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The measurement of the forward-backward asymmetry at LHC could be an important instrument to

pinpoint the features of extra neutral gauge particles obtained by an extension of the gauge symmetry

group of the standard model. For definitiveness, in this work, we consider an extension of the gauge group

of the minimal supersymmetric standard model by an extra anomalous U(1) gauge symmetry. We focus on

pp ! eþe� at LHC and use four different definitions of the asymmetry obtained implementing four

different cuts on the directions and momenta of the final states of our process of interest. The calculations

are performed without imposing constraints on the charges of the extra Z’s of our model, since the

anomaly is cancelled by a Green-Schwarz type mechanism. Our final result is a fit of our data with a

polynomial in the charges of the extra U(1) that is used to extract the values of the charges, given the

experimental result.

DOI: 10.1103/PhysRevD.86.095014 PACS numbers: 12.60.�i, 14.70.Pw

I. INTRODUCTION

One of the most motivated extensions, from a theoretical
point of view, of the standard model (SM) and minimal
supersymmetric standard model (MSSM) of particle phys-
ics is obtained by enlarging the gauge group of the theory
by admitting extra Uð1Þ’s. Such extensions are natural at
low energy for models coming from grand unified theories
and string theories (see Ref. [1] for a recent review). In the
string inspired scenarios the anomalies of the extra Uð1Þ’s
are cancelled by the Green-Schwarz mechanism. To ex-
plore such a possibility we will use an extension of the
MSSM that from now on will be dubbed MiAUMSSM. An
alternative version of this model that admits spontaneous
supersymmetry breaking was also formulated in Ref. [2],
but in this work we will use the original formulation of
Ref. [3]. The phenomenology of the MiAUMSSM has
been investigated in different directions. Assuming that
the lightest supersymmetric particle (LSP), a candidate
for dark matter, comes from the anomalous sector of the
model [4,5], the relic density of such LSP was computed
and proved to be compatible with the experimental data of
WMAP [6]. Furthermore in Ref. [7], the decays of the next
to lightest supersymmetric particle into the LSP has been
considered, while in Ref. [8] the features of a possible
signature of the model at LHC has been considered by
concentrating on a particular radiative decay of the next to
lightest supersymmetric particle.

In this paper, we will further develop the phenomenol-
ogy of the MiAUMSSM by computing the forward-
backward asymmetry that is induced in the final states of
the process pp ! eþe� by keeping in account the new

gauge boson, Z0, associated with the extra Uð1Þ gauge
symmetry. The couplings (charges) of this particle to the
others present in our model are not fixed by the require-
ment of gauge anomaly cancellation and can be determined
only by experiment. Our aim is to show that such mea-
surement is feasible and that it can be distinguished among
the different possible scenarios [9]. Since at the LHC the
colliding beams are made of the same particle, to generate
an asymmetry in the final state, some cuts on the parameter
space have to be necessarily performed. Each possible cut
leads to a different definition of the asymmetry. In this
work we will use four different sets of cuts to show that our
results are not dependent from these choices.
This work is organized as follows: In Sec. II, we briefly

review the main features of the model that we are going to
study. In Sec. III, we will discuss the four different defini-
tions of the asymmetry we will use; in Sec. IV, we will
describe our calculations and collect the results that are
finally discussed in the conclusions.

II. MODEL DEFINITION

Our model [3] is an extension of the MSSM with an
extra Uð1Þ. The charges of the matter fields with respect to
the symmetry groups are given in Table I.
The gauge invariance of the model implies

QUc ¼ �QQ �QHu
; QDc ¼ �QQ þQHu

;

QEc ¼ �QL þQHu
; QHd

¼ �QHu
:

(1)

Thus, there are only three free charges introduced by the
extra symmetry: we can choose QQ, QL, and QHu

without

loosing generality. The anomalies induced by this exten-
sion are cancelled by the Green-Schwarz mechanism; there
are no further constraints on the charges.
To evaluate the asymmetry associated with the full

process pp ! eþe� we have performed the calculation
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of the cross section of the subprocess q �q ! eþe�, which
we report in Appendix A. In Appendix B we give details on
the convolution of this differential cross section for the
specific definitions of asymmetry that we will adopt. We
take the mass of our Z0 to be 1.5 Tev. There are two main
reasons for this choice: On the one hand we wanted a
sizeble Z0 production (see Ref. [3], where there are results
for a Z0 mass of 1 TeV). On the other hand this mass value
allows a comparison with the results in literature [10].
Regardless, our analysis could be repeated for arbitrary
value of the Z0 mass.

