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We study the structure of the energy-momentum tensor of radial excitations of Q-balls in scalar field

theories with U(1) symmetry. The obtained numerical results for the 1 � N � 23 excitations allow us to

study in detail patterns how the solutions behave with N. We show that although the fields �ðrÞ and
energy-momentum tensor densities exhibit a remarkable degree of complexity, the properties of the

solutions scale with N with great regularity. This is to the best of our knowledge the first study of the

D-term d1 for excited states, and we demonstrate that it is negative—in agreement with results from

literature on the d1 of ground state particles.
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I. INTRODUCTION

The energy momentum tensor T�� (EMT) is a central

quantity in the field theoretical description of particles. Its
matrix elements [1] give the mass [2], the spin [3], and the
constant d1 of a particle [4] to which we shall loosely refer
as the D-term. Though not known experimentally, d1 is a
particle property as fundamental as mass, spin, electric
charge, or magnetic moment. The physical interpretation
of d1 is that it is related to the distribution of internal (in
hadrons: strong) forces, see Ref. [5].

EMT form factors found little practical applications [6]
until it became clear that they can be accessed by means of
generalized parton distribution functions [7,8] in hard ex-
clusive reactions such as deeply virtual Compton scattering
[9–12]. Since that, the EMT form factors were investigated
in theoretical frameworks including chiral perturbation
theory, lattice QCD, or effective chiral field theories, see
Refs. [4,5,13–19].

Remarkably, in all theoretical studies d1 of pions, nucle-
ons, nuclei was found negative. A possible explanation of
this observation provide chiral soliton models [17,18],
which describe the nucleon in the limit of a large number
of colors Nc in QCD [20]. Results from these models gave
rise to the suspicion that the negative sign of d1 is a natural
consequence of stability [17,18].

To shed some light on the question whether d1 < 0 is a
general and model-independent feature, in Ref. [21] the
EMT of Q-balls was studied. These nontopological soli-
tons appear in theories with global symmetries, and it is the
appearance of the associated conserved charge(s) which
plays a crucial role for their existence [22–24].

Q-balls have numerous applications in astrophysics,
cosmology, and particle physics [25–45]. They provide
an extremely fruitful framework for the purpose of clarify-
ing the relation of d1 and stability arguments. In Ref. [21],
an extensive study of the EMT structure of ground state
solutions was presented. It was found numerically, and a
rigorous proof was formulated that d1 of Q-balls is

negative. But it also was shown that stability is not a
necessary condition for d1 to be negative: all (stable,
meta-stable, unstable) ground state solutions have d1 < 0,
and the general proof of Ref. [21] covers all cases.
This work is dedicated to the study of the EMTof radial

excitations of Q-balls in scalar field theories with U(1)
symmetry. To best of our knowledge, this is the first study
of the D-term going beyond the description of a ground
state. Radial excitations ofQ-balls were studied previously
in Ref. [36] where the ground state and the first two excited
states N ¼ 1, 2 were found for a fixed value of the charge
Q, and in Ref. [37] where the mass-charge relation of the
N ¼ 1 radial excitation was investigated in detail.
In this work, we will work with a fixed value of the

angular velocity ! in the U(1) space, and study the first
1 � N � 23 excitations. With N ¼ 0 denoting ground
states, the family of Q-ball solutions can hence be classi-
fied by specifying ðQ;NÞ as was done in Ref. [36], or by
specifying ð!;NÞ as chosen in this work.
Our numerical results reach high in the spectrum of

radial excitations and give fascinating and detailed insights
in the properties of excited Q-balls. In particular, we will
see that also excited states have a negative d1. The present
work extends and completes our study of the EMT struc-
ture of ground state Q-balls. It is important to remark that
we make no effort to describe the full spectrum of Q-balls
which would include also vibrational or other excitations
[23], and we will not consider quantum corrections [31].
The layout of this work is as follows. In Sec. II, we will

briefly introduce the framework, and review how radial
excitations of Q-balls emerge [36]. In Sec. III, we will
present the solutions for the ground state and radial ex-
citations 1 � N � 23 which we were able to find with our
numerical method, and discuss the charge density and the
EMT densities. In Sec. IV, we will discuss global proper-
ties like charge, mass, mean square radii, and the D-term,
and investigate patterns how these properties scale with N.
Remarkably, among the studied quantities d1 varies most
strongly with N. Finally, in Sec. V, we will focus on the
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issue of stability and the sign of the D-term. The conclu-
sions will be presented in Sec. VI, and some technical
questions addressed in the Appendices.

