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We investigate the critical behavior at � ¼ � of the two-dimensional Oð3Þ nonlinear sigma model with

topological term on the lattice. Our method is based on numerical simulations at imaginary values of �,

and on scaling transformations which allow a controlled analytic continuation to real values of �.

Our results are compatible with a second-order phase transition, with the critical exponent of the

SUð2Þ1 Wess-Zumino-Novikov-Witten model, for sufficiently small values of the coupling.
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I. INTRODUCTION

Quantum field theories with a topological term
(‘‘� term’’) in the action have proved to be particularly
challenging to investigate. Such theories are related to
a few important open problems in theoretical physics,
including the so-called ‘‘strong CP problem’’ in strong
interactions, and to interesting phenomena in condensed
matter physics, such as the quantum Hall effect (for a
recent review on theories with � term, see Ref. [1]).

On the one hand, topological properties are intrinsically
nonperturbative, thus requiring a nonperturbative approach
to the study of these systems. On the other hand, the most
effective of these approaches, namely the numerical study
by means of simulations in lattice field theory, cannot be
directly applied to these systems, due to the presence of a
so-called sign problem. In fact, the complex nature of their
Euclidean action prevents the computation of the relevant
functional integrals by means of the usual importance-
sampling techniques. Numerical investigations have then
required the use of techniques which allow us to avoid the
sign problem, usually based on analytic continuation or on
the resummation of the contributions of the various topo-
logical sectors to the partition function [2–8]. The basic
idea of these techniques is to modify or split the functional
integral, in such a way that the resulting expression(s) have
a positive-definite integration measure, and therefore can
be treated with the usual numerical techniques. The diffi-
culty of dealing with an oscillatory integrand is, however,
not completely overcome, but simply shifted to the prob-
lem of reconstructing the original functional integral,
which is usually a very delicate issue from the numerical
point of view. It is worth noting that, beside having their
own theoretical interest, theories with a � term share
the sign problem with finite-density QCD, and so the

development of techniques and algorithms to solve or
bypass the sign problem can have positive consequences
on the study of the QCD phase diagram by means of
numerical simulations.
Among the various existing models, the two-

dimensional Oð3Þ nonlinear sigma model with � term
[Oð3Þ�NL�M] deserves particular interest. It has been
shown long ago by Haldane [9,10] that chains of quantum
spins with antiferromagnetic interactions, in the semiclassi-
cal limit of large but finite spin S, are related to this model at
coupling g2 ¼ 4=½SðSþ 1Þ�, and at � ¼ 0 or� if the spin is
respectively integer or half-integer. Haldane conjectured that
quantum spin chains for half-integer spins show a gapless
spectrum, and correspondingly that a second-order phase
transition takes place in the Oð3Þ�NL�M at � ¼ �, with
vanishing of the mass gap and recovery of parity. Arguments
supporting this conjecture have been provided in Ref. [11].
Moreover, in Ref. [12], it has been argued that the critical
theory for generic half-integer spin antiferromagnets is the
SUð2Þ Wess-Zumino-Novikov-Witten (WZNW) model
[13–15] at topological coupling k ¼ 1, which in turn should
determine the behavior of the mass gap near � ¼ �.
Numerical investigations of Haldane’s conjecture have

been performed, following basically three different strat-
egies. A first strategy [2,16,17] is based on the determina-
tion of the probability distribution of the topological
charge by means of simulations at � ¼ 0, which allows
us in principle to reconstruct the expectation values of the
various observables at � � 0. In order to achieve the very
high accuracy required by this approach, the authors of
Refs. [2,16,17] have employed a constrained (‘‘topologi-
cal’’ [18]) action on a triangular lattice, which allows
simulations by means of an efficient Wolff cluster algo-
rithm [19]. The parameters of the action were chosen in
order to be in the weak-coupling regime. Using finite-size
scaling theory, the authors of Refs. [2,16,17] found a
second-order phase transition at � ¼ �, in agreement
with Haldane’s conjecture, and a finite-size scaling in
good agreement with the assumption of a WZNW-type of
critical behavior.

*azcoiti@azcoiti.unizar.es
†giuseppe.dicarlo@lngs.infn.it
‡efollana@unizar.es
§giordano@unizar.es

PHYSICAL REVIEW D 86, 096009 (2012)

1550-7998=2012=86(9)=096009(11) 096009-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.096009


A second strategy [20] is based on the determination of
the mass gap at imaginary values of �, which can be
obtained directly by means of numerical simulations, and
the subsequent analytic continuation to real values of �, in
order to check if the mass gap vanishes at some point. The
authors of Ref. [20] found indeed that the mass gap van-
ishes at � ¼ �c for some real �c, and moreover that �c ¼ �
within the errors, again in agreement with Haldane’s
conjecture.

Finally, the third strategy [21–24] makes use again of
numerical simulations at imaginary values of �, in order to
determine the topological charge density, and of a con-
trolled way of performing the analytic continuation to real
� which greatly reduces the uncertainties connected to this
process. Applying this strategy to the CP1 model, which is
expected to be equivalent to theOð3Þmodel, the authors of
Ref. [23] found a richer phase structure, with a first-order
phase transition at � ¼ � for � & 0:5, and a line of
second-order phase transitions with recovery of parity for
0:5 & � & 1:5, with continuously varying critical expo-
nent. At � ’ 1:5, the critical exponent becomes 2, and
parity is recovered analytically.

In this paper, we want to investigate further on this issue,
by applying the strategy of Refs. [21–24] directly to the
Oð3Þ�NL�M. Our aim is to understand the origin of the
discrepancy between the results of Refs. [2,16,17] and
those of Ref. [23]. Such a discrepancy could be of physical
origin, due to the actual inequivalence of the Oð3Þ and
CP1 models, contrary to the standard wisdom; or it
could be of technical origin, due to shortcomings of the
employed strategy in dealing with these models. The plan
of the paper is the following. In Sec. II, we briefly review
the method of Refs. [21–24]. In Sec. III, we describe the
model of interest, discussing in particular the theoretical
prediction for the critical behavior of the model at � ¼ �
in the continuum, and working out the consequences for
the observables relevant to our method. In Sec. IV, we
describe the Oð3Þ�NL�M on the lattice, and we discuss
the results of our numerical simulations. Finally, Sec. V is
devoted to our conclusions and to an outlook on open
problems. Details of the numerical analysis are reported
in the Appendix.