III. ASYMMETRY DEFINITION

Because the initial pp state is symmetric, the asymmetry
at the LHC is zero if we integrate over the whole parameter
space. However the partonic subprocess q �q ! eþe� is
asymmetric. We can keep this asymmetry by imposing
kinematical cuts, which are anyway inevitable because of
the limits imposed by the detector. There are many possibil-
ities to perform these cuts and each of them leads to a
different definition of the asymmetry. In this work we have
used the four definitions of the asymmetry, ARFBðYcutÞ,
AOFBðpcut

z Þ,ACðYCÞ, andAEðYCÞ, which are collected in [10]:

ARFB ¼ �ðjYe�j> jYeþjÞ � �ðjYe�j< jYeþjÞ
�ðjYe�j> jYeþjÞ þ �ðjYe�j< jYeþjÞ

��������jYj>Ycut
;

(2)

AOFB ¼ �ðjYe�j> jYeþjÞ � �ðjYe�j< jYeþjÞ
�ðjYe�j> jYeþjÞ þ �ðjYe�j< jYeþjÞ

��������jpzj>pcut
z

;

(3)

AC ¼ �e�ðjYe�j< YCÞ � �eþðjYeþj< YCÞ
�e�ðjYe�j< YCÞ þ �eþðjYeþj< YCÞ ; (4)

AE ¼ �e�ðYC < jYe�jÞ � �eþðYC < jYeþjÞ
�e�ðYC < jYe�jÞ þ �eþðYC < jYeþjÞ ; (5)

where � is the total cross section after integrating with the
partonic distribution functions (PDFs).

The first two asymmetries are defined in the center of
mass (CM) frame. The forward-backward asymmetry ARFB

[1,9,11–14] has a cut on the rapidity Y of the e�=eþ pair

Y ¼ 1

2
log

�
Ee�eþ þ pz

Ee�eþ � pz

�
: (6)

The one-side asymmetry AO [15,16] has a cut on pz, the
total momentum associated with the final states ðe�eþÞ
moving longitudinally along the beam direction chosen to
be the z axis.
In Appendix B this rapidity will be expressed in the CM

in terms of the partonic variables x1;2. Ee�eþ is the sum of

the energies associated with the two particles. The other
two asymmetries are defined in the laboratory (Lab) frame.
The variable Ye� is the pseudorapidity associated with the
single particle e� and expressed as

Ye� ¼ � logðtanð�e�=2ÞÞ; (7)

with �e
�
the angle of the outgoing fermion with respect to

the z axis. In this case the kinematical cut is over the
rapidity in the Lab frame that is denoted by YC and that
will be introduced in Appendix B. The central asymmetry
AC [17–21] is calculated integrating in the angular region
centered on the axis orthogonal to the beam, while the
edge asymmetry AE [22] is defined in the complementary
region.
For further details, see Appendix B.

IV. ASYMMETRY CALCULATION

In this work we have calculated the asymmetry in two
different ways. First we have used a numerical code that we
have written using Mathematica. This code uses the cross
section calculated in Appendix A to numerically compute
the integrals discussed in Appendix B. As a second check
we have repeated the same computation using the HERWIG

package [23,24], that we have modified to calculate the
asymmetry. We have chosen to repeat twice our computa-
tion for two main reasons: the first one is that in this way
we can have a cross check between our results; the second
is that these methods have different peculiarities that we
want to use. For example, the numerical integration is less
computer time consuming for the Mathematica code,
which helps in establishing the dependence of the asym-
metry from the free charges of the model. At the same time
the HERWIG package permits one to study how the cuts
influence the rate of production of our final state. For these
reasons we have performed the basic calculation (i.e., the
asymmetry optimization) using both methods. We remark
that all the results that we will show are strongly dependent
on the set of PDFs used to calculate them and that this leads
to a systematical error. In the following we do not show
results for different sets of PDFs. Where the statistical error
is concerned, we have estimated it using the formula [10]

err �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NFNB

N3

s
’ 1ffiffiffiffiffiffiffiffi

L�
p ; (8)

TABLE I. Charge assignment.