II. Q-BALLS AND RADIAL EXCITATIONS

In this section, we briefly review the theory of Q-balls,
and introduce the indispensable formulas on the EMT. We
use throughout the notation of Ref. [21], and refer to it for
more details. We study the relativistic field theory of a
complex scalar field �ðxÞ with global U(1) symmetry

L ¼ 1

2
ð@���Þð@��Þ � V; (1)

where, for suitable potentials V [23], Q-balls emerge as
finite energy solutions of the type �ðt; ~xÞ ¼ expði!tÞ�ðrÞ
with r ¼ j ~xj and �ðrÞ satisfying the equation of motion

�00ðrÞþ2

r
�0ðrÞþ!2��V 0ð�Þ¼0; �ð0Þ��0;

�0ð0Þ¼0; �ðrÞ!0 for r!1:
(2)

We will use the potential Vð�Þ ¼ A�2 � B�4 þ C�6

with A ¼ 1:1, B ¼ 2:0, C ¼ 1:0 [21,36], and set !2 ¼
1:37 which is among the ideal values for our purposes,
see Appendix A.

To demonstrate the existence of ground (and excited)
Q-ball states, one can identify r ! t and �ðrÞ ! xðtÞ [23],
and interpret (2) as the Newtonian equation for a unit mass
particle moving under the influence of the friction Ffric ¼
� 2

t
_xðtÞ in an effective potential Ueff ¼ 1

2!
2x2 � V,

€xðtÞ ¼ Ffric �rUeffðxÞ: (3)

A ground state solution corresponds to the situation that the
particle starts at t ¼ 0 from rest at x0 ! �0, and its motion
terminates in the origin x ¼ 0 after infinite time.

In this picture radial excitations correspond to the situ-
ation when the particle is given more potential energy such
that it overshoots the point x ¼ 0, moves ‘‘up-hill’’ in the
effective potential till it reaches a point of return, and
finally comes to rest at the origin. In principle, the starting
points can be chosen such that the particle will overshoot
the origin 1; 2; 3; . . . ; N times, see Fig. 1. This means the
corresponding solution�ðrÞ hasN nodes at finite r, and we
refer to it as the Nth radial excitation. The ground state
corresponds to N ¼ 0.

This picture helps to anticipate several features of the
excitations. AsN increases, the particle has to travel longer
paths, and do more work against the friction. Thus we have
to release it ‘‘close’’ to the maximum of Ueff where the
effective potential is nearly flat, see Fig. 1. The particle
has to ‘‘wait’’ there for a sufficiently long time before
‘‘sliding’’ down the potential, such that the time-dependent
friction is adequately decreased to allow the particle to
complete its trajectory.

Therefore, as N increases,�0 approaches the position of
the maximum of Ueff , see Appendix A, and �ðrÞ ’ �0

remains basically constant over increasingly extended
plateaus ‘‘to wait for the frictional force’’ to diminish.
The small-r behavior, which follows from (2), is

�ðrÞ ¼ �0 �U0
effð�0Þ r

2

3!
þU0

effð�0ÞU00
effð�0Þ r

4

5!
þOðr6Þ:

(4)

In this Taylor expansion only even powers of r occur, and
we checked that the coefficients of rk for k ¼ 6, 8, 10, 12
are all also proportional toU0

effð�0Þ though the expressions
become lengthy. Since the particle has to be released close
to the maximum of Ueffð�Þ this means that the Taylor
coefficients are small, and explains why �ðrÞ exhibits a
plateau. After the plateau we expect �ðrÞ to ‘‘oscillate’’ N
times before it vanishes at asymptotically large r according
to [21]

�ðrÞ ! c1
r

exp

�
�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

max �!2
q �

: (5)

With our numerical method described in Appendix A,
where also !max is defined, we were able to find solutions
for the first N ¼ 23 excited states.
In the following we will discuss the charge density �ch,

and the EMT densities, namely energy density, T00ðrÞ,
pressure and shear force distributions, pðrÞ and sðrÞ, which
are given by [21]

�chðrÞ ¼ !�ðrÞ2; (6)

T00ðrÞ ¼ 1

2
!2�ðrÞ2 þ 1

2
�0ðrÞ2 þ Vð�Þ; (7)

sðrÞ ¼ �0ðrÞ2; (8)

0

0.5

1

-1 0 1

Ueff(x)

x

N=0

N=1

N=2

N=3

FIG. 1 (color online). The effective potential UeffðxÞ ¼
1
2!

