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We report the first case study of the phase diagram of 2þ 1 flavor strongly interacting matter in �

equilibrium, using the Polyakov-Nambu-Jona-Lasinio model. Physical characteristics of relevant thermo-

dynamic observables have been discussed. A comparative analysis with the corresponding observables in

the Nambu-Jona-Lasinio model is presented. We find distinct differences between the models in terms of a

number of thermodynamic quantities like the speed of sound, specific heat, various number densities, as

well as entropy. The present study is expected to give us a better insight into the role that the superdense

matter created in heavy-ion collision experiments plays in our understanding of the properties of matter

inside the core of supermassive stars in the Universe.
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I. INTRODUCTION

The phase diagram of strongly interacting matter has
been at the center of attention for quite some time now.
Under a variety of extreme conditions of temperature and/
or density the hadrons may overlap and lose their individu-
ality and a new state of matter called quark gluon plasma
may be formed [1]. It is well believed that such a state of
matter existed in the hot early Universe, a few microsec-
onds after the big bang. Deconfined quark matter could
also exist in the core of neutron stars (NSs) [2–4] where the
temperature is relatively low but density is high. So an
understanding of the physics of strongly interacting matter
at such environmental conditions would have important
cosmological and astrophysical significance.

In the laboratory such conditions of large temperatures
and densities can be created by the collision of heavy ions
at high energies. Presently the strongly interacting matter
at high temperature and close to zero baryon densities—a
scenario relevant for the early universe—is being explored
at Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider at
CERN. A wealth of information has been obtained from
the RHIC, and a lot more is expected from both the future
runs there as well as from the Large Hadron Collider. More
recently a variety of energy scans at the RHIC and the
upcoming facility (facility for antiproton and ion research)
at Gesellschaft für Schwerionenforschung are expected to
give us a glimpse of matter in the baryon-rich environ-
ments—the so-called compressed baryonic matter. These

experiments will also be useful in the search for signatures
of critical phenomena associated with a second order criti-
cal end point (CEP).
At the same time, observational data are being collected

by a large number of telescopes and satellites [5] such
as the radio telescopes at the Arecibo, Parkes, Jodrell
Bank, and Green Bank Observatories, the Hubble Space
Telescope, European Space Agency’s International Gamma
RayAstrophysics Laboratory satellite, Very Large Telescope
of the European Southern Observatory, the x-ray satellites
Chandra, XMM-Newton, and NASA’s Rossi X-ray Timing
Explorer, and the Swift satellite. Observations from these
facilities are supposed to tell us about the properties of
strongly interacting matter at high densities relevant for the
astrophysics of compact stars.
Thus on one hand the laboratory experiments are

expected to scan the phase space temperature and various
conserved quantum number densities of strongly interact-
ing matter. On the other hand the astrophysical observations
are expected to uncover the physics for the high baryon
number density region of the phase diagram. It should be
noted here that the physical characteristics of the matter
under consideration may be quite different in the two cases.
The time scale of the dynamics of heavy-ion experiments
is so small that only strong interactions may equilibrate
thermodynamically, while the dynamics in the astrophysi-
cal scenario is slow enough to allow even weak interactions
to equilibrate. Thus a question naturally arises—to what
extent can laboratory experiments be used to infer about the
compact star interiors? The aim of this paper is to address
this question at a preliminary level from the characteristics
of the ‘‘� equilibrated’’ phase diagrams.
One should be able to study the properties of systems

described above from first principles using quantum
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chromodynamics (QCD), which is the theory of strong
interactions. However, QCD is highly nonperturbative in
the region of temperature and density that we are interested
in. The most reliable way to analyze the physics in this
region of interest is to perform a numerical computation of
the lattice version of QCD (lattice QCD). The scheme is
robust but numerically costly. Moreover, there are problems
in applying this scheme for the systems having finite baryon
density. Thus it has become a common practice to study the
physics of strongly interacting matter under the given con-
ditions using various QCD inspired effective models.

Until now various quark models, such as different ver-
sions of the Massachusetts Institute of Technology bag
model [6,7], the color-dielectric model [8,9], and different
formulations of the Nambu-Jona-Lasinio (NJL) model
[10,11] have been used to study the NS structure. Despite
the similarity of the results on the value of the maximum
NS mass, the predictions on the NS configurations can
differ substantially frommodel to model. The most striking
difference is in the quark matter content of the NSs, which
can be extremely large in the case of the equation of state
(EOS) related to the massachusetts institute of technology
bag model or the color-dielectric model, but it is vanish-
ingly small in the case of the original version of the NJL
model [10,12]. In the case of the NJL model it turns out
that, as soon as quark matter appears at increasing NS
mass, the star becomes unstable, with only the possibility
of a small central region with a mixed phase of nucleonic
and quark matter. This may be a result of the lack of
confinement in the NJL model. In fact an indirect relation-
ship between confinement and NS stability has been found
in a study using the NJL model with density dependent
cutoff [13]. Hence it is important to study the EOS from the
Polyakov-Nambu-Jona-Lasinio (PNJL) model [14–16],
where a better description of confinement has been incor-
porated through the Polyakov loop mechanism. Moreover,
a comparison with the NJL model might be helpful in
understanding the role of the Polyakov loop at high chemi-
cal potential.

