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We solve the Bethe-Salpeter equation for a system of a heavy quark-antiquark pair interacting with a

Poincare invariant generalization of screened linear confining potential. In order to get a reliable

description the Lorentz scalar confining interaction is complemented by the effective one gluon exchange.

Within the presented model we reasonably reproduce all known radial excitations of the vector charmonia.

We have found that J=� is the only charmonium left below naive quark-antiquark threshold 2mc, while

the all excited states are situated above this threshold. We develop a method which is able to provide a

solution of full four dimensional Bethe-Salpeter equation for the all excited states. We discuss the

consequences of the use of the free propagators for calculation of excited states above the threshold. The

Bethe-Salpeter string breaking scale � ’ 350 MeV appears to be relatively larger then the one defined in

various potential models � ’ 150 MeV.
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I. INTRODUCTION

Excited meson spectroscopy is a keystone experimental
output, which is essential for understanding of quark-
antiquark interaction. The dynamics of meson constituents
is driven by solely known strongly interacting quantum
field theory—quantum chromodynamics. The explanation
of quarks and gluons confinement is one of the great
challenges of the theory of strong interaction. The same
confining forces are responsible for a large degeneracy
which emerges from the spectra of the angularly and
radially excited resonances. As reported in Refs. [1–4]
such degeneracy is observed in p �p annihilation by the
Crystal Ball collaboration at LEAR in BERN [5]. Similar
can be deduced from heavy quarkonia production in eþe�
annihilations. Recently, BABAR, Belle, BESS, and LHCb
experiments continue collection of various meson experi-
mental data.

Following ideas of Ref. [6], confinement in heavy flavor
sector has typically been associated with a linearly rising
potential between constituents [7]. The spin degeneracy
observed in heavy quarkonia spectrum tell us that the main
part of confining interaction should be largely spin inde-
pendent. A various lattice fits leaded to various predictions
for the potential between quark-antiquark states. A well-
known Cornell parametrization of the static Wilson loop
derived potential [8,9],

VðrÞ ¼ ��=rþ �r (1)

has appeared to be suited for description of the first few
excited mesons.

Recently in Refs. [10–12] it has been found that the
meson spectroscopy is better described by ‘‘confining’’
potential which is bounded from above. While in the
absence of dynamical quarks the nonrelativistic static

potential can eventually show up a linear asymptotic, it
should be flattened in large distance due to the string
breaking associated with light hadron productions. In
this respect, the exponential potential can be regarded
as a screened version of the linear potential. The screen-
ing effect should be universal, e.g., scheme and gauge
independent property of low energy QCD as the creation
of the light quark-antiquark pairs is energetically favor-
able and pions and other light mesons is observable fact.
The screening could be included in order to explain
observed hierarchy of radially excited heavy mesons.
Obviously, the spectrum deviates from the linear Regge
trajectory, for a proposal of 5s and 6s charmonium can-
didate see Ref. [13], however recall the deviation from the
linear Regge trajectory is expected in the light meson
sector as well [14].
The Coulombic part of the potential is naturally ex-

pected in QCD, however as shown recently, it can be
suppressed in the charmed meson sector by a not yet
understood mechanism [15]. Furthermore, it is related
with gluon exchange then screening of Coulomb potential
is expected as well. This more subtle matter could be
related with soft gluon mass generation [16,17] through
the Yang-Mills Schwinger mechanism. Actually the dy-
namical gluon mass generation is suggested by finiteness
of the lattice gluon propagator in the deep infrared, for the
recent lattice data on gluon propagator in Landau gauge
see Ref. [18]. We expect the screening mass characterizing
string breaking and the soft gluon mass have similar
size ’ �QCD.