2x2 � VðxÞ as used in this work vs x (thin line). The particle

trajectories are indicated for N ¼ 0, 1, 2, 3 (solid lines). For
better visibility for N ¼ ð1; 2; 3Þ the potentials are displaced by
(0.1, 0.22, 0.36) as compared to N ¼ 0, and the particle trajec-
tories are displaced by 0.02 after each turn.
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pðrÞ ¼ 1

2
!2�ðrÞ2 � 1

6
�0ðrÞ2 � Vð�Þ: (9)

We also define the conserved charge Q ¼ R
d3x�chðrÞ due

to the U(1) symmetry of the theory (1), the mass M ¼R
d3xT00ðrÞ, and the constant d1 which can be expressed

equivalently in terms of sðrÞ and pðrÞ as follows:

d1 ¼ � 1

3
M

Z
d3xr2sðrÞ ¼ 5

4
M

Z
d3xr2pðrÞ: (10)

The large-r asymptotics (5) ensures that the integrals
defining Q, M, d1 are well defined.

III. RESULTS FOR THE DENSITIES

Figure 2 shows the results for the radial fields �ðrÞ, the
ground state N ¼ 0, and radial excitations 1 � N � 23.
The results confirm the features we predicted in Sec. II. For
N > 0 the initial values �0 are numerically within 10�6

close to each other. For N * 2 the solutions show plateaus
with �ðrÞ ’ �0, followed by regions of ‘‘oscillatory be-
havior’’ with N zeros, before the exponential decays set in
according to (5). For N * 4 the sizes of the plateau regions
and oscillatory regions are roughly in a constant 1:3 ratio.
The N zeros of the solutions �ðrÞ imply a strict shell

structure for the charge distributions �chðrÞ which is shown
in Fig. 3. The Nth excited state consists of an inner region
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FIG. 2 (color online). The fields �ðrÞ as functions of r for 0 � N � 23.
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FIG. 3 (color online). The charge distributions �chðrÞ as functions of r for 0 � N � 23.

RADIAL EXCITATIONS OF Q-BALLS, AND THEIR . . . PHYSICAL REVIEW D 86, 096002 (2012)

096002-3



of nearly constant charge density for N * 4, followed by
an outer region with N shells.

Also the energy densities T00ðrÞ in Fig. 4 exhibit char-
acteristic shell structures. Although they never vanish at
finite r, the T00ðrÞ show noticeable minima numerically
very close to the zeros of �chðrÞ. This can be understood in
the particle motion picture as follows. We have T0

00ðrÞ ¼
@
@t Ekin for r 2 fRij�ðRiÞ ¼ 0; 1 � i � Ng, i.e., the posi-

tions Ri, where the fields and hence also charge distribu-
tions vanish, correspond in time to the transits of the
particle through the origin, and T0

00ðRiÞ correspond to

time derivatives of the kinetic energies at those times. In
the absence of frictional forces Ekin would be exactly
extremal at the origin. Because of friction the extrema of

Ekin are somewhat shifted, but those shifts decrease with
time ($ distance) because Ffric / 1

t .

For N * 2 the energy densities show ‘‘spikes’’ at the
edge of the inner bulk region. For N * 3 also the sub-
sequent inner shells exhibit characteristic ‘‘double-spike’’
structures. The reason for that is the contribution of the
surface energy [21]. The concepts of surface tension and
surface energy are well defined for ! ! !min [23], but
the associated features are noticeable also away from this
limit [21]. If the inner region and the N shells had sharp
edges, sðrÞ would consist of (2N þ 1) � functions mark-
ing the positions of the respective surfaces. For our
parameters the system is diffuse, but the ‘‘smeared out
� functions’’ in sðrÞ can be seen in Fig. 5 though the
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FIG. 4 (color online). The energy densities T00ðrÞ as functions of r for 0 � N � 23.
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FIG. 5 (color online). The shear force distributions sðrÞ as functions of r for 0 � N � 23.
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‘‘gaps’’ between the first shells cannot be clearly
resolved.

Also this can be understood in the particle picture, where
sðrÞ ! 2EkinðtÞ. The zeros of sðrÞ coincide with the turning
points in Fig. 1. The maxima of sðrÞ occur at the positions
where the particle is fastest, which is close to the origin of
the particle coordinate1 in Fig. 1. The characteristic double
peaks emerge because the particle is slowed down at the
origin by the buckle in Ueff . At earlier times (inner region)
the friction Ffric / 1

t is noticeable making the double peaks

less symmetric and hard to resolve, see Fig. 5. At later
times (outer region) the friction is diminished, and the
double peaks are nearly symmetric.

Figure 6 shows that the pressure distribution of the Nth
excitation changes the sign (2N þ 1) times. Although with
increasing N the structures are more and more complex,
the results are numerically stable and satisfy the stringent
tests discussed in Appendix B, see also Sec. V.