SUð3Þc SUð2ÞL Uð1ÞY Uð1Þ0
Qi 3 2 1=6 QQ

Uc
i

�3 1 �2=3 QUc

Dc
i

�3 1 1=3 QDc

Li 1 2 �1=2 QL

Ec
i 1 1 1 QEc

Hu 1 2 1=2 QHu

Hd 1 2 �1=2 QHd
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where NF=B are the forward/backward events,N is the total

number of events, andL is the luminosity. In the following
we show the estimated errors for the asymmetry definitions
keeping L ¼ 100 fb�1.

We aim to use the asymmetry to distinguish our model
from the MSSM or other models that include an extraUð1Þ.
In the following we will perform the asymmetry calcula-
tion around the peak region, that is for MZ0 � 3�Z0 <
Meþe� <MZ0 þ 3�Z0 , where �Z0 is the total decay rate
of the Z0. As we remarked in Appendix B, this determines
the integration domain, that is ðMZ0 � 3�Z0 Þ2 < s <
ðMZ0 þ 3�Z0 Þ2. We also compare our results with the
ones obtained for the sequential standard model (SSM),
in which there is an extra Z0 boson that has the same
couplings to fermions such as the SM Z boson [1,25].
See Sec. IVD for further details on the corresponding
Lagrangian and the values of the quantum numbers.

A. Optimized asymmetry

As shown in Ref. [10] the asymmetry magnitude is not a
good function to optimize. A better choice is, instead, the
statistical significance:

Sig � A
ffiffiffiffiffiffiffiffi
L�

p
; (9)

where A can be any of the previously defined asymmetries,
L is the LHC integrated luminosity, which we take to be
100 fb�1.

We have found a good agreement between the results
obtained by using the Mathematica code and those ob-
tained with the event simulator HERWIG. Thus, we are
confident that our results will be reliable to calculate other
observables, e.g., the dependence from the charges of the
asymmetries and the significancies. In Fig. 1, we show the
results for the on-peak significance of the MiAUMSSM
and SSM for all the definitions of asymmetry that we use.
The best cuts are those that maximize the significance. For
the SSMwe find the same values as in Ref. [10]. We list the
best cuts of the MiAUMSSM in Table II. As in Ref. [10],
we expect that the best cuts are nearly independent from
the charges and depend only on the Z0 mass and the
partonic distribution functions. Moreover they are also
essentially independent from the specific model chosen
as it is confirmed by our analysis. As a further check we
have performed simulations with the SSM. We have used
the same settings of Ref. [10], obtaining very similar
results for all the cuts, confirming the reliability of our
numerical codes. We used the SSM not only for having
a check of the validity of our calculations but also to
have results that can be compared with those of the
MiAUMSSM.

B. Dependence on the charges

Now we want to use the best cuts previously found to
study the asymmetry in function of the free charges of our
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FIG. 1 (color online). Significance as a function of the corre-
sponding cut associated with the four definitions of asymmetry
for on-peak events in both the MiAUMSSM and the SSM
(calculated with the HERWIG package). The charges have been
fixed: QHu

¼ 0:5, QQ ¼ 0:75 and QL ¼ 1. The shape of these

functions depends on this choice while the position of the peak
does not.
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model. We have studied the value of the four asymmetries
keeping alternatively one of the charges fixed to 0 and
varying the other two from �1 to 1. We choose these
ranges because in the SM all the charges are of this order.
Furthermore in Ref. [5], we have found that �1&QHu

&1

for the model to be consistent with the WMAP data on
dark matter. Then, out of simplicity we have used the same
region for the other two charges. As was mentioned, we
have obtained the following plots using Mathematica to
perform the numerical integration. Some of the results we
have obtained are shown in Figs. 2–4. The contour plots for
the other cases can be found in Ref. [26].

In these plots the darkest color areas are those with the
lowest absolute values of the asymmetry while the greatest
values lie in the lightest color region. In addition, these
plots are almost symmetric under exchanges in the signs of
the charges. The contour plots with QHu

¼ 0 are almost

invariant under the exchangeQi ! �Qi of the two remain-
ing charges. Those with QL ¼ 0 or QQ ¼ 0 are almost

symmetric only under the change of sign of both the two
unfixed charges. So the asymmetry as a function of the
charges must reflect these sorts of symmetries in its poly-
nomial dependence on the charges. This implies that if
we try to fit the asymmetry with a rational function [which
is the best choice, given the definitions (2)–(5)] wewill have
constraints on the coefficients of the fit.

