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We study the D-term effect on runaway directions of the F-term scalar potential. A minimal

renormalizable model is presented where supersymmetry is broken without any pseudomoduli. The

model is applied to the hidden sector of gauge mediation for spontaneously breaking R symmetry and

generating nonvanishing gaugino masses at the one-loop order.
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I. INTRODUCTION

Supersymmetry is expected to be one of the key ingre-
dients to describe physics beyond the Standard Model
(SM). While tree-level supersymmetry breaking within
the SM sector leads to light sfermions, the breaking sector
is separated from the SM one and is mediated by some
effective operators or quantum effects. Among various
mechanisms for realizing this scenario, the gauge media-
tion, relevant to this paper, is one of the most promising
candidates with a strong prophetic power (for a review, see
Ref. [1]).

It is known that pseudomoduli directions are present in
the supersymmetry-breaking vacuum of O’Raifeartaigh-
like models with the canonical Kähler potential [2]. An
important implication of this result is that, if such models
are used as the hidden sector of gauge mediation, gaugino
masses are generally suppressed or the vacuum is unstable
somewhere along the pseudomoduli [3]. There have been
various ways in the literature to avoid such a phenomeno-
logically unfavorable situation, such as including nonmi-
nimal terms in the potential [4], quantum effects from
specific scalar and/or vector multiplets [5], or accepting
metastable vacua [6]. Another way, as we discussed before,
is to introduce gauge multiplets and take non-negligible D
term into account for making the vacuum stable without
pseudomoduli.

In our previous paper, we classified supersymmetry-
breaking models with nonvanishing F and D terms [7].
First, the models are divided into two categories based on
whether the F-term potential has a supersymmetric mini-
mum (at finite field configuration). We then add the D term
by gauging flavor symmetry and analyze the vacuum of the
full scalar potential in each category. For models that do
not satisfy the F-flatness conditions, we found that the full
potential generally shows runaway behavior. On the other
hand, when the F-flatness conditions are satisfied, super-
symmetry can be broken without pseudomoduli only in the
presence of the Fayet-Iliopoulos (FI) term. By using the
latter class of models, we constructed a model of gauge

mediation, where gaugino masses are generated at the one-
loop order.
In this paper, we discuss another possibility for the

classification: the F-term potential is minimized at
some infinite field configuration, i.e., it shows a runaway
behavior. It is found that the runaway direction of the
F-term potential can be uplifted by the D term, and a
supersymmetry-breaking vacuum emerges at finite field
configuration. There are several reasons to explore this
class of models in detail. First of all, contrary to our
previous result, there is no need to add the FI term for
supersymmetry breaking.1 Secondly, the vacuum automati-
cally suppresses pseudomoduli directions associated with
the F-term potential, since it has a runaway behavior and is
stabilized by the D-term potential. We propose a minimal
model with such properties and couple it with an appro-
priate messenger sector. In this model including the mes-
senger sector, R symmetry is spontaneously broken at the
tree level even though the model contains chiral superfields
with Uð1ÞR charge 0 or 2 only. We notice that R symmetry
breaking does not occur for O’Raifeartaigh-like models
with such a Uð1ÞR charge assignment [9]. This class of
supersymmetry breaking can therefore provide a realistic
model for gauge mediation, where leading-order gaugino
masses are obtained at the stable vacuum.
The outline of this paper is as follows. In Sec. II, we

briefly review our classification of F- and D-term super-
symmetry breaking. In Sec. III, we discuss the case in
which the F-term potential shows runaway behaviors.
After some general arguments, a minimal model is pre-
sented to realize the vacuum property listed above. Further,
appropriate messenger sectors are discussed and shown to
be viable for generating gaugino masses. Section IV is
devoted to summarizing our results and discussions on
future directions. In the Appendix, we show the potential
analysis of the model given in Sec. III.