Figures 2–6 demonstrate that with increasing N the
system becomes larger and exhibits an increasing degree
of complexity. In spite of the complexity, however, the size
of the system grows with remarkable regularity, as is
shown in Fig. 7. This figure displays for the excitations
1 � N � 23 the respectively first (R1) and last (RN) zero of
the solutions �ðrÞ. For N ¼ 1 the two radii coincide. We
observe that the R1 and RN increase linearly with the order
of the excitation.

IV. GLOBAL PROPERTIES

Above we made three important observations which will
allow us to make predictions for the N behavior of the
global (integrated) properties of Q-balls, namely,
(i) the system exhibits a shell structure,
(ii) the size of the system grows linearly with N,
(iii) �chðrÞ and T00ðrÞ inside the Q-balls are effectively

constant independently of N.

The shell structure of point (i) is evident from Figs. 2–6.
The linear growth of point (ii) is apparent from Fig. 7. Point
(iii), however, requires some explanation. Strictly speaking
the fields �ðrÞ and consequently �chðrÞ and T00ðrÞ are
constant only in the inner region, i.e., in about 1=4 of
the size of excited Q-balls. However, when integrating
we effectively ‘‘average’’ over the oscillatory behavior
of these densities in the outer region. Therefore, when
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FIG. 6 (color online). The pressure distributions pðrÞ as functions of r for 0 � N � 23.
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FIG. 7 (color online). The positions of the first (R1) and last
(RN) zero of the Nth radial excitation as a function of N for
1 � N � 23. The discrete data sets are connected by lines to
guide the eye.

1To recall, the origin in the particle coordinate xðtÞ corre-
sponds to the zeros of �ðrÞ. The latter are also the zeros of the
charge distribution and close to the minima of T00ðrÞ, see above,
which emphasizes that all quantities reflect the same shell
structure.
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speaking about global (integrated) properties we may think
in terms of effectively constant densities inside excited
Q-balls which motivates assumption (iii).

On the basis of these observations we expect the follow-
ing N behavior of the charge Q, mass M, constant d1, the
surface tension �, surface energy Esurf , and the mean
square radii hr2Qi, hr2Ei, hr2si of respectively the charge,

energy, and shear force distributions:

Q / N3; (11)

M / N3; (12)

d1 / N8; (13)

� / N; (14)

Esurf / N3; (15)

hr2i i1=2 / N; i ¼ Q;E; s: (16)

The surface energy is given by Esurf ¼
R
d3rsðrÞ, while

hr2Qi ¼
R
d3rr2�chðrÞ=Q and hr2Ei is defined analogously.

Finally, the mean square radius of the shear forces is
hr2si ¼

R1
0 drr2sðrÞ=� where � ¼ R1

0 drsðrÞ denotes the

surface tension. Surface energy and surface tension are
well-motivated notions in the limit ! ! !min [23] in
which Q-balls behave like liquid drops [21]. But they
will also be helpful in our context.

On the basis of assumptions (ii) and (iii), we expect the
charge Q and mass M to be proportional to the ‘‘volume’’
which grows like N3 (even though the solutions are too
diffuse to make ‘‘volume’’ a well-defined concept). The
scaling predictions (16) for the mean square radii also
follow straightforwardly from assumption (ii).

The prediction (15) for the surface energy is at first
glance counterintuitive. One would expect Esurf to grow

with ‘‘surface area’’ / ðvolumeÞ2=3 / N2. However, we
have to take into account the shell structure in point (i).
The ground state has one surface, and the Nth excitation
with its N shells has in addition to that 2N surfaces. The
contributions of individual surfaces do grow like N2 as the
size of the system grows / N according to point (i). But
also the number of surfaces grows / N, which yields (15).
Similarly, we expect the surface tension � as defined in
Refs. [21,23] to be also proportional to the number of
surfaces, hence the prediction (14).

In order to derive the scaling behavior of d1 we may use
dimensional arguments. The dimensionality of d1 is
ðmass� sizeÞ2 and with mass / N3 and size / N we obtain
the prediction (13). Alternatively we may explore the

liquid drop limit in which d
drop
1 ¼ � 4�

3 M�R4 where R

denotes the radius of the drop [5,21]. With the scaling
predictions (12), (14), and (16) for M, �, and the size of
the system we are again lead to the prediction (13).

To test the scaling relations, Eqs. (11)–(16), we consider
‘‘appropriate powers’’ of the quantities in these relations
such that the respective properties scale linearly with N. In

Figs. 8(a)–8(h), we plot the properties p¼fQ1=3;M1=3;

ð�d1Þ1=8;�;hr2Qi1=2;hr2Ei1=2;hr2si1=2;E1=3
surfg vs N.