A detailed study of 2þ 1 flavor strong interactions has
been done by some of us using the PNJL model. The
general thermodynamic properties along with the phase
diagram [17], as well as details of fluctuation and correla-
tions of various conserved charges [18], have been
reported. Here we extend the work by including � equi-
librium into the picture. In the context of the NJL model
such a study was done earlier in Refs. [19,20]. The prop-
erties of pseudoscalar and neutral mesons have been
studied in the finite density region within the framework
of a 2þ 1 flavor NJL model in �-equilibrium [21,22].

We investigate and compare different properties of the
NJL and PNJL models in the T-�B plane. The special-
ization of these studies to the possible dynamical evolution
of NSs and/or compressed baryonic matter created in
heavy-ion collisions will be kept as a future exercise.

The paper is organized as follows. In Sec. II we discuss
our model. In Sec. III we calculate different thermody-
namic properties and present our result and finally we
conclude in Sec. IV.

II. FORMALISM

The supermassive compact objects like neutron stars are
born in the aftermath of supernova explosions. The initial
temperature of a newborn NS can be as high as T �
100 MeV. For about one minute following its birth, the
star stays in a special protoneutron star state: hot, opaque to
neutrinos, and larger than an ordinary NS (see, e.g.,
Refs. [23,24] and references therein). Later the star
becomes transparent to neutrinos generated in its interior.
It cools down gradually, initially through neutrino emission
(t � 105 years) and then through the emission of photons
(t � 105 years) [25], and transforms into an ordinary NS.
The weak interaction responsible for the emission of these
neutrinos eventually drives the stars to the state of �
equilibrium along with the imposed condition of charge
neutrality.
The mass, radius, and other characteristics of such a star

depend on the EOS, which in turn is determined by the
composition of the star [26]. The possible central density of
a compact star may be high enough for the usual neutron-
proton matter to undergo a phase transition to some exotic
forms of strongly interacting matter. Some of the suggested
exotic forms of strongly interacting matter are the hyper-
onic matter, the quark matter, the superconducting quark
matter, etc. If there is a hadron to quark phase transition
inside the NS, then all the characteristics of the NS will
depend on the nature of the phase transition [27,28].
Furthermore, there have been suggestions that the

strange quark matter, containing almost equal numbers of
u, d, and s quarks, may be the ground state of strongly
interacting matter (see Ref. [29] and references therein). If
such a conjecture is true, then there is a possibility of the
existence of self-bound pure strange stars as well. In fact,
the conversion of NSs to a strange star may really be a two
step process [30]. The first process involves the deconfine-
ment of nuclear to two flavor quark matter; the second
process deals with the conversion of excess down quarks to
strange quarks resulting into a � equilibrated charge neu-
tral strange quark matter. There are several mechanisms
by which the conversion of a strange quark may be trig-
gered at the center of the star [31,32]. The dominant
reaction mechanism by which the strange quark production
in quark matter occurs is the nonleptonic weak interaction
process [33]:

u1 þ d $ u2 þ s: (1)

Initially when the quark matter is formed, �d > �s, and
the above reaction converts excess d quarks to s quarks.
But in order to produce chemical equilibrium the semi-
leptonic interactions,
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dðsÞ ! uþ e� þ ��e; (2)

uþ e� ! dðsÞ þ �e; (3)

play an important role along with the above nonleptonic
interactions. These imply the �-equilibrium condition
�d ¼ �u þ�e þ� �� and �s ¼ �d.