1The FI term also has some difficulty when incorporated into
local supersymmetric theory [8].
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II. SUPERSYMMETRY BREAKING
WITH F AND D TERMS

We first review our previous result of the classification of
supersymmetry breaking with both F and (Abelian) D
terms [7]. Throughout this paper, we assume the Kähler
potential is canonical. The superpotential W has a poly-
nomial form of chiral superfields �i with U(1) charges qi
(the latin indices label their species). The scalar potential V
is then given by

V ¼ VF þ VD; (2.1)

where VF and VD are the contributions from F and D terms:

VF ¼ X
i

jFij2; Fi ¼ �
�
@W

@�i

�
; (2.2)

VD ¼ g2

2
D2; D ¼ X

i

qij�ij2 þ �: (2.3)

Here g is the U(1) gauge coupling constant and � is the
coefficient of the possible Fayet-Iliopoulos term [10]. In
the following, we abbreviate field derivatives of the super-
potential as W�i

ð¼ @W=@�iÞ.
We first divide models into two categories. The criterion

for the classification is whether the F-flatness condition,
VF ¼ 0, is satisfied or not at its minimum defined by
@VF=@�i ¼ 0. If the F-flatness condition is (not) satisfied,
a model is called in the second (first) class. We then add the
U(1) D term and analyze the tree-level behavior of the full
scalar potential. For the first class of models, the scalar
potential shows supersymmetric runaway behaviors when
the D-term contribution is included.2 For the second class
of models, on the other hand, supersymmetry can be bro-
ken without any pseudomoduli. That is, however, realized
only in the presence of the FI term. (See Table I for the
classification.)

There is another possibility in the classification, which
we did not consider previously: the F-term potential VF has
runaway behavior, i.e., the minimization @VF=@�i ¼ 0 is
not satisfied (with finite field configuration). In the follow-
ing, we focus on this class of models, giving some general
arguments and discussing a minimal model that shows that
the runaway direction is uplifted by the D-term potential
VD. The model also has the property that pseudomoduli are
absent in the vacuum. By coupling it with an appropriate
messenger sector, we show that R symmetry is spontane-
ously broken and gaugino masses are generated at the one-
loop order.

III. RUNAWAYAND D-TERM UPLIFT

A. General arguments

A well-known runaway behavior of the scalar potential
arises from a nonperturbative superpotential which has
inverse powers of field variables. Supersymmetry breaking
occurs along such a runaway direction if a suitable super-
potential is added to lift it up [12]. It is, however, noted in
this case that the D-term potential is vanishing.3 On the
other hand, there is another type of runaway behavior
related to symmetries of theory. We are interested in how
the runaway potential is affected by a nonvanishing D term,
which is given by gauging non-R flavor symmetry. In this
paper, we focus on the Abelian D term, but non-Abelian
generalization is straightforward.
We first see how the runaway directions related to U(1)

gauge symmetry occur. Consider a theory with U(1)
(gauge) symmetry. The superpotential is then invariant
under the complexified U(1) which contains a charge-
dependent scale transformation as its real part. An impor-
tant point is that the F-flatness conditions are satisfied with
the variables obtained by the U(1) transformation from the
original solution. Let us assume that there exists a field

configuration �i ¼ �ð0Þ
i that realizes the following situ-

ation: Fi ¼ 0 for all fields with seminegative charges
(qi � 0),4 while Fj � 0 for at least one field with positive

charge (qj > 0). Under the above scale transformation

acting on �ð0Þ
i ,

�ð0Þ
i ! eqi��ð0Þ

i ð� 2 RÞ; (3.1)

the F terms behave as

W�i ¼ 0 ðqi � 0Þ; (3.2)

W�i ! e�qi�W�i ðqi > 0Þ; (3.3)

and the F-term potential approaches to zero as � ! 1. At
the same time, some values of positively charged fields go
to infinity. The F-term potential satisfying the above as-
sumption, therefore, shows a runaway behavior along the
direction related to the U(1) symmetry. Similarly, the

TABLE I. Classification of supersymmetry breaking with F
and D terms.

At @VF

@�i
¼ 0 FI term ð�Þ ¼ 0 FI term ð�Þ � 0

First class VF � 0 runaway runaway

Second class VF ¼ 0 SUSY SUSY breaking

2A similar behavior was studied in an explicit example in
Ref. [11].

3Deviation from D-flat directions has been discussed for
several models recently [13].