In all cases the N dependence is very well approximated
by linear fits of the type pðNÞ ¼ c0ðpÞ þ c1ðpÞN which are
shown as solid lines in Figs. 8(a)–8(h). The coefficients
c0ðpÞ, c1ðpÞ depend on the considered property p, and are
quoted on the respective graphs for completeness.
The coefficients in pðNÞ ¼ c0ðpÞ þ c1ðpÞN are opti-

mized to describe the properties for N � 5, and in that
region of N they approximate the exact numerical results
within an accuracy ofOð10�3Þ and better with the numbers
quoted in Fig. 8. Though not optimized for that, the de-
scriptions work with Oð1%Þ accuracy also for 1 � N � 4,
and approximate ground states properties, N ¼ 0, by the
coefficients c0ðpÞ within Oð10%Þ. The only exception

from that is hr2si1=2, whereN ¼ 0 is clearly underestimated,
1 � N � 3 are described withinOð10%Þ, and 1% accuracy
sets in for N > 4 and Oð10�3Þ accuracy for N � 6.
The numerical values of the coefficients c0ðpÞ, c1ðpÞ

change at most in the last digit as compared to the values
quoted in Fig. 8, if one does not fit in the region N � 5 but
skips the lowest excitations in the range 1 � N � 10. (The

only more sensitive coefficient is the c0 of hr2si1=2.)
Although our derivation of the scaling relations

(11)–(16) was admittedly heuristic, we observe that they
are rather accurately fulfilled.
In particular, we observe � / N as predicted in (14).

The more adequate property characterizing the ‘‘surface
tension’’ at the ‘‘boundary’’ betweenQmatter and vacuum
is the rescaled quantity �resc ¼ �=ð2N þ 1Þ which takes
into account that the Nth radial excitation has (2N þ 1)
surfaces. Figure 9(a) shows that �resc is nearly independent
of N as expected. We stress that �resc is an average. Q
matter in excited Q-balls does not possess the same ‘‘sur-
face tension’’ everywhere, otherwise the peaks in sðrÞ in
Fig. 5 would be all equally high.
We would like to stress that although qualitatively here

the liquid drop picture is useful, the concept of a surface
tension is well justified only in the limit ! ! !min where
the solutions exhibit ‘‘sharp edges’’ [23]. For ground states
�r2s=hr2si can be used as a measure for the diffuseness of
the system, where ð�r2sÞ2 ¼ hr4si � hr2si2 with hr4si ¼R1
0 drr4sðrÞ=� [21]. If for ground states �r2s=hr2si � 1

one has ‘‘sharp edges’’ [21]. For our parameters
�r2s=hr2si ’ 0:75 for N ¼ 0, i.e., this condition is not con-
vincingly realized; the system is diffuse. If we apply this
measure also to excitations, we find that they are similarly
diffuse to the ground state, see Fig. 9(b).
For ! ! !min the sðrÞ would become proportional to

the sum of (2N þ 1) � functions with support at the posi-
tions of the surfaces of the shells [21]. If we assume for
simplicity the surfaces equidistant and the coefficients of
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� functions equal (this is not accurate, see Sec. III,
but will be irrelevant after we take the limit N ! 1 below)
we would expect that hr4si /

P
2Nþ1
k¼1 k4=ð2N þ 1Þ while

hr2si /
P

2Nþ1
k¼1 k2=ð2N þ 1Þ and

lim
N!1

�r2s
hr2si

¼ 2ffiffiffi
5

p for ! ! !min: (17)

This corresponds numerically to 0.894. . . and is remark-
ably close to the values observed for N * 2 in Fig. 9(b),
even though our ! is not close to !min. It would be very
interesting to test the prediction (17) for ! closer to !min.
But in such situations radial excitations are difficult to find
numerically, see Appendix A.

The shell structure can also be studied by looking at the
charge distribution. Since the �chðrÞ vanish at the positions
where the fields�ðrÞ change sign, this allows one to define
exactly where a shell starts and where it ends. The last

shell, of course, has no sharp boundary but vanishes ex-
ponentially according to (5). Let us describe briefly how
the charge is distributed in the largest excitation N ¼ 23
our numerical method could handle. The inner region
carries about 16.7% of the total charge of this solution,
the first shell 1.64%, and the second 1.58% which is a
global minimum. From here on the percentages carried by
the subsequent shells increase gradually until the last shell
contains 8.8% of the total charge.
We did not observe regularities other than those with

respect to individual shells, but we found an interesting
pattern regarding how the charge is partitioned between the
inner region and the shell region. Let us defineQinner as the
charge contained between 0 � r � R1 where R1 denotes
the first zero of �ðrÞ, and let Qshells denote the charge
carried by all shells, such that Q ¼ Qinner þQshells. The
interesting observation is that as N increases Qinner=Q ! 1

6

from above, whileQshells=Q! 5
6 from below, see Fig. 10(a).

