (9) determine the joint evolution of the
SBH spin and the stellar angular momenta. Conserved
quantities include the total angular momentum of the
system,

J ¼ SþX
j

Lj � SþLtot (10)

as well as

jSj � S (11a)

jLjj � Lj; j ¼ 1; . . . ; N: (11b)

Neither S, Ltot nor jLtotj is conserved. However conserva-
tion of S and J implies
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jJ � Sj � Ltot � J þ S: (12)

Consider the case in which all stars have the same a and
e; for instance, the orbits could lie in a circular ring. There
is no differential precession, and Eqs. (8) and (9) can be
written

_S ¼ !0 � S; _Ltot ¼ !0 �Ltot; (13)

where

!0 ¼ J

S
!LT; (14a)

!LT ¼ 2G2M2�
c3a3ð1� e2Þ3=2 �

� ð7:0� 105 yrÞ�1

ð1� e2Þ3=2 �

�
M�

106M�

�
2
�

a

1 mpc

��3
: (14b)

In this special case, Ltot is conserved, and both S and Ltot

precess with frequency !0 about the fixed vector J. The

controlling parameter is� � Ltot=S. If� 	 1, _S � 0 and
Ltot precesses about the fixed SBH spin vector at the
Lense-Thirring rate; while if � 
 1, _Ltot � 0 and S pre-
cesses about the fixed angular momentum vector of the
stars with frequency �!LT 
 !LT.

This simple model might apply to the ‘‘clockwise stellar
disk’’ at the center of the Milky Way, which has a mass
�104M�, radius 0:04 pc & r & 0:5 pc, and mean orbital
eccentricity �0:2 [7–9]. Setting M� ¼ 4� 106M� [10],
the implied � is

�CWD � 2��1 MCWD

104M�

�
RCWD

0:1 pc

�
1=2

; (15)

consistent within the uncertainties with unity even if � is as
large as 1. Evidently, the stars in this disk torque the SBH
about as much as they are torqued by it. The mutual
precession time is

�

!LT
� 8� 1010 yr��1

�
RCWD

0:1 pc

�
3
; (16)

much longer than the�107 yr age of the disk inferred from
the properties of its stars and also long compared with other
physical processes that are likely to alter the stellar orbits
(as discussed in more detail below). Nevertheless, this
example demonstrates that identified structures near the
Galactic center SBH can easily contain a net orbital angu-
lar momentum that exceeds S.

The distribution of stars at distances & 0:1 pc from Sgr
A? is poorly constrained [11–13], but the total stellar mass
in this region is almost certainly large compared with the
�104M� associated with the clockwise disk. Given the
strong (/ r�3) radial dependence of the frame-dragging
torques, even a modest degree of net circulation of the
stars in this region could therefore induce a precession of
the SBH on time scales very short compared with the time
of Eq. (16).

We emphasize that there is no need for the torquing stars
to lie in a geometrically flattened structure: according to
Eqs. (8), all that is needed is a nonrandom orientation of the
orbital angular momentum vectors, which occurs even in a
precisely spherical nucleus if there is a preferred sense of
orbital circulation.
In general, different stars will have different a and e,

implying different rates of nodal precession. Close enough
to the SBH, orbital precession times will be short com-
pared with the precessional period of the SBH, and the
orbits will tend to distribute their angular momentum
vectors uniformly about the instantaneous S. The net
torque from these stars will then fall essentially to zero,
and continued precession of the SBH will be driven by
stars farther out. We expect the radius separating stars in
these two regions to be roughly the radius containing a
total stellar angular momentum equal to S. We estimate
that radius in the following section, after first presenting
observationally motivated models for stellar nuclei.

III. SPHERICAL NUCLEI

Most of the distributed mass at distances r & 0:1 pc
from the Milky Way SBH is believed to be in the form of
stars much older than the stars in the clockwise disk. The
spatial distribution of these stars is believed to be approxi-
mately spherical [14], with at least a modest degree of
circulation [12,15].
A simple model for the distribution of mass near the

center of a spherical galaxy is

�ðrÞ ¼ �0

�
r

r0

���
: (17)

Near the SBH (but not so near that relativistic corrections
are required), the gravitational potential is

�ðrÞ ¼ �GM�
r

(18)

and orbits can be characterized by their semimajor axes
and eccentricities, as in the previous section. If the stellar
velocity distribution is assumed to be isotropic and sta-
tionary, and if stars are distributed along orbits uniformly
with respect to mean anomaly, the joint distribution of a
and e that generates the density (17) is

Nða; eÞdade ¼ N0a
2��daede: (19)

The relation between N0, �0 and r0 is easily shown to be

m?N0 ¼ 8�3=2

2�
�ð�þ 1Þ
�ð�� 1=2Þ�0r

�
0 ; � > 1=2; (20)

where m? is the stellar mass, assumed the same for all
stars. Values of � less than 1=2 are not achievable if the
velocity distribution is isotropic [16]; we do not consider
that possibility here, and in the modelling that follows, �
will be restricted to the range 1=2< �< 3.
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The relations (18)–(20) are valid at radii smaller than the
SBH influence radius rm, customarily defined as the radius
enclosing a stellar mass equal to 2M�:

M?ðr < rmÞ ¼ 2M�: (21)

A spherical cluster will exhibit net rotation if unequal
numbers of stars (at each a and e, say) circulate in a
clockwise vs counterclockwise sense about some axis.
For instance, if one-half of the orbits in a spherical cluster
with initially isotropically distributed velocities have their
velocity vectors reversed such that all angular momentum
vectors point toward the same half-sphere, the total angular
momentum of the ensemble will be jLtotj ¼ 1

2

P jLjj.
Henceforth, we characterize the net rotation of a spherical
cluster by the factor f, defined as the fraction of orbits that
have been ‘‘flipped’’ in this way; 0 � f � 1=2 and f is
assumed to be independent of a and e.

Characterizing the rotation in this way is ‘‘conserva-
tive,’’ in the sense that a geometrically flattened nuclear
cluster (e.g., a disk), or a spherical cluster consisting of
only circular orbits (an ‘‘Einstein cluster’’ [17]), can have a
larger net angular momentum for the same radial distribu-
tion of mass. Our method of constructing rotating models
by flipping orbits is not meant to imply that some physical
process has acted to change the direction of circulation of
stars that were originally moving isotropically.

Observed galaxies appear to fall into one of two classes
in terms of the parameters that define their stellar distribu-
tion at r & rm [18]. Massive spheroids—elliptical galaxies,
or the bulges of spiral galaxies—with total luminosities
greater than �1010:5L� have ‘‘cores,’’ regions of size �rm
where the stellar density rises slowly toward the SBH.
In these galaxies, the observed, mean relation between
M� and rm is approximately [19]

rm � 35

�
M�

108M�

�
�
pc; � � 0:56 (22)

and the index � that defines the central-density increase
varies from�0 at the highest luminosities to�2 or�2:5 at
the low-luminosity end of the range, albeit with substantial
scatter [20,21]. The SBHs in these galaxies have masses
107:5M� & M� & 109:5M�.

Less luminous spheroids often exhibit dense central mass
concentrations, called ‘‘nuclear star clusters’’ (NSCs). The
sizes of NSCs are also comparable with rm (assuming that
the host galaxies contain SBHs), although these structures
are too compact to be well resolved in galaxies beyond the
Local Group. The best-studied case is the Milky Way, in
which the stellar density appears to follow �ðrÞ � r�1:8

inside �5 pc, compared with a SBH influence radius of
�2:5 pc [14,22]. The high densities of NSCs imply short
time scales for equipartition of orbital energies [23],
and one expects the densest NSCs to exhibit mass segrega-
tion, i.e., the heavier bodies should be more strongly
concentrated toward the center than the lighter bodies.

The heaviest bodies are expected to be stellar-mass black
holes (BHs), the end products of stars with initial masses
m? * 30M� whosemain sequence evolution requires only
a few million years; BH masses are believed to be in the
range 5M� & m? & 20M� [24], compared with a main-
sequence turnoff mass of �1M�. When energy equiparti-
tion is satisfied, the lighter population is predicted to follow

�ðrÞ � r�3=2 at r & 0:2rm while the BHs obey the steeper
relation�� r�2 [25,26]. Detailed dynamical models of the
Galactic center [27,28] suggest that if the nucleus is older
than an energy equipartition time, about one-half of the
distributed mass inside 0.01 pc would be in the form of
main-sequence stars and one-half in BHs, with a smaller
mass fraction in neutron stars and white dwarves. However,
it is currently unclear whether the Milky Way NSC has a
relaxation time short enough for gravitational encounters
to have produced such a distribution in 10 Gyr [13] and
the distribution of observed giant stars (with masses
�1–3M�) is much flatter than predicted in the relaxed
models inside �0:5 pc [9,29,30].
In what follows, the central regions of bright and faint

galaxies will be parametrized in different ways (Fig. 1).
Nuclei of bright galaxies, with M� * 107:5M�, are
assumed to follow Eq. (17) at r & rm, with rm determined
by M� via Eq. (22). The distributed mass interior to r in
these galaxies can be written

Mð<rÞ ¼ 2M�
�
r

rm

�
3��

� 2� 108
�

M�
108M�

�
�
�

r

35 pc

�
3��

;

� ¼ 1� �ð3� �Þ � �0:68þ 0:56�:

(23)

Mass segregation is expected to be unimportant in the
nuclei of giant galaxies so we set m? ¼ 1M�, a typical
value for an old stellar population.
In the case of galaxies with M� & 107:5M�, the distri-

bution of mass at r < rm is less certain. We parametrize
these nuclei in terms of bothM� andM0:1, the latter defined
as the mass in stars or stellar remnants inside r ¼ 0:1 pc.

FIG. 1. Schematic representations of the two nuclear models
considered here. (a) Low-mass galaxy with NSC. (b) High-mass
galaxy with core.

DAVID MERRITT AND EUGENE VASILIEV PHYSICAL REVIEW D 86, 102002 (2012)

102002-4



If the power-law dependence of density on radius in these
galaxies were to extend outward as far as rm, and if rm
varied with M� as in bright galaxies, then

M0:1 ¼ 2M�
�

rm
0:1 pc

�
��3

(24a)

� 2� 103þ�M�
�

M�
106M�

�
1��ð3��Þ

: (24b)

Equation (24b) could be taken as a rough guide to the
expected value of M0:1, but both M0:1 and � will be
considered free parameters. We expect 1 & � � 2 for
these nuclei; the stellar mass will be set either to 1M�
(stars) or 10M� (stellar BHs).

In both kinds of nuclei, rotation will be parametrized in
terms of the fraction of flipped orbits, f, defined above.

