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N-Higgs-doublet models (NHDM) are among the most popular examples of electroweak symmetry

breaking mechanisms beyond the Standard Model. Discrete symmetries imposed on the NHDM scalar

potential play a pivotal role in shaping the phenomenology of the model, and various symmetry groups

have been studied so far. However, in spite of all efforts, the classification of finite Higgs-family symmetry

groups realizable in NHDM for any N > 2 is still missing. Here, we solve this problem for the three-

Higgs-doublet model by making use of Burnside’s theorem and other results from pure finite group theory

which are rarely exploited in physics. Our method and results can also be used beyond high-energy

physics, for example, in the study of possible symmetries in three-band superconductors.
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I. INTRODUCTION

The nature of electroweak symmetry breaking remains
one of the hottest issues in high-energy physics. The ex-
perimental quest for the Higgs boson, which was suggested
back in 1964 [1], has very recently passed the first check-
point: the CMS and ATLAS collaborations at the LHC
announced the discovery of the Higgs-like resonance at
126 GeV [2]. Already their first measurements indicate
intriguing deviations from the Standard Model expecta-
tions. Whether these data signal that a nonminimal Higgs
mechanism is indeed at work and, if so, what it is are
among the hottest questions in particle physics these days.

Many different variants of a nonminimal Higgs mecha-
nism have been proposed so far [3]. One conceptually
simple and phenomenologically attractive class of models
involves several Higgs doublets with identical quantum
numbers. The scalar potential in these N-Higgs-doublet
models (NHDM) is often assumed to be symmetric under
a group of unitary (Higgs-family) or antiunitary (general-
ized CP) transformations acting in the space of doublets.
These symmetries play a pivotal role in the phenomenol-
ogy of the model, both in the scalar and in the fermionic
sectors [4], and they often bear interesting astrophysical
consequences. In fact, in many phenomenological models,
one often starts by picking up a symmetry group and then
deriving phenomenological consequences.

In this situation, it is often very desirable to know which
symmetry groups can be incorporated in a given model, and
how they affect the phenomenological consequences.
Discrete symmetries are of special interest here for a num-
ber of reasons. First, unlike spontaneously broken continu-
ous symmetries, they do not produce unwanted Goldstone
bosons. Second, finite symmetry groups with multidimen-
sional irreducible representations often lead to remarkable
degeneracy patterns in the physical Higgs boson spectrum.
The simplest example here is an S3-symmetric three-Higgs-
doublet model (3HDM) with the 2HDM-like Higgs

spectrum. Third, finite symmetry groups can lead to so-
called geometric CP violation [5–7], in which the calcu-
lable phases of vacuum expectation values are protected by
the symmetry arguments. Finally, there is a quest for deri-
vation of the patterns observed in the fermion mixing
matrices from symmetry arguments, and finite groups are
also at work here [4]. Although these groups are introduced
in the fermionic sector of the model, they might be related
to symmetry groups in the Higgs sector, and the search for a
convenient realization of this link continues.
Given the high importance of symmetries for the NHDM

phenomenology, it is natural to ask the question: which
symmetry groups can be implemented in the scalar sector
of NHDM for a given N?
In the two-Higgs-doublet model (2HDM), this question

has been answered several years ago [8] (see also Ref. [9]
for a review). Focusing on discrete symmetries, the
only realizable group of unitary symmetries are Z2 and
ðZ2Þ2. If antiunitary transformations are included, then
ðZ2Þ3 is also realizable. For each group, the corresponding
potential was written and phenomenological consequences
were studied in detail (for example, an investigation of the
ðZ2Þ3-symmetric 2HDM can be found in Ref. [10]).
With more than two doublets, the problem remains

open. Variants of NHDM based on several finite groups
have been studied [11], with an emphasis on A4 [12] and
�ð27Þ or �ð54Þ [5,6]. Also, several attempts have been
made to classify at least some symmetries in NHDM [13].
In particular, a classification of all realizable Abelian
symmetry groups in NHDM for any N was recently given
in Ref. [14]. However, the full list of non-Abelian finite
groups which can be symmetry groups in the NHDM scalar
sector is not yet known. We stress that this task is different
from just classifying all finite subgroups of SUð3Þ [15],
because invariance of the Higgs potential places strong and
nontrivial restrictions on possible symmetry groups.
In this paper we solve this problem for the 3HDM.

Starting from Abelian groups and applying several results
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from the finite group theory, we find the complete list of
discrete symmetry groups of Higgs-family transformations
realizable in 3HDM. Extension of our method to groups
which include antiunitary transformations will be given
elsewhere [16].