II. THEORIES WITH TOPOLOGICAL TERM
IN THE ACTION AND THE METHOD
OF SCALING TRANSFORMATIONS

In this section, we briefly describe the relevant formal-
ism and notation which will be used in the rest of the paper.
The partition function of a theory with a topological term
in the action is of the general form

Zð�Þ ¼
Z

D�e�S½��þi�Q½�� ¼ e�VFð�Þ; (1)

where � denotes the degrees of freedom of the model,
D� is the appropriate functional measure, S is the

nontopological part of the action, and Q is the quantized
topological charge, taking only integer values; moreover,
Fð�Þ is the free energy density and V the volume of
the system. Clearly, Zð�Þ is a periodic function of
�, Zð�þ 2�Þ ¼ Zð�Þ. In the interesting cases, the
integration measure is invariant under parity (P ), and S
is P -even, while Q is P -odd. As a consequence, Zð��Þ ¼
Zð�Þ; combining this with periodicity, we have that
Zð�þ �Þ ¼ Zð�� �Þ.
While at � � 0, � parity is explicitly broken, at � ¼ �,

any P -odd observable has a vanishing expectation value in
a finite volume; nevertheless, a phase transition may take
place at this point. A convenient order parameter is given
by the topological charge density,

O ð�Þ � �i
hQii�
V

¼ � 1

V

@ logZð�Þ
@�

¼ @Fð�Þ
@�

; (2)

where we have introduced the notation

hO½��ii� ¼ Zð�Þ�1
Z

D�e�S½��þi�Q½��O½��; (3)

for the expectation value of the observable O½��. In the
limit of infinite volume, a nonzero value of Oð� ¼ �Þ
indicates a first-order phase transition, while a divergent
susceptibility O0ð� ¼ �Þ indicates a second-order phase
transition, and so on.
In order to reconstruct the behavior of the order parame-

ter near � ¼ � using numerical simulations, one has to
start from imaginary values of the vacuum angle � ¼ �ih,
with h 2 R. It has been suggested in Ref. [21] that a
convenient observable is the quantity

yðzÞ ¼ hQih
V tanh h

2

; z ¼ cosh
h

2
; z � 1: (4)

It is immediately apparent that under analytic continuation
h ! i�, one has

yðzÞ¼�i
hQii�
V tan �

2

¼Oð�Þ
tan �

2

; z¼ cos
�

2
; z�1; (5)

i.e., in terms of z, the analytic continuation is simply an

extrapolation from z � 1 to z � 1. Notice that yð1Þ ¼
2hQ2ih

V , and yð0Þ ¼ 0, with z ¼ 0 corresponding to � ¼ �.1

The use of this observable is suggested by the antiferro-
magnetic one-dimensional Ising model, where the role of
the � term is played by the coupling with an external
imaginary magnetic field (for an even number of sites).
This model is exactly solvable, and one finds that y
actually depends only on a specific combination of z and

of the antiferromagnetic coupling F, namely yðz; FÞ ¼
Yððe�4F � 1Þ�1

2zÞ. Although this property is exclusive of
the one-dimensional Ising model, nevertheless, one can

1One can have yð0Þ � 0 only if the topological charge density
diverges at � ¼ �, which seems unlikely.
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expect that a similar smooth relation exists between yðzÞ
and y�ðzÞ � yðe�

2zÞ also in other models with � term. The
assumption usually made is that yðzÞ is a monotonically
increasing function of z, vanishing only for z ¼ 0 [i.e., the
order parameter does not vanish for � 2 ð0; �Þ]; this is
indeed the case for the models where the exact solution is
known. The quantity y� is then a monotonic function y�ðyÞ
of y, with the property that y� ¼ 0 at y ¼ 0, so that starting
from the smallest values of y which can be obtained by
numerical simulations at real h, one can therefore reliably
extrapolate toward y ¼ y� ¼ 0, i.e., in the region corre-
sponding to real � ¼ �ih. This is the advantage of this
method, based on scaling transformations, over other
approaches which involve an uncontrolled analytic con-
tinuation from imaginary values of �. Having recon-
structed y�ðyÞ in this region, one can then easily
reconstruct the order parameter at real �. Clearly, the closer
one gets to y ¼ 0, the better the extrapolation is expected
to be: this method is then expected to work well in situ-
ations where the density of topological objects is small,
such as asymptotically free models at weak coupling.

If one is interested only in the critical behavior at � ¼ �,
it is possible to determine the critical exponent without
explicitly reconstructing the order parameter. Consider the
effective exponent ��ðyÞ,

��ðyÞ � 2

�
log

y�ðyÞ
y

: (6)

Assuming a critical behavior O / z� near z ¼ 0, i.e., O /
ð�� �Þ� near � ¼ �, one immediately sees that y / z�þ1

near z ¼ 0, and so

� � lim
y!0

��ðyÞ ¼ 2

�
lim
z!0

log
eð1þ�Þ�2z1þ�

z1þ�
¼ 1þ �: (7)

Analogously, assuming that y�ðyÞ is analytic at y ¼ 0, one

can obtain � from the relation � ¼ 2
� logðdy�dy jy¼0Þ.

The method outlined above has been checked against
explicitly solvable models, and successfully applied to
models where the exact solution is not known (see
Refs. [21–24]). One implicit assumption of this method
is that the function y�ðyÞ has a ‘‘reasonable’’ behavior near
y ¼ 0, i.e., it can be well approximated by polynomials, or
ratios of polynomials, or other ‘‘simple’’ functions. If this
is the case, the critical exponent can then be obtained
with fair accuracy. What has not been done yet is the
evaluation of the impact of logarithmic corrections on the
reliability of the extrapolation. The result Eq. (7) holds
independently of logarithmic corrections to the critical
behavior, i.e., it holds even if O / z� log ð1=zÞ��; never-
theless, the way in which the limit is approached in this
case can make the extrapolation more difficult. This issue
will be discussed further in the next section.

III. THE Oð3Þ NONLINEAR SIGMA MODEL
WITH ATOPOLOGICAL TERM

In this section, we briefly recall the main properties of
the Oð3Þ nonlinear sigma model with a topological term
(Oð3Þ�NL�M) in two dimensions, and we work out the
consequences of the expected critical behavior at � ¼ �
for the method of scaling transformations described in the
previous section.