The total angular momentum associated with stars
whose semimajor axes are less than a is

LtotðaÞ ¼ ðfeLÞ
X
aj�a

mj½GM�ajð1� e2j Þ�1=2 (25a)

! ðfeLÞðGM�Þ1=2N0m?

Z a

0
daa5=2��

�
Z 1

0
deeð1� e2Þ1=2

¼ 4

3ð7� 2�Þ ðfeLÞðGM�Þ1=2N0m?a
7=2�� (25b)

with eL a unit vector in the direction of Ltot. We define aL
such that

LtotðaLÞ ¼ S ¼ �
GM2�
c

: (26)

For low-luminosity galaxies, we find�
aL

0:1 pc

�
7=2�� � 1:5� 10�2 �

f

2�ð7� 2�Þ
3� �

�ð�� 1=2Þ
�ð�þ 1Þ

�
�

M0:1

104M�

��1
�

M�
106M�

�
3=2

(27)

while for bright galaxies,�
aL

35 pc

�
7=2�� � 3:9� 10�5 �

f

2�ð7� 2�Þ
3� �

�ð�� 1=2Þ
�ð�þ 1Þ

�
�

M�
108M�

�
1=2þ�ð3��Þ

: (28)

Figure 2 plots aL as a function of nuclear parameters. In
massive galaxies, and for �=f � 1,

10�2rm & aL & 10�1rm:

The approximate radius of tidal disruption of a solar-
type star is [16]

rt � 9:8� 10�3

�
M�

108M�

�
1=3

mpc (29)

that is

rt
rg

� 2:0

�
M�

108M�

��2=3
:

This radius is small compared with all radii relevant to the
spin evolution of SBHs. Compact remnants would not be
affected by tides from the SBH at any radius greater than rg.

Based on the arguments in the preceding section, we
expect stars at r & aL to precess about the SBH in a time
short compared with the precession time of the SBH.

IV. SPIN-ORBIT EVOLUTION

The focus in this section is on the large-N, or ‘‘collision-
less,’’ limit, appropriate for giant galaxies in which the
central density is low and time scales for gravitational
interactions between stars are long. (A more precise crite-
rion is given in Sec. V.) Accordingly, the number of stars in
the numerical integrations was chosen to be large enough,
typically N ¼ 106, that discreteness effects were small;
otherwise, the value of N is unimportant.
Assuming a density law (17), the coupled evolution

equations (8) and (9) admit of straightforward scaling
relations. If the distributions of orbital eccentricities and
inclinations are invariant under the rescaling, we can write

!S / M1=2� �0r
�
0

Z
a�ð�þ1=2Þda; (30a)

!j / M2�a�3
j �: (30b)

FIG. 2. Characteristic radii as a function of nuclear parameters.
aL, Eqs. (27) and (28), is the semimajor axis containing a total
angular momentum equal to S, computed assuming f ¼ 1=2 and
� ¼ 1 (maximum rotation of SBH and stellar cluster). aK,
Eqs. (55) and (56), is the radius of rotational influence of the
SBH, assuming � ¼ 1. The left panel assumes M� ¼ 106M�
and rg ¼ 4:8� 10�8 pc; the stellar density is parametrized in

terms of M0:1, the mass within 0.1 pc, and �, the power-law
index; solid lines are for � ¼ 1 and dashed lines for � ¼ 2. In
the case of aK, two values are assumed for the stellar mass:
m? ¼ 1M� (thin lines) and m? ¼ 10M� (thick lines). The
right panel, for massive galaxies, assumes the relation (22)
between M� and the influence radius rm; solid, dashed and
dotted lines are for � ¼ 5=8, 1 and 3=2, respectively. The curves
for aK in the right panel assume m? ¼ 1M�. The radius of tidal
disruption of a solar-type star falls below the lower boundary of
both panels.
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Consider first the case rm / M�� , � � 0:56 that was
adopted for luminous galaxies. Setting r0 ¼ rm in
Eq. (17) gives �0 ¼ �ðrmÞ / M�r�3

m / M1�3�� . Then

!S / Mð3�5�Þ=2� ; (31a)

!j / M2�3�� �: (31b)

Scaling M� and � independently as

M� ! C1M�; � ! C2� (32)

then yields

!S / Cð3�5�Þ=2
1 ; (33a)

!j / C2�3�
1 C2: (33b)

Evidently, we require

C2 ¼ C
1
2ð��1Þ
1 � C�0:2

1 (34)

if the unit of time, [T], is to scale the same way in both
evolution equations. With this choice,

½T� / Cð5��3Þ=2
1 � C0

1 (35)

since � � 0:56 � 3=5.
In the case of low-luminosity galaxies, the nuclear den-

sity was specified by the independent parameter M0:1, the
stellar mass inside 0.1 pc. Defining a third scale factor as

M0:1 ! C3M0:1; (36)

it is clear that

!S / C1=2
1 C�1

3 ; (37a)

!j / C2
1C2 (37b)

and a common unit of time requires

C2 ¼ C�3=2
1 C�1

3 : (38)

For both sorts of rescaling, the condition �< 1 implies
limits on the values of C1 and C3.

Integrations of the coupled equations (8) and (9) were
carried out using a 4(5) order Runge-Kunge routine with
adaptive time steps [31]. Monte-Carlo initial conditions for
N stars were first generated from Eq. (19) assuming a
random distribution of orbital planes, i.e., an isotropic
velocity distribution. An upper limit, amax, was imposed
on a, and a lower limit, rp;min, on the radius of orbital

periapsis rp ¼ að1� eÞ. A fraction f of the orbits at each

ða; eÞ were then ‘‘flipped’’ (the sign of Lj was changed) in

order to give the cluster a net rotation about the z axis.
For these initial models, the spin precession vector !S,

Eq. (8b), is given by

!S ¼ 2G

c2
ðfeLÞ

X
j

mj½GM�ajð1� e2j Þ�1=2
a3j ð1� e2j Þ3=2

(39a)

! 2G3=2M1=2�
c2

ðfeLÞN0m?

ZZ daede

a1=2þ�ð1� e2Þ ; (39b)

where m? is the mass of one star and eL is a unit vector in
the direction of Ltot. The integral (39b) diverges as the
integration limit in a tends to zero for � � 1=2, or as the
limit in e tends to one. A lower limit could be placed on
að1� eÞ by the requirement that stars come only so close
to the SBH before being captured or tidally disrupted. But
as noted above, one expects the net angular momentum of
stars at small radii to align quickly (on a time scale much
shorter than the time for changes in S) with S, reducing
their contribution to dS=dt.
That this does, indeed, occur is illustrated in Fig. 3,

which shows integrations of a set of models that differ
only in the choice of rp;min. The models have M� ¼
106M�, � ¼ 1, amax ¼ 30 mpc, f ¼ 1=2, � ¼ 1, and
N ¼ 106. The SBH spin axis was oriented initially at an
angle of 60
 with respect to Ltot. For these parameters,
aL � 5 mpc and !LTðaLÞ � 1� 10�8 yr�1. The initial
conditions with smaller rp;min have larger initial !S.

However, the torque from the inner stars decays on a
time scale of order the Lense-Thirring time for the inner-
most orbits as their angular momentum vectors distribute
themselves uniformly about S, and S hardly changes in
this time.
The long-term evolution of the models in Fig. 3 con-

sists of precession of the SBH about J � Ltot. It turns out
that a second evolutionary mode is possible in spherical
models like these. This is illustrated in Figs. 4 and 5,
based on a cluster with parameters M� ¼ 106M�,
� ¼ 1, � ¼ 1, f ¼ 1=2, amax¼100mpc, rp;min ¼ 1 mpc,

FIG. 3. Evolution of the SBH spin precession rate in a set of
integrations with rp;min ¼ ð0:03; 0:1; 0:3Þ mpc and amax ¼
30 mpc. The other model parameters are specified in the text.
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and a total stellar mass of 105M�. For this model,
M0:1 � 6� 104M� and aL � 15 mpc. The integrations
shown in Figs. 4 and 5 are from a sequence in which
the initial angle, �0, between S and Ltot was varied in
steps of 10
, from 10
 to 170
. For �0 * 45
, evolution
at late times consists of nearly uniform precession of
the SBH spin axis about J, as in the integrations of
Fig. 3. However if �0 & 45
, precession continues only
for a single cycle or less, after which the vectors S, Ltot;

and !S are nearly aligned and precession essentially
stops.

Evolution of the second sort, or ‘‘damped precession,’’
which leads to almost complete alignment of SBH spin
with Ltot, is not excluded by the conservation laws
(10) and (11), and in principle could occur for any initial
conditions. In practice, we found that it occurs only when
�0 is sufficiently small. The critical angle, �crit, separating
the two evolutionary modes was found to depend on the
other model parameters. Figure 6 shows the dependence of
�crit on the mass of the stellar cluster, when the other initial
parameters are the same as in Figs. 4 and 5.

A large number of such integrations revealed that the
two modes of evolution illustrated in Figs. 4 and 5 are
generic. Roughly speaking, the system may end up in one
of two distinct states:

(i) Aligned S, Ltot; and J;
(ii) Uniform precession of both S and Ltot about a fixed

axis, essentially the axis of total angular momentum
J ¼ Sþ Ltot.

In the latter case, typically the angle � between S and Ltot

decreases from its initial value �0, but settles at some
nonzero average value after a couple of precessional peri-
ods. As noted above, the overall precession frequency may
be estimated as the Lense-Thirring time for stars at the
radius such that the total angular momentum of stars within
this radius is equal to jSj. This frequency depends only
weakly on the angle �0 provided that �0 � 0.
If the total angular momentum of the stars is less than S,

essentially all the orbital Lj end up aligned or counter-

aligned with the SBH spin, depending on whether �0 is
greater or less than �=2. This situation is unlikely to be
relevant for galactic nuclei, since there will always be
enough stars sufficiently far from SBH that their total angu-
lar momentum exceeds S, although the precessional times
associated with distant stars may be long. In addition, if the
stellar orbits are initially concentrated in a small interval of
radii on nearly circular orbits, that is, have very little scatter
in their individual precession frequencies !j, steady pre-

cession without alignment may persist even for Ltot 	 S.

FIG. 4. Evolution of S, Ltot, and !S in a cluster where the initial SBH spin axis was offset by �0 ¼ 40
 from the stellar angular
momentum vector. The other parameters of the model are given in the text. In the upper panels, the open/filled circles indicate initial/
final times, respectively. This is an example of damped precession: the vectors S,Ltot and!S reach a common orientation after roughly
one precession cycle. Qualitatively, the same sort of evolution occurs for 0 � �0 & 45
.
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V. INFLUENCE OF GRAVITATIONAL
ENCOUNTERS ON SBH SPIN

Times associated with Lense-Thirring precession about
a SBH are long, and over such long time scales, stellar
orbits can evolve in response to other influences. Here we
consider how (Newtonian) gravitational interactions
between stars would alter the evolution of SBH spins.