For bound states which lie above the naive quark-
antiquark threshold, the Bethe-Salpeter equation (BSE) ker-
nel becomes singular, which causes many usual numerical
treatments to fail and/or become impossible in practice. To
the author’s knowledge, a plethora of solutions have been
obtained in relativistic quantummechanic [19] or by solving
various phenomenological 3D reduction of BSE [20,21],*sauli@ujf.cas.cz
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however comparison with the original BSE is completely
missing. Theway of three-dimensional reduction of the BSE
is rather arbitrary and difficult to control without keeping the
solution of the original BSE. Actually, choice of 3d equation
has a large effect already for the ground states. In the study
[20] 200 MeV difference between equal time and certain
quasipotential equation has been found for the charmonium
ground state l ¼ 0. This increases slightly for higher l as
well. The differences between Schrödinger and 3d approxi-
mated BSE spectra appears to be more significant for higher
excited states, where following Ref. [20] the difference has
been estimatedMQM �MET ’ 300 MeV for l ¼ 4, 5 char-

monia. The comparison between various relativistic approx-
imations has not been studied for radially excited states,
however we expect very similar effects there. From all this is
apparent that relativistic covariance is important for char-
monium and it will be useful to have the solution without
any 3d approximation. Due to this reasoning, using single
component approximation, but keeping the full four dimen-
sionality of BSE we study the effect of retardation in the
slopes of radially excited vector mesons. The experimental
knowledge of heavy vector quarkonia is the main reason
why we concern spin 1 mesons as a first (as time is being the
pseudoscalars have been computed already in Ref. [22]).

II. KERNEL FOR BETHE-SALPETER EQUATION

In the quantum field theory the two body bound state
is described by the three-point bound state vertex function,
or equivalently by the Bethe-Salpeter amplitude. Both of
them are solutions of the corresponding covariant four-
dimensional BSE [23]. In principle, common framework of
Schwinger-Dyson andBSEs offers uniquePoincare invariant
generalization of the quantum mechanical picture sketched
above, however practical solutions are always incomplete
due to the truncation of the equations system. Because of this
fact we rather phenomenologically estimate what should be
the form of the BSE kernels here. In this paper we use
‘‘confining’’ interaction kernel of the form

VsðqÞ ¼ C

ðq2 ��2Þ2 ; (2)

which is certain screened form of ’ 1=q4 scalar interaction.
The remaining considered part of the interaction kernel
has the Dirac decomposition identical with the one gluon
exchange ’ �

�
��Vv�

�
�0�0 .

For clarity we write down the BSE completely here

S�1ðqþ P=2Þ�ðp; qÞS�1ðqþ P=2Þ ¼ �i
Z d4k

ð2�Þ4 ���ðk; PÞ��G
��ðk� qÞ � i

Z d4k

ð2�Þ4 �ðk; PÞVsðk� qÞ;

G��ðk� qÞ ¼ g��Vv ¼ g2g��

ðk� qÞ2 ��2
g

:
(3)

Two scalar functionsVs andVv in (3) complete our simple
Poincare invariant generalization of quantum mechanical
potentials. Here, clearly G�� represents effective gluon
propagator in Feynman like gauge, where the effective soft
gluon mass �g has been introduced. The double pole scalar

interaction Vs leads to regular exponential potential in the
position space. Actually, in heavy quark limit one can con-
sider three-dimensional potential

VQM
s ð ~kÞ ¼

Z 1

0
dr

4�r sinðkrÞ
k

VðrÞ ¼ �
�8�

ð ~k2 þ�2Þ2 ; (4)

where the potential in position space reads

VðrÞ ¼ ��
e��r

�
: (5)

Thus in a certain sense the BSE model considered in this
paper represents relativistic generalization of the models
considered in Refs. [10,11]. S in Eq. (3) stands for charm
quark propagator, which in our simplest approximation is
taken as

S�1ðlÞ ¼ 6 l�mc; (6)

and �V represents the Bethe-Salpeter wave function which
has the general form:

�Vðq;PÞ ¼ 6	�V0 þ 6P	:q�V1 þ 6q	:q�V2 þ 	:q�V3

þ ½6	; 6P��V4 þ ½6	; 6q��V5 þ ½6q 6P��V6 þ i�5t�V7;

(7)

with t� ¼ 	����q
�P�	�, 	2 ¼ �1, 	:P ¼ 0.