C. Number of events

We already mentioned that to obtain a nonzero asym-
metry at LHC we have to impose cuts in the parameter

space. Obviously these cuts will diminish the number of
events that we can use to measure the asymmetry. It is
important to be sure that they do not drastically affect
the set of data we have at our disposal. To study the
ratio between the number of events obtained applying
the cuts and the total number of events expected in our
channel of interest (pp ! eþe�), we have used the
HERWIG package. We have studied the ratio Ni=Ntoti ,

where Ni is the sum of the forward and backward events
for the ith definition of asymmetry and Ntoti is the

number of events that we have generated with HERWIG.
We have performed the calculation of Ni=Ntoti in two

cases:
(i) on peak invariant mass, variable cuts;
(ii) variable invariant mass, fixed cuts.

TABLE II. Best cuts for the on-peak eþe� asymmetries.

ARFB AO AC AE

Best cut Ycut
f �f

¼ 0:4 pcut
z;f �f

¼ 580 GeV YC ¼ 0:8 YC ¼ 1:4
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FIG. 2 (color online). Results for the forward-backward asym-
metry with QL ¼ 0 for the best cuts.
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FIG. 3 (color online). Results for the forward-backward asym-
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FIG. 4 (color online). Results for the forward-backward asym-
metry with QHu

¼ 0 for the best cuts.
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Only in the case of a variable invariant mass with a fixed
cut is it possible to distinguish the behavior of our model
from that of the SSM. Therefore we show only the related
results in Fig. 5. After the implementation of the cuts we
are left with 65%–75% of the total number of events for the
FB and O asymmetry, while for the C and E asymmetries
we are left with 40%–50% of the events. In both cases
these ratios are good enough to allow the measurement of
the observable of interest.

D. Comparison with other models: LRM and SSM

In this subsection, we present a brief analysis of the
results for the asymmetry obtained with two well-known

models of extra Uð1Þ extension of the SM: the left-right
model (LRM) [11,13] and the previously mentioned SSM
[25]. We will see that the asymmetry in our anomalous
model almost always leads to values that can be distin-
guished from those of the LRM and SSM. This implies that
a possible future measure could discriminate among these
models. The couplings among the fermions and the Z0 for
all these models could all be written in the form

gZ0J�
Z0Z0

� ¼ �
X
f

�c f�
�ðgfV � gfA�5Þc fZ

0
�; (10)

where

� ¼

8>>><
>>>:

� g
2 cos�W

SSM

e
2 cos�W

LRM

g0 MiAUMSSM

: (11)

The charges gfV and gfA are given explicitly in Table III. �W
is the Weinberg angle, defined by sin2�W ¼ 0:231. In the
case of the LRM we have chosen the so-called symmetric
version, for which �LR ¼ 1:59 [11,13]. Using HERWIG, we
have calculated the on-peak asymmetry for these two
models. Obviously in the case of the MiAUMSSM we do
not have a unique value for the asymmetry, because in the
model the charges are not fixed. To show that it is possible
to distinguish the MiAUMSSM from the other models, we
have to estimate the statistical error in this measurement,
by using the formula (8). The exact values depend on the
cross section that is model dependent. Now, if we fix
QHu

¼ QQ ¼ QL ¼ 0:5, the resulting values for the asym-

metries associated with the three models are shown in
Fig. 6. The data plotted in the figure show that it is always
possible to discriminate the anomalous model from the
nonanomalous ones.
Now we want to stress that the three charges of our

model are free but the couplings of the fermions to the Z0
in the anomalous MiAUMSSM have a peculiar functional
form given in Table III. As a consequence, it is not possible
to match the couplings to the extra Z0 of the MiAUMSSM
with those of other models. But, since the four asymmetries
have associated statistical errors, we could have a range of
values of our three charges where the couplings of the
MiAUMSSM (and consequently the asymmetries) could
be matched with those of the SSM and LRMmodels within
the considered errors. In reality this does not happen as we
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FIG. 5 (color online). Ni=Ntoti as a function of the invariant
mass, with the cuts kept fixed, for the four definitions of
asymmetry. In the upper (lower) figure we display the results
for the FB and O (C and E) asymmetries for the MiAUMSSM
(thick lines) and the SSM (dashed lines).

TABLE III. Couplings of the SM fermions to the Z0s for the SSM, LRM, and MiAUMSSM models.