Actually, the only conserved charges in the system are
the baryon number nB and the electric charge nQ. Since we
are assuming neutrinos to leave the system, lepton number
is not conserved [10]. Strange chemical potential �S is

zero because strangeness is not conserved. So two of the
four chemical potentials (�u, �d, �s, and �e) are inde-
pendent. In terms of the baryon chemical potential (�B),
which is equivalent to the quark chemical potential (�q ¼
�B=3), and the charge chemical potential (�Q), these can

be expressed as�u ¼ �q þ 2
3�Q,�d ¼ �q � 1

3�Q,�s ¼
�q � 1

3�Q, �e ¼ ��Q. These conditions are put as con-

straints in the description of the thermodynamics of a given
system through the PNJL model.
The thermodynamic potential of the 2þ 1 flavor PNJL

model for nonzero quark chemical potential is [17]

� ¼ U0½�; ��; T� þ 2gS
X

f¼u;d;s

�2
f �

gD
2
�u�d�s � 6

X

f¼u;d;s

Z �

0

d3p

ð2�Þ3 Ef�ð�� j ~pjÞ

� 2T
X

f¼u;d;s

Z 1

0

d3p

ð2�Þ3 ln
h
1þ 3

�
�þ ��e�

ðEf��f Þ
T

�
e�

ðEf��f Þ
T þ e�3

ðEf��f Þ
T

i

� 2T
X

f¼u;d;s

Z 1

0

d3p

ð2�Þ3 ln
h
1þ 3

�
��þ�e�

ðEfþ�f Þ
T

�
e�

ðEfþ�f Þ
T þ e�3

ðEfþ�f Þ
T

i
; (4)

where �f ¼ h �c fc fi and Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
with Mf ¼

mf � 2gS�f þ gD
2 �fþ1�fþ2.

The effective potential U0ð�; ��; TÞ is expressed
in terms of the traced Polyakov loop � ¼ ðTrcLÞ=Nc

and its (charge) conjugate �� ¼ ðTrcLyÞ=Nc, where

L is a matrix in color space given by Lð ~xÞ ¼
P exp½�i

R�
0 d�A4ð ~x; �Þ�, where � ¼ 1=T is the inverse

temperature and A4 ¼ Aa
4�a, A

a
4 being the temporal com-

ponent of the Eucledian gluon field and �a the Gell-Mann
matrices with adjoint color indices a ¼ 1; . . . ; 8. Assuming
a constant Aa

4 and the Ai’s to be zero for (i ¼ 1, 2, 3),� and

its conjugate �� are treated as classical field variables in the
PNJL model. The temperature dependent effective poten-

tial U0ð�; ��; TÞ is so chosen to have exact Zð3Þ center
symmetry and is given by

U0ð�; ��Þ
T4

¼ Uð�; ��Þ
T4

� � ln½Jð�; ��Þ�; (5)

where

Uð�; ��; TÞ
T4

¼ �b2ðTÞ
2

���� b3
6
ð�3 þ ��3Þ

þ b4
4
ð ���Þ2 (6)

with b2ðTÞ ¼ a0 þ a1ðT0

T Þ þ a2ðT0

T Þ2 þ a3ðT0

T Þ3, and

J½�; ��� ¼ ð27=24�2Þð1� 6 ���þ 4ð ��3þ�3Þ� 3ð ���Þ2Þ
the Vandermonde determinant. A fit of the coefficients ai,
bi is performed to reproduce the pure-gauge lattice data
and T0 ¼ 270 MeV is adopted in our work. Finally � ¼
0:2 is used which gives reasonable values for pressure for

the temperature range used here at zero baryon density as
compared to full lattice QCD computations.
For simplicity, electrons are considered as free noninter-

acting fermions [10] and the corresponding thermody-
namic potential is

�e ¼ �
�
�e

4

12�2
þ�e

2T2

6
þ 7�2T4

180

�
; (7)

where �e is the electron chemical potential.

III. RESULTS AND DISCUSSIONS

The thermodynamic potential � is extremized with
respect to the scalar fields under the condition �d ¼ �u þ
�e and �s ¼ �d. The equations of motions for the mean

fields �u, �d, �s, �, and �� for any given values of
temperature T, quark chemical potential �q, and electron

chemical potential �e are determined through the coupled
equations,

@�

@�u

¼ 0;
@�

@�d

¼ 0;
@�

@�s

¼ 0;

@�

@�
¼ 0;

@�

@ ��
¼ 0: (8)

In Fig. 1, we show the typical variation of constituent
quark masses as a function of �q, for two representative

values of electron chemical potential �e ¼ 0 MeV and
�e ¼ 40 MeV, with a fixed temperature T ¼ 50 MeV.
At this temperature, both mu and ms in the PNJL model
show a discontinuous jump at around �q ¼ 350 MeV

indicating a first order phase transition. The jump in
ms is smaller, and is actually a manifestation of chiral

STUDY OF BETA EQUILIBRATED 2þ 1 FLAVOR QUARK. . . PHYSICAL REVIEW D 86, 096006 (2012)

096006-3



transition in the two flavor sector, arising due to the
coupling of the strange condensate to the light flavor con-
densates. On the other hand in the NJL model the quark
masses show a smooth variation at this temperature, indi-
cating a crossover. It is important to note that the constitu-
ent mass of the strange quark goes down to the current
mass at a larger �q in both the models, leading to sort of a

second crossover at around�q ¼ 500 MeV. This will have

important implications for some of the thermodynamic
observables as we discuss below.