These interactions are expected to be most important in
the dense nuclei of low-luminosity spheroids; we derive
more exact criteria below. We continue to assume that S
evolves according to Eqs. (8), but we now allow for the
possibility of other terms in the evolution equations for
the Lj.

A. Encounter time scales

To a first approximation, the force from the stars can be
modelled by approximating their distribution as spheri-
cally symmetric and stationary. The addition of a spherical
component to the otherwise Keplerian potential of the
SBH results in an advance of orbital periapsis of each
star (‘‘apsidal precession’’) at an orbit-averaged rate given
by [16]

�M ¼ ��rGMðe; �Þð1� e2Þ1=2
�
M?ðaÞ
M�

�
(40)

with associated time scale

tM �
�������� �

�M

��������� P

2
ð1� e2Þ�1=2

�
M�

M?ðaÞ
�
: (41)

Here, �r � 2�=P is the Keplerian (radial) frequency,
M?ðaÞ is the mass in stars within radius r ¼ a, and
GM � 1 is a weak function of � and e [16]. Adopting
our parametrization for low-mass galaxies, this becomes

FIG. 6. Critical value of the initial angle between S and Ltot

that separates the two evolutionary modes: damped precession
(�0 < �crit) and continued precession (�0 > �crit). The other
parameters of the initial models are given in the text.

FIG. 5. Like Fig. 4, except that �0 ¼ 70
. In this case the SBH continues to precess about J. This mode occurs for 45
 & �0 < 180
.
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tM � 1:5� 105

ð1� e2Þ1=2
�
M�
M0:1

��
a

0:1 pc

�
��3=2

yr (42)

while for high-mass galaxies,

tM � 2:3� 104

ð1� e2Þ1=2
�
rm
1 pc

�
3=2

�
a

rm

�
��3=2

yr: (43)

This ‘‘mass precession’’ leaves the orbital plane, and hence
Lj, unchanged and so does not directly affect the evolution

of S as given by Eq. (8). The same is true for the in-plane
precession due to the Schwarzschild and Kerr parts of
the SBH metric; in the orbit-averaged, post-Newtonian
approximation, the time scale asociated with the former
precession, which always dominates the Kerr contribu-
tion, is

tS�
���������

�S

��������¼�

3

ð1�e2Þa5=2c2
ðGM�Þ3=2

�1:0�109ð1�e2Þ
�

a

0:1 pc

�
5=2

�
M�

106M�

��3=2
yr: (44)

This ‘‘Schwarzschild precession’’ is more rapid than
mass precession when

ð1� e2Þ3=2
�
a

aS

�
< 1; (45)

where

aSM?ðr < aSÞ ¼ 3M�rg: (46)

For low-mass galaxies this is�
aS

0:1 pc

�
4�� � 3

M�
M0:1

rg
0:1 pc

(47)

and for high-mass galaxies,�
aS
rm

�
4�� � 3

2

rg
rm

: (48)

For example, setting � ¼ 2 in the first relation gives

aS � 1:2

�
M�

106M�

��
M0:1

104M�

��1=2
mpc: (49)

While not directly affecting the Lj, these two sources

of precession are important in setting the time scale for
random fluctuations in the orbital eccentricities, as dis-
cussed in more detail below.

Newtonian perturbations can also mimic frame-
dragging by changing the orientation of orbital planes. If
such changes occur on a time scale that is short compared
with the Lense-Thirring precessional time, the evolution of
orbital orientations will be determined essentially by the
Newtonian perturbations [32]. We expect this to be the
case for stars that are sufficiently far from the SBH, since
frame-dragging time scales increase rapidly with distance
[Eq. (14b)].

Here, we focus on a generic source of nonspherically
symmetric perturbations: resonant relaxation (RR), the
changes in L that result from the finite-N asymmetries in
an otherwise spherical cluster around a SBH [33]. (Other
possible sources of nonsphericity, ignored here, include a
large-scale distortion of the nuclear potential or ‘‘bar’’
[34], or a distant massive perturber [35].) In what follows,
we call the evolution of orbital planes due to these mutual
torques ‘‘2d resonant relaxation,’’ or 2dRR [36].
Under 2dRR, orbital orientations change in a character-

istic time [16]

T2dRR � P

2�

M�
m?

1ffiffiffiffi
N

p

� 4:7� 104
�

a

mpc

�
3=2

�
M�

106M�

��1=2

�
�

M�
106m?

��
N

102

��1=2
yr; (50)

where P ¼ PðaÞ ¼ 2�=�r is the radial (Kepler) period and
N ¼ NðaÞ is the number of stars at r & a. In a time
�T2dRR, orbital planes will have essentially randomized
due to the mutual torques [37].
The condition that frame dragging causes orbital planes

to precess more rapidly than they are changed by the
mutual torques is

tK � �

!LT

& T2dRR (51)

or equivalently [38]

ð1� e2Þ3
�
a

rg

�
3
&

16�2

NðaÞ
�
M�
m?

�
2
: (52)

Orbits satisfying this condition will be said to be in the
‘‘collisionless’’ regime: to a first approximation, their
angular momenta evolve in accordance with Eq. (9), unaf-
fected by perturbations from other stars.
The condition (52) can be expressed in terms of a

characteristic semimajor axis, aK, as

ð1� e2Þ3
�
a

aK

�
6��

& 1: (53)

We call aK the ‘‘rotational influence radius’’ of the SBH.
To solve for aK, we write NðaÞ for each of the two types of
nuclear model defined in Sec. III as

NðaÞ � M0:1

m?

�
a

0:1 pc

�
3��

; M� & 107:5M� (54a)

NðaÞ � 2
M�
m?

�
a

rm

�
3��

; M� * 107:5M�: (54b)

These approximate expressions are adequate given the
approximate nature of Eq. (52). In the case of low-mass
galaxies, Eqs. (52), (53), and (54a) yield
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�
aK

0:1 pc

�
6���1:8�10�11�2

�
�

M�
106M�

�
5
�

M0:1

105M�

��1
�

m?

1M�

��1
(55)

while for high-mass galaxies, Eqs. (22), (52), (53), and (54b)
give�

aK
35 pc

�
6�� � 2:1� 10�12�2

�
M�

108M�

�
4þ�ð3��Þ

�
�

m?

1M�

��1
(56)

with � � 0:56. Figure 2 plots aK as a function of nuclear
parameters. In low-mass galaxies, aK 	 aL; as M�
increases, aK can approach aL. In the latter case, we expect
the net angular momentum associated with stars inside the
rotational influence sphere to be comparable with S.

Define

�K � LK

S
; (57)

where LK is the angular momentum associated with stars
that satisfy (53). We compute LK from Eq. (25b) after
modifying the integration limits to respect the condition
(53). The result is

�K ¼ Hð�Þ
�
f

�

� ffiffiffiffiffiffi
aK
rg

s �
aK
rm

�
3��

(58)

for bright galaxies, and

�K ¼ 1

2
Hð�Þ

�
f

�

� ffiffiffiffiffiffi
aK
rg

s �
M0:1

M�

��
aK

0:1 pc

�
3��

(59)

for faint galaxies, where

Hð�Þ�8

3

ffiffiffiffi
�

p
2�

ð3��Þ
ð��1Þ

�ð�þ1Þ
�ð��1=2Þ

�
6��

7�2�
�
�
amax

aK

�ð1��Þ=2�
(60)

for � � 1, and

Hð1Þ ¼ 8

15
þ 4

3
log

�
amax

aK

�
:

(An upper cutoff to a is only required when � � 1 due to
a weak divergence of the integral; a natural choice is
amax ¼ rm since the expressions for Nða; eÞ, etc. are only
valid at r < rm.)

Figure 7 plots �K as a function of nuclear parameters.
As expected, for high-mass galaxies, and for f � 1=2, �K

is of order unity, scaling as f���=ð6��Þ for fixedM�. AsM�
is decreased, �K falls as well, although it can still be
appreciable, 0:01 & �K & 0:1, in low-mass galaxies with
dense nuclei, � � 2.

Figure 7 suggests that in galaxies with largeM�, the joint
evolution of S and Lj will be similar to the evolution

described in the previous section, in the sense that mutual
stellar interactions can be neglected.AsM� is decreased, the
angularmomentum associated with stars in the collisionless
regime drops compared with S. In nuclei with sufficiently
smallM�, most of the torque acting on the SBH is likely to
originate in stars whose orbits respond to each other on a
shorter time scale than the local Lense-Thirring time. As a
result, the angular momentum vectors of these stars will be
unable to align around S as in the collisionless case. We
argue in the next section that the result can be substantially
higher rates of sustained SBH precession.

B. Stochastic model for the evolution of !S

In principle, the combined effects of gravitational self-
interactions and spin-orbit torques could be directly simu-
lated using an N-body algorithm [32]. However the ratio
between Kerr precessional times and orbital periods is so
great that such direct simulation would be expensive for
any reasonable N.
An alternative approach would be to incorporate the

effects of star-star interactions by modeling the evolution
of each of the Lj as a random walk [39–41]. However,

interactions between stars must conserve Ltot, as well as
being constrained in less obvious ways by the fact that the
torques are mutual. Approximating the evolution of each
star’s angular momentum as an independent stochastic
process, independent of the changes in the other Lj, would

fail to capture these essential constraints.
Since the effects of the Lj on S appear only through!S,

and since the time scales for changes in the Lj due to

FIG. 7. �K is the angular momentum associated with stars in
the collisionless regime, expressed as a fraction of the SBH spin
S ¼ �GM2�=c. The left panel assumes M� ¼ 106M�, � ¼ 1
and f ¼ 1=2 (maximal rotation of SBH and stellar cluster); the
stellar density is parametrized in terms of M0:1, the mass within
0.1 pc, and �, the power-law index; solid lines are for � ¼ 1 and
dashed lines for � ¼ 2. Two values are assumed for the stellar
mass: m? ¼ 1M� (thin lines) and m? ¼ 10M� (thick lines).
The right panel, for massive galaxies, assumes the relation (22)
between M� and the influence radius rm; solid, dashed and
dotted lines are for � ¼ 5=8, 1 and 3=2, respectively. Thick
lines assume � ¼ 1, f ¼ 0:5 (rapidly rotating cluster) and thin
lines assume � ¼ 1, f ¼ 0:2 (slowly rotating cluster). All curves
in the right panel assume m? ¼ 1M�.
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self-interactions are typically short compared with spin-
orbit time scales, it is reasonable to separate the problem
into two parts: asking first how !S varies as the stars
interact with one another, ignoring the effects of spin-orbit
torques; then using this knowledge to predict how S would
evolve in response to the fluctuating !S. We first explore
this model, then present a more careful justification below.