A. Critical behavior at �¼�

The degrees of freedom of the Oð3Þ�NL�M in two
dimensions are real three-component spin variables ~sðxÞ
of modulus one, ~sðxÞ2 ¼ 1, ‘‘living’’ at the point x 2 R2.
Expectation values are defined in terms of functional inte-
grals as follows:

hO½ ~s�ii� � Zð�Þ�1
Z

D~se�S½ ~s�þi�Q½ ~s�O½ ~s�;

Zð�Þ ¼
Z

D~se�S½~s�þi�Q½ ~s�;
(8)

where the measure is given byD~s¼Q
xd

3 ~sðxÞ	ð1� ~sðxÞ2Þ.
In the continuum,

S½~s� ¼ 1

2g2

Z
d2x @
 ~sðxÞ � @
 ~sðxÞ; (9)

and the topological charge Q½ ~s� is given by

Q½ ~s� ¼ 1

8�

Z
d2x ~sðxÞ � �
�@
 ~sðxÞ ^ @� ~sðxÞ: (10)

Here 
, � ¼ 1, 2, and the sum over repeated indices is
understood; the antisymmetric symbol �
� is defined as
�12 ¼ ��21 ¼ 1, �11 ¼ �22 ¼ 0.
While the theory possesses a mass gap at � ¼ 0, it has

been argued that the mass gap mð�Þ vanishes as � ! �
with the following behavior [25]:

mð�Þ / j�� �j23
��������log

1

j�� �j
��������

�1
2 ¼
�<�;�’�

ð�� �Þ23

�
�
log

1

�� �

��1
2
; (11)

where we have neglected subleading terms.2 This predic-
tion follows from the following considerations for the
continuum theory (see Refs. [12,25,26]). Near � ¼ �, the
effective action for the Oð3Þ sigma model is given by
the SUð2Þ1 WZNW model [13–15], with a marginally
irrelevant, parity-preserving perturbation, and a relevant,
parity-breaking perturbation, whose coupling ~g is a func-
tion of (�� �) which vanishes at � ¼ �. Renormalization-
group arguments relate as follows the coupling and the
correlation length � of the system [25]:

2From now on, we will work in the interval � 2 ½0; ��, so that
we can discard the absolute values.
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1

~g
/ �

3
2ðlog�Þ�3

4 � ½1þOððlog�Þ�1Þ�; (12)

neglecting subleading terms, as m / ��1, one finds

m / ~g
2
3

�
log

1

~g

��1
2
: (13)

It is usually assumed that ~g / ð�� �Þ þ . . . , so that
Eq. (11) immediately follows.

Following Kadanoff, one expects that near the critical
point � ¼ �, the free energy densityFð�Þ is proportional to
the square of the inverse of the correlation length, which in
turn is proportional to the inverse mass gap, so that

Fð�Þ / 1

�ð�Þ2 / mð�Þ2: (14)

The order parameter for parity breaking Oð�Þ, defined in
Eq. (2), is therefore expected to show the following behav-
ior near � ¼ �,

O ð�Þ / @mð�Þ2
@�

/ ð�� �Þ13
�
log

1

�� �

��1
; (15)

where we have neglected subleading terms. This behavior
is conveniently rewritten as follows in terms of the variable
z ¼ cos �

2 (z � 1):

O ð�Þ / z
1
3 log

1

z

� ��1

; z � 1: (16)

The critical behavior is therefore a second-order phase
transition, with recovery of parity, with a critical exponent
� ¼ 1

3 .

For future utility, it is useful to work out the first cor-
rection to the leading behavior Eq. (13). This does not
require the knowledge of the Oððlog�Þ�1Þ terms in
Eq. (12); we have

m/ ~g
2
3

�
log

1

~g

��1
2

�
1�3

8

loglog 1
~g

log 1
~g

þ 1

log 1
~g

r

�
log

1

~g

��
; (17)

where the function rðxÞ is of the form rðxÞ ¼ r0 þ
ðr1 log ðxÞ þ r2Þ=xþ . . . , and we have omitted subleading
terms at large x. We will assume that subleading terms in
the relation ~g / ð�� �Þ þ . . . are suppressed as powers of
�� �, so that they can be safely ignored in the analysis of
the following subsections. Using Eq. (17), we find for the
order parameter

O/ z
1
3

�
log

1

z

��1
�
1�3

4

loglog 1
z

log 1
z

þ 1

log 1
z

~r

�
log

1

z

��
; (18)

where again ~rðxÞ is of the form ~rðxÞ ¼ ~r0þ
ð~r1 log ðxÞ þ ~r2Þ=xþ . . . .

B. Effect of logarithmic corrections on the effective
exponent: extension of the method

We can now work out how the predicted behavior of the
order parameter near the critical point reflects on the
effective exponent �� defined in Eq. (6). Using Eq. (18),
one finds that near z ¼ 0, the quantity yðzÞ has the follow-
ing behavior:

yðzÞ ¼ y0z
4
3

�
log

1

z

��1
cðzÞ; (19)

where y0 is some constant and cðzÞ ¼ 1� 3
4

loglog 1
z

log 1
z

þ . . .

[see Eq. (18)], where the dots stand for subleading terms.
We have therefore for y�ðzÞ

y�ðzÞ ¼ e
�
2
4
3y0z

4
3

�
log

1

z
� �

2

��1
cðe�

2zÞ

¼ e
�
2
4
3y0z

4
3

�
log

1

z

��1
�
1þ �

2

1

log 1
z

þ . . .

�
cðe�

2zÞ

¼ e
�
2
4
3

�
1þ �

2

1

log 1
z

þ . . .

�
yðzÞ; (20)

and so

��ðyÞ ¼ 4

3
þ 2

�
log

�
1þ �

2

1

log 1
z

�
þ . . .

¼ 4

3
þ 1

log 1
z

þ . . . : (21)

Taking the logarithm on both sides of Eq. (19), we find to
leading-order log 1

z ¼ 3
4 log

1
yðzÞ þ . . . , and plugging this

into Eq. (21), we finally obtain

��ðyÞ ¼ 4

3

�
1þ 1

log 1
y

�
þ o

�
1

log 1
y

�
: (22)

The derivative of this function is infinite at the origin; as a
consequence, the effective exponent changes abruptly
at very small y, going from �� ¼ 4

3 ’ 1:33 at y ¼ 0 to

�� ’ 1:43 at y ¼ 10�6 (see Fig. 1). From a practical point
of view, this behavior makes it very hard to obtain the
correct extrapolation from numerical data; one would need
high-precision data at very small values of y in order to
figure out the logarithmic behavior.
It is possible to modify the method of scaling trans-

formations discussed above, in order to reduce the effect
of the logarithmic corrections. Indeed, it suffices to con-
sider a new function �yðzÞ, obtained by multiplying y by an
appropriate factor, designed to cancel the logarithmic
corrections at � ¼ �. A convenient choice is

�yðzÞ � yðzÞ cosh h

2
log

�
1þ 1

cosh h
2

�

¼ hQih
V tanh h

2

cosh
h

2
log

�
1þ 1

cosh h
2

�
: (23)
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It is easy to show that the extra term behaves as

cosh
h

2
log

�
1þ 1

cosh h
2

�
!

h!i�
cos

�

2
log

�
1þ 1

cos �2

�
!
�!�

zlog
1

z
;

(24)

therefore, near z ¼ 0, we have that �yðzÞ / z
7
3, without

logarithmic corrections.3 Compared to similar functions
yielding the desired logarithmic term, this choice has the
advantage that the behavior Eq. (24) of the extra factor has
only corrections of order Oðz2Þ near z ¼ 0, and that the
large-h behavior of �y is the same as that of the topological
charge density, so avoiding possible distortions in the
numerical analysis. Moreover, the extra factor is a mono-
tonically increasing function of z, so that it cannot modify
the monotonicity properties of yðzÞ (which is assumed to be
a monotonically increasing function for the whole method
to work).