4One can relax the condition such that Fi � 0 for some neutral
fields. The following arguments of runaway behavior still hold,
since neutral fields and their F terms are unchanged along the
runaway direction. The only difference is the size of the F-term
potential at infinity of the field space.
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runaway also occurs if scalar fields realize the following
situation: Fi ¼ 0 for all fields with semipositive charges
(qi � 0), while Fj � 0 for at least one field with negative

charge (qj < 0). In this case, the runaway direction corre-

sponds to � ! �1.5

Then we include the U(1) D term and examine how the
scalar potential is modified. If the charge-dependent scale
transformation is applied and the parameter � is taken to
infinity, the D term behaves as

D ! X
qi>0

qij�ij2 ð� ! 1Þ: (3.4)

Similarly, for � ! �1, the D term is dominated by nega-
tively charged fields. Along the U(1) runaway direction
discussed above, the D term grows up as j�j ! 1 and
uplifts the full scalar potential away from the origin. This
result is irrelevant to whether a nonvanishing FI term exists
or not. We here comment on an important point that since a
runaway F-term potential does not satisfy its stationary
conditions at finite field configuration, the theory is
expected to have no pseudomoduli by formulation.

It is noted that while the U(1) runaway direction is
stabilized, the full potential is not necessarily stabilized in
the direction (3.1). For example, one may have other direc-
tions, such as Uð1ÞR-related runaway, orthogonal to the
stabilized direction. Moreover, the potential must be care-
fully analyzed so that it is indeed minimized, not a saddle
point. A more general argument seems hard to complete,
and we leave these issues to future work. In the following
sections, we present a minimal tree-level model with F-term
runaway lifted by the D term of gauged flavor symmetry.

B. A minimal model

In this section we study a renormalizable model satisfy-
ing the assumption we have made above: symmetry-related
runaway directions of the F-term potential can be uplifted
by the D term, and a supersymmetry-breaking vacuum
emerges at finite field configuration. The model is explic-
itly shown to have a stable vacuum with no pseudomoduli,
where supersymmetry is broken. By coupling it with an
appropriate messenger sector, we show that R symmetry is
spontaneously broken and gaugino masses are generated at
the one-loop order.

1. Supersymmetry-breaking sector and runaway

The model consists of six chiral multiplets X�, X0, ’�
and ’0, where the subscripts denote their U(1) charges.
The assignment of U(1) and Uð1ÞR charges is summarized
below. The superpotential is

W ¼ fX0 þ �X0’þ’� þmXþ’� þ �0X�’þ’0: (3.5)

This form can be the most generic, renormalizable one if
’0 and X� have the charges þ1 and �1 under an addi-
tional ZN symmetry (N > 2). We here comment on the role
of each term in the superpotential (3.5): the first and second
terms make the origin unstable along the meson ’þ’�.
The third term lifts up the ’� direction, and naively
supersymmetry is broken with the F-term potential coming
from the first three terms. However, the potential minimum
is found to run away to infinity of the moduli space along
the ’þ direction (with a finite value of ’þ’�). It is further
noticed that anomaly cancellation requires the existence of
a negatively charged field (X�). Without the last fourth
term, the value of X� is free and the direction X�’þ
becomes D flat, along which the potential minimum goes
to infinity and supersymmetry is recovered. In this way, the
superpotential (3.5) is regarded as minimal one for the
present purpose.
The scalar potential V ¼ VF þ VD is explicitly given by

VF ¼ jfþ �’þ’�j2 þ jm’�j2 þ j�0’þ’0j2
þ j�0X�’þj2 þ j�X0’� þ �0X�’0j2
þ j�X0’þ þmXþj2; (3.6)

VD ¼ g2

2
D2 ¼ g2

2
ðjXþj2 þ j’þj2 � jX�j2 � j’�j2Þ2:

(3.7)

The F-term potential VF has the U(1) runaway directions
discussed in the previous section. We find along the fol-
lowing direction

Xþ ¼ X� ¼ X0 ¼ ’0 ¼ 0;

’þ ¼
ffiffiffiffi
f

�

s
e�; ’� ¼ �

ffiffiffiffi
f

�

s
e��;

(3.8)

and all the F terms vanish except for the positively charged
field FXþ ,

FX� ¼ FX0
¼ F’þ ¼ F’� ¼ F’0

¼ 0;

F�
Xþ ¼ m

ffiffiffiffi
f

�

s
e��:

(3.9)

The runaway direction is parametrized by �. As � ! 1,
the positively charged field ’þ goes to infinity and the
F-term potential (FXþ) approaches to zero. Furthermore, no