Figure 8, based on a direct integration of the N-body
equations of motion for 100 point masses (stars) orbiting
about a massive particle (SBH), illustrates how !S evolves
due to star-star interactions. The integrator [42,43] included
1PN terms in SBH-star interactions; spin-orbit terms were
omitted. Initial conditions were generated according to
Eq. (19), with M� ¼ 106M�, m?¼10M�, amax ¼
10 mpc, rp;min ¼ 1 mpc, � ¼ 1 and f ¼ 1=2. Rotation of

the cluster was initially about the z axis.
Total angular momentum, Ltot (or rather, its 1PN analog

[44]) is conserved in these N-body integrations. The spin
precessional vector is not conserved; but since !S is a
weighted sum of the Lj, and since

P
Lj is conserved,

exchange of angular momentum between stars tends on
average to leave !S unchanged. However, Fig. 8 shows
that each component of !S fluctuates about its mean value
in an apparently random fashion. The amplitude of these
fluctuations is approximately constant over time, giving
each time series the appearance of a stationary stochastic
process [45].

Assuming stationarity, it is reasonable to calculate the
distribution function of the fluctuations at any given time
by binning together the events from all times. The results
are shown in Fig. 9, where the distributions have been fit to
Gaussian functions.

The time scale associated with stochastic fluctuations in
!S in the N-body integrations can be found by computing
the autocorrelation functions, defined as

RiiðtÞ ¼
R
T
0 ½!S;iðt0Þ � �!S;i�½!S;iðt0 þ tÞ � �!S;i�dt0R

T
0 ½!S;iðt0Þ � �!S;i�2dt0

: (61)

Here, !S;i is the ith component of !S, �!S;i is its time-

averaged value, and 0 � t � T is the elapsed time in the
N-body integration. Figure 10 shows that the measured
autocorrelation functions are reasonably well fit by expo-
nential functions:

RiiðtÞ � expð�t=	iÞ; i ¼ f1; 2; 3g; (62)

with 	i � 1:5� 105 yr.
One expects the autocorrelation time for !SðtÞ to be

similar to the characteristic time associated with changes in

FIG. 8. Evolution of!S in the N-body integration described in
the text. Units of ! are inverse years.

FIG. 9. Distribution of the !S values measured in the N-body
simulation of Fig. 8. Solid lines are Gaussian fits with

x;y;z ¼ f5:8; 7:0; 4:8g � 10�10 yr�1.

FIG. 10. Circles are autocorrelation functions of the time
series plotted in Fig. 8; horizontal axis is the lag time. Arrows
mark the computed correlation times. Solid lines are Eq. (62).
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the Lj. One such time is the two-dimensional resonant

relaxation time defined in Eq. (50). There will also be
variations in !S due to changes in orbital eccentricities.
In the so-called ‘‘coherent RR’’ regime, defined as
�t & ftM; tSg, changes in e occur in a characteristic time
�T2dRR; while in the ‘‘incoherent RR’’ regime, i.e.,
�t * ftM; tSg, the associated time is longer than T2dRR

(Appendix). Hence T2dRR is the shortest of the variability
time scales, and we can safely associate 	 with it. For the
N-body models, Eq. (50) states

T2dRR � 5� 104
�

a

1 mpc

�
yr; (63)

quite consistent with the autocorrelation times measured in
the N-body simulation given that 1 mpc & a & 10 mpc.
The longer time scale associated with randomization of
orbital eccentricities is given by Eq. (A3):

TRR;MðaÞ � 3� 106
�

a

1 mpc

�
3=2

yr (64)

for a * aS � 0:00 mpc.
The variance in the components of !S,


2
i � ½!S;iðtÞ � �!S;i�2; (65)

can also be estimated given the known properties of the
initial model. Begin by rewriting !S, Eq. (8b), as

!S;iðtÞ ¼
X
j

Cj�j;i; (66a)

Cj ¼
2G3=2M1=2� mj

c2a5=2j ð1� e2j Þ
; (66b)

�j;iðtÞ ¼ ½uL;jðtÞ � ui� (66c)

with uL;jðtÞ a unit vector in the direction ofLj and ui a unit

vector in the direction of the ith coordinate axis. In general,
each of the variables fej; �j;ig will change stochastically

due to star-star interactions, and all of these changes will
contribute to the variance of !S. A lower limit on that
variance follows from assuming that resonant relaxation
causes changes only in the orbital planes and that the ej are

approximately constant. Then


2
i � var½!S;i� �

X
j

C2
j � var½�j;i� (67a)

� X
j

C2
j (67b)

� X
j

4G3M�m2
j

c4a5j ð1� e2j Þ2
; (67c)

assuming var½�j� � 1. For a cluster containing orbits with

a single ða; eÞ, the right-hand side is �!2
S;max=N, where

!S;max is the magnitude of !S in a maximally rotating

cluster with f ¼ 1=2. Then 
 � !S;max=
ffiffiffiffi
N

p
.

According to Eq. (64), orbital eccentricities should also
change substantially over the integration period, particu-
larly for orbits of small a. The variance in !S should,
therefore, contain a substantial contribution from changes
in the ej, and in fact the formula just derived underpredicts

the variances observed in the N-body simulations (Fig. 9)
by a factor of a few. We estimate 
 allowing for changes in
the ej as follows. Rewrite Eq. (8b) yet again as

!S;iðtÞ ¼
X
j

AjXj;iðtÞ; (68a)

Aj ¼
2G3=2M1=2� mj

c2a5=2j

; (68b)

Xj;i ¼
�j;i

1� e2j
; (68c)

where both �j and ej are allowed to be functions of time.

Assuming uncorrelated changes, the variance in !S;i is


2
i ¼

X
j

A2
jvar½Xj�; (69a)

var½Xj� ¼ ð ��j;iÞ2var½ð1� e2j Þ�1� þ ð1� e2j Þ�1var½�j;i�
þ var½ð1� e2j Þ�1�var½�j;i�: (69b)

We estimate the quantities on the right-hand side of
Eq. (69b) by assuming that resonant relaxation maintains
a ‘‘thermal’’ distribution of eccentricities at every a [40],
i.e., that

NðeÞde � 2ede (70)

for 0 � e � emaxðaÞ, emax & 1. Then

ð1� e2j Þ�1 � ln½ð1� e2maxÞ�1�; (71)

var ½ð1� e2j Þ�1� � ð1� e2maxÞ�1 � 1� ½lnð1� e2maxÞ�2:
(72)

We identify emaxðaÞwith 1� rp;min=a. We likewise assume

that orbital planes are randomized, so that var½�j;i� ¼ 1=3,

and ��j;i ¼ f in the case that ui k Ltot and zero otherwise.

Finally, since emax � 1, it is reasonable to ignore the
logarithmic terms, yielding


2
i �

2

3

G3M�
c4

X
j

m2
j

a5j

�
rp;min

aj

��
aj

rp;min

� 1

�
2

(73)

for i ¼ 1, 2, 3.
Applied to the N-body models in Fig. 9, Eq. (73) yields


i � 6� 10�10 yr�1, in good agreement with the values
obtained via the Gaussian fits to the N-body data.
As long as the characteristic time for changes in eccen-

tricity is shorter than the other times of interest, Eq. (73) is
the appropriate expression to use for 
. This will turn out
always to be the case in the examples presented below.
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A theorem [45] states that a stationary random process
with a Gaussian probability function and an exponen-
tially decaying autocorrelation function is necessarily
an Ornstein-Uhlenbeck (OU)[46] process. The latter is
defined as having a transition probability between two
states, y1 and y2 (given here by two values of!S), at times
t1 and t2 that obeys

Tðy2jy1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� e�2�Þ

p exp

�
�ðy2 � y1e

��Þ2
2ð1� e�2�Þ

�
;

(74)

where � ¼ ðt2 � t1Þ=	 and 	 is defined as in Eq. (62). An
OU process XðtÞ with mean value �X can also be defined as
the solution of the Langevin equation,

_X ¼ ��½XðtÞ � �X� þN ðtÞ (75)

if � ¼ 	�1 and if N ðtÞ is a Gaussian random variable
having the properties

N ðtÞ ¼ 0; (76a)

N ðtÞN ðt0Þ ¼ ��ðt� t0Þ (76b)

with � ¼ 2
2=	 [45]. This comparison suggests that
!S experiences a ‘‘frictional force,’’ of amplitude
�ð!S � �!SÞ=	, that tends to bring that vector back to its
original value in spite of the fluctuations. This ‘‘force’’ is
presumably related to the physical constraint Ltot ¼ const,
although we do not explore the nature of that connection
here.

A stochastic realization of an OU process XðtÞ can be
generated via [47]

Xðtþ�tÞ� �X¼½XðtÞ� �X�e��t=	þ½
2ð1�e�2�t=	Þ�1=2n;
(77)

where n is a sample value of the unit normal random
variable, and, in our case, XðtÞ is one of the components
of !S. Figure 11 shows an example generated from
Eq. (77) using the values of f	i; 
ig extracted from the
N-body simulation data of Fig. 8. For this example, �!x and
�!y were zero (rotation of the cluster about the z-axis) and

�!z was set to its initial value.
We can use these results to rewrite Eqs. (8) and (9) in an

approximate way that incorporates the effects of star-star
interactions. Orbits that satisfy the condition (52) at t ¼ 0
are assumed to evolve, collisionlessly, in response to spin-
orbit torques, according to Eq. (9), and the contribution of
these stars to !S, which we call !K, is computed as in
Eq. (8b). In the case of orbits that do not satisfy (52), no
attempt is made to follow their detailed evolution. Instead,
these orbits are assumed to make a collective, stochastic
contribution to !S, which is modeled as an Ornstein-
Uhlenbeck time series, ½!S�OU, evaluated numerically
via Eq. (77). The parameters (	, 
) that appear in that
equation are estimated as described above. These two

contributions to !SðtÞ are then added, and the evolution
equation for S is written as

_S ¼ !S � S; (78a)

!S ¼ !K þ ½!S�OU: (78b)

Equation (78) ignores the effects of frame dragging on
stars in the ‘‘collisional’’ region. It therefore rules out the
possibility that differential precession of stars in this region
could distribute their Lj vectors uniformly about S, caus-

ing their net torque on the SBH to drop, as occurs in the
collisionless regime (Fig. 3). While we can not rigorously
defend this approximation, we can state a more basic set
of physical assumptions from which it follows. Consider
a star whose orbit evolves in response both to frame-
dragging from the SBH and gravitational encounters
from other stars. Idealize the encounters as occurring at
discrete times separated by�TRR. Between encounters, the
line of nodes precesses uniformly at the Lense-Thirring
rate, by an amount

�� � !LT � TRR: (79)

If the effect of an encounter is to randomly select a new
�—that is, if memory of the previous � is completely
erased after one relaxation time—then the mean change in
� after many encounters will be just ��. Finally, if
!LTTRR 	 1, then �� 	 2�, implying a negligible
amount of differential precession about S even after arbi-
trarily long times.
A similar argument [48] can be used to derive the drift

velocity of an electron that is subject to a fixed electric field
(the SBH torque) and to random collisions (gravitational
encounters); the finiteness of the drift velocity (nodal angle
�) follows from the assumption that collisions restore v to
a thermal distribution, i.e., that knowledge of the velocity
accumulated prior to the collision is lost. As is well known,

FIG. 11. Ornstein-Uhlenbeck realization of !SðtÞ using ð	; 
Þ
derived from the N-body simulations in Fig. 8.
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under some circumstances the charged particle retains
memory of the velocity it had before its collision leading
to ‘‘persistence-of-velocity’’ corrections. We expect our
model for spin evolution to be similarly limited in its
applicability, although we postpone a more thorough
understanding of such issues to a later paper.