SSM LRM MiAUMSSM

f gfV gfA gfV gfA gV gA
e, �, � � 1

2 þ 2sin2�W � 1
2

1
�LR

� �LR

2
�LR

2 QL �QHu
=2 QHu

=2

u, c, t 1
2 � 4

3 sin
2�W

1
2 � 1

3�LR
þ �LR

2 � �LR

2 QQ þQHu
=2 �QHu

=2

d, s, b � 1
2 þ 2

3 sin
2�W � 1

2 � 1
3�LR

� �LR

2
�LR

2 QQ �QHu
=2 QHu

=2
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can infer from Fig. 7, where we consider an error up to
25%, much bigger than the expected experimental error.
Observing the amount of points in these figures, it is
evident that the SSM is closer to our model than the
LRM. This is the reason why throughout this paper we
focus our analysis on the comparison with the SSM.

E. General case

In this section, we want to find the function that de-
scribes the asymmetry in terms of the three free charges of
our model that can assume values between�1 and 1. From
the cross section of the process, that can be found in
Appendix A, we can see that the amplitude is proportional
to the fourth power of the charges. Thus, Eqs. (2)–(5),
imply that the asymmetry must be a rational function in
which both the numerator and denominator are fourth
grade polynomials in the charges:

A ¼
P

n
i;j;k¼0 aijkðQHu

ÞiðQQÞjðQLÞkP
n
i;j;k¼0 bijkðQHu

ÞiðQQÞjðQLÞk
; (12)

with iþ jþ k ¼ n � 4.
The apparent symmetries of the contour plots obtained

in Sec. IVB imply that the terms of odd degree in the
charges are suppressed. Then the only relevant terms that
do not containQHu

areQ2
Q,Q

2
L,Q

4
Q,Q

4
L, andQ

2
QQ

2
L, while

for the terms that do not containQQ orQL we can also have

terms of the formQ3
i Qj orQiQj where i, j are the two free

charges of each case. For example, a term proportional to
Q3

QQL is suppressed, while a term proportional to Q3
QQHu

is present. Fitting our data for the on-peak asymmetries
with the functional form (12), we find the coefficients aijk’s

of (12). Then considering only three of the four definitions,
we obtain a nonlinear system with three equations and
three variables (QHu

, QQ, and QL) that could be solved

numerically. In this way the asymmetry is useful for fixing
the values of the Uð1Þ0 charges. Moreover, once the values
of the three charges are obtained by the previous system;
the fourth definition of asymmetry can be used as a check
for the validity of the model under scrutiny. In fact, its
hypothetical experimental value must be recovered by
using (12) with the values of the charges already found,
within the considered error (we use the mean relative error
for each asymmetry definition). In the Appendix C we
write a table with the coefficients of the four fits. As
expected, we have found out that the odd degree polyno-
mials have negligible coefficients, thus confirming
the intuitions stemming from the analysis of the contour
plots. The exactness of the fit is evaluated computing
the R2 (called coefficient of determination; a perfect fit
has R2 ¼ 1) and the medium relative error for these
results. The results are shown in Table IV, attesting the
accuracy of the procedure. In particular, the R2 value states
(as we expected) that the errors in our fits are almost
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AE) for the three models considered in the main text. The charges
of the MiAUMSSM are all fixed to 0.5.
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FIG. 7 (color online). Values of the charges that give a MiAUMSSM asymmetry close to the SSM asymmetry within errors of
15 (big red dots), 25% (left) and to the LRM within errors of 20 (big red dots), 25% (right).
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completely due to the numerical approximations in the
calculation of the integrals and due to the uncertainties of
the PDFs.

V. CONCLUSION

We have numerically calculated the LHC asymmetry of
the MiAUMSSM using four different definitions, namely,
forward-backward, one-side, central, and edge asymme-
tries for the process pp ! eþe�. An analogous study with
a complete simulation of the ATLAS detector has been
carried out for the SM asymmetry [27]. The performance
of the detector will be unaltered for a measurement in the
TeV range (where there are hopes of finding the Z0) mean-
ing that our results should be robust even in the case of a
complete analysis in which there is a full simulation of
the detector. In this respect, the good agreement, shown in
Table 6.4 of [28], for the results coming from PYTHIA

versus those coming from the real measurement testifies
the good degree of precision of the Monte Carlo simulators
for these kinds of computations. In our case, to achieve a
statistics comparable to that collected for the case studied
in Ref. [27], at least 100 fb�1 will be needed, and this will
be achieved most likely in 2015 when the machine will
work at

ffiffiffi
s

p ¼ 14–15 TeV after the planned shutdown in
2013=2014.