Uð1ÞR runaway is expected since all the scalar fields in the
present model have R charges 0 or 2 [14].
It is easily seen that the F-term runaway direction (3.8) is

stabilized by the D-term contribution because, along this
direction, the D term increases as

D ! j’þj2 ð� ! 1Þ: (3.10)

5The runaway behavior related to Uð1ÞR symmetry is under-
stood in a similar way [14]. A difference from non-R symmetry
discussed in this section is that the superpotential carries a
nonzero charge, and one can specify R-charge assignment for
runaway to occur.
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(See also Fig. 1.) We again note that even when the
runaway is lifted by the D term, it does not necessarily
mean that the vacuum of the scalar potential is in the
direction (3.8).

2. Supersymmetry-breaking vacuum

We then analyze the scalar potential in detail to confirm
that a stable supersymmetry-breaking vacuum is obtained
in some parameter region. The parameters appearing in the
superpotential are assumed to be real and positive without
loss of generality.

The vacuum is identified by solving the stationary con-
ditions for the full scalar potential V. A trivial configura-
tion satisfying the stationary conditions is the origin at
which all the scalar fields vanish. This point however is
unstable and we do not consider it in the following. By
some calculation (the detail is summarized in the
Appendix), we can show that the vacuum satisfies

Xþ ¼ X0 ¼ ’0 ¼ 0; (3.11)

where several F terms vanish;

FX� ¼ F’þ ¼ F’� ¼ 0: (3.12)

Then the stationary conditions for Xþ, X0, and ’0 auto-
matically hold, and the scalar potential simplifies to

V ¼ jfþ �’þ’�j2 þ jm’�j2 þ j�0X�’þj2 þ g2

2
D2;

(3.13)

with D ¼ j’þj2 � j’�j2 � jX�j2. With this reduced
potential, the stationary condition for X� reads

@V

@X��
¼ X�ðj�0’þj2 � g2DÞ ¼ 0; (3.14)

indicating X� ¼ 0 or D ¼ j�0’þ=gj2. We discuss these
two cases separately below, solving the remaining station-
ary conditions for ’�.

(1) X� ¼ 0: In this case, for a large mass (m2 � �f,
�2f=g) or a small one (m2 � �f, g2f=�), we can

approximately write down the analytic solution to
the stationary conditions for ’�. For the large mass
regime, the solution is given by

’þ ¼ � �f

gm
; ’� ¼ ��2f2

gm3
; ðlargemÞ;

(3.15)

where the F and D components other than (3.12)
become

FXþ ¼ ��2f2

gm2
; FX0

¼ �fþ �4f3

g2m4
;

F’0
¼ 0; D ¼ �2f2

g2m2
;

(3.16)

at the leading order. Therefore, the scalar potential is
dominated by FX0

, i.e., V ’ f2. On the other hand,

for the small mass regime, we have

’þ ¼ �
ffiffiffiffi
f

�

s �
1� m2

4�f
þ �m2

8g2f

�
; (3.17)

’� ¼ �
ffiffiffiffi
f

�

s �
1� m2

4�f
� �m2

8g2f

�
; ðsmallmÞ;

(3.18)

where the F and D components are

FXþ ¼ �m

ffiffiffiffi
f

�

s
; FX0

¼ �m2

2�
;

F’0
¼ 0; D ¼ m2

2g2
;

(3.19)

and the scalar potential is found to be dominated by
FXþ , i.e., V ’ fm2=�. Notice that, in both regimes

of m, the R symmetry is unbroken as F’0
¼ 0.

The stability of these vacua is read off from the
eigenvalues of the squared mass matrix for
the scalar fields. We find that all eigenvalues
except for X� are positive semidefinite. Along the
X� direction, the eigenvalue is given by

M2
X� ¼ ð�02 � g2Þj’þj2 þ g2j’�j2: (3.20)

This eigenvalue is positive when �0 * g for the large

mass regime and �0 * ð�m2=fÞ1=2 for the small
mass regime. Therefore the supersymmetry-breaking
vacuum realized is stable for these para-
meters. Otherwise, X� ¼ 0 is a saddle point and
the true vacuum is given by the following
second case:

(2) D ¼ j�0’þ=gj2: In this case, the stationary
conditions are complicated and we only present a
typical numerical solution. For example, when the
model parameters are set as ðm2=f; �; �0; gÞ ¼
ð2; 0:7; 0:1; 0:5Þ, which do not satisfy the above

0

V

FIG. 1. A typical behavior of VF (dashed line) and V (solid
line) along the runaway direction (3.8). The runaway direction of
VF is uplifted by the D-term contribution VD.
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condition for the stability of X� ¼ 0, the vacuum is
located at

ð’þ; ’�; X�Þ ’ ð1:34;�0:252; 1:29Þ 	m; (3.21)

where nonvanishing F and D components are

ðFXþ ; FX0
; F’0

; DÞ
’ ð�0:504;�0:527; 0:346; 0:144Þ 	 f: (3.22)

All the F and D terms become comparable to
each other and contribute to the scalar potential
V 
Oðf2Þ. The stability of this vacuum is con-
firmed numerically. We have also checked that, for
a wider parameter region, the scalar potential has a
similar behavior. In Fig. 2, we show the normalized
potential V=f2 characterizing supersymmetry
breaking at the vacuum as a function of �0 for the
large mass regime (m2 � �f, �2f=g). Without
the �0 term, supersymmetry recovers at infinity of
the moduli space, as we mentioned before. As �0
becomes larger, X� is stabilized for �0 * g and the
vacuum is shifted up to (3.16), where V=f2 ’ 1.

3. Messenger sector and gaugino masses

We then discuss the gauge-mediation scenario by
employing the above model as a supersymmetry breaking
sector. Appropriate messenger fields and their superpoten-
tial are identified for generating one-loop-order gaugino
masses for the two cases, X� ¼ 0 and D ¼ j�0’þ=gj2,
separately.

(1) X� ¼ 0: As we have shown, the F and D terms have
different behaviors depending of whether the mass
parameter m is large or small. For the large m case,
(3.16), the supersymmetry-breaking scale is gov-
erned by FX0

from which sfermions are expected

to receive soft masses. For generating a similar size
of gaugino masses, a simple way is to introduce the

messenger fields M and ~M which are vectorlike
under the SM gauge symmetry and have the super-
potential,

W ¼ X0M ~MþmMM ~M: (3.23)

For f � m2
M, the standard one-loop diagram of

messenger fields generates a gaugino mass Mg;

Mg ¼ TRg
2
SM

8�2

f

mM

; (3.24)

where gSM is the SM gauge coupling, and TR is the
Dynkin index of the SM gauge symmetry forM and
~M. The gaugino mass (3.24) is given at the vacuum
discussed in the previous section. It is, however,
noticed that the R symmetry is softly broken by
the parameter mM that makes X0 ¼ 0 a local mini-
mum. Another way of obtaining gaugino masses
would be to consider the direct gauge mediation,
i.e., to generalize U(1) to non-Abelian symmetry
containing the SM one. By adding a small super-
symmetric mass for ’�, they behave as messengers
and would induce the SM gaugino masses without
introducing additional multiplets.
For the small mass case, (3.19), the charged F term
FXþ dominates the supersymmetry-breaking scale.

To split messenger masses with FXþ , we must intro-

duce two pairs of vectorlike messengers with U(1)
charges�q and�ðq� 1Þ and couple them with Xþ
in the superpotential. For further details of the mes-
senger sector, the stability of the vacuum, and gau-
gino mass generation, see Ref. [7].

(2) D ¼ j�0’þ=gj2: In the vacuum, the Uð1ÞR symme-
try given in Table II is broken by the F term of ’0

which is neutral under both U(1) and Uð1ÞR. We
consider the following messenger superpotential,

W ¼ ’0M ~MþmMM ~M; (3.25)

where M and ~M are vectorlike multiplets, charged
under the SM gauge symmetry. It is noticed that the
ZN symmetry is softly broken in this messenger
sector. Note that the superpotential (3.5) has an
anomalous U(1)’ symmetry, under which ’0 and
X� are charged, but it is explicitly broken in (3.25)
. The R symmetry is spontaneously broken in the
full potential with both (3.5) and (3.25), if the vac-
uum in the previous section is stable. The vacuum
stability is ensured by taking the parameter mM

0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

V

f 2

FIG. 2. The potential value at the vacuum as a function of �0
(for the D ¼ j�0’þ=gj2 case). The other parameters are fixed to
ðm2=f; �; gÞ ¼ ð2; 0:7; 0:5Þ. In the limit �0 ! 0, supersymmetry
is recovered, but some expectation values run away to infinity.