Some support for this physical picture is provided by
Fig. 2 of Merritt et al. [32], which shows a set of short,
numerical integrations of N-body systems subject to
frame-dragging torques. The lower left panel in that figure
corresponds to the case TRR � !�1

LT , and the lower right
panel to the case TRR 	 !�1

LT . In the first case, stars exhibit
a finite amount of nodal precession in spite of the encoun-
ters, as implied by Eq. (79), while in the latter case,
encounters appear to remove all traces of a net advance
of �.

Stars near the inner edge of the ‘‘collisional’’ region,
a * aK, have !LT & T�1

RR , and for these stars, �� is not
necessarily small, as in the lower-left panel of the figure
just cited. Given that the vaue of aK is itself uncertain, the
additional uncertainty due to the evolution of orbits in this
‘‘transition zone,’’ aK & r 	 aL, seems acceptable. We
note that these uncertainties mimic uncertainties in twisted
accretion disk models about the location and radial extent
of the ‘‘warp’’ that determines the torque on the SBH, as
discussed in more detail in Sec. VIC.

In nuclei with �K 	 1 (Fig. 7), differential precession
of the stars that contribute to !K will cause their torque to
die away before the direction of S has changed appreciably
(Fig. 3). Subsequent evolution of S will be determined by
all the other stars. In a nucleus described by the Nða; eÞ of
Eq. (19), the contribution to !S from those stars (ignoring
stochastic fluctuations) is given by the integral (39), after
restricting the region of integration to the complement of
(53). The result is

!S ¼ Kð�Þf c

rg

M0

M�

�
aK
r0

�
3��

�
aK
rg

��5=2
; (80a)

Kð�Þ ¼ 8

3

ffiffiffiffi
�

p
2�

ð3� �Þð6� �Þ
ð1� 2�Þ2

�ð�þ 1Þ
�ð�� 1=2Þ ; (80b)

where fM0; r0g ¼ fM0:1; 0:1 pcg in low-mass galaxies and
fM0; r0g ¼ f2M�; rmg in high-mass galaxies.

Figure 12 plots this contribution to the SBH precessional
period (that is, to the mean value of 2�=½!S�OU) as a
function of nuclear parameters. The results turn out to be
strongly dependent on �, the slope of the nuclear density
profile, so we consider that parameter in more detail.
Observationally, � exhibits a substantial scatter, but there
is a well-defined mean trend with galaxy luminosity, at
least among the bright galaxies for which � is well-
determined [20,21]: � is smaller in the nuclei of brighter
galaxies. Using standard expressions for the mass-to-light
ratio of old stellar systems [49] and for the mean ratio of
SBH mass to galaxy mass [50], we can write this mean
relation as

h�i�2:0�1:1log10

�
M�

108M�

�
; M�*107:5M�: (81)

The right panel of Fig. 12 shows a Monte-Carlo distribu-
tion of points generated from this relation, assuming a
dispersion of 0.25 in � at each M�. (Values of � � 1=2
were excluded for the reasons given above.) While the
scatter is large, there is also a steep trend in the sense of
smaller precessional periods at lower M�.

C. Examples of stochastic evolution

We first consider a dense nucleus in a low-mass galaxy,
Mgal � 109M�: we set M� ¼ 106M�, � ¼ 2 and

M0:1 ¼ 2� 105M�. The characteristic radii relating to
orbital coherence times are given for this nuclear model
by Eqs. (47) and (55):

aS � 0:27 mpc (82a)

aK � 0:17�1=2

�
m?

M�

��1=4
mpc: (82b)

The total angular momentum associated with stars orbiting
close enough to the SBH that frame dragging dominates

self-interactions, a < aKð1� e2Þ�3=4, is given by Eq. (59):

�K � LK

S
� 0:018��1=4

�
f

0:5

��
m?

1M�

��3=8
: (83)

Evidently, an insignificant number stars are in the colli-
sionless regime. Almost all stars in the collisional regime
will also have a * aS; for these stars, the coherence time
related to changes in eccentricity (Appendix) is given by
Eq. (42):

tcoh � tMðe ¼ 1=2Þ � 1:0� 104
�

a

0:1 pc

�
1=2

yr: (84)

FIG. 12. SBH precessional periods that would result from
torquing by stars that orbit outside the rotational influence sphere
of the SBH, assuming f ¼ 1=2 and � ¼ 1. In the left panel,
M� ¼ 106M� is assumed, and the thin and thick lines corre-
spond to m? ¼ 1M� and m? ¼ 10M� respectively. The right
panel assumes the relation (22) between rm and M� and
m? ¼ 1M�. The points were computed from a Monte-Carlo
model that approximates the observed dependence of � on M�;
dashed lines are for constant �, as labelled.
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The incoherent, resonant relaxation time corresponding to
this tcoh, Eq. (A3), is then

TRR;M � 3� 106
�
m?

M�

��1
�

a

1 mpc

�
3=2

yr; (85)

which is the time associated with random changes in
orbital eccentricities. The two-dimensional resonant re-
laxation time, in either the coherent or incoherent regimes,
is given by Eq. (50):

T2dRR � 1:1� 104
�
m?

M�

��1=2
�

a

mpc

�
yr; (86)

which is the time scale associated with changes in orbital
inclinations. As expected, T2dRR < TRR;M.

The average, spin precessional period of the SBH due
to torquing by stars in the collisional regime is given by
Eq. (80):

2�

!S

� 3:7� 106
�
f

0:5

��1
�3=4

�
m?

1M�

��3=8
yr: (87)

Even assuming a low degree of net rotation of the cluster
(f & 0:1), spin precessional periods are predicted to be
shorter than �108 yr.

Since T2dRR � 	 	 2�=!S, we expect that the time
evolution of Swill depend only weakly on the value chosen
for 	 in Eq. (77), as long as the inequality is maintained.
This expectation is confirmed in Fig. 13, which shows the
evolution of the x component of S in a set of integrations
with different 	 and with f ¼ 0:1, �0 ¼ 50
. Only when 	
is unphysically large, * 106 yr, and comparable with the
spin precessional period does SðtÞ show an appreciable
dependence on it.

Figure 14 shows the evolution of the SBH spin vector in
a set of integrations with f ¼ 0:1 and with different m?;

the number of stars was varied in order to keepM0:1 fixed at
2� 105M�. The correlation time 	 was fixed at 105 yr.
The number, NK, and total mass, MK, of stars in the
collisionless regime are listed in Table I. As m? is
increased (i.e., N is decreased), the spin precessional pe-
riod drops, and the dependence of S on time exhibits more
stochasticity. Both effects are consequences of the increas-
ing number of stars in the collisional regime.
Next we consider the nucleus of an intermediate-mass

galaxy,Mgal � 1011M�. We setM� ¼ 108M� and m? ¼
1M�. The SBH influence radius is rm � 35 pc [Eq. (22)].
A typical value for � would be�2 [Eq. (81)], but given the
large scatter in this parameter, we consider a range of values.
Proceeding as before, we find from Eqs. (48) and (56):

aS � 0:21 mpc ð� ¼ 1Þ � 0:016 pc ð� ¼ 2Þ (88)

FIG. 13 (color online). x component of the spin vector � �
cS=GM2�, derived as the solution to the stochastic differential
equation (78), with various values of 	: 	 ¼ 103 yr (thinnest,
black), 104 yr (thin, red), 105 yr (thick, green), 106 yr (thickest,
blue). Other parameters are m? ¼ 1M�, f ¼ 0:1, �0 ¼ 50
.

FIG. 14 (color online). x and y components of the spin vector
� � cS=GM2� for a set of integrations of fixed M0:1 ¼
2� 105M� but different N and m?: m? ¼ 0:1M� (thick/
black), m? ¼ 1M� (dash-dotted/blue), and m? ¼ 10M�
(dotted/red). Other parameters of the models are given in
Table I and in the text.

TABLE I. Parameters for Fig. 14

m?=M� N NK MK=M� aK (mpc)

0.1 5� 106 1:5� 104 1:5� 10�3 0.30

1. 5� 105 570 5:7� 10�4 0.17

10. 5� 104 23 2:3� 10�4 0.096
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and from Eq. (56)

aK � 0:16�2=5 pc ð� ¼ 1Þ � 0:042�1=2 pc ð� ¼ 2Þ:
(89)

The angularmomentumof stars in the collisionless regime is
given by Eq. (58) as

�K � 0:015

�
f

0:5

�
ð� ¼ 1Þ � 0:20��1=4

�
f

0:5

�
ð� ¼ 2Þ:

(90)

�K approaches unity for sufficiently large values of f and�.
As in the previous example, almost all stars in the collisional
regime have a * aS, and for these stars Eq. (43) gives

tcoh � 3:3� 107
�

a

1 pc

��1=2
yr ð� ¼ 1Þ

� 9:3� 105
�

a

1 pc

�
1=2

yr ð� ¼ 2Þ: (91)

Similarly,

TRR;M � 3� 107
�
m?

M�

��1
�

a

1 mpc

�
3=2

yr (92)

and

T2dRR � 1:2� 107
�
m?

M�

��1=2
�

a

mpc

�
1=2

yrð� ¼ 1Þ

� 6:2� 104
�
m?