It is straightforward now to work out the theoretical
prediction for the behavior of the new effective exponent

�� �ð �yÞ � 2

�
log

�y�
�y
: (25)

Clearly,

�� � lim
�y!0

���ð �yÞ ¼ �þ 1 ¼ �þ 2 ¼ 7

3
: (26)

Near z ¼ 0, we have that [see Eq. (18)]

�yðzÞ ¼ �y0z
7
3

�
1� 3

4

loglog 1
z

log 1
z

þ . . .

�
; (27)

where �y0 is some constant, and also

�y�ðzÞ ¼ e
�
2
7
3 �y0z

7
3

�
1� 3

4

logðlog 1
z� �

2Þ
log 1

z� �
2

þ . . .

�

¼ e
�
2
7
3 �y0z

7
3

�
1� 3

4

�loglog 1
z

log 1
z

þ�

2

loglog 1
z

log 1
z

þ . . .

�
þ . . .

�

¼ e
�
2
7
3

�
1� 3

4

�

2

loglog 1
z

log 1
z

� �
2
þ . . .

�
�yðzÞ; (28)

where the neglected terms in the last passage are of order
Oð½log ð1=zÞ��2Þ. Taking logarithms on both sides of
Eq. (27), one immediately sees that to leading order,
log 1

z ¼ 3
7 log

1
�y þ . . . , and so one finds that4

�� �ð �yÞ ¼ 7

3
� 49

12

loglog 1
�y

log 1
�y

� �
2
þ . . . : (29)

Although there still are logarithmic effects in the approach
to the limit value, the ‘‘jump’’ of the function between
�y ¼ 0 and �y ¼ 10�6 is half as much as that of �� predicted
above (see Fig. 1). Moreover, it is easy to see that correc-
tions to the leading-order relation between log 1

z and log 1
�y

are vanishing as �y ! 0, i.e., log 1
z ¼ 3

7 log
1
�y þ oð1Þ, while

in the relation between log 1
z and log 1

y , there are also

subleading but divergent terms as y ! 0. The bottom line
is that the use of ��� and �y instead of �� and y is expected to
improve the numerical analysis.
In concluding this section, we want to add a few

remarks. First of all, we want to stress that the results of
this section are expected to hold in the continuum limit,
and they are based on the fundamental assumption that the

FIG. 1. (a) Theoretical prediction for ��ðyÞ up to order O log 1
yðzÞ

� �
. (b) Theoretical prediction for ���ð �yÞ up to order O

loglog 1
�yðzÞ

ðlog 1
�yðzÞÞ2

� �
.

3More generally, if the order parameter behaves as O /
z� log 1

z

� ��
, one can define

�yðz; Þ ¼ hQih
V tanh h

2

�
cosh

h

2
log

�
1þ 1

cosh h
2

��

;

in order to take care of logarithmic factors. One has that
�yðz; Þ / z�þ1þ near z ¼ 0, without logarithmic corrections.

4This result holds with a milder assumption on the relation
between ~g and �� �, namely that ~g / �� �þ . . . with

subleading terms suppressed with respect to
loglog 1

���

log 1
���

.
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critical theory at � ¼ � is the SUð2Þ WZNW model at
topological coupling k ¼ 1. Furthermore, the derivation
above is correct provided that the free energy is properly
renormalized. Indeed, it is known that the topological
susceptibility, as well as the higher moments of the topo-
logical charge distribution, diverge in the continuum limit
of the Oð3Þ nonlinear sigma model (at � ¼ 0) [27–29]. As
it has been suggested in Ref. [28] and recently confirmed in
Ref. [29] by means of numerical simulations, these diver-
gencies can be traced back to the first coefficient in the
Fourier expansion of Fð�Þ, i.e.,

Fð�Þ ¼ X1
n¼1

fn½1� cos ðn�Þ�; (30)

with f1 divergent and fn finite for n > 1. In Eq. (14), one
should therefore use FRð�Þ ¼ Fð�Þ � fDIV1 ½1� cos ð�Þ�,
with fDIV1 the divergent part of f1; the following
results therefore hold for the renormalized quantity

yR ¼ @FR

@� tan �
2

� ��1
, and the related quantities �R

� , �y
R and

��R
� , in the continuum.
However, Haldane’s conjecture is formulated for small

but finite lattice spacing a, where fDIV1 ¼ fDIV1 ðaÞ is still
finite. We are therefore interested in the critical behavior of
the model at � ¼ � and at finite a, so that the observable of

interest yL ¼ @FL

@� tan �
2

� ��1
(we are using now the subscript

L for lattice quantities) is a well-defined, finite quantity,
which is a function of z ¼ cos �

2 and a, yL ¼ yLðz; aÞ.
Separating now the renormalized continuum contribution
from the rest, we have yLðz; aÞ ¼ yRðzÞ þ fDIV1 ðaÞ sin �þ
	yLðz; aÞ, where 	yL are finite corrections which vanish as
a ! 0. It is now evident that the divergent term does not
affect the critical behavior at � ¼ � at finite a; as it is / z2,

it is subleading with respect to yRðzÞ / z
4
3, provided that the

theoretical prediction holds. Obviously, the prescription
used to define the divergent part is irrelevant. On the other
hand, the corrections 	yL may change the critical behavior
at finite lattice spacing (and are indeed expected to do
so at strong coupling); therefore, Eqs. (22) and (29) will
describe the critical behavior of the model at finite a only if
yRðzÞ is the leading contribution.