The phase diagrams for NJL and PNJL models are
obtained from the behavior of the mean fields, and are
shown in Figs. 2(a) and 2(b) for �e ¼ 0 MeV and �e ¼
40 MeV, respectively. As is evident from the figures, the
broad features of the phase diagrams remain the same in all
cases. The difference between the NJL and PNJL models
arises mainly due to the Polyakov loop, whose presence is
primarily responsible for raising the transition/crossover
temperature in the PNJL model. Thus the CEP for the
PNJL model occurs at slightly higher T and lower �q

compared to the NJL model. Note that the phase diagram
with �e ¼ 0 MeV is identical to the case without � equi-
librium [17]. This is because the minimization conditions
(8) are independent of the electrons except through the
�-equilibrium conditions. However this is true only so far
as the phase diagram is concerned. Various other physical
quantities are found to differ even for �e ¼ 0 as discussed

below. For nonzero �e we find a slight lowering of the
temperature for the CEP by about 10 MeV. This is an
important quantitative difference between the physics of
neutron stars and that of compressed baryonic matter cre-
ated in the laboratory. It is worth mentioning that the CEP
we have obtained corresponds to the chiral phase transi-
tion. Generally in the standard QCD phase diagram, the
chiral and deconfinement phase transitions are shown by a
single boundary. However it was argued and elucidated
that the two transition lines in the T-�B plane are distinct
[34,35]. In this context we would like to mention that in
Ref. [36] the QCD phase diagram has been studied both for
isospin asymmetric and symmetric situations, although
they have not considered the �-equilibrium scenario. The
authors used a two equation of state model, a nonlinear
Walecka model, to describe the hadronic sector and (P)NJL
model for the quark sector. It has been shown in Ref. [36]
that CEP remains unaffected by the isospin asymmetry and
the authors found it to be quite generic for a two EOS
model.
The system under investigation can be characterized

primarily by the behavior of the EOS. Generally for a
many body system, an increase in pressure at large den-
sities is indicative of a repulsive behavior of the interaction
at large densities (large �q) or short distances and an

attractive nature at larger distances or lower densities
[37,38]. Consequentially the energy density will show
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FIG. 2 (color online). Comparison of phase diagram in the NJL and PNJL models at � equilibrium for (a) �e ¼ 0 and (b) �e ¼ 40.
The solid circle and square represent the CEP for the NJL and PNJL models, respectively.
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FIG. 1 (color online). Constituent quark masses as functions of �q for (a) �e ¼ 0 MeV and (b) �e ¼ 40 MeV, at T ¼ 50 MeV.
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similar behavior. The resulting EOS given by the variation
of pressure Pwith energy density 	 is shown in Fig. 3(a) at
T ¼ 50 MeV, for both the NJL and PNJL models, for the
two representative electron chemical potentials. Here again
for the PNJL model there exists a discontinuity due to a
first order nature of the transition, whereas for the NJL
model the EOS is smooth. Beyond this region a smaller
steepening in 	 is visible, that occurs due to a second
crossover feature noted above as the strange quark con-
densate starts to melt. A possible implication for this small
surge may be that in a strange quark star, at a given central
density, the pressure would be somewhat lesser than the
situation without this surge.

Generally, the EOS can be used to study the dynamics of
a neutron star and that of heavy-ion collisions through the
respective flow equations. The main differences would be
due to the presence of � equilibrium and the backreaction
of the nontrivial space-time metric on the EOS for neutron
stars. Such a comprehensive comparative study will be
taken up in a later work.

In Fig. 3(b), the variation of the isentropic speed of
sound squared c2s ¼ @P=@	 is plotted against �q at T ¼
50 MeV. In the NJL model the c2s starts from a nonzero
value, steadily decreases, and then shows a sharp fall
around the crossover region at �q � 320 MeV. This is

followed by a sharp rise, a dip, and then approaches the
ideal gas value of 1=3. In contrast the c2s in the PNJL model
starting from the ideal gas value remains almost constant
up to�q � 200 MeV and then falls sharply to almost zero.