Munczek and Jain [24] have shown that V0 component
is dominant for the all ground state mesons, which domi-
nance is particular for mesons made from heavy flavor
(anti)quarks. The same is valid for the case of all pseudo-
scalar radial excitations [22], which strongly argue for that
if there is a dominant component it stays to be the dominant
one for higher excited states independently on the meson
spin. Therefore we assume the same applies for excited
vectors here, and we neglect all other components in the
presented study.
Within the approximation, the Bethe-Salpeter equation

in the rest frame reads

�V0ðpE; PÞ ¼ �p2
E �m2 � P2=4

ð�p2
E �m2 þM2=4Þ2 þ q24M

2
I0; (8)

where
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I0 ¼ �
Z d4kE

ð2�Þ4 ½�2Vv þ Vs��V0ðkE; PÞ;

Vv ¼ g2

q2E þ�2
; Vs ¼ C

ðq2E þ�2Þ2 ;
(9)

where we have performedWick rotation into the Euclidean
space. For Euclidean momenta we use the convention

kE ¼ ðk4; ~kÞ, k2E ¼ k24 þ k2, while the total momentum is
kept timelike P2 ¼ �P2

E ¼ M2 as required for the bound
states. An extra problem arises for bound states which are
heavier then the sum of constituents quark masses. As we
are using propagators with single real poles, the Bethe-
Salpeter wave function becomes singular since it is pro-
portional to the product of the quark propagators. For the
vertex function, the thresholdlike singularity should appear
for the solution with P2 > 4m2

q. Because of this fact, the

numerical integration requires special numerical care and
we found it very advantageous to define the following
auxiliary function

AðpE; PÞ ¼ �V0ðpE; PÞGAðk; PÞ;

GAðk; PÞ ¼
�

p2
E þm2 þ P2=4

ð�p2
E �m2 þM2=4Þ2 þ p2

4M
2 þ 	4

��1
;

(10)

where 	 is a small regulator mass satisfying 	4 � p2
4M

2.
Within the numerics the regulator can be limited to zero. In
the limiting case we should add the residuum contribution
stemming from the propagator pole. In the presented study
we keep the regulator always finite and we neglect the
residuum as well. It avoids complicated analytical continu-
ation to the Minkowski space in this case.

Finally we integrate over the angles of 3d momentum
subspace. Explicitly written, the BSE (8) reads

AðpE; PÞ ¼
Z þ1

�1
dk4
ð2�Þ

Z 1

0
dkk2AðkE; PÞGAðk; PÞ

�
Z d�3d

ð2�Þ3 ½�2Vv þ Vs�; (11)

which can be finally rewritten as

Aðp; PÞ ¼
Z 1

�1
dk4

Z 1

0
dkAðk; PÞGAðk; PÞ½Ks þ Kv�;

Ks ¼ C

ð2�Þ3
k2

½k2E þ p2
E � 2k4p4 þ�2�2 � 4k2p2

;

Kv ¼ � g2

ð2�Þ3
k

p
ln

�
k2 þ p2 � 2k4p4 � 2kpþ�2

k2 þ p2 � 2k4p4 þ 2kpþ�2

�
;

(12)

where the functions Kv;s stem from � integration:

� 2
Z d�3d

ð2�Þ4 Vv ¼ Kv;
Z d�3d

ð2�Þ4 Vs ¼ Ks: (13)

III. NUMERICAL SOLUTION OF THE
CHARMONIUM BSE

It is well established that in unconfining theory a bound
states spectra obtained through the BSE and through the
corresponding Schrödinger equation mutually agree up to
the small relativistic correction. In opposite, the solution of
BSE for excited states, which lie above constituents particle
threshold represents a rather difficult numerical problem and
no comparison is known in the literature, at least to the
author.
Because of the presence of the kernel singularity, more or

less standard matrix methods [25] fail since the inversion of
numerical matrices is not possible. Also we do not explore
more or less conventional expansion into the orthogonal
polynomials which loses its efficiency when, as one expects,
a relatively large number of polynoms is necessary. Instead,
we solve the full two-dimensional integral equation by the
method of simple iterations. For this purpose we discretize
P2 and step by step we are looking for the solution of the
BSE with given P2

i .
The BSE for bound states is a homogeneous integral

equation and it satisfies usual normalization condition.
Instead of using this, to achieve a good numerical stability
of the iteration process we implement normalization con-
dition through an auxiliary function 
ðPÞ and solve the
following equation:

Aðp; PÞ ¼ 
ðPÞ
Z

dk4
Z

dkAðk; PÞGAðk; PÞKE: (14)

The following has been found as a particular useful
choice for the function 
ðPÞ


�1ðPÞ ¼
Z

dk4
Z

dkAðk; PÞ2fðk; PÞ; (15)

where arbitrary positive weight function f was chosen to be
Gaussian in k and k4. Implementation of such 
ðPÞ makes
BSE nonlinear but mainly numerically stable. Clearly the
BSE solution has been identified when 
ðPÞ ¼ 1 and when
the difference between consecutive iterations vanishes at the
same time. We found that these two conditions happen
simultaneously, while for other values of parameters P,

ðPÞ � 1 the numerics do not provide vanishing difference
between iterations.
Numerical convergence of 
 ! 1 depends on the density

of the integration points in the important domain of mo-
menta. Recall here that even for 1-dim reduced BSE, see
Ref. [26], a relatively large number of integration points was
required in order to get a precise solution. In the presented
study we are dealing with 2-dim integral equation with
principal value integration, thus to achieve the same accu-
racy it necessarily enlarge number of integration points.
Compromising between computational time and an esti-
mated numerical error we are satisfied with the use of
maximum Nk4 � Nk ¼ 184 � 96 Gaussian points. In order

to ensure the numerical stability we varied integration
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volume (in p-space) and the number of points as well. In
order to get optimal density of integration points the upper
boundary � is introduced in momentum integrations. More
precisely, for the variable k we map single integration
interval (0, 1) into ð0;�Þ by simple rescaling [and ð�1; 1Þ
into ð��;�Þ for variable k4]. To assure convergence 
 ! 1
the density is varied such that for lower states smaller � is
used, while highly excited states are better obtained within
higher�, with some cost of numerical precision in the latter
case. The numerical dependence on N is shown in Table I.
We also compare with the experimental data in Table II and
Fig. 1. For the purpose of brevity we do not discuss all
numerics here leaving more detailed discussion elsewhere.
However, we can mention that as a numerical test we
have checked the numerical method against the scalar

models [27], where the resulting BSE spectra have been
already obtained by different (and in fact more accurate)
method. Thus we solve 2-dim BSE on a grid given by the
component of relative momentum k4 and k within the
procedure described above, which provides the spectra
within ’ 1=N% accuracy (N is number of points in the
single, say k-integration). As the regulator 	 is implemented
here, we expect the accuracy of excited vectors spectrum
studied here could be comparable with the one of scalar
models solutions. In our case we estimate the 1% numerical
error in determination of bound state masses. Such numeri-
cal error is considerably smaller then the expected amount
of energy shift due to the open threshold effects (effect
associated with D meson production, not be confused with
unphysical quark-antiquark threshold. An open charm is
impossible to incorporate in the formalism of homogeneous
BSE and it is completely ignored here).
For clarity we restrict ourself to the dynamics of char-

monia in this paper. The numerical values of the models are
the following

C ¼ 5:418 GeV2; �s ¼ g2=ð4�Þ ¼ 0:2

mc ¼ 1:5615 GeV; � ¼ �g ¼ 364:35 MeV
(16)

and we use the experimental J=� mass to fine-tune the
correct scale at the end (in units where mc ¼ 1:5; C ¼ 5
we have MðJ=�Þ ¼ 2975). In order to improve the nu-
merical stability the infrared regulator in (10) was adjusted
as 	 ¼ 0:03 GeV (for � ¼ 1000 GeV, 	 value is taken
slightly larger then the smallest interval between integra-
tion points of the variable k4).