Of all global properties studied in this work d1 shows the
strongest variations withN, as it did for ground states when
! was varied [21]. However, when taking the dimension-
ality of d1 into account, see above, one finds that the
appropriately scaled constant d1 is bound from above and
below. In Ref. [21], the following inequality was derived
for all solutions of the Q-ball equations of motion:

0<� d1
M2hr2Ei

<
5

9
: (18)
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FIG. 9 (color online). (a) The true ‘‘surface density’’ �resc ¼
�=ð2N þ 1Þ as a function of N. (b) The measure of the diffuse-
ness of the system �r2s=hr2s i as a function of N.
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The powers of the various p are chosen such that the respective properties scale linearly with N according to the predictions in
Eqs. (11)–(16). The N dependence can be very well approximated by linear fits of the type pðNÞ ¼ c0ðpÞ þ c1ðpÞN which are shown
as solid lines. The constants c0ðpÞ, c1ðpÞ depend on the considered property, and are quoted on the respective graphs.
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In Fig. 10(b), we see that the radial excitations satisfy the
inequality (18).

Finally let us mention the interesting relation of d1 to the
relative ‘‘wall width’’ �r2s=hr2si derived in Ref. [21] which
can be expressed as

� d1
MEsurfhr2si

¼ 1

3

�
1þ

�
�r2s
hr2si

�
2
�!N!1

!!!min 3

5
; (19)

where in the last step we used (17). Again, although in our
calculation ! is not close to !min we observe in Fig. 10(b)
that the numerical results are close to the limit derived
in (19).

V. STABILITYAND d1

For all solutions we find M<mQ where m ¼ !max

denotes the mass of a Q quantum. For the ground state
this inequality implies absolute stability. But the radial
excitations can decay. For all our excitations lighter ground
state configurations exist with the same charge.

For example, our first excited state of !2 ¼ 1:37 has
Q ¼ 342 and M ¼ 461. The following absolutely stable
ground state solutions have the same total charge but a
smaller total mass:

(i) one Q-ball of !2 ¼ 0:51 is 1.61 times lighter,
(ii) two Q-balls of !2 ¼ 0:61 are 1.45 times lighter,
(iii) three Q-balls of !2 ¼ 0:68 are 1.35 times lighter,
(iv) etc., until
(v) fifteen Q-balls of!2 ¼ 1:18 are 1.008 times lighter.

The latter is the threshold for symmetric configurations,
and 16 Q-balls with !2 ¼ 1:21 would be 0.5% heavier.
Also asymmetric configurations with lower energy exist.
E.g., the ground states for !2 ¼ 0:516 and !2 ¼ 1:37
(i.e., the ground state of our excitation) have the same total
charge but are 1.55 times lighter than the first excited state
of !2 ¼ 1:37. The still heavier excitations N > 1 have
accordingly more decay modes.2 In short, all radial exci-
tations are unstable.

Nevertheless, the solutions with N > 0, of course also,
minimize the energy functional, though they correspond to
local minima of the action. One way to test this offers the
‘‘Laue condition’’ [46],

Z 1

0
drr2pðrÞ ¼ 0; (20)

which was proven to be satisfied for all finite energy solu-
tions in the Q-ball system in Ref. [21], and is equivalent to
the virial theorem for Q-balls proven in Ref. [28]. It fur-
thermore was shown that for all finite energy solutions the
pressure is positive for small r and negative for large r [21].
In Sec. III, we have seen that the pressure distribution of
the Nth radial excitation exhibits this pattern and changes
sign (2N þ 1) times. It is instructive to look in some more
detail at how excited Q-balls realize the condition (20).
Figure 11 shows r2pðrÞ as a function of r for the

ground state and the radial excitations. In spite of the
complexity of the results the condition (20) is satisfied
within numerical accuracy which can be quantified as
follows. For instance, for the ground state we obtain
jR1