We draw the reader’s attention to the somewhat non-
standard way we use group theory in our analysis. Usually,
group-theoretical methods in physics are limited to repre-
sentation theory. However, the formal group theory con-
tains many powerful results beyond the representation
theory which can be of great use for identifying symmetry
properties of a model. These results can restrict possible
symmetries of the model without the need to explicitly
manipulate with degrees of freedomwhich transform under
specific representations of these groups.

This paper can be viewed as a nontrivial example of
how powerful the pure group theory can be in finding
symmetries of a model. Specifically, we make use of
Burnside’s theorem and other results from finite group
theory to solve the problem which seems to be out of reach
for more traditional methods. Although we focus below
on this specific application, we stress that the same method
can also be used in various condensed matter problems
which involve several interacting order parameters [17],
in particular, in three-band superconductivity.

The structure of the paper is the following. In the next
section we apply group-theoretic tools to find the general
structure of the finite groups which can be realized as
Higgs-family symmetry groups in 3HDM. This result
allows us to restrict the search for possible symmetry
groups to a very small set. Then, in Sec. III, we check all
members of this set and see which groups can indeed be at
work in 3HDM. We summarize our findings in Sec. IV.

II. STRUCTURE OF FINITE SYMMETRY
GROUPS IN 3HDM

The most general renormalizable gauge-invariant scalar
potential of 3HDM can be written as

V ¼ Yijð�y
i �jÞ þ Zijklð�y

i �jÞð�y
k�lÞ; (1)

where all indices run from 1 to 3. We are interested in
unitary transformations mixing doublets �i that leave this
potential invariant for some Yij and Zijkl. A priori, these

transformations belong to the group Uð3Þ. Multiplying the
three doublets by a common phase factor, which trivially
leaves the potential invariant, is already taken into account
in the gauge group Uð1ÞY . Therefore, we focus on addi-
tional transformations not reducible to overall phase rota-
tions, which form the group PSUð3Þ ¼ SUð3Þ=Z3, where
Z3 is the center of SUð3Þ. Our task is therefore to find finite
subgroups of PSUð3Þwhich can be the symmetry groups of
the potential (1) for some choices of coefficients. We stress
that we search for realizable symmetry groups, that is, for
groups G � PSUð3Þ such that there exists a G-symmetric

potential which is not invariant under a larger symmetry
group G0 � G; see a fuller discussion in Ref. [14].
Abelian realizable symmetry groups for NHDM were

characterized in Ref. [14]. For our task of classifying finite
realizable symmetry groups in 3HDM, the following
Abelian groups must be considered:

Z2; Z3; Z4; Z2 �Z2; Z3 �Z3: (2)

The first four are the only realizable finite subgroups of
maximal tori in PSUð3Þ. The last group, Z3 � Z3, is on its
own a maximal Abelian subgroup of PSUð3Þ, but it is not
realizable because a Z3 � Z3-symmetric potential is auto-
matically symmetric under ðZ3 � Z3Þ 2Z2; see explicit
expressions below. However, it still can appear as an
Abelian subgroup of a finite non-Abelian realizable group;
therefore, it must be taken into consideration. Trying to
impose any other Abelian Higgs-family symmetry group
on the 3HDM potential unavoidably makes it symmetric
under a continuous group.
Let us denote by G � PSUð3Þ a finite (non-Abelian)

symmetry group in 3HDM. We shall now apply some
results from the finite group theory to prove that G cannot
be too large, and more specifically, we shall describe the
generic structure of G.
All Abelian subgroups ofGmust be from the list (2). By

Chauchy’s theorem, if p is a prime divisor of the order of
the group jGj, then G contains a subgroup Zp. Thus, the

order of the group can have only two prime divisors:
jGj ¼ 2a3b. Then, according to Burnside’s paqb theorem,
the groupG is solvable. Solvability implies thatG contains
a normal Abelian subgroup, which belongs, of course, to
the list (2). This is our first key group-theoretic step.
Suppose A is the normal Abelian subgroup of

G, AvG. Obviously, A � CGðAÞ, the centralizer of A in
G (all elements g 2 G which commute with all a 2 A). It
turns out that this A can be chosen in such a way that it
coincides with its own centralizer in G (that is, it is self-
centralizing): A ¼ CGðAÞ [16]. This means that elements
g 2 G, g =2 A, cannot commute with all elements of A.
Therefore, they induce automorphisms (i.e., structure-
preserving permutations) on A: g�1ag 2 A for any a 2
A, and these automorphisms are nontrivial. Even more, if
g1 and g2 induce the same automorphism on A, g�1