To infer the optimal cuts to use, we have maximized the
significance related to each asymmetry. We have verified,
as it is expected from Ref. [10], that these cuts are nearly
independent from the free charges of our model. Then we
have used these optimal cuts to investigate the asymmetry
behavior in function of pairs of free charges, keeping the

third fixed to 0 to have a graphical representation of the
results. Furthermore, we have found that the asymmetry is
invariant under Qi ! �Qi. We have checked that even in
the presence of the cuts needed to evaluate the asymmetry,
the number of leftover events is such to lead to a mean-
ingful measurement.
We have further shown that the MiAUMSSM is distin-

guishable from the SSM and LRM models, showing ex-
amples of different predictions for the asymmetries that
differ at least for a good 20% of their value. Finally, we
have studied the four asymmetries as functions of the three
charges and have fitted the results as a rational function of
polynomials of degree four in the charges. The fit is found
to be accurate, with a R2 ¼ 0:999 for all the definitions we
have used.
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APPENDIX A: CROSS SECTION

We have calculated the cross section in the CM for the
process q �q ! eþe� for a general Drell-Yan interaction in
which we can have the product of diagrams where the �,
Z0, and Z0 can be exchanged. Thus we have six possible
terms: ��, �Z0, �Z

0, Z0Z0, Z0Z
0, and Z0Z0.

The total amplitude is

jMj2ðqÞ ¼ 1

3

1

4

X
a;b¼�;Z;Z0

g2ag
2
bMab; (A1)

where the fractions 1
4 and

1
3 come out from the averages over

spin and color, and g0 is the coupling associated with the
Z0. We fix its value to 0.1. Mab is the amplitude of each
process divided by the couplings:

Mab ¼ 64Nab½ðs�m2
aÞðs�m2

bÞ þ ð�ama�bmbÞ�
½ðs�m2

aÞ2 þ ð�amaÞ2�½ðs�m2
bÞ2 þ ð�bmbÞ2�

f2m2
em

2
qCAAVVe;� CAAVVq;� �m2

eðpq � p �qÞCAAVVe;� CAAVVq;þ

þ ½ðpq � p �eÞðp �q � peÞ � ðpq � peÞðp �q � p �eÞ�CVAAVe;þ CVAAVq;þ þþ½ðpq � p �eÞðp �q � peÞ
þ ðpq � peÞðp �q � p �eÞ�CAAVVe;þ CAAVVq;þ þ�m2

qðpe � p �eÞCAAVVe;þ CAAVVq;� g (A2)

defining CMNPQ
i;� ¼ CM

i;aC
N
i;b � CP

i;aC
Q
i;b, with i ¼ e, q and

M, N, P,Q ¼ V, A. In this expression Nab is a multiplicity
factor that is equal to 1

2 if the exchanged vector bosons
are identical and is equal to 1 if they are different. The
C’s are simply the vector and axial quantum numbers
related to the vector bosons: for the � and the Z0 they are
the usual SM quantum numbers that can be found in

Ref. [29], while the vector and axial couplings related to
the Z0 have been calculated in Ref. [26] and are shown in
Table V.
We remark that in this cross section there are only terms

of degree four in the powers of the charges. However, from
Eq. (A1) we know that there are different contributions to
the total squared amplitude of our process. These terms are

TABLE IV. R2 and medium relative error for the polynomial
fit of the asymmetry with respect to the three charges.

ARFB AO AC AE

R2 0,999 0,999 0,999 0,999

MRE 0.008 0.009 0.019 0.017
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divided into three types: the term Z0Z0; the terms �Z0 and
Z0Z

0; and those ��, �Z0, and Z0Z0 that give contributions
of degree four, two, and zero in the anomalous charge,
respectively. Since we are studying the on-peak region, we
expect the contribution from the Z0Z0 channel to be domi-
nant with respect to the others: this is evident from the table
of the coefficients shown in Appendix C. Observing the
previous formula, we can see that all the combinations of
C’s contain two Cq and two Ce because our elementary

process involves two leptons and two quarks. Observing
that QQ and QL are related to Cq and Ce, respectively,

this implies that we cannot have terms of degree larger
than 2 in QQ and QL. This is verified by our fit, where

the coefficients related to this terms are suppressed (see
Appendix C). The differential cross section can be found
multiplying for the usual kinematic prefactor and summing
this result over the contribution of the six possible initial
quarks:

@2�

@s@ cos�

��������CM
¼ X

q

pe

32�spq

jMj2ðqÞ: (A3)