0 drr2pðrÞj=R1
0 drr2jpðrÞj ¼ Oð10�8Þ and similarly

up to N � 4. With increasing N it becomes more difficult
to maintain this accuracy. ForN * 10 the accuracy is in the
range Oð10�5Þ to Oð10�3Þ.
The regions with positive pressure provide forces

directed towards outside. These repulsive forces are com-
pensated by negative pressure regions with attractive
forces directed towards the center. Repulsive and attractive
forces cancel precisely according to (20).
It is interesting to note that the role of the shells is to

compensate the repulsive forces from the core. In fact, on
average the shells contribute attractive forces.
In Ref. [21] it was shown that the r-behavior of the

pressure distribution and the condition (20) imply a nega-
tive sign for the constant d1. The sign of d1 can also be
deduced from the shear forces [21]. In Ref. [21] only
Q-ball ground states were studied, for which pðrÞ changes
sign only once. Nevertheless the general proof that the
Laue condition (20) implies d1 < 0 in Ref. [21] was for-
mulated assuming that the pressure changes the sign an
arbitrary odd number of times. This is the situation we
encounter for radial excitations, and our results illustrate
how the Laue condition (20) determines the sign of d1.
Figure 12 shows r4pðrÞ as functions of r. Clearly, inte-

grating this function over r yields a negative number, and
up to a prefactor of 5�M the constant d1, cf. Eq. (10). Our
results for the pressure distribution therefore fully confirm
the general proof of the negative sign of d1 from the Laue
condition (20) formulated in Ref. [21].
We remark that in the proof of Ref. [21] also the possi-

bility was considered that the pðrÞ could become zero at
some point without changing sign. We do not encounter
this situation for the parameters used in this work.
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FIG. 10 (color online). (a) The relative contributions of the
inner region (circles) and the shell region (triangles) to the total
charge as a function of N. (b) The constant d1 in units of M

2hr2Ei
(squares) and MEsurfhr2si (circles) as function of N.

2Here we content ourselves to observe that more stable con-
figurations exist, and are not concerned with the dynamics of the
possible decays. All numbers quoted for !2 � 1:37 are from
Ref. [21].
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VI. CONCLUSIONS

We presented a study of the energy momentum tensor
of Q-balls in a scalar field theory with U(1) symmetry.
While in a previous work we investigated in detail ground
state solutions for different ! [21], in this work radial
excitations of Q-balls were in the focus of our study.

In Ref. [36], the radial excitationsN ¼ 1, 2 were studied
previously for fixed charge Q; in other words, the

excitations were classified by specifying the charge and
order ðQ;NÞ. Here we adopted a different classification

scheme and fixed !, i.e., the excitations are specified by

ð!;NÞ. We were able to find numerically solutions for the

ground state N ¼ 0 and 1 � N � 23 excitations. All so-

lutions obtained in this work were exact solutions of the

equations of motion. The numerical results were subject to

stringent tests to guarantee their correctness. On the basis
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of our results reaching high in the spectrum of radial

excitations we were able to obtain fascinating insights in
the structure of these excitations.

As N grows the systems exhibit increasing degrees of
complexity. The radial field of the Nth excitation changes
the signN times. At the positions Ri with 1 � i � N where
this happens, the otherwise positive charge distribution
vanishes exactly, and the energy density shows at positions
very close to the Ri clear minima. In other words, the
charge is distributed over an inner region with nearly
constant density surrounded byN shells, and T00ðrÞ closely
follows this pattern. We observed the interesting pattern
that, as N increases, the constant density inner region
carries 1=6 of the total charge, while the remaining 5=6
are distributed on the shells.

The energy densities show in addition also characteristic
spikes at the ‘‘edges’’ of the shells due to the impact of the
‘‘surface energy.’’ The effects of the ‘‘surface tension’’ are
reflected with even more clarity in the shear force distri-
butions. We have shown that the system is diffuse for
the parameters considered in this work, and discussed in
which sense the concepts ‘‘surface tension’’ and ‘‘surface
energy’’ are nevertheless useful. The highest degree of
complexity is seen in the pressure distributions which
change the sign (2N þ 1) times.

In spite of the complexity of the solutions, the properties
of the excitedQ-balls scale withN with great regularity. For
instance, the size of the system is proportional to N, inde-
pendently of whether one uses the zeros of the �ðrÞ or
square roots of various mean square radii to define it. On
the basis of general arguments we were able to predict also
the scaling of other quantities, for instanceM / N3 or d1 /
N8, which are supported by our numerical results. It would
be very important to show that these scaling rules hold also
for different parameters in a sixtic potential, or for com-
pletely different forms of potentials. This will be left to
future numerical studies. Remarkably, among all quantities
we studied, the D-term varies most strongly with N.
Similarly d1 was the quantity which varied most strongly
in the study of ground state solutions as functions of! [21].

One of the consequences of EMT conservation is the
Laue condition [5,46] stating that

R1
0 drr2pðrÞ ¼ 0. In

Refs. [21], this condition was proven analytically to be
satisfied for any solution of Q-ball equations of motion,
and in this work we could verify numerically that the pðrÞ
of radial excitations with its (2N þ 1) zeros precisely
integrates to zero with very good numerical precision.