This is followed by a discontinuous jump, a similar dip at
�q � 500 MeV, and a gradual approach to a nonzero value

quite different from the ideal gas limit.
The difference at �q ¼ 0 MeV occurs specifically due

to the Polyakov loop which suppresses any quarklike qua-
siparticles. As a result the c2s is completely determined by
the ideal electron gas. On the other hand those quasipar-
ticles with heavy constituent masses tend to lower the c2s in
the NJL model. The difference at the transition region is
again mainly due to the discontinuous phase transition in
the PNJL model which leads to c2s almost going down to
zero, and a crossover in the NJL model where c2s is small
but nonzero. In Ref. [39] it was noted that for two

conserved charges, pressure is not constant any more in
the mixed phase, rather its variation becomes slower,
resulting in a smaller but nonzero speed of sound. In our
computation, though, we do not find c2s exactly equal to
zero, but to confirm such an effect we need a full space-
time simulation of the mixed phase through the process of
bubble nucleation which is beyond the scope of the present
work.
In both the models the dip around�q ¼ 500 MeV arises

due to the behavior of the strange quark condensate as
discussed earlier. If it were possible to achieve such
extremely high densities in heavy-ion experiments, then
such a dip would slow down the flow and would result in a
larger fire ball lifetime. At even higher�q the c

2
s in the NJL

model approaches the free field limit quite fast but in the
PNJL model it still remains quite low due to the nontrivial
interaction brought in by the Polyakov loop. It would be
interesting to study the implication of the slow speed of
sound inside the core of a neutron star.
Commensurate with the relative stiffening of the equa-

tion of state we find that the compressibility � ¼ 1
n2q
ð@nq@�q

ÞT ,
where nq is the quark number density, behaves accord-

ingly. While � in the NJL model is found to be higher than
that of the PNJL model in the hadronic phase, it is just the
opposite in the partonic phase as shown in Fig. 4(a). In the
NS scenario this would mean that the core of the star would
be much softer compared to the crust if described by the
PNJL model rather than the NJL model.
The variation of the specific heat CV ¼ Tð@s@TÞV , where

s ¼ ð@P@TÞ is the entropy density of the system, is shown in

Fig. 4(b). For a crossover (here in the NJL model) the
specific heat shows a peak. For a first order transition
(here in the PNJL model) the CV is discontinuous. Also
we see that the specific heat in the PNJL model is lower
than that in the NJLmodel for a general variation of�q and

�e. A system described by the PNJL model is thus less
susceptible to changing temperature than that described by
the NJL model.
The variation of compressibility and specific heat shown

here also captures the signature of a phase transition in the
PNJL model and a crossover in the NJL model. Both
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FIG. 3 (color online). (a) Equation of state and (b) isentropic speed of sound, for the NJL and PNJL models at T ¼ 50 MeV.
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compressibility as well as specific heat are second deriva-
tives of � and represent respectively the quark number
fluctuations and energy fluctuations [37]. Discontinuity in
compressibility as well as specific heat indicates a first
order phase transition for the PNJL model. At �q �
500 MeV, both the models exhibit a small peak due to
the onset of melting of the strange quark condensate.

We now consider the net charge density given by nQ ¼
2
3 nu � 1

3nd � 1
3ns � ne, where the number density of indi-

vidual quarks and electrons is obtained from the relations

nu ¼ @�
@�u

, nd ¼ @�
@�d

, ns ¼ @�
@�s

, and ne ¼ @�e

@�e
. For�e ¼ 0,

ne ¼ 0 and we have nu ¼ nd. At large �q, the number

density ns of strange quarks becomes almost equal to the
light quark number densities as the constituent masses of
strange quarks are reduced significantly. So the net charge
density nQ will be close to zero and the system will become

charge neutral asymptotically as shown in Fig. 5(a).
At small �q, nQ � 1 as the individual number densities

themselves are exceedingly small. In fact this feature
continues till the transition region where the light constitu-
ent quark masses drop sharply giving rise to nonzero
number densities. Therefore nQ shows a nonmonotonic

behavior; rising from almost zero it reaches a maxima at
certain�q determined mainly by the melting of the strange

quark condensate and thereafter decreases steadily towards
zero.