1 ag1 ¼
g�1
2 ag2 for all a 2 A, then g1 and g2 belong to the same

coset of A in G: g2 ¼ g1a
0. Therefore, the homomorphism

f: G=A ! AutðAÞ, where AutðAÞ is the group of automor-
phisms on A, is injective. We conclude that

G=A ¼ K; K � AutðAÞ: (3)

This is our second key group-theoretic step. It proves that
G cannot be too large, and it also shows that G can be
constructed as an extension of A by a subgroup of AutðAÞ:
G ¼ A:K.
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III. EXPLICIT CONSTRUCTION OF POSSIBLE
SYMMETRY GROUPS

We now check all the candidates for A from the list (2)
and see which extension can work in 3HDM. We use the
explicit realization of each of the groups A [14] and search
for additional transformations from PSUð3Þ with the
desired multiplication properties.

A. Extending Z2 and Z3

If A ¼ Z2, then AutðZ2Þ ¼ f1g, so that G ¼ Z2. This
case was already considered in Ref. [14].

If A ¼ Z3, then AutðZ3Þ ¼ Z2. The only nontrivial
case to be considered is G=A ¼ Z2, so that G is the
dihedral group representing the symmetries of an equi-
lateral triangle G ¼ D6 ¼ S3. If the Z3 group is generated
by the phase rotations a ¼ diagð!;!2; 1Þ with ! ¼ 2�=3,
then the transformation b generating Z2 and satisfying
b�1ab ¼ a2 must be of the form

b ¼
0 ei� 0

e�i� 0 0

0 0 �1

0
BB@

1
CCA; (4)

with arbitrary �. The choice of the mixing pair of doublets
(�1 and �2 in this case) is also arbitrary, so other b’s with
different pairs of mixing doublets are also allowed. The
fact that b is not uniquely defined means that there is a
whole family of D6 groups parametrized by the value of �
even if we start with the fixed group A ¼ Z3.

The generic Z3-symmetric potential contains the part
invariant under any phase rotation

V0 ¼ �X
i

m2
i ð�y

i �iÞ þ
X
i;j

�ijð�y
i �iÞð�y

j �jÞ

þX
i�j

�0
ijð�y

i �jÞð�y
j �iÞ; (5)

and the following additional terms:

VZ3
¼ �1ð�y

2�1Þð�y
3�1Þ þ �2ð�y

1�2Þð�y
3�2Þ

þ �3ð�y
1�3Þð�y

2�3Þ þ H:c:; (6)

with complex �1, �2, �3. If the parameters of V0 satisfy

m2
11 ¼m2

22; �11 ¼ �22; �13 ¼ �23; �0
13 ¼ �0

23;

(7)

and if, in addition, moduli of two among the three coef-
ficients �1, �2, �3 coincide (for example, j�1j ¼ j�2j), then
the potential V0 þ VZ3

becomes symmetric under one par-

ticular D6 group constructed with b in (4) with the value
of � ¼ ðarg�2 � arg�1 þ �Þ=3.

This construction allows us to write down an example
of the D6 potential. In order to prove that D6 is indeed
a realizable group, we need to show that the resulting
potential is not symmetric under any other Higgs-family

transformation. This is proved by the mere observation that
all other possible groups to be discussed below which
could contain D6 lead to stronger restrictions on the po-
tential than (7) and j�1j ¼ j�2j. Therefore, not satisfying
those stronger restrictions will yield a potential symmetric
only underD6. Finally, one can also show that the potential
we obtained does not have any continuous symmetry. The
same logic applies to other realizable groups below.

B. Extending Z4

If A ¼ Z4 (generated by a), then AutðZ4Þ ¼ Z2, so that
G ¼ Z4:Z2. The two non-Abelian possibilities forG are the
dihedral group D8, representing symmetries of the square,
and the quaternion group Q8. In both cases, b�1ab ¼ a3,
with the only difference that b2 ¼ 1 for D8 while b

2 ¼ a2

forQ8. Representing a by diagði;�i; 1Þ, we find

bðD8Þ ¼
0 ei� 0

e�i� 0 0

0 0 �1

0
BB@

1
CCA;

bðQ8Þ ¼
0 ei� 0

�e�i� 0 0

0 0 1

0
BB@

1
CCA:

Again, in each casewe obtain a family ofb’s parametrizedby
phase �. The Z4-symmetric potential is V0 þ VZ4

, where

VZ4
¼ �1ð�y

3�1Þð�y
3�2Þ þ �2ð�y

1�2Þ2 þ H:c: (8)

An explicit analysis shows that to make it D8 invariant, we
only need to satisfy conditions (7). Then, the potential is
symmetric under bðD8Þ with the phase � ¼ arg�2=2. Since
any larger group that could possibly contain D8 leads to
stronger restrictions on the potential, we conclude that D8

is realizable in 3HDM.
Now, if instead of D8 we try to make the potential

symmetric under Q8, we unavoidably need to set �1 ¼ 0.
Removing one term from (8) immediately makes it sym-
metric under a continuous group of phase rotations [14].
Therefore, Q8 is not realizable in 3HDM.