TABLE I. Spectrum obtained for various number of mesh points N ¼ 32, 58, 72, 96 used at each single integral. The density of mesh
point is regulated by � ¼ 1000 GeV and infrared regulator 	 ¼ 0:03 GeV is used, 
 and the iteration error � are displayed for
completeness. There is one more state observed at 3.880 (0.998, 2:5E� 07) for N ¼ 58, which is skipped in the table for better
comparison. MJ� ¼ 3098 is used as a fit.

Mð32Þ 
ð32Þ �ð32Þ Mð58Þ 
ð58Þ �ð58Þ Mð72Þ 
ð72Þ �ð72Þ Mð96Þ 
ð96Þ �ð96Þ
3.717 0.995 1:2E� 06 3.642 1.398 0.006 3.639 1.444 0.008 3.636 1.458 0.008

3.832 1.015 1:5E� 05 3.746 1.174 0.001 3.745 1.200 0.002 3.733 1.223 0.002

3.914 0.994 2:0E� 06 3.865 0.998 2:5E� 07 3.867 1.000 1:7E� 09 3.855 1.017 1:8E� 05
4.040 0.993 2:5E� 06 3.999 1.027 4:5E� 05 3.996 0.979 2:6E� 05 3.980 0.985 1:23E� 05
4.151 0.983 1:7E� 05 4.061 1.020 2:5E� 05 4.049 0.983 1:7E� 05 4.033 1.01 2:24E� 05
4.289 1.012 1:0E� 05 4.177 1.024 3:7E� 05 4.168 1.002 3:5E� 07 4.149 1.00 5:24E� 06
4.458 1.024 3:7E� 05 4.277 1.030 5:7E� 05 4.262 1.002 3:5E� 07 4.243 1.01 2:03E� 05
4.604 1.025 4:0E� 05 4.402 1.013 1:1E� 05 4.340 0.977 3:1E� 05 4.365 1.02 1:3E� 05
4.840 1.017 1:8E� 05 4.549 0.992 3:5E� 06 4.530 0.980 2:4E� 05 4.503 1.02 1:4E� 05
5.008 1.021 1:8E� 05 4.690 0.998 1:4E� 07 4.671 1.007 3:98E� 06 4650 1.005 5:1E� 06
5.318 0.989 7:00E� 06 4.890 0.99 1:4e� 07 4871 1.01 2:07E� 05
5.518 1.009 5:5E� 06 5.055 0.998 1:4E� 07 5.030 1.009 5:09E� 06
5.934 1.018 2:1E� 05 5.337 1.013 1:0E� 05 5.308 1.01 1:20E� 05
6.171 1.015 1:5E� 05 5.527 0.987 9:8E� 06 5.496 1.02 2:60E� 05
6.728 0.998 1:6E� 07 5.909 0.97 3:5E� 05
� � � � � � � � � 6.140 1.00 2:5E� 06

TABLE II. Comparison with PDG data (second column) and
calculated spectrum. Quantum numbers correspond with
assumed quantum mechanical assignment [12].

M96 PDG n, l

3097 3097 1s

3640 3686 2s

3730 3772 1d

3850 � � �
3980 � � �
4030 4039 3s

4150 4153 2d

4240 4263 4s

4360 4361 3d

4450 4421 5s
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As one sees from the Table I, numerically 
 � 1 for the
first two states. In fact 
 do not cross unit value, instead it
posesses local minima, which are stated in the Table.
Further, when comparing with the experimental data, there
are two more BSE solutions with masses in between c 00
and c 000, while the rest of calculated excited states quite
nicely agree with the data. We have not found a simple way
(by varying parameters C, �,mu,mc) to exclude these two
additional states from the solutions and we suggest the
reason why they are here in the section bellow.