TABLE II. The assignment of U(1) and Uð1ÞR charges.

Xþ X� X0 ’þ ’� ’0

U(1) þ1 �1 0 þ1 �1 0

Uð1ÞR 2 2 2 0 0 0
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sufficiently large. The gaugino mass is evaluated for
f � m2

M as

Mg ¼ TRg
2
SM

8�2

F’0

mM

; (3.26)

which comes from a one-loop diagram, whereM, ~M
circulate in the loop.
From these observations, we conclude that this
class of supersymmetry-breaking models is useful
to build a simple, realistic hidden sector of gauge
mediation.

IV. SUMMARYAND DISCUSSIONS

We have studied supersymmetry-breaking models with
both F and D terms being nonvanishing. In particular, we
have focused on the case that the F-term potential shows
runaway behaviors that originate from symmetries of the-
ory considered. The runaway directions are uplifted by the
D term and a supersymmetry-breaking vacuum is realized
at finite field configuration. An interesting property of this
approach is that (phenomenologically disfavored) pseudo-
moduli are absent in the vacuum since they are related to
the minimization of the F-term potential. Moreover, there
is no need to add the FI term for supersymmetry breaking.
Along this line, a minimal renormalizable model has been
presented where supersymmetry is broken. For an applica-
tion to gauge mediation, we have introduced appropriate
messenger sectors and confirmed that R symmetry is spon-
taneously broken, and gaugino masses in the visible sector
are generated at the comparable order of sfermion masses.
This class of models may open up a new way to build
realistic models of gauge mediation, circumventing the
lemma proved by Komargodski and Shih [3].

As remarked, the D-term lifted runaway might be desta-
bilized along other orthogonal directions such as the Uð1ÞR
runaway. We do not have any criteria to ensure that the
D-term uplifting of runaway directions can lead to the
stable and global minimum of the scalar potential. It would
be interesting if one could carry out a general argument on
this issue.

ACKNOWLEDGMENTS

Wewould like to thank L. B. Anderson for useful advice
on the numerical analysis. T. A. thank the YITP Workshop
on String Theory and Field Theory and the 2012 Simons
Workshop on Mathematics and Physics, where this work
was partly done, for hospitality. T. A. is in part supported
by the JSPS Postdoctoral Fellowship for Research Abroad
and is grateful to the Center for the Fundamental Laws
of Nature at Harvard University for support. K.Y. is sup-
ported in part by the Grant-in-Aid for Scientific Research
No. 23740187 and also in part by Keio Gijuku Academic
Development Funds. This work is supported by ‘‘The Next
Generation of Physics, Spun from Universality and

Emergence,’’ the GCOE Program from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

APPENDIX: POTENTIAL ANALYSIS

In this Appendix, we give some details of the potential
analysis for the model given in Sec. III B. In particular,
we explain the derivation of the vacuum expectation
values (3.11).
The field derivatives of the superpotential (3.5) are

given by

WXþ ¼ m’�; WX� ¼ �0’þ’0;

WX0
¼ fþ �’þ ’�; W’þ ¼ �X0’� þ �0X�’0;

W’� ¼ �X0’þ þmXþ; W’0
¼ �0X�’þ: (A1)

The scalar potential V is the sum of the contributions from
F and D terms, VF and VD, and these explicit forms are
written down in (3.6) and (3.7). The stationary conditions
for V are then given by

@V

@X�þ
¼ m�ð�X0’þ þmXþÞ þ g2XþD ¼ 0; (A2)

@V

@X��
¼ j�0’þj2X� þ�0�’�

0ð�X0’� þ�0X�’0Þ � g2X�D

¼ 0; (A3)

@V

@X�
0

¼ ��’�þð�X0’þþmXþÞþ��’��ð�X0’�þ�0X�’0Þ

¼ 0; (A4)

@V

@’�þ
¼ ��’��ðfþ �’þ’�Þ þ j�0X�j2’þ

þ ��X�
0ð�X0’þ þmXþÞ þ j�0’0j2’þ þ g2’þD

¼ 0; (A5)