APPENDIX B: DETAILS ON THE
ASYMMETRY DEFINITIONS

The explicit expression of Eq. (2) in the CM frame is

ARFB ¼
R
Ccut

dx1dx2
P

q fqðx1Þf �qðx2ÞðF� BÞR
Ccut

dx1dx2
P

q fqðx1Þf �qðx2ÞðFþ BÞ ; (B1)

where

F ¼
Z 1

0
d cos�

d�ðcos�; sÞ
d cos�ds

;

B ¼
Z 0

�1
d cos�

d�ðcos�; sÞ
d cos�ds

(B2)

are the forward and backward contributions, respectively.
The fq= �qðxiÞ are the PDFs of q= �q. Ccut is the domain of

integration, which depends on the type of asymmetry that
we want to calculate according to the definitions (2)–(5).

The couples of variables ðx1; x2Þ and ðs; YÞ are not
independent. In fact, their definition is s ¼ Sx1x2 and Y ¼
1
2 logðx1=x2Þ, where S ¼ ð14 TeVÞ2 is the total squared

energy of the accelerator.
Since we have calculated the cross section of the process

(see Appendix A) that we are going to study with respect to
s, we perform the change of variables ðx1; x2Þ ! ðs; YÞ in

the expression (B1). The Jacobian of this transformation is

J ¼ 1=S. Now we focus on the integral
R�Ycut�1 dY: if we

perform the change of variable Y ! �Y, because of the Y
definition, this corresponds to the exchange x1 $ x2 and
consequently to the exchange of forward with backward
(F $ B). Summarizing,

Z �Ycut

�1
dY

X
q

fqðx1Þf �qðx2ÞðF� BÞ

¼
Z 1

Ycut

dY
X
q

fqðx2Þf �qðx1Þð�Fþ BÞ: (B3)

Using this result we obtain the formula that we imple-
mented in the Mathematica evaluation, that is

ARFB ¼
R
dsJ

Rþ1
Ycut

dY
P

q f
�
q �qðx1ðs; YÞ; x2ðs; YÞÞðF� BÞR

dsJ
Rþ1
Ycut

dY
P

q f
þ
q �qðx1ðs; YÞ; x2ðs; YÞÞðFþ BÞ ;

(B4)

with

f�q �qðx1; x2Þ ¼ fqðx1Þf �qðx2Þ � f �qðx1Þfqðx2Þ: (B5)

The formula for AO is very similar and it is obtained by
replacing Y with pz. This leads to a different cut and a
different Jacobian.
The expressions for AC and AE are also very similar

between them and we present them together. In these two
cases the cut is performed on the angle �cut and therefore
on the limits of integration for F and B. These asymmetries
are defined in the Lab frame, because the Lorentz trans-
formation from the CM frame ‘‘squeezes’’the final parti-
cles [17]. The angles of the outgoing e� with respect to the
z axis, denoted by ��, respectively, in the CM frame, are

replaced by �e
�
and �e

þ
in the Lab frame where the out-

going e� no longer have the same direction. Therefore, in
the Lab frame, instead of the definitions (B2), we have

ðF=BÞC ¼
Z þcut

�cut

d�

d cos�e
ð�=þÞ

ds
d cos�e

ð�=þÞ

ðF=BÞE ¼
Z �cut

�1

d�

d cos�e
ð�=þÞ

ds
d cos�e

ð�=þÞ

þ
Z þ1

cut

d�

d cos�e
ð�=þÞ

ds
d cos�e

ð�=þÞ
;

(B6)

where the limit of integration cut is defined in terms of �cut

as cut ¼ cos�cut. Then (4) and (5) become

AC=E¼
Z
ds

Z 1

s=S
dx1J

X
q

fqðx1Þf �qðx2ÞðFC=E�BC=EÞ; (B7)

where x2 ¼ s
Sx1

. J is now the Jacobian of the transforma-

tion ðx1; x2Þ ! ðx1; sÞ.
The cut parameter that enters in the definitions (4) and

(5) is not directly �cut but the associated pseudorapidity
YC ¼ � logðtanð�cut=2ÞÞ. For further details on the calcu-
lations sketched in this Appendix, see Ref. [26].

TABLE V. Vector and axial quantum numbers of the SM
fermions with respect to Z0.