We notice also that the prediction for the quantity �yðzÞ
has been derived using the behavior of the mass gap near
the critical point � ¼ �, i.e., near z ¼ 0, so that it is not
expected to hold for z � 1, where numerical simulations
are feasible. On the other hand, due to its expected smooth-
ness, the prediction for �y�ð �yÞ should hold more generally in
the region of small �y, which is accessible to numerical
simulations at sufficiently small values of the coupling.

IV. NUMERICAL SIMULATIONS
ON THE LATTICE

In this section, we describe the setup of our numerical
simulations on the lattice, and we discuss our results on the

critical behavior of the two-dimensional Oð3Þ�NL�M at
� ¼ � at finite lattice spacing.

A. The Oð3Þ�NL�M on the lattice

In order to compute numerically the functional integrals
Eq. (8), one replaces the continuum by a square lattice� of
finite size V, properly discretizing the action. The simplest
choice for S is

S½~s� ! 1

g2
X
x2�

X2

¼1

½1� ~sðxÞ � ~sðxþ 
̂Þ�

¼ 2�V þ �Slatt½ ~s�; � ¼ 1=g2: (31)

Here, 
̂ is a unit lattice vector in direction 
. The lattice
action Slatt½~s� is identical to the energy of the Heisenberg
statistical model, so that the resulting expression for
Zð� ¼ 0Þ gives (up to an irrelevant constant) the partition
function of this model at temperature 1=� (in units of the
Boltzmann constant). As regards the topological charge,
we have used the geometrical definition of Ref. [30],

Qgeom½~s� ¼
X

x	2�	
qðx	Þ;

qðx	Þ ¼ 1

4�
½ð�AÞð~s1; ~s2; ~s3Þ þ ð�AÞð~s1; ~s3; ~s4Þ�;

(32)

where x	 are sites of the dual lattice �	 (i.e., squares of the
direct lattice�), and ~si ¼ ~sðxiÞ are the spin variables living
on the corners xi of the squares [ordered counterclockwise
starting from the bottom left corner, see Fig. 2(a)]. Here,
we have denoted by (�A) ð~s1; ~s2; ~s3Þ the signed area of the
spherical triangle having as vertices ~s1, ~s2, and ~s3 [see
Fig. 2(b)]; the absolute value of the area A and its sign
�, i.e., the orientation of the spherical triangle, are given
respectively by

A ¼ �1 þ �2 þ �3 � �; � ¼ sign½ ~s1 � ð~s2 ^ ~s3Þ�;
(33)

FIG. 2. (a) A unit square of the direct lattice, i.e., a site of the
dual lattice. (b) Spherical triangle corresponding to the spins ~s1,
~s2 and ~s3.
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with �i the angles at the corners of the spherical triangle;
the two terms qðx	Þ ¼ q1ðx	Þ þ q2ðx	Þ in Eq. (32) corre-
spond to the two triangles in which each square on the
lattice is divided. In terms of the spin variables, one has

exp

�
i

2
ð�AÞ

	
¼ �1½1þ ~s1 � ~s2 þ ~s2 � ~s3 þ ~s3 � ~s1

þ i ~s1 � ð~s2 ^ ~s3Þ�;
2 ¼ 2ð1þ ~s1 � ~s2Þð1þ ~s2 � ~s3Þð1þ ~s3 � ~s1Þ:

(34)

Except for the exceptional configurations

~s1 � ð~s2 ^ ~s3Þ ¼ 0;

1þ ~s1 � ~s2 þ ~s2 � ~s3 þ ~s3 � ~s1 � 0;
(35)

for which the topological charge is not defined, one has
� ¼ 
1 and A < 2�. One verifies directly that Qgeom has

the correct continuum limit; moreover, imposing periodic
boundary conditions, it necessarily takes only integer
values.5

Regarding the numerical simulation of the system, the
nonlinear dependence ofQgeom on the spinsmakes it hard to

envisage fast algorithms; we have therefore used a simple
Metropolis algorithm, supplemented by a ‘‘partial over-
relaxation’’ algorithm to accelerate the decorrelation
between configurations. This partial over-relaxation algo-
rithm simply consists in proposing the usual over-relaxation
step used when simulating the model at � ¼ 0 to the
Metropolis accept/reject step. This algorithm turns out to
be rather efficient, especially when � is large and the
topological content of configurations changes rarely; not-
withstanding its simplicity, it turns out also to be very
effective in decorrelating configurations.

B. Numerical analysis

We have performed numerical simulations of the
Oð3Þ�NL�M at various values of the coupling. For each
value of �, we have chosen 45 values of h, in such a way
that the topological charge was measured for both

z ¼ cosh h
2 and z� ¼ e

�
2z � cosh h�

2 ; we used � ¼ 0:5.

The (real) values of h ¼ i� which we used lie below the
line of (possible) phase transitions determined in Ref. [34],
so that the region where our simulations were performed
and the real-� axis belong to the same analyticity domain
in the complex-� plane. The statistical error on the topo-
logical charge has been determined through binning. The
lattice size was chosen in order for the finite size effects to
be negligible (see Table I).

We have then analyzed the results for the effective
exponent ��� by means of Bayesian fits [35], based on the
theoretical prediction described in Sec. III B. In a nutshell,
a Bayesian fit takes into account our knowledge (the
so-called priors) about the parameters which we are fitting.
A detailed account of the analysis can be found in the
Appendix; here, we will mainly discuss the results.
The fits were based on the following general form of ���:

�� �ð �yÞ ¼ ��þ F

�
log

�y0
�y
; faðkÞj g

�
; (36)

with Fðx; faðkÞj gÞ ! 0 as x ! 1, which can be derived from

the expected critical behavior at � ¼ � (neglecting terms
which vanish as power laws). The values of the parameters

�y0 and aðkÞj are not determined by the theoretical analysis,

and have been fitted to the lattice data.
A first analysis has been carried out by fixing �� to the

theoretical value, �� ¼ 7
3 , and fitting the other parameters,

starting with �y0 only and progressively adding terms, in
order of relevance. We have then used the information
obtained on �y0 to tune the priors for a second fit, leaving
all the parameters free to vary. The results are reported in
Tables II, III, and V, for � ¼ 1:5, � ¼ 1:6 and � ¼ 1:7,
respectively. Finally, at � ¼ 1:6, we have also tried a fit

using information on að1Þ0 , obtained from the fit at fixed ��,
in order to set the corresponding priors; the results are
reported in Table IV. The results of the fit with the largest

TABLE I. Details of the simulations.