For higher �e, charge neutral configuration is possible
even at nonzero moderate values of �q. For small �q, it is

the ne which dominates and keeps nQ negative. As soon as

nu becomes large with increasing�q, nQ goes through zero

and becomes positive. Now since �s and �d are greater
than �u due to � equilibrium, both ns and nd start to grow
faster with the increase of �q. Finally at some �q the net

charge becomes zero due to the mutual cancellation of nu,
nd, and ns, and thereafter it remains negative for higher�q

as d and s quarks overwhelm the positively charged u
quark. The electron number density is fixed for a fixed
value of �e and T, and it is negligible compared to the
quark number densities at high �q. The behavior of nQ is

similar for both the PNJL and NJL models though the
actual values of the various chemical potentials for the
charge neutrality conditions vary.
Given that one may be interested in the charge neutral

condition, e.g., in the case of neutron stars, in Fig. 6
the charge neutral trajectories for the NJL model are
compared with those of the PNJL model along with the
phase diagrams. The trajectories are quite interesting in
that they are closed ones pinned on to the �q axis. They

start off close to �q ¼ Mvac, the constituent quark mass in

the model in vacuum. They make an excursion in the T-�q

plane and join back at a higher �q. There is a maximum

temperature TQ up to which the trajectory goes. Beyond

FIG. 5 (color online). Total charge and quark number densities scaled by T3 as a function of quark chemical potential in the PNJL
model.
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this temperature no charge neutrality is possible. Below
this temperature we have essentially two values of �q

where charge neutrality occurs. There are significant dif-
ferences between the contours of the NJL and PNJL mod-
els in the hadronic phase. However beyond the transition
and inside the deconfined region, the differences subside as
the Polyakov loop relaxes the confining effect leading to
the PNJL model behaving in a similar way to that of the
NJL model.

The behavior of the charge neutral contour is highly
dependent on�e. With increasing�e the contour gradually
closes in towards the transition line. For a given T there are
two�q values where charge neutrality is obtained—one on

the hadronic side and one on the partonic side. As a result
of the closing in of the contour, these two values come
closer to the transition line from opposite sides with
increasing �e. The higher the �e, the closer we are to
the transition region. Now suppose we are looking for an
isothermal evolution of a system, or the isothermal con-
figuration of a system such as the NS. Given the constraint
of charge neutrality we would have a varying �e as the
density profile changes. Similarly if �e is held constant
then charge neutrality would not allow the temperature to
remain fixed throughout and the evolution would take
place along the contours described above. So in general a
combination of T and �e is expected to maintain charge
neutrality in a given system. A practical picture of NSs
which have a profile of a low density crust that gradually
increases in density to a highly condensed core would be

that there is a complex profile for temperature and �e

inside the NS. In fact if there exists a hadron-parton
boundary, it may be either with high temperature or high
electron density.
To contemplate this scenario in the light of the baryon

densities achieved we plot the contours for constant baryon
densities, scaled by the normal nuclear matter density
(n0 ¼ 0:15 fm�3) in Fig. 7 for �e ¼ 40 MeV. The charge
neutral trajectories are also plotted along with the phase
boundary. Obviously with increasing baryon (quark)
chemical potential, baryon density would increase. What
is interesting is the fact that high densities can also occur
for lower chemical potential if the temperature is higher.
For both the NJL and PNJL models at and above 3 times
nuclear matter density the matter seems to be always in the
partonic phase. A little below this density, matter may be in
the partonic phase if it is at high temperature otherwise in
the hadronic phase at low temperature. Thus the actual
trajectory on the phase diagram would determine whether a
hadron-parton boundary in the NS is in the mixed phase or
in a state of crossover. Within the range of the charge
neutral contour we find the baryon density increasing
from a very small value to almost 10 times the normal
nuclear matter density. If�e is increased further the baryon
densities would also be much higher for a given �q. So if

we assume local charge neutrality as well as an isothermal
profile along a hadron-parton phase boundary, the baryon
density close to the phase boundary may be too large. On
the other hand for reasonable densities close to the phase

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600
T

(M
ev

)
µq(MeV)

µe=10 MeV

PNJL
NJL

NQ=0(PNJL)
NQ=0(NJL)

(a)

 0

 50

 100

 150

 200

 0  100  200  300  400  500  600

T
(M

ev
)

µq(MeV)

µe=40 MeV

PNJL
NJL

NQ=0(PNJL)
NQ=0(NJL)

(b)

FIG. 6 (color online). Comparison of charge neutral trajectory in the NJL and PNJL models at (a) �e ¼ 10 and (b) �e ¼ 40.

FIG. 7 (color online). The contour of scaled baryon number density nB=n0 (scaled by normal nuclear matter density) along with a
phase diagram at �e ¼ 40 for (a) the NJL model and (b) the PNJL model (from left nB=n0 ¼ 0:5, 1, 3, 5, 10, respectively).
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boundary it would be impossible to maintain local charge
neutrality along an isothermal curve. In that case it may be
possible that the charge neutrality condition takes the
system around the CEP to hold on to a reasonable density
in the phase boundary region. This leads us to speculate
that the transition in a NS itself may also be a crossover,
quite unlike the picture in most of the studies of NSs.