C. Extending Z2 � Z2

If A ¼ Z2 � Z2, then AutðZ2 � Z2Þ ¼ GL2ð2Þ ¼ S3.
Z2 � Z2 can be realized as the group of independent
sign flips of the three doublets with generators a1 ¼
diagð1;�1;�1Þ and a2 ¼ diagð�1; 1;�1Þ. The potential
symmetric under this group contains V0 and additional
terms

VZ2�Z2
¼ ~�12ð�y

1�2Þ2þ ~�23ð�y
2�3Þ2þ ~�31ð�y

3�1Þ2þH:c:

(9)

The coefficients ~�ij can be complex; we denote their

phases as c ij.
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There are three possibilities to extend A: by Z2, by Z3,
and by S3. The first extension, ðZ2 � Z2Þ:Z2, leads to D8,
which was already constructed above.

The extension by Z3 is necessarily split, ðZ2 � Z2Þ 2Z3,
leading to the group T ’ A4, the symmetry group of a
tetrahedron. To construct it, we need to find b acting on
fa1; a2; a1a2g by cyclic permutations. Fixing the direction
of permutations by b�1a1b ¼ a2, we find that bmust be of
the form

b ¼
0 ei�1 0

0 0 ei�2

e�ið�1þ�2Þ 0 0

0
BB@

1
CCA; (10)

with arbitrary �1, �2. It then follows that if coefficients in (9)
satisfy

j~�12j ¼ j~�23j ¼ j~�31j; (11)

then VZ2�Z2
is symmetric under a particular b with

�1 ¼ 2c 12 � c 31 � c 23

6
; �2 ¼ 2c 23 � c 31 � c 12

6
:

By rephasing, one can bring (9) to the following form:

VT ¼ ~�½ð�y
1�2Þ2 þ ð�y

2�3Þ2 þ ð�y
3�1Þ2� þ H:c:; (12)

with complex ~�. In addition, the symmetry under b places
stronger conditions on the parameters of V0, and the most
general V0 satisfying them is now

V0 ¼ �m2
X
i

ð�y
i �iÞ þ �

�X
i

ð�y
i �iÞ

�
2

þX
i�j

½�0ð�y
i �iÞð�y

j �jÞ þ �00j�y
i �jj2�: (13)

The last extension, ðZ2 � Z2Þ:S3, leads to the groupO¼S4,
the symmetry group of an octahedron and a cube. It includes
T as a subgroup; therefore, the most general O-symmetric

potential is V0 from (13) plus VT from (12) with the addi-

tional condition that ~� is real.

D. Extending Z3 � Z3

Finally, if A ¼ Z3 � Z3, then K � AutðZ3 � Z3Þ ¼
GL2ð3Þ, the general linear group of transformations of
two-dimensional vector space over the finite field F3,
whose role is played by A. One can define an antisymmet-
ric scalar product in this space and prove that K must
include only transformations from GL2ð3Þ that preserve
this scalar product: K � Sp2ð3Þ ¼ SL2ð3Þ.
The group SL2ð3Þ has order 24 and contains elements of

order 2, 3, 4, and 6. Elements of order 6 cannot be used for
extension because they would generate the Abelian sub-
group Z6, which is absent in (2). Besides, we will show
below that K must always contain the subgroup Z2. There
are three kinds of subgroups of K � SL2ð3Þ containing Z2

but not containing Z6: Z2, Z4, andQ8. Since, as we argued,
the quaternion group Q8 is not realizable in 3HDM, K can
only be Z2 or Z4.
To show that K � Z2, consider first the subgroup of

SUð3Þ generated by

a¼
1 0 0

0 ! 0

0 0 !2

0
BB@

1
CCA; b¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA; !¼ exp

�
2�i

3

�
:

This subgroup is usually denoted as �ð27Þ [18], and
it is well known in model building with three Higgs
doublets [5]. Since ½a; b� ¼ aba�1b�1 2 ZðSUð3ÞÞ, the
image of �ð27Þ under the canonical homomorphism
SUð3Þ ! PSUð3Þ becomes the desired Abelian group
Z3 � Z3. The true generators of Z3 � Z3 are cosets �a ¼
aZðSUð3ÞÞ and �b ¼ bZðSUð3ÞÞ from PSUð3Þ. The
Z3 � Z3-invariant potential is

V¼�m2½ð�y
1�1Þþð�y

2�2Þþð�y
3�3Þ�þ�0½ð�y

1�1Þþð�y
2�2Þþð�y

3�3Þ�2þ �1ffiffiffi
3

p ½ð�y
1�1Þ2þð�y

2�2Þ2

þð�y
3�3Þ2�ð�y

1�1Þð�y
2�2Þ�ð�y

2�2Þð�y
3�3Þ�ð�y

3�3Þð�y
1�1Þ�þ�2½j�y

1�2j2þj�y
2�3j2

þj�y
3�1j2�þ�3½ð�y

1�2Þð�y
1�3Þþð�y

2�3Þð�y
2�1Þþð�y

3�1Þð�y
3�2Þ�þH:c:; (14)

with real m2, �0, �1, �2 and complex �3, all values being
generic. This potential is, however, symmetric under a
larger group ðZ3 � Z3Þ 2Z2 ’ �ð54Þ=Z3, which is gener-
ated by �a, �b, �c with the following relations:

�a3 ¼ �b3 ¼ 1; �c2 ¼ 1; ½ �a; �b� ¼ 1;

�c �a �c�1 ¼ �a2; �c �b �c�1 ¼ �b2:

In terms of the explicit transformation laws, �c is the coset
cZðSUð3ÞÞ, with c being the exchange of any two doublets,
so that h �a; �ci ¼ S3 is the group of arbitrary permutations of

the three doublets. Thus, if G ¼ ðZ3 � Z3Þ:K, then a
G-symmetric potential must be a restriction of (14), so
that K � Z2.
Turning now to the extension G ¼ ðZ3 � Z3Þ 2Z4

(which is also known as �ð36Þ [18]), we note that SL2ð3Þ
contains three distinct Z4 subgroups, which, however,
intersect at the center of SL2ð3Þ. All three are conjugate
inside SL2ð3Þ and lead, up to isomorphism, to the same
symmetry group. To give an example of a potential sym-
metric under ðZ3 � Z3Þ 2Z4, we choose an element d 2
SL2ð3Þ of order 4 that generates the cyclic permutation of
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generators �a, �b, �a2, �b2. It can be represented by the
following SUð3Þ transformation:

d¼ iffiffiffi
3

p
1 1 1

1 !2 !

1 ! !2

0
BB@

1
CCA; d�1¼d�; d4¼1: (15)

Then by analyzing how the potential changes under d,
we obtain the following criterion: (14) becomes sym-
metric under ðZ3 � Z3Þ 2Z4, if �3 is real and is equal to

ð ffiffiffi
3

p
�1 � �2Þ=2. One can also show that the resulting poten-

tial is not invariant under any continuous symmetry group.

IV. SUMMARY

Because of the important phenomenological role the
symmetries play in multi-Higgs-doublet models, the task
of classifying all symmetries in NHDM is of much interest.
Here we solved this problem for 3HDM. Focusing on
groups of unitary transformations and including the finite
Abelian groups found in Ref. [14], we obtain the following
list of finite groups realizable as Higgs-family symmetry
groups of the 3HDM scalar sector:

Z2; Z3; Z4; Z2 � Z2; D6; D8;

T ’ A4; O ’ S4; ðZ3 � Z3Þ 2Z2 ’ �ð54Þ=Z3;

ðZ3 � Z3Þ 2Z4 ’ �ð36Þ: (16)

This list is complete: trying to impose any other finite
Higgs-family symmetry group on the 3HDM potential
will unavoidably lead to a potential symmetric under
a continuous group. Applying methods described in
Ref. [14], one can also obtain the list of realizable groups
in 3HDM which include antiunitary transformations.
These results, as well as a study of symmetry breaking
patterns for each of these groups, will be presented
elsewhere [16].
We stress that we solved the classification problem in a

rather nonstandard way, by applying results and tools from
formal finite group theory and without using representation
theory. We view this as an example of how powerful pure
group theory can be in identifying symmetries of a model.
We also stress that the same method can be applied to
problems beyond particle physics—for example, for under-
standing symmetries of the order parameters in three-band
superconductors.
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