� V Statistics

0.9 1002 2� 106

1.2 1002 2� 106

1.5 1002 2� 106

1.6 2002 4� 106

1.7 3502 2� 106

TABLE II. (Left) Result of a Bayesian fit at � ¼ 1:5 with ��
fixed. (Right) Result of a Bayesian fit at � ¼ 1:5 with �� free.

n�

par. log �y0
�2
aug

n�data

n�

par. �� log �y0
�2
aug

n�data

1 �2:3078ð22Þ 12 2 2.3032(18) �2:051ð17Þ 2.1

2 �2:699ð13Þ .64 3 2.3360(46) �2:726ð48Þ .75

3 �2:685ð31Þ .63 4 2.3339(87) �2:69ð14Þ .75

4 �2:65ð20Þ .63 5 2.3462(91) �2:42ð15Þ .62

5 �2:55ð25Þ .62 6 2.343(11) �2:38ð16Þ .61

6 �2:55ð26Þ .62 7 2.348(12) �2:36ð18Þ .60

7 �2:44ð28Þ .61 8 2.346(11) �2:25ð18Þ .57

8 �2:39ð32Þ .60 9 2.344(13) �2:23ð20Þ .56

9 �2:39ð32Þ .60 10 2.346(15) �2:24ð21Þ .56

10 �2:36ð34Þ .59 11 2.347(14) �2:21ð20Þ .55

11 �2:31ð34Þ .59 12 2.345(12) �2:19ð21Þ .55

5It is worth mentioning that the Mermin-Wagner-Hohenberg
theorem [31–33], which forbids the possibility of spontaneous
magnetization in the model at � ¼ 0, can be easily extended to
� � 0 if the geometric definition Qgeom of the charge is used.
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number of parameters are shown in Figs. 3–5, for � ¼ 1:5,
� ¼ 1:6 and � ¼ 1:7, respectively.

From the results of the analysis described above, we
conclude that the lattice data are compatible, within the
errors, with the critical behavior predicted from the
WZNW model, at � ¼ 1:5, � ¼ 1:6 and � ¼ 1:7. On
the other hand, data at � ¼ 0:9 and � ¼ 1:2 led to bad-
quality fits when fixing �� to the theoretical value, and to a
value of �� considerably smaller than the theoretical pre-
diction when allowed to float (� 1:9 for � ¼ 0:9, �2 for
� ¼ 1:2). This shows that the WZNW-like critical behav-
ior does not hold at small�, breaking down at some critical
value yet to be determined, but does not allow us to draw
any conclusion on the details of what happens as one
lowers �. The problem is that our analysis assumes a given
logarithmic factor in the critical behavior of the topological
charge at � ¼ �, rather than obtaining it from the numeri-
cal data. A few attempts have shown that if we vary the
exponent of the logarithmic factor in �y, as described in
Footnote 3, we still obtain a good fit, but the value for the
critical exponent �� resulting from the fit changes, too. For

this reason, we have not attempted a more quantitative
analysis at � ¼ 0:9 and � ¼ 1:2.
Summarizing, our results are compatible with one of the

two following scenarios:
(1) There is a critical value � ¼ �c, above which the

critical behavior of the Oð3Þ�NL�M at � ¼ � is
exactly the one predicted by the WZNW model at
topological coupling k ¼ 1.

(2) The critical behaviour becomes exactly the one
predicted by the WZNW model only at infinite �,

but for� large enough,� * ~�c, the difference is not
appreciable numerically.

As for what happens at small �, there are various possi-
bilities. As one expects the system to undergo a first-order
phase transition at � ¼ � at strong coupling, in the case of
the first scenario above, there may be a sharp change in the
nature of the transition from first order to WZNW-like
second order, with the order parameter vanishing at

TABLE III. (Left) Result of a Bayesian fit at � ¼ 1:6 with ��
fixed. (Right) Result of a Bayesian fit at � ¼ 1:6 with �� free.

n�
par. log �y0

�2
aug

n�data

n�
par. �� log �y0

�2
aug

n�data

1 �1:3427ð47Þ 2.9 2 2.3222(20) �1:136ð40Þ 2.6

2 0.08(18) 2.2 3 2.3633(61) �2:935ð87Þ .62

3 0.13(32) 2.2 4 2.367(10) �2:99ð14Þ .60

4 �2:30ð34Þ 1.2 5 2.3711(86) �2:77ð22Þ .55

5 �2:59ð26Þ 1.1 6 2.373(10) �2:79ð18Þ .55

6 �2:96ð40Þ 1.1 7 2.375(10) �2:76ð21Þ .54

7 �2:83ð44Þ 1.1 8 2.374(14) �2:71ð28Þ .53

8 �2:69ð37Þ .99 9 2.375(14) �2:72ð28Þ .53

9 �2:80ð37Þ .95 10 2.377(15) �2:73ð29Þ .53

10 �2:82ð41Þ .95 11 2.377(15) �2:72ð29Þ .53

11 �2:69ð36Þ .93 12 2.378(17) �2:73ð32Þ .53

TABLE IV. Result of a Bayesian fit at � ¼ 1:6 with �� free (2).

n� par. �� log �y0
�2
aug

n�data

2 2.3050(15) �2:230ð47Þ 11

3 2.3627(61) �2:927ð88Þ .58

4 2.3597(67) �2:892ð91Þ .56

5 2.3601(71) �2:87ð19Þ .56

6 2.3581(76) �2:83ð19Þ .55

7 2.3586(91) �2:82ð21Þ .55

8 2.3580(90) �2:79ð23Þ .55

9 2.357(10) �2:77ð25Þ .55

10 2.357(12) �2:78ð25Þ .55

11 2.357(12) �2:77ð26Þ .55

12 2.357(13) �2:76ð28Þ .55

TABLE V. (Left) Result of a Bayesian fit at � ¼ 1:7 with ��
fixed. (Right) Result of a Bayesian fit at � ¼ 1:7 with �� free.

n�
par. log �y0

�2
aug

n�data

n�
par. �� log �y0

�2
aug

n�data

1 0.200(13) 7.3 2 2.3052(28) 1.10(19) 4.8

2 �2:740ð52Þ 1.3 3 2.3654(98) �3:35ð15Þ .87

3 �2:63ð10Þ 1.2 4 2.367(11) �3:35ð16Þ .85

4 �2:41ð21Þ 1.2 5 2.373(11) �3:07ð19Þ .72

5 �2:39ð24Þ 1.2 6 2.373(11) �3:08ð19Þ .72

6 �2:30ð29Þ 1.2 7 2.376(12) �2:99ð20Þ .68

7 �2:21ð29Þ 1.2 8 2.375(11) �2:85ð21Þ .63

8 �2:23ð33Þ 1.2 9 2.375(12) �2:86ð21Þ .63

9 �2:18ð36Þ 1.2 10 2.377(12) �2:83ð22Þ .62

10 �2:14ð36Þ 1.2 11 2.377(12) �2:77ð22Þ .60

11 �2:12ð38Þ 1.1 12 2.375(12) �2:71ð22Þ .58

FIG. 3. Plot of the effective exponent ���ð �yÞ for � ¼ 1:5,
together with the result of a Bayesian fit at fixed �� ¼ ���ð0Þ
[solid line, Tabel II (left)] and with free �� [long-dashed line,
Tabel II (right)].
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� ¼ � as O / ð�� �Þ� with � ¼ 1
3 . It is however also

possible that the nature of the transition changes continu-
ously, i.e., the critical exponent � varies from 0 to 1

3 as �

increases, either reaching 1
3 at some finite value of � ¼ �c,

or only asymptotically, as in the second scenario above.