The net strangeness fraction (ns=nB) along with nB=n0 is
shown in Fig. 8. For a given temperature, there is a critical
�q below which there is no net strangeness formation. At

the critical�q a nonzero ns=nB occurs depending on the T.

This strangeness fraction continues to appear at lower T for
some higher �q. So a given strangeness fraction can occur

only up to a certain critical temperature. The intersection of
lines of constant baryon density and strangeness fraction
indicates the possibility of evolution of a system to higher
(lower) strangeness fraction with an increase (decrease) of
T at a constant density. In the range of 5–10 times nuclear
matter density we see that the strangeness fraction is
increasing significantly towards unity indicating a possi-
bility of formation of quark matter with an almost equal
number of u, d, and s quarks. Similar results have also been
found in other model studies [8]. Chunks of matter with
ns=nB ¼ 1, called strangelets, are expected to be stable
(metastable up to weak decay) relative to nuclear matter in
vacuum [40]. Investigation of these and various other
properties of strange matter will be undertaken in future.

Usually the hydrodynamic evolution of a system is
expected to follow a certain adiabat along which the en-
tropy per baryon number (s=nB) is a constant quantity.
Among the various adiabats the system would choose
one given its initial conditions. In the context of NSs, a
fixed entropy per baryon is expected in a protoneutron star
as well which is very different from a cold neutron star. It is
usually hot and rich in leptons, i.e., electrons and trapped
neutrinos. A few seconds after birth, the matter in the core
of a hot NS has an almost constant lepton fraction (0.3–0.4)
and entropy per baryon (1–2, in units of Boltzmann
constant) [41,42]. The question as to whether the later
evolution of the NS can be described to be one close to

an adiabat is a matter of debate. On the other hand the
commonly used approach of an isothermal evolution looks
not quite favorable according to the above discussion on
the charge neutrality condition.
The behavior of s=nB in a plasma and in a hadron gas

was analyzed within the framework of an extended bag
model by Ref. [43]. A case study of such adiabats was done
in the NJL model in Ref. [44]. It was found that unlike the
prescription of adiabats meeting at the CEP given by
Ref. [45], they meet close to the critical value of�q at T ¼
0 which is incidentally equal to the constituent quark mass
Mvac in the model in vacuum. It was argued in Ref. [44]
that as T ! 0, s ! 0 by the third law of thermodynamics.
Hence in order to keep s=nB constant, nB should go to zero.
This condition is satisfied when �q ¼ Mvac of the theory.

These authors also found similar results for the linear
sigma model. In the PNJL model the introduction of a
Polyakov loop produced a slight change in the configura-
tion of the adiabats [46]. The constraint on the strangeness
number to be zero also was found not to have a very
significant effect [47].
The corresponding picture of isentropic trajectories with

the condition of � equilibrium is shown in Fig. 9. Four
cases are depicted here. Figures 9(a) and 9(b) show the
cases with the 2þ 1 PNJL model at �e ¼ 0 MeV and
�e ¼ 40 MeV, respectively. From these two figures we
find that the electron density does not have a significant
effect on the isentropic trajectories. This means that the
quark degrees of freedom seem to have a dominant effect
in entropy over the electrons. The case with ns ¼ 0, i.e.,
effectively for a 2 flavor system, is shown in Fig. 9(c). In
general the situation is similar. For small�q there is almost

no change in Figs. 9(a) and 9(c) as both the cases are
identical to 2 flavors. At intermediate values strange quarks
start to pop out. Now the contours in Fig. 9(c) appear to be
shifted and bent towards higher �q. This is because for 2

flavors a given baryon number density appears at a higher
�q than that for 2þ 1 flavors. Hence to get a fixed s=nB the

�q required is also higher. At even higher �q the thermal

effects are negligible and hence s=nB become almost

FIG. 8 (color online). The contour of the net strangeness fraction (ns=nB) along with nB=n0 at �e ¼ 40 for (a) the NJL model and
(b) the PNJL model; the values of nB=n0 are 0.5, 1, 3, 5, and 10 (from left).
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independent of the degrees of freedom. Thus again the
contours become identical.

The results in the NJL model are significantly different
from those of the PNJL model as can be seen by comparing
the PNJL results with those of the NJL model shown in
Fig. 9(d). Even for low T and �q there is a significant

entropy generation as there is no Polyakov loop to subdue
the same. Similar differences continue to appear even in
the partonic phase.