M�

��1=2
�

a

mpc

�
yrð� ¼ 2Þ: (93)

The spin precessional period due to torquing by stars in the
collisional regime is

2�

!S

� 7:2� 1010
�
f

0:5

��1
�1=5 yrð� ¼ 1Þ

� 5:0� 108
�
f

0:5

��1
�3=4 yrð� ¼ 2Þ: (94)

Note the strong dependence of this time on � (Fig. 12).
Figures 15 and 16 show the evolution of S, and of the

angle between S andL, whereL is the angular momentum
of stars in the collisionless regime, for models with � ¼
f1; 2g, f ¼ 0:5, �0 ¼ 50
, and various values of �. In both
sets of model, the long-term precession rate of the SBH
depends modestly on �, and strongly on �, as expected
from the relations (94). There is an initial phase in which
the stars in the collisionless regime near the SBH

FIG. 15 (color online). The upper panel shows evolution of the
x component of the SBH spin in a set of integrations with
M� ¼ 108M�, � ¼ 1, f ¼ 1=2 and �0 ¼ 50
. The different
curves correspond to different values of the dimensionless
spin: � ¼ 1:0 (thinnest, black), � ¼ 0:8 (thin, red), � ¼ 0:6
(thick, green), and � ¼ 0:4 (thickest, blue). The lower panel
shows the angle between S and L, the total angular momentum
of stars in the ‘‘collisionless’’ regime (i.e., near the SBH). FIG. 16 (color online). Like Fig. 15 but for � ¼ 2.
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differentially precess about the nearly-fixed S; the length
of this phase is�2 Gyr for � ¼ 1 and�0:1 Gyr for � ¼ 2.
During this time, S reacts somewhat to the changing !K,
before settling in to a more regular precession (driven by
½!S�OU) at later times.

Particularly in the case � ¼ 2, it is clear that the angle
between S and L never reaches zero. In this model, the
time for stars within the rotational influence sphere to
differentially precess about S is �5� 107 yr, only a few
times smaller than the SBH precessional period; thus the
differential precession can never quite ‘‘catch up’’ with the
changing spin direction. In the case � ¼ 1, the ratio
between these times is more than a factor 10 and the two
vectors can nearly align.

Figure 17 plots the evolution of S, L, and !S for
two models with � ¼ 2, � ¼ 1 and two values of
�0 ¼ f70
; 120
g; other parameters are as in Fig. 15, and
L and !S refer to stars in the collisionless regime only. In
these models,L is strongly misaligned with S initially, and
its direction evolves in a very complicated way at early
times before nearly aligning with S.

VI. DISCUSSION

A. Observations of nuclear rotation

Evolution of SBH spins via the mechanism discussed
here is a strong function of the degree of rotation of the
nucleus, at distances rg 	 r 	 rm from the SBH, where

rg is the gravitational radius [Eq. (1)] and rm the radius of

influence [Eq. (21)]. Observational constraints on the
degree of rotation at such small radii tend to be weak.
The nucleus of the Milky Way is the closest. Figure 18

FIG. 17. Evolution of S, L and !S in two models with � ¼ 1 and �0 ¼ 70
 (upper) and �0 ¼ 120
 (lower); other parameters are as
in Figure 15. The quantities L and ! refer to the total angular momentum, and the spin precessional vector, due to stars in the
collisionless regime. Open/filled circles are initial/final values; elapsed time is 0.5 Gyr.

FIG. 18. Solid lines are predicted, observed rotational velocity
curves for a spherical stellar system around a SBH of mass 4�
106M� at a distance of 8 kpc, similar to the Milky Way nucleus.
Curves are labelled by the fraction f of flipped orbits;� ¼ 1:5was
assumed. The nucleus is assumed to be observed from a point in a
plane perpendicular to the axis of nuclear rotation, and the veloc-
ities have been averaged over a perpendicular distance of 1 arc
second� 0:04 pc. The dashed curve is the 1dvelocity dispersion in
the case thatf ¼ 0. Tickmarks label aK, Eq. (56), andaL, Eq. (27),
assuming � ¼ 1, M0:1 ¼ 105M�, and m? ¼ 1M�. Circles with
error bars are measured, binned, line-of-sight mean velocities of
stars from Ref. [51] (open) and Ref. [15] (filled).
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plots line-of-sight, rotational velocity data for binned
samples of stars at projected distances & rm � 2:5 pc �
6500 from Sgr A? [15,51]. Also shown for comparison are
rotational velocity curves predicted by the spherical mod-
els used here (Sec. III); recall that the degree of net rotation
in those models is set by the parameter f, with f ¼ 1=2
corresponding to maximal rotation. The Milky Way data
are consistent with all values of f but the available data
extend inward only to �0:2rm, well outside the region
that would contribute most of the torque to a spinning
SBH.

The complexity of the velocity data has led to sugges-
tions [12] that the Milky Way nucleus consists of a super-
position of different structures with different axes of
rotation. While the stars contributing to the velocity data
in Fig. 18 are mostly old, two disklike structures of young
stars—the clockwise disk discussed above, and another
(the ‘‘counter-clockwise disk’’) [7], both at �0:1 pc—are
known to rotate about axes that are separated by�60
 and
both disks are inclined with respect to the large-scale
symmetry plane of the Galactic disk.

The Local Group dwarf galaxy NGC 221 (M32), at a
distance of �700 kpc [52], also appears to contain a SBH,
with mass that is poorly constrained but believed to be
similar to that of the Milky Way SBH [53]. The line-of-
sight mean stellar velocity in this galaxy is roughly
constant with radius, vrot � 60 km s�1 [54,55], inside a
projected radius of �rm � 3 pc, compared with a line-
of-sight velocity dispersion 
 � 75 km s�1, suggesting
f & 0:5. The resolution in this case is �0:3 pc� 0:1rm.

Beyond the Local Group, massive galaxies are the best
prospects for spatially resolving a region smaller than rm
due to the scaling of rm with galaxy mass. A region of size
0:1rm in a galaxy at distance D has angular extent

�ð0:1rmÞ � 000:07
�

M�
108M�

�
�
�

D

10 Mpc

��1
; (95)

where � � 0:56 [Eq. (22)]. Observations rarely exceed the
�000:1 resolution of STIS on the Hubble Space Telescope
and so little data are available on scales much less than
0:1rm for galaxies beyond the Local Group. Nevertheless, a
number of nearby galaxies exhibit strong nuclear rotation,
vrot � 
 on the smallest resolvable scales. Some examples
(NGC number, followed by the radius of the resolved
region, expressed as a fraction of rm) are: NGC 3115
(0.04) [56], NGC 3377 (0.20) [57], NGC 3379 (0.10)
[58], NGC 4342 (0.12) [59], NGC 4258 (0.17) [60]. Data
like these are at least consistent with the presence of
significant nuclear rotation on spatial scales 	 rm
although of course they do not compel it. As noted above
(Sec. III), in giant galaxies, the radius containing an orbital
angular momentum equal to S is expected to be
�0:01rm � 0:1rm in the case vrot � 
.

B. Model constraints on the degree
of nuclear rotation

Given the weak observational constraints on rotation of
galactic nuclei, it is interesting to ask what various models
of nuclear evolution predict.
Rotation arises naturally if stars formed in a thin gaseous

disk around the SBH [61,62], before later being scattered
(say) into more spheroidal structures. Star formation
requires that the gas disk be dense enough for its internal
gravity to overcome shearing and tidal stresses from the
SBH. Steady-state accretion disk models [63] suggest a
minimum radius for star formation of [64]

rmin � 10�2

�
�

0:03

�
14=27

�



0:1

�
8=27

�
L

0:1LE

��8=27

�
�

M�
108M�

�
1=27

pc; (96)

where � is the standard viscosity parameter [65], L is the
luminosity due to gas accretion onto the SBH, 
 is the
accretion efficiency defined by L ¼ 
 _Mc2, and LE �
1:4� 1046ðM�=108M�Þ erg s�1 is the Eddington lumi-
nosity. The predicted dependence of rmin on M� is
extremely weak.
An rmin of 10�2 pc is similar to the inner radius of the

young ‘‘clockwise disk’’ of stars at the Galactic center
[7,9,66]. However, there is currently no evidence of an
accretion disk [67,68] and the low luminosity of Sgr A?

places strict limits on its current rate of gas accretion [69].
Attempts to explain the formation of the young stars usu-
ally invoke instead the recent infall and tidal shearing of a
massive gas cloud. Numerical simulations of this scenario
[70–73] have confirmed that formation of a disk from
which stars subsequently fragment is possible if the
initial conditions (cloud mass, density, temperature; orbital
parameters) are correctly chosen. Star formation in these
models takes place as close as�0:01 pc to the SBH. Given
the small number of published simulations, and the fact
that they were motivated by a desire to reproduce the
known properties of the stellar disk, is not clear whether
different initial conditions might allow star formation
much farther in.
Figure 2 suggests that for galaxies with M� * 107M�,

aK * 10�2 pc. For these galaxies, restricting the region of
significant rotation to r * 10�2 pcwould reduce somewhat
the contribution to !S from stars in the ‘‘collisionless’’
regime but would not change the implied rate of steady
SBHprecession due to stars beyond aK, as given by Eq. (80)
. In the case of low-mass galaxies, removing stars inside
�10�2 pc would essentially turn off the collisionless con-

tribution to _S and increase the SBH precessional period due
to stars in the collisional regime by an approximate factor

ðaK=rminÞ1=2��.
Another possible source of nuclear rotation is inspiral

of a massive object, which transfers its orbital angular
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momentum to the stars via dynamical friction before being
captured by the SBH (say). Assume that the inspiralling
object has a mass m�, where m? 	 m� 	 M�. Assuming
a circular orbit, a decrease in orbital radius of �r implies a
transfer to the stars of angular momentum

�L ¼ m�
2

ffiffiffiffiffiffiffiffiffiffiffi
GM�
r

s
�r: (97)

We want to compare this with the maximum, net angular
momentum that could be associated with the stars in a shell
of thickness �r:

�L? ¼ f� r�
ffiffiffiffiffiffiffiffiffiffiffi
GM�
r

s
� 4�r2�ðrÞ�r; (98)

where f & 1 depends on the morphology of the nucleus
and the distribution of stellar orbits. Thus�������� �L

�L?

��������¼ 1

8�f

m�
�r3

: (99)

In terms of the density model adopted here for low-mass
galaxies, this can be expressed as�������� dL

dL?