V. CONCLUSIONS

In this paper, we have studied the critical behavior of
the two-dimensional Oð3Þ nonlinear sigma model with �
term (Oð3Þ�NL�M) at � ¼ �, by means of numerical
simulations at imaginary �. Using the method of
Refs. [21–24], it is possible in principle to reconstruct
the behavior of the topological charge density for real �,
and so investigate the issue of parity symmetry breaking
at � ¼ �. The theoretical expectation is that parity sym-
metry is recovered at � ¼ � through a second-order phase
transition, the behavior at the critical point being

determined by the SUð2Þ WZNW model [13–15] at topo-
logical coupling k ¼ 1.
Assuming that this is the case, one can show that the

methodofRefs. [21–24] is unlikely to yield the correct critical
exponent, as the large logarithmic violations to scaling at the
critical point make it difficult to reconstruct the critical
behavior from the numerical data. Assuming that the loga-
rithmic violations are known, it is, however, easy to modify
the method in order to overcome this problem. We have then
been able to show that our numerical results for sufficiently
large �, i.e., for sufficiently weak coupling, are compatible
with the expected WZNW-like behavior at � ¼ �, in agree-
ment with previous numerical investigations [2,16,17].
Several issues remain open. Although the modified

method allows us to take care of logarithmic violations,
it is necessary to know them in advance in order for it to
work properly. In fact, an incorrect assumption on these
logarithmic violations could not be detected from the
numerical analysis, and so would lead to an incorrect
evaluation of the critical exponent. The bottom line is
that our modified method can be used to test a theoretical
expectation on the critical behavior of a model with results
from numerical investigation, but would not lead to con-
clusive results if one rather tried to determine the critical
behavior from the numerical data.
For this reason, we have not been able to determine the

critical behavior of theOð3Þ�NL�M at smaller values of�,
although we have been able to exclude that it is the same as
in the WZNWmodel. Also, due to the numerical errors, we
are not able to tell if the critical behavior is exactly
WZNW-like, starting from some critical value of �, or if
it becomesWZNW-like only asymptotically. Further inves-
tigations are therefore required, in order to unveil com-
pletely the phase diagram of the Oð3Þ�NL�M.
Being in agreement with Refs. [2,16,17], the results of

this paper are obviously in disagreement with those
obtained in Ref. [23] for the CP1 model. There are basi-
cally two possibilities: either the Oð3Þ and CP1 model are
not equivalent [23], contrary to the standard wisdom; or
they are equivalent, and the results obtained in Ref. [23] are
affected by the numerical problems related to the logarith-
mic violations, discussed in Sec. III B. In order to settle this
issue, a new analysis of the numerical data of Ref. is
required, along the lines developed in this paper, which
will be discussed in a forthcoming publication.
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FIG. 4. Plot of the effective exponent ���ð �yÞ for � ¼ 1:6,
together with the result of a Bayesian fit at fixed �� ¼ ���ð0Þ
[solid line, Table III (left)] and with free �� [long-dashed line,
Table III (right), and short-dashed line, Table IV].

FIG. 5. Plot of the effective exponent ���ð �yÞ for � ¼ 1:7,
together with the result of a Bayesian fit at fixed �� ¼ ���ð0Þ
[solid line, Table V (left)] and with free �� [long-dashed line,
Table V (right)].
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APPENDIX: BAYESIAN ANALYSIS

The basic idea behind constrained fits, also called
Bayesian fits, is to use the available information on a given
physical problem in order to improve the fits to the
numerical data. We will not go into the details, which
can be found in Ref. [35] and references therein; in this
appendix, we will briefly describe the method in order to
define the relevant notation and terminology. Then, after
slightly extending the theoretical analysis of Sec. III B, we
describe its application to the problem at hand.

1. Constrained fits

Constrained fits are performed in practice by minimizing
a modified chi-squared, the augmented chi-squared �2

aug,

defined as �2
aug ¼ �2 þ �2

prior, where �2 is the usual chi-

squared, and where �2
prior contains extra information which

is used to constrain the fit. If, thanks to prior theoretical
knowledge, one expects the parameters to be fitted, call
them a1; a2; . . . ; an, to be close to the values ~a1; ~a2; . . . ; ~an
within the ranges ~�1; ~�2; . . . ; ~�n, then one sets

�2
prior ¼

Xn
i¼1

ðai � ~aiÞ2
~�2
i

: (A1)

This approach allows us to add as many terms to the fitting
function as desired, contrary to what happens with standard
fits. The goodness of the procedure is judged by the con-
vergence of the errors on the various parameters as the

number of terms is increased, and by the value of
�2
aug

n�data ,

which should be of the order of or smaller than 1. If this is
the case, the resulting error at the end of the procedure is
expected to give a reasonable estimate of both the statisti-
cal and the systematic errors on the parameters of the fit.