The important result is that the D-term is negative also
for all radial excitations. In all approaches where d1 was
studied so far, it was found negative. But only the D-terms
of ground states were studied so far, and to best of our
knowledge this is the first time excited states are shown to
have also negative D-terms.

In Ref. [21], a rigorous proof was given that for Q-balls
d1 < 0 follows from the Laue condition and Q-ball

equations of motion. In Ref. [21] only ground state solu-
tions were studied for which pðrÞ changes sign only once.
Nevertheless the proof had to be formulated assuming that
pðrÞ could more generally change the sign any odd number
of times. The results obtained in this work illustrate that
this is not a pathological case which has to be taken into
account for the sake of mathematical rigor. Indeed, for
excited Q-balls one does encounter such a situation in
practice.
In this work, we also fully confirm another finding of

Ref. [21], namely that stability is not a necessary condition
for d1 to be negative. In fact, we have shown that all radial
excitations obtained in this work are unstable. They corre-
spond to local minima of the action, and can decay into
configurations of absolutely stable ground states with the
same total charge but a smaller total mass.
The works presented here and in Ref. [21] clearly dem-

onstrate the property d1 < 0 for Q-ball systems and, we
hope, will inspire rigorous proofs of this property also in
other systems. Our results also establish d1 as a particle
property particularly sensitive to variations of parameters
of the system. An interesting question remains: can d1 be
ever positive in a physical system?
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APPENDIX A: TECHNICAL DETAILS

We assume !> 0 without loss of generality. Finite
energy solutions exist for ! in the range [23]

!2
min � min

�

�
2Vð�Þ
�2

�
<!2 <!2

max � V 00ð�Þj�¼0: (A1)

For the potential used in this work 0:2<!2 < 2:2. The
ground states are absolutely stable for !2 <!2

abs � 1:55
[21]. For ! close to !min it is numerically challenging to
handle the ground states, let alone radial excitations. In
order to have an absolutely stable ground state, and max-
imize the chances to find numerous radial excitations it
is profitable to work close to !2

abs � 1:55. In this sense,

! ¼ ffiffiffiffiffiffiffiffiffi
1:37

p � 0:94!abs is among the ideal choices.
As N increases, see Sec. II, it is necessary to release the

particles close to the maximum of Ueff given by

�constð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

C

�
1

3
þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6C

B2
ð!2 �!2

minÞ
s �vuut

; (A2)

where the subscript reminds that (A2) corresponds to one
of the ‘‘stationary’’ solutions �ðrÞ ¼ const of (2) [21],
which however do not satisfy the boundary condition for
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r ! 1. For our parameters �const ¼ 1:1045 . . . and the
radial excitations N � 1 are all within 10�6 of this value.

APPENDIX B: NUMERICAL TESTS

In view of the complexity of the solutions, it is important
to monitor the numerical quality of the solutions. For that
we made the following tests. We checked that

(A) the Laue condition (20) is valid,
(B) the equation 2

r sðrÞ þ 2
3 s

0ðrÞ þ p0ðrÞ ¼ 0 is satisfied,

(C) the expressions for d1 in (10) yield the same result,

(D) pð0Þ ¼ 2
R1
0 dr sðrÞ

r is equal to pð0Þ from (9).

All these relations can be derived from EMT
conservation [5,17] and provide powerful tests for the
numerics [21]. We find relative numerical accuracies
between Oð10�9Þ and Oð10�3Þ depending on N and the
kind of test.

In Sec. V, we already reported how the Laue condition,
test (A), is satisfied numerically. For (B) we checked that
ð2r sðrÞ þ 2

3 s
0ðrÞ þ p0ðrÞÞ=ð2r jsðrÞj þ 2

3 js0ðrÞj þ jp0ðrÞjÞ is

typically of Oð10�3Þ or smaller, for r > 0 and 8N.
Concerning test (C): for instance, for the highest exci-

tation N ¼ 23 we were able to handle with our numerics,
we obtain from (10): dp1 ¼ �2:0366� 1015 using pressure
distribution vs ds1 ¼ �2:0360� 1015 from shear forces,

which corresponds to a relative accuracy of 3� 10�4.
Concerning test (D): we obtain e.g., for N ¼ 23 the

result pð0Þ ¼ 0:654652 from Eq. (9), while using the
above quoted formula yields pð0Þ ¼ 0:654655, which cor-
responds to a relative accuracy of 5� 10�5.
On the basis of these stringent tests we are confident that

none of the bumps, peaks, and structures in Figs. 2–12 are
numerical artifacts, but all details of our numerical solu-
tions reflect the true characteristics of the excited states.
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D. Pleiter, P. Rakow, A. Schäfer, G. Schierholz, and
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