��������¼ 1

2ð3� �Þf
m�
M0:1

�
r

0:1 pc

�
��3

: (100)

Since � < 3, this result implies that the largest fractional
increase in orbital angular momentum occurs for stars
nearest the SBH. The model must break down at radii
where the enclosed stellar mass is less than �m�, or

r � 0:1 pc

�
m�
M0:1

�
1=ð3��Þ

: (101)

For example, setting m� ¼ 103M� (an ‘‘intermediate-
mass black hole’’); M0:1 ¼ 105M�; and � ¼ 2, we find
rmin � 1 mpc. At this radius, jdL=dL?j is maximized and
equal to 1=½2ð3� �Þf� which can be of order unity.

Somewhat larger changes in nuclear structure and kine-
matics would result from the dissipationaless (gas-free)
merger of two galaxies containing comparably-massive
SBHs [74]. This is a likely model for the origin of the
cores that are observed at the centers of galaxies with
M� * 107:5M� [75]. Orbital motion of the two galaxies
would imprint rotation on the stars in the merged galaxy,
but the binary SBH also displaces a mass in stars of order
its own mass via the gravitational slingshot [76]; the net
rotation of the stars left behind depends in a complicated
way on this process. Figure 19 shows results extracted from
perhaps the highest-resolution study to date of this inter-
action [77]. The figure shows the velocity dispersion and
rotation velocity profiles of the merged galaxy at the time
when two SBHs coalesce. Despite limited statistics at
small radii, it is clear that such merger products may
have a noticeable degree of rotation well within the radius
of influence, corresponding roughly to f � 0:1–0:2.

Both infall of gas clouds and inspiral of massive com-
pact objects could occur episodically. In the case of spiral
galaxies, the example of the Milky Way with its young
stellar disks suggests that accretion events might occur
roughly once per 0.1 Gyr [78]. In the case of massive
galaxies, which tend to be gas-poor, large-scale simula-
tions of dark-matter clustering suggest that the mean time
between galaxy mergers varies from�0:2 Gyr at a redshift
z ¼ 10 to �10 Gyr at z ¼ 1 with a weak dependence on
galaxy (i.e., dark halo) mass [79]. Assuming that all or
most galaxies contain nuclear SBHs, this would also be
roughly the time between insertion of secondary SBHs into
the nucleus [3]. These times are comparable with the time
scales for spin precession derived here (e.g., Fig. 12),
suggesting that the evolution of SBH spins due to frame
dragging may also be episodic in nature.
Both sorts of infall event are likely to occur from essen-

tially randomdirections, so that the increase over time of the
net rotation of the nucleus will have the form of a random
walk. Futhermore, both sorts of event can change the mag-
nitude ofS: if accretion of the gas by the SBH occurs [64] or
if the inspiralling body coalesces with the SBH [80].

C. Comparison with accretion disk torquing

Interaction of a spinning SBH with a misaligned, gase-
ous accretion disk is driven by the same frame-dragging

 0
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FIG. 19. Rotation in the galaxy merger simulations of
Gualandris and Merritt [77]. Solid lines are the one-dimensional
velocity dispersion, dashed lines are the rotation velocity about
the z axis (the orbit of merging galaxies was the x-y plane).
Thick (thin) lines are for a merger on a circular (eccentric) orbit.
The galaxy mass ratio was 1:3 and each galaxy hosted a SBH
with M� ¼ 0:005Mgalaxy. The models contained four different

stellar masses representing an old stellar population; stars from
all mass groups were weighted equally in constructing this
figure. The dotted line shows a Keplerian rise in velocity
dispersion and rm is the radius containing a stellar mass equal
to twice the combined mass of the two SBHs.
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torques modelled here. The accretion disk problem has
been extensively studied [2,5,81–84], in part because the
radio jets that power the classic, double radio sources are
believed to be launched perpendicularly to the inner accre-
tion disk. Both the long-term (� 108 yr) stability of jet
directions in some active galaxies, as well as the evidence
for jet precession in others, is probably linked in funda-
mental ways to SBH-accretion disk interactions.

Here we sketch the points of similarity and difference
between spin evolution driven by a misaligned accretion
disk and by a rotating stellar nucleus. We emphasize that
the latter case is generic—SBHs appear always to be
embedded in stellar nuclei—while nuclear activity, hence
accretion disks, exist in only a small subpopulation of
galaxies. The fact that accretion disk torques have received
essentially all the attention until now is probably a conse-
quence of the observability of the jets.

Given an assumed structure for the disk (surface density
and inclination as functions of radius), the instantaneous
evolution equation for S is essentially Eq. (8), after setting
orbital eccentricities in that equation to zero and identify-
ingLj with the angular momentum of a discrete element of

gas. Such models typically assume a disk that is thin and
initially planar. Differential precession then ensues near
the SBH; at radii r 	 rL—defined, as in Eq. (27), as the
radius containing an angular momentum equal to S—
the gas precession time is short compared with that of
the SBH.

The value of rL can be computed given a model for the
disk surface density. For instance, the steady-state disk
models referred to above [63] imply [84]

rL � 0:052�10=19

�
�

0:03

�
8=19

�



0:3

�
6=19

�
�

M�
108M�

�
7=19

�
L

0:1LE

��6=19
pc; (102)

where �, 
, and LE are defined as in Eq. (96). In active
galaxies, all quantities in parentheses aside from the factor
containing M� are of order unity and so 10�2:5 pc & rL &
10�0:5 pc. This is somewhat smaller than the value of aL as
plotted in Fig. 2, at least in massive galaxies; in other
words, accretion disks, when present, are likely to domi-
nate the angular momentum distribution near the SBH,
justifying the neglect of stellar torques in these galaxies.
In smaller galaxies, Fig. 2 suggests that aL � rL.

Differential precession causes gas near the SBH to attain
a mean L that is aligned with S, as in the stellar case, but
gaseous viscosity also ensures that the gas returns to a
thin disk, coincident with the SBH equatorial plane (the
‘‘Bardeen-Petterson effect’’ [2]). This thin, aligned disk
extends outward, not to rL (where the Lense-Thirring time
is likely to be very long anyway) but rather to the smaller
radius rwarp, the radius at which the disk plane transitions to

its large-radius orientation. The warp radius is determined
by the condition that the time scale for angular momentum

diffusion through the disk is equal to the Lense-Thirring
precession time:

tdiff �
r2warp
�

� !�1
LT ¼ r3warpc

2

2GS
: (103)

Here � is the kinematic viscosity, which also determines
the accretion rate. The value of rwarp is strongly model-

dependent and still rather uncertain; early estimates (e.g.,
Refs. [2,82]) set rwarp � rL, but more recent estimates

(e.g., Refs. [5,85]) find rwarp � ð102 � 103Þ � rg 	 rL.

Once alignment of the gas inside rwarp has occurred,

precession of the SBH is driven by gas at r * rwarp. An

expression that is often given for the steady-state SBH
precession frequency (e.g. Refs. [5,82]) is

! � Lðr < rwarpÞ
S

�!LTðrwarpÞ; (104)

where Lðr < rwarpÞ is the angular momentum of disk gas

inside rwarp. Uncertainties about the value of rwarp translate

via this expression into uncertainties about the precession
rate. Equation (104) is similar to Eq. (14) for the mutual
precession of a SBH and a ring of matter, especially when it
is recognized that J � S in the accretion-disk case. This is
at first sight surprising, since Eq. (104) appears to relate the
precession of the SBH to the angular momentum of gas, all
of which, by assumption, is fully alignedwith the SBH! The
justification (e.g., Ref. [82]) consists of noting that L�
!LT / LðrÞ=r3 is a steeply falling function of radius, hence
only matter near the warp is relevant. But this argument
underscores the very approximate nature of Eq. (104).
The warp radius plays approximately the same role as

the radius aK in the stellar case, Eq. (53). The SBH
precession frequency, Eq. (104) in the gaseous case,
becomes Eq. (80) in the stellar case. In the stellar case,
a K 	 aL (Fig. 2), just as rwarp 	 rL (at least if the most

recent estimates of rwarp are correct).

The continued deposition of matter from a fixed outer
plane must ultimately align S with the outer L. In many
models [5,83,86], the time scale for this alignment is
similar to the warp-driven precession time of the SBH,
i.e., the inverse of Eq. (104). Typical values quoted for talign
lie in the range 107–108 years, and it has been argued
that this alignment is responsible for the long-term
(108–109 yr) stability of jet directions in many active
galaxies. Interestingly, we found that complete alignment
was possible also in the stellar-dynamical case (Fig. 4);
differential precession is sufficient to achieve this, even in
the absence of viscosity. However, we argued that a more
generic outcome in the stellar case is steady precession of
the SBH, particularly when stellar interactions are allowed.
The evolution of S due to the combined influence of a

misaligned accretion disk and stars is beyond the scope of
this paper, but we include a few speculative remarks [87]
Feeding of active galaxies is probably episodic [91,92].
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When much, but not all, of the infalling gas has been
consumed, there may come a time when the precession
rates due to gas and stellar torquing are comparable. If the
SBH is still active at this time, accretion-disk-related jets
should begin to precess roughly in the manner discussed
here, even if the SBH had previously reached a steady-state
alignment with the gas. Prolonged, steady precession of
radio sources might be explained in this way [93,94]. After
the gas has been fully consumed, the SBH spin can con-
tinue to evolve in response to the stars. If the gas has been
accreted all the way to the event horizon, both the magni-
tude and direction of S will have been changed by the gas.

D. Slowly rotating nuclei

Even in a nucleus with negligible net rotation, there will
still be a nonzero torque on the SBH due to imperfect
cancellation of the Lj from the finite number of stars.

This is obvious, for instance, from Fig. 8; the components
of!S perpendicular to the mean rotation axis of the cluster
are zero on average but fluctuate as orbits change their Lj

due to encounters. Equation (73) is an estimate of the size
of those fluctuations and can equally well be interpreted as
the expected value of !S in a nonrotating, isotropic cluster
with known NðaÞ.

It is interesting to ask how large the steady rotation of a
nucleus needs to be if the net torque exerted on the SBH is
to exceed this (fluctuating) value. We estimate the torque in
a nonrotating nucleus by setting rp;min ¼ a K in Eq. (73); in

other words, we conservatively ignore the torque from stars
within the sphere of rotational influence given that they
may have differentially precessed about S. The result is


2 � 4

3

ð3� �Þ�ð�þ 1Þ
�ð�þ 4Þ

G3M�m?

c4
M0

r50

�
aK
r0

��ð2þ�Þ
;

(105)

where fM0; r0g ¼ fM0:1; 0:1 pcg in low-mass galaxies and
fM0; r0g ¼ f2M�; rmg in high-mass galaxies. Comparing 

to!S as given by Eq. (80), we find for the critical degree of
rotation

f � Jð�Þ
ffiffiffiffiffiffiffi
m?