2. Subleading terms in the effective exponent

In order to perform a Bayesian analysis of our numerical
data, we need to go a few steps further in the derivation of

the theoretical prediction for the relevant quantities.
Ignoring corrections which contain powers of z, one can
show that the effective exponent ���ð �yÞ is of the following
form:

���ð �yÞ ¼ 7

3

8<
:1þ 1

log �y0
�y

X1
k¼1

Xk
j¼0

YðkÞ
j ð�Þ

loglog �y0
�y

� �
j

log �y0
�y

� �
k

9=
;: (A2)

In order to determine all the coefficients YðkÞ
j ð�Þ, one

should know the subleading terms in the relation between
the mass gap and the coupling ~g, and moreover all the
proportionality constants relating ~g with �� �, the free
energy with the squared mass gap and so on. However, the

coefficients YðkÞ
k ð�Þ are under control, as they are not

affected by the subleading terms and by the unknown
constants (assuming of course that ~g has power,
or power/log corrections only, beside the term linear in

�� �). Explicitly, YðkÞ
k ð�Þ ¼ YðkÞ

k ¼ ð�7=4Þk. One can

therefore resum the corresponding terms in Eq. (A2),
obtaining

���ð �yÞ ¼ 7

3

8<
:1� 7

4

loglog �y0
�y

log �y0
�y

� �
2 þ 7

4 loglog
�y0
�y log �y0

�y

þ 1

log �y0
�y

X1
k¼1

Xk�1

j¼0

YðkÞ
j ð�Þ

loglog �y0
�y

� �
j

log �y0
�y

� �
k

9=
;: (A3)

Notice that YðkÞ
j ð�Þ ¼ 7

3

� �
k ~YðkÞ

j ð�Þ, with the coefficients

~YðkÞ
j ð�Þ expected to be of order Oð10�1Þ, as they contain

factors of positive powers of 34 , and also powers of
�
2 (recall

that we used � ¼ 0:5 in our analysis).
We have then tried a Bayesian fit retaining the first few

terms of Eq. (A3), namely using the following function,

���ð �yÞ ¼ ��

8<
:1� �

loglog �y0
�y

log �y0
�y

� �
2 þ � loglog �y0

�y log �y0
�y

þ ��f1ð �yÞ þ ��2f2ð �yÞ þ ��3f3ð �yÞ þ ��4f4ð �yÞ
9=
;: (A4)

The powers of �� have been chosen so that the coefficients in the functions fi,

f1ð �yÞ ¼ að1Þ0

log �y0
�y

� �
2
; f2ð �yÞ ¼

að2Þ0 þ að2Þ1 loglog �y0
�y

log �y0
�y

� �
3

; f3ð �yÞ ¼
að3Þ0 þ að3Þ1 loglog �y0

�y þ að3Þ2 loglog �y0
�y

� �
2

log �y0
�y

� �
4

;

f4ð �yÞ ¼
að4Þ0 þ að4Þ1 loglog �y0

�y þ að4Þ2 loglog �y0
�y

� �
2 þ að4Þ3 loglog �y0

�y

� �
3

log �y0
�y

� �
5

;

(A5)

are at most of order 1, and actually expected to be of order Oð10�1Þ, as explained above. Here, � ¼ ��=ð ��� 1Þ;
this relation is easily found by substituting �� to the value 7

3 , obtained for the WZNW model, in the theoretical
analysis.
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3. Details of the numerical analysis

As already explained in Sec. IVB, a first analysis has
been carried out by fixing �� to the theoretical value, �� ¼ 7

3 ,

and fitting the other parameters, starting with �y0 only
and progressively adding terms, in order of relevance. As
regards the priors, we assumed a Gaussian distribution for

the coefficients aðkÞj , with central value 0 and �  0:1,

while for �y0, we have chosen central value 0 and �  2.
We report in Tables II (left), III (left) and V (left) the results
for �y0 and for the �2

aug=n
�data, for � ¼ 1:5, � ¼ 1:6 and

� ¼ 1:7, respectively.

We have then used the information obtained on �y0 to
tune the priors for a second fit, leaving all the parameters
free to vary. The central value for �y0 was chosen close to
the result obtained with the first fit, with � equal to the
corresponding error. The results for �� and �y0 are reported
in Tables II (right), III (right) and V (right), for � ¼ 1:5,
� ¼ 1:6 and � ¼ 1:7, respectively. At � ¼ 1:6, we
have also tried a fit in which we have used information

on að1Þ0 , obtained from the fit at fixed ��, to similarly

set the corresponding priors; the results are reported in
Table IV.
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[30] B. Berg and M. Lüscher, Nucl. Phys. B190, 412

(1981).
[31] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[32] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[33] S. Coleman, Commun. Math. Phys. 31, 259 (1973).
[34] G. Bhanot and F. David, Nucl. Phys. B251, 127 (1985).
[35] G. P. Lepage, B. Clark, C. T.H. Davies, K. Hornbostel,

P. B. Mackenzie, C. Morningstar, and H. Trottier, Nucl.
Phys. B, Proc. Suppl. 106, 12 (2002).

CRITICAL BEHAVIOR OF THE Oð3Þ NONLINEAR . . . PHYSICAL REVIEW D 86, 096009 (2012)

096009-11

http://dx.doi.org/10.1016/j.physrep.2008.10.001
http://dx.doi.org/10.1103/PhysRevLett.75.4524
http://dx.doi.org/10.1103/PhysRevLett.75.4524
http://dx.doi.org/10.1103/PhysRevD.56.44
http://dx.doi.org/10.1143/PTP.102.653
http://dx.doi.org/10.1143/PTP.102.653
http://dx.doi.org/10.1143/PTP.106.613
http://dx.doi.org/10.1103/PhysRevD.66.106008
http://dx.doi.org/10.1103/PhysRevD.66.106008
http://dx.doi.org/10.1088/1126-6708/2002/10/062
http://dx.doi.org/10.1103/PhysRevLett.89.141601
http://dx.doi.org/10.1103/PhysRevLett.89.141601
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.66.2429
http://dx.doi.org/10.1103/PhysRevB.36.5291
http://dx.doi.org/10.1103/PhysRevB.36.5291
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1007/JHEP04(2012)117
http://dx.doi.org/10.1103/PhysRevD.86.075006
http://dx.doi.org/10.1103/PhysRevD.86.075006
http://dx.doi.org/10.1007/JHEP12(2010)020
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevD.77.056008
http://dx.doi.org/10.1016/S0370-2693(03)00601-4
http://dx.doi.org/10.1016/S0370-2693(03)00601-4
http://dx.doi.org/10.1103/PhysRevD.69.056006
http://dx.doi.org/10.1103/PhysRevD.69.056006
http://dx.doi.org/10.1103/PhysRevLett.98.257203
http://dx.doi.org/10.1103/PhysRevLett.98.257203
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.023
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.023
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1103/PhysRevLett.92.021601
http://dx.doi.org/10.1103/PhysRevLett.92.021601
http://dx.doi.org/10.1016/0550-3213(82)90058-X
http://dx.doi.org/10.1103/PhysRevLett.53.519
http://dx.doi.org/10.1103/PhysRevLett.53.519
http://dx.doi.org/10.1007/JHEP05(2012)089
http://dx.doi.org/10.1016/0550-3213(81)90568-X
http://dx.doi.org/10.1016/0550-3213(81)90568-X
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1016/0550-3213(85)90253-6
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3