@V

@’��
¼ ��’�þðfþ�’þ’�Þþ jmj2’�

þ��X�
0ð�X0’� þ�0X�’0Þ�g2’�D¼ 0; (A6)

@V

@’�
0

¼ �0�X��ð�X0’� þ �0X�’0Þ þ j�0’þj2’0 ¼ 0:

(A7)

First, by using (A4) and (A7), we express X0 and ’0 in
terms of the other fields,

X0 ¼ �m

�

XþðjX�j2 þ j’þj2Þ
’þðjX�j2 þ j’þj2 þ j’�j2Þ

; (A8)

’0 ¼ m

�0
XþX��’�

’þðjX�j2 þ j’þj2 þ j’�j2Þ
: (A9)
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If Xþ � 0, we find from (A2) and (A8),

g2D ¼ �jm’�j2
jX�j2 þ j’þj2 þ j’�j2

: (A10)

This implies that D is negative at the stationary point (if
Xþ � 0). On the other hand, from (A3) and (A7), we have

j�0X�’þj2 ¼ j�0’þ’0j2 þ g2jX�j2D; (A11)

while the equation ’�þð@V=@’�þÞ � ’��ð@V=@’��Þ ¼ 0
gives

j�0X�’þj2 þ ’þj�0’þ’0j2 � jm’�j2
þ g2ðj’þj2 þ j’�j2ÞD� ’��X0ð�X0’� þ �0X�’0Þ�
þ �X0ð�X0’þ þmXþÞ� ¼ 0: (A12)

By using the relations,

�X0ð�X0’þ þmXþÞ�

¼ �jmXþ’�j2
’þ

jX�j2 þ j’þj2
ðjX�j2 þ j’þj2 þ j’�j2Þ2

; (A13)

�X0ð�X0’� þ �0X�’0Þ�

¼ jmXþ’�j2
’�

jX�j2 þ j’þj2
ðjX�j2 þ j’þj2 þ j’�j2Þ2

; (A14)

following from (A8) and (A9), we find another expression
for D from (A11) and (A12),

g2D¼ 1

jX�j2 þ j’þj2 þj’�j2

	
�
jm’�j2 þ 2jmXþ’þ’�j2

ðjX�j2 þj’þj2 þj’�j2Þ2
�
: (A15)

That implies D is positive at the stationary point. For both
conditions (A10) and (A15) to be true, D ¼ 0 is the only
solution, but it cannot be satisfied because the origin
of meson direction ’þ’� is destabilized by the F-term
potential. Therefore, Xþ � 0, which is the assumption
for (A10), should not be realized. In the end, from
(A8) and (A9), we find the following vacuum expectation
values (3.11):

Xþ ¼ X0 ¼ ’0 ¼ 0:

[1] G. F. Giudice and R. Rattazzi, Phys. Rep. 322, 419 (1999).
[2] S. Ray, Phys. Lett. B 642, 137 (2006).
[3] Z. Komargodski and D. Shih, J. High Energy Phys. 04

(2009) 093.
[4] L. G. Aldrovandi and D. Marques, J. High Energy Phys. 05

(2008) 022; Y. Nakai and Y. Ookouchi, J. High Energy
Phys. 01 (2011) 093; T. S. Ray, Phys. Rev. D 85, 035003
(2012).

[5] M. Dine and J. Mason, Phys. Rev. D 77, 016005 (2008);
K. Intriligator and M. Sudano, J. High Energy Phys. 06
(2010) 047; E. Dudas, S. Lavignac and J. Parmentier,
Phys. Lett. B 698, 162 (2011).

[6] R. Kitano, H. Ooguri and Y. Ookouchi, Phys. Rev. D 75,
045022 (2007); B.K. Zur, L. Mazzucato and Y. Oz, J.
High Energy Phys. 10 (2008) 099; A. Giveon, A. Katz and
Z. Komargodski, J. High Energy Phys. 07 (2009) 099;
S. A. Abel, J. Jaeckel and V.V. Khoze, Phys. Lett. B 682,
441 (2010); M. Bertolini, L. Di Pietro and F. Porri, J. High
Energy Phys. 01 (2012) 158.