Considering a system that has been compressed to a few
times the nuclear matter density, it can try to relax back to
lower densities along the adiabats. Interestingly the isen-
tropic trajectories in the high density domain seem to
behave as isothermals in the PNJL model. However as
soon as the system converts into the hadronic phase, the
adiabats drive it to a steep fall in temperature. We would
like to mention that for a hadronic protoneutron star with
beta equilibrated nuclear matter with nucleons and leptons
in the stellar core, the EOS evaluated in Brueckner-Bethe-
Goldstone theory was found to be similar for both isother-
mal and isentropic profiles [48].

In Ref. [49] isentropic trajectories were obtained in
the PNJL model without the constraint of � equilibrium,
for two different sets of parameters corresponding to an
ultraviolet cutoff in the zero temperature integrals only
(case I) and the same in all integrals (case II). Here we
considered only the first case for regularization and find
similar results.

While the possibility that a neutron star can be described
using adiabatic conditions is a point to be pondered about,

we note here that an excursion of the phase diagram of a �
equilibrated matter is highly possible even in heavy-ion
collisions to some extent. This is because both the isen-
tropic lines as well as the characteristics of the phase
boundary are quite similar for a wide variation of �e and
�q. At the same time one should remember that in the

laboratory conditions ns is strictly zero. Anyway if a
system is found to have traveled along an adiabat with
s=nB ’ 3 to 4, it has most probably traversed close to the
CEP. One can therefore try to correlate different observ-
ables like the enhancement of fluctuations of conserved
charges and s=nB to be in the above range to study the
approach towards the CEP in heavy-ion collisions.

IV. SUMMARYAND CONCLUSION

In this paper we have studied the 2þ 1 flavor strongly
interacting matter under the condition of � equilibrium.
We have presented a comparative study of the NJL versus
the PNJL model. The phase diagrams in these two models
are broadly similar, but quantitatively somewhat different.
The presence of the Polyakov loop delays the transition for
larger values of temperature for a given quark chemical
potential. As a result the CEP in the PNJL model is almost
twice as hot as that in the NJL model. We have illustrated
characteristics of the phase diagram with the behavior of
some thermodynamic quantities like the constituent
mass, compressibility, specific heat, speed of sound, and
equation of state for �e ¼ 0 MeV and �e ¼ 40 MeV at
T ¼ 50 MeV. We found striking differences between the
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NJL and PNJL model in terms of the softness of the
equation of state in the hadronic and partonic phases.

The behaviors of electric charge and baryon densities in
the two models also differ in the hadronic phases to some
extent. The differences become less with increasing elec-
tron density. We explained how the charge neutral trajec-
tory is important in deciding the path along which the core
of the NS can change from hadronic to quark phase. For all
values of �e we find that the contours are all closed ones
and give a restricted range of temperature and densities that
are allowed. We speculated a possible scenario in which
the quark-hadron transition in a NS would be a crossover.
Again the baryon density contours seemed to suggest that
if a system has baryon density three times the nuclear
matter density it is quite surely in the partonic phase. We
also found that the strangeness fraction increases steadily
with increasing baryon density, implying a possibility of
having a strange NS.

The isentropic trajectories were obtained along which a
system in hydrodynamic equilibrium is expected to evolve.
The adiabats flow down from high temperature and low
density towards low temperature and �q ¼ Mvac, the con-

stituent quark mass in vacuum. The adiabats then steeply
rise along the transition line, and thereafter go towards
higher densities with almost a constant slope. For small
s=nB ratio the slope is so small that the isentropic trajecto-
ries almost become isothermal trajectories as well.

To summarize the scenario inside neutron stars we note
that inside a newly born NS the temperature drops very
quickly and gives rise to a system of low temperature
nucleonic matter which may also be populated by hyperons
and strange baryons due to high density near the core. The

star is assumed to be � equilibrated and charge neutral.
Now it is possible that due to some reason, e.g., sudden
spin-down, this nucleonic matter will start getting con-
verted to predominantly two flavor quark matter within a
strong interaction time scale. This transition would start at
the center and a conversion front moving outward will
convert much of the central region of the star. Along the
path of the conversion front, each point inside the star may
lie on an isentropic trajectory. Gradually this system of
predominantly 2 flavor quark matter will get converted to
strange quark matter through weak interactions and finally
a � equilibrated charge neutral strange quark matter will
be produced. The strangeness production occurs mainly
through nonleptonic decay [33]; the system is expected to
lie on a constant density line and move towards the point
with highest strangeness possible at that density. Finally the
semileptonic processes will take over and the system will
then evolve along a � equilibrated charge neutral contour.
The natural extension of the work is to obtain the

detailed evolution of a family of neutron stars starting
with different initial conditions and gravity effects incor-
porated. We hope to report the study in a future publica-
tion. It would also be important to consider colored exotic
states like diquarks [50] that may arise at high densities.
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