M0

s �
aK
r0

�ð��3Þ=2
;

Jð�Þ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�

�ð�þ 1Þ
�ð�þ 4Þ

s
�ð�� 1=2Þ
�ð�þ 1Þ

2�ð2�� 1Þ2
ð3� �Þð6� �Þ :

(106)

For instance, in a low-mass galaxy with � ¼ 2,

f�8�10�3��1=4

�
M�

106M�

��5=8
�
M0:1

105m?

��3=8
: (107)

For this value of f, the instantaneous time over which S
changes is

2�

!S

� 8� 108�

�
M�

106M�

�
8
�

M0:1

105M�

��1
yr: (108)

We emphasize that this is not a precessional period since,
by assumption, finite-N effects dominate and the axis
about which S is precessing will itself change, in a time
of order T2dRR.
When observing changes in S over very short time

scales, e.g., human lifetimes, there will also be a time-
dependent contribution due to the motion of stars along
their (unperturbed) orbits. This contribution has been
ignored up till now due to the orbit-averaging of
Eqs. (8) and (9).
Figure 20 illustrates the complexity of the evolution of S

in the case that all the torque on the SBH is due to these
finite-N effects. The figure is based on a direct N-body
integration of a cluster of 50 ‘‘stars,’’ of mass 50M� each,
around a SBH of mass 106M� and � ¼ 1. Additional
details about the initial models are given in Merritt et al.
(2011) [40]. Over the�2 Myr time span of the integration,
the SBH spin axis wobbles by about one degree.

FIG. 20 (color online). Evolution of the dimensionless spin in
a direct N-body integration [40]. The top panel shows the x and y
components of � which is initially parallel to the z axis. Open
and filled circles show initial and final orientations. In the bottom
panel, the dashed (blue) curve is �x, the dotted (red) curve is �y,

and the solid (black) curve is �z.
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E. Experimental determination of black hole spins

Several authors [61,95,96] have suggested that it may be
possible to infer the magnitude and direction of SBH spins
from the precession of the angular momentum vectors of
individual stars. Only stars with semimajor axes a & aK
are suitable for this purpose, otherwise the changes of Lj

due to collisional effects will supersede changes due to
frame dragging [32,97]. Since for most galaxies aK 	 aL
(Fig. 2), this also means that the Lense-Thirring precession
times for these stars are much shorter than SBH spin
precession times, or !j 
 !S.

Assuming that S precesses steadily about the (fixed) axis
!S, it is convenient to consider the evolution of Lj in the

reference frame which rotates with the precession fre-
quency !S about the axis of SBH precession, so that S is
stationary. In this rotating frame, the equation of motion for
the orbital angular momenta (9a) reads

_L 0
j ¼ !0

j � L0
j; !0

j � !j �!S; (109)

where L0
j is the angular momentum in the rotating frame.

In other words: the Lense-Thirring precession is occuring
about an axis that does not coincide with the instantaneous
direction of S. However, the first derivative of Lj in the

inertial frame coincides with the value obtained without
taking into account SBH precession, since it is determined
by the instantaneous value and direction of S. It is only for
the second derivative of Lj that the difference starts to

matter. Given that j!0
j �!jj 	 j!jj because we are con-

sidering stars that themselves precess much faster than the
SBH, it seems unlikely that these effects may be detectable
in the near future.

In a nucleus that is sufficiently old, differential preces-
sion of stars with a < aK will have caused their angular
momentum vectors to distribute themselves uniformly
about S, as shown above in several numerical examples.
This suggests a way of measuring the instantaneous direc-
tion of S via the mean direction of the Lj within aK. In the

Galactic center, aK � 10�3 pc, and there are as yet no stars
with determined orbits in this region. However orbital
periods for stars with a ¼ 1 mpc are about one year, and
it is possible that determination of the orbital elements of a
few such stars might be feasible over a shorter time interval
than is required for measuring changes in the Lj due to

frame dragging.

VII. CONCLUSIONS

(1) In a galactic nucleus containing a spinning super-
massive black hole, frame dragging results in
mutual torques between the stellar orbits and the
SBH. The result is precession of both the SBH spin,
S, and the angular momentum vectors, Lj, of the

individual stellar orbits, with SþLtot ¼ SþP
jLj

conserved. For stars at a single distance from the
SBH, the controlling parameter is the ratio between
S and Ltot. If S 
 Ltot, stellar orbits precess about
the nearly fixed S with the Lense-Thirring period;
while if Ltot 
 S, S precesses about the nearly fixed
Ltot with a period that is shorter by a factor S=Ltot.
The inner parsec of the Milky Way is known to
contain stellar subsystems having Ltot � S.

(2) Ignoring interactions between the stars, solutions of

the coupled equations for _S and _Lj¼1;...;N in spheri-

cal nuclei reveal two evolutionary modes in the case
that Ltot > S: continued precession of S about Ltot;
or damped precession, in which S and Ltot come
into nearly complete alignment after one preces-
sional period of the SBH. Even in the first mode,
differential precession of orbits near the SBH
causes their net angular momentum to align with
S, reducing the torque that they exert on the SBH.
Subsequent precession of the SBH is driven by
torques from stars at r * rL, where rL is the radius
enclosing a net angular momentum equal to S.

(3) Newtonian interactions between stars can change
their orbital angular momenta in a time shorter
than Lense-Thirring precessional times. We define
the ‘‘radius of rotational influence,’’ aK, around a
Kerr SBH as the radius inside of which torques due
to frame dragging act more quickly than torques
from the other stars. Typical values for this radius
are �10�3 parsecs in dense nuclei like that of the
Milky Way, increasing to �100–101 parsecs in
nuclei containing the most massive SBHs. The
angular momentum associated with stars in this
‘‘collisionless’’ region near the SBH is likely to
be much smaller than S in nuclei of the smallest
galaxies but may be comparable to S in massive
galaxies.

(4) Interaction between stars at r > aK leaves the total
angular momentum of these stars unchanged, but
results in random fluctuations of the individual Lj

and, hence, in the torque which they exert on the
SBH. We develop a stochastic model, based on the
Ornstein-Uhlenbeck equation, for the torque exerted
by these stars and verify it by comparison with high-
accuracy N-body simulations. We argue that dS=dt
can be approximated as the sum of two terms:
deterministic torques exerted by stars inside aK,
whose angular momenta evolve solely in response
to frame dragging, and a stochastically fluctuating
torque due to stars outside aK.

(5) Examples of stochastic evolution of S are presented
for various nuclear models. Typical evolution con-
sists of sustained precession, with periods that are
highly dependent on nuclear parameters, but which
are expected to increase with increasing M�: likely
periods are �107–108 yr for low-mass SBHs in
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dense nuclei, �108–1010 yr for SBH with masses
�108M�, and �1010–1011 yr for the most massive
SBHs.
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APPENDIX: TIME SCALE FOR CHANGE
IN ORBITAL ECCENTRICITY

Here we present approximate expressions [16] for the
time scales associated with changes in orbital eccentricity
due to resonant relaxation [33] and evaluate them for the
power-law density model used in the text.

Define the ‘‘apsidal coherence time’’ tcoh as the shorter
of the two precession times tS and tM defined in Sec. V,
each evaluated at typical values of e; say, e � 1=2.

Comparison of Eqs. (41) and (50) shows that tM �
T2dRR=

ffiffiffiffi
N

p
, whereN is the number of stars at r < a: apsidal

precession due to the spherically distributed mass acts

more rapidly than
ffiffiffiffi
N

p
torques at changing orbital orienta-

tions. For elapsed times short compared with tcoh, the
torque due to all the local stars is therefore nearly constant,
and the angular momentum of a typical star responds
by changing approximately linearly with time. In this
‘‘coherent resonant relaxation’’ regime, all the components
of Lj, i.e., both the orientation angles and the eccentricity

ej, change with characteristic time TRR;coh given by

TRR;coh � P

2�

M�
m?

1ffiffiffiffi
N

p

� 4:7� 104
�

a

mpc

�
3=2

�
M�

106M�

��1=2

�
�

M�
106m?

��
N

102

��1=2
yr: (A1)

This is the same expression as Eq. (50) for T2dRR, reflecting
the fact that in the coherent regime, both the direction
and the magnitude of L change on roughly the same time
scale.

For time intervals longer than tcoh, the direction of the
net field-star torque changes and evolution of the Lj in

response to the torques is better described as a random
walk. The time scale associated with this ‘‘incoherent
resonant relaxation’’ is

TRR �
�

Lc

�Lcoh

�
2
tcoh; (A2)

where Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�a

p
is the angular momentum of a circu-

lar orbit of semimajor axis a, and �Lcoh is the change in L
during �t ¼ tcoh. Setting tcoh ¼ tM (i.e., a > aS), this
becomes

TRR;MðaÞ ¼ CM

M�
m?

PðaÞ

� 3� 109CM

�
M�

106M�

�
1=2

�
m?

1M�

��1

�
�

a

0:1 pc

�
3=2

yr (A3)

with CM a constant of order unity, while if tcoh ¼
tS (a < aS),

TRR;SðaÞ ¼ CS

rg
a

�
M�
m?

�
2 PðaÞ
NðaÞ

� 1:5� 105CS

�
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�
5=2

�
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��1

�
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��1
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�
��5=2

yr (A4)

with CS again of order unity. Equations (A3) and (A4) are
the appropriate time scales to associate with changes in
orbital eccentricity in the incoherent regime.
In the case of two-dimensional resonant relaxation, the

relevant coherence time is that associated with changes of
the orbital planes, i.e., T2dRR. Since �Lcoh � Lc in this
case, Eq. (A2) implies that the coherent and incoherent
relaxation times are approximately the same: no new time
scale arises in the incoherent regime for two-dimensional
resonant relaxation.
Comparing the incoherent relaxation times associated

with changes in the orientation and magnitude of L,
respectively, we find

T2dRR

TRR;M

� 1ffiffiffiffi
N

p ; (A5a)

T2dRR

TRR;S

� m?

ffiffiffiffi
N

p
M�

a

rg
: (A5b)

The first of these ratios is manifestly smaller than unity at
all radii. The second is only relevant at a & aS, i.e., for

a

rg

ffiffiffiffi
N

p
&

M�
m?

1ffiffiffiffi
N

p (A6)

which implies

T2dRR

TRR;S
&

1ffiffiffiffi
N

p ; (A7)

again less than unity. On the basis of these inequalities, it is
reasonable to equate the correlation time associated with
fluctuations in !S with the shortest of the time scales,
T2dRR, as was done in Sec. VB.
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