[7] T. Azeyanagi, T. Kobayashi, A. Ogasahara, and K.
Yoshioka, J. High Energy Phys. 09 (2011) 112.

[8] Z. Komargodski and N. Seiberg, J. High Energy Phys. 06
(2009) 007; K. R. Dienes and B. Thomas, Phys. Rev. D 81,
065023 (2010).

[9] D. Shih, J. High Energy Phys. 02 (2008) 091; Z. Sun,
J. High Energy Phys. 01 (2009) 002; D. Curtin, Z.
Komargodski, D. Shih, and Y. Tsai, Phys. Rev. D 85,
125031 (2012).

[10] P. Fayet and J. Iliopoulos, Phys. Lett. 51B, 461 (1974).
[11] L. F. Matos, arXiv:0910.0451.
[12] I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys. B241, 493

(1984); B256, 557 (1985).
[13] H. Elvang and B. Wecht, J. High Energy Phys. 06 (2009)

026; T. T. Dumitrescu, Z. Komargodski, and M. Sudano,
J. High Energy Phys. 11 (2010) 052.

[14] L. Ferretti, J. High Energy Phys. 12 (2007) 064; L.M.
Carpenter, M. Dine, G. Festuccia, and J. D. Mason, Phys.
Rev. D 79, 035002 (2009).

RUNAWAY BEHAVIOR, D TERM AND R-SYMMETRY . . . PHYSICAL REVIEW D 86, 095026 (2012)

095026-7

http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://dx.doi.org/10.1016/j.physletb.2006.09.009
http://dx.doi.org/10.1088/1126-6708/2009/04/093
http://dx.doi.org/10.1088/1126-6708/2009/04/093
http://dx.doi.org/10.1088/1126-6708/2008/05/022
http://dx.doi.org/10.1088/1126-6708/2008/05/022
http://dx.doi.org/10.1007/JHEP01(2011)093
http://dx.doi.org/10.1007/JHEP01(2011)093
http://dx.doi.org/10.1103/PhysRevD.85.035003
http://dx.doi.org/10.1103/PhysRevD.85.035003
http://dx.doi.org/10.1103/PhysRevD.77.016005
http://dx.doi.org/10.1007/JHEP06(2010)047
http://dx.doi.org/10.1007/JHEP06(2010)047
http://dx.doi.org/10.1016/j.physletb.2011.02.063
http://dx.doi.org/10.1103/PhysRevD.75.045022
http://dx.doi.org/10.1103/PhysRevD.75.045022
http://dx.doi.org/10.1088/1126-6708/2008/10/099
http://dx.doi.org/10.1088/1126-6708/2008/10/099
http://dx.doi.org/10.1088/1126-6708/2009/07/099
http://dx.doi.org/10.1016/j.physletb.2009.11.029
http://dx.doi.org/10.1016/j.physletb.2009.11.029
http://dx.doi.org/10.1007/JHEP01(2012)158
http://dx.doi.org/10.1007/JHEP01(2012)158
http://dx.doi.org/10.1007/JHEP09(2011)112
http://dx.doi.org/10.1088/1126-6708/2009/06/007
http://dx.doi.org/10.1088/1126-6708/2009/06/007
http://dx.doi.org/10.1103/PhysRevD.81.065023
http://dx.doi.org/10.1103/PhysRevD.81.065023
http://dx.doi.org/10.1088/1126-6708/2008/02/091
http://dx.doi.org/10.1088/1126-6708/2009/01/002
http://dx.doi.org/10.1103/PhysRevD.85.125031
http://dx.doi.org/10.1103/PhysRevD.85.125031
http://dx.doi.org/10.1016/0370-2693(74)90310-4
http://arXiv.org/abs/0910.0451
http://dx.doi.org/10.1016/0550-3213(84)90058-0
http://dx.doi.org/10.1016/0550-3213(84)90058-0
http://dx.doi.org/10.1016/0550-3213(85)90408-0
http://dx.doi.org/10.1088/1126-6708/2009/06/026
http://dx.doi.org/10.1088/1126-6708/2009/06/026
http://dx.doi.org/10.1007/JHEP11(2010)052
http://dx.doi.org/10.1088/1126-6708/2007/12/064
http://dx.doi.org/10.1103/PhysRevD.79.035002
http://dx.doi.org/10.1103/PhysRevD.79.035002