IV. CONCLUSION AND DISCUSSION
OF THE RESULTS

We have formulated Lorentz covariant model for vector
quarkonia, which is based on the BSE with phenomenologi-
cal kernel. With aforementioned exception of two additional
states, the resulting spectrum is comparable with the experi-
ments whenever the experimental data are available. The
agreement between our results for higher states and the one
measured in the experiments is impressive, the remaining
difference between theory and experiments is due to the
approximations, e.g., due to the interplay of quark and D,
D� esonic degrees of freedom, such couple channel effects
are difficult to incorporate into the Bethe-Salpeter analysis
presented here.

The ground state is situated near below the naive quark-
antiquark threshold, while the all excited states lie above this
threshold. We argue two more states which appear are the
artefact of inappropriate usage of free quark propagators.
The question of confinement is beyond the scope of the
presented work, however we expect some changes when
confinement is correctly incorporated. First of all, we expect
the quark propagators should not have a free particle pole
and therefore the BSE could not posses ordinary threshold
singularity in this case. In the paper we are dealing with BSE
where the propagators describe free—instead of confined—
quarks. Therefore the threshold singularity unavoidably

appears as an artefact here. The lowest lying excited char-
monia are the one closest to the naive quark-antiquark
threshold and we naturally must expect some defect in the
calculated spectrum. Here, very likely it leads to the men-
tioned appearance of two more excited states that we cannot
find in the PDG, (for a recent attempt to find more definite
answer see Ref. [22]).
The model presented is very simple: The BSE kernel

consists from vectorial effective one gluon exchange
and from the scalar infrared enhanced—double pole—
interaction. A possible vector-scalar admixture of
‘‘confining’’ interaction has not been considered and we
expect it must be small in order to suppress large hyperfine
splitting. The string breaking mechanism is incorporated
through the screening mass � which is found to be com-
parable to �QCD in our BSE study. The presence of

Lorentz scalar interaction complemented by vector-
vector interaction kernel appears to be a very important
part of the model. No individual—scalar nor vector—
interactions provide quarkonium spectrum [28].
Nonrelativistic quantum mechanical limit of the scalar

interaction is given by the exponential potential.
Consequently the spectrum of radially excited states do
not correspond with linear Regge trajectory but the gap
between the states increase with the mass of the bound
states. This is in very good agreement with recent experi-
ments. The intercept—the gap between J=� and the first
excited state �ð2SÞ is driven by the interplay of the
strength of vectorial and scalar interaction. As we have
checked numerically, the coulombic term can be regarded
as a perturbation only for existing energy levels for which
it slightly shifts existing energy levels. On the other side,
its omission would lead to the appearance of new states
below existing 2S mass. We found that the correct adjust-
ment of the energy intercept is a major effect of the
effective one gluon exchange interaction. The running
coupling is fixed here and its numerical value differs sig-
nificantly from the one known from quantum mechanical
phenomenology (it is more then two times smaller). At
present stage we have no simple explanation of this fact. If
our results are considered seriously then it can suggest that
the average of typical square of gluon four-momenta inside
quarkonium can be considerably larger then naively ex-
pected from the Schrödinger equation. A possible expla-
nation is that the soft gluon mass is larger then the value
we consider here, �g ¼ 700–800 MeV, however quantum

mechanical limit has not yet been studied in such case.
Further, comparing with the expected quantum mechanical
limit then Bethe-Salpeter string breaking scale � ’
350 MeV appears to be relatively larger then the one
used in potential model � ’ 150 MeV [10,11].
There is another challenging aspect of this problem, as

most of the Schwinger-Dyson equations–BSE studies rely
on the ladder truncation of the equations system. After the
inclusion of running quark masses, renormalization wave

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
3000

3500

4000

4500

5000
M

 [
G

eV
]

MPDG

BSE

FIG. 1 (color online). Comparison of BSE solution with PDG
data for vector charmonium.
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functions, the techniques can be very useful in calculation of
heavy-light and light flavored mesons as well. We also
expect that the knowledge of off-shell behavior (e.g., q:P
dependence) of the amplitudes is important in various

hadronic processes. Because of this it is worthwhile to
extend our study to the more complete calculations, which
open possible first principle calculation of production and
decay mechanisms of heavy flavor hadrons.
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