CV
f;Z0 CA

f;Z0

f ¼ u, c, t QQ þQHu
=2 �QHu

=2
f ¼ d, s, b QQ �QHu

=2 QHu
=2

f ¼ e, �, � QL �QHu
=2 QHu

=2
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APPENDIX C: COEFFICIENTS OF THE
POLYNOMIAL FIT

We have performed a numerical calculation of the asym-
metries letting the three charges vary in the �1<Qi < 1
range. Then we have fitted the results with the rational
function (12). We have found that only the even grade
terms contribute to the results, so we neglect the odd grade
terms.

Another point to note is that the formula (12) implies
that all the coefficients aijk and bijk are defined up to a

global multiplicative factor. To permit the comparison
among the different types of asymmetries, we have fixed
a400 ¼ 1 (or a400 ¼ �1 for the C asymmetry that assumes
opposite sign with respect to the others). However, if such
type of models will be discovered at the LHC, this value
will be fixed differently to match the experimental results.
The coefficients’ values for our choice are listed in
Table VI. Note that this table contains only the statistical
error and not the systematic error due to the choice of the
PDFs.

TABLE VI. Coefficients of the fits for the four definitions of asymmetry.

ARFB AO AC AE

a000 ð�0:52� 0:02Þ � 10�6 ð�0:31� 0:04Þ � 10�6 ð1:18� 0:04Þ � 10�6 ð0:86� 0:18Þ � 10�6

a200 ð82� 3Þ � 10�6 ð58� 5Þ � 10�6 ð�17� 5Þ � 10�6 ð140� 21Þ � 10�6

a020 ð9:9� 1:5Þ � 10�6 ð9� 2Þ � 10�6 ð�27� 3Þ � 10�6 ð12� 11Þ � 10�6

a002 ð5:2� 1:4Þ � 10�6 ð2� 2Þ � 10�6 ð11� 2Þ � 10�6 ð61� 10Þ � 10�6

a110 ð5� 3Þ � 10�6 ð4� 5Þ � 10�6 ð19� 6Þ � 10�6 ð113� 24Þ � 10�6

a101 ð�18� 4Þ � 10�6 ð�6� 6Þ � 10�6 ð�148� 7Þ � 10�6 ð�269� 27Þ � 10�6

a011 ð�80� 3Þ � 10�6 ð�65� 5Þ � 10�6 ð34� 5Þ � 10�6 ð�177� 22Þ � 10�6

a400 1(fixed) 1(fixed) �1(fixed) 1(fixed)

a040 0:015638� 0:000004 0:015634� 0:000006 �0:015444� 0:000007 0:01552� 0:00003
a004 0:000969� 0:000002 0:000967� 0:000004 �0:000984� 0:000004 0:000964� 0:000018

a310 0:88011� 0:00005 0:87460� 0:00007 �0:85003� 0:00008 0:8573� 0:0003
a220 0:01525� 0:00004 0:01544� 0:00006 �0:01565� 0:00007 0:0163� 0003
a130 �0:000729� 0:000019 �0:00061� 0:00003 0:00077� 0:00003 �0:00113� 0:00013
a301 �1:99340� 0:00005 �1:99305� 0:00008 1:99360� 0:00009 �1:9930� 0:0004

a211 �1:75973� 0:00010 �1:74845� 0:00016 1:69973� 0:00018 �1:7141� 0:0007
a121 �0:00388� 0:00007 �0:00403� 0:00011 0:00429� 0:00012 �0:0052� 0:0005
a031 0:00165� 0:00002 0:00128� 0:00003 �0:00188� 0:00004 0:00244� 0:00015

a202 0:00456� 0:00010 0:00438� 0:00016 �0:00463� 0:00018 0:0048� 0:0007
a112 �0:00049� 0:00009 �0:00044� 0:00014 0:00013� 0:00015 �0:0011� 0:0006
a022 0:00773� 0:00003 0:07740� 0:00005 �0:00778� 0:00006 0:0068� 0:0002

a103 �0:001244� 0:000013 �0:00120� 0:00002 0:00136� 0:00002 �0:00170� 0:00009
a013 0:000181� 0:000015 0:00023� 0:00002 �0:00014� 0:00003 0:00047� 0:00011
b000 ð�1:19� 0:06Þ � 10�6 ð�0:70� 0:09Þ � 10�6 ð�3:19� 0:12Þ � 10�6 ð2:2� 0:4Þ � 10�6

b200 ð121� 7Þ � 10�6 ð181� 12Þ � 10�6 ð�88� 16Þ � 10�6 ð�637� 57Þ � 10�6

b020 ð23� 4Þ � 10�6 ð21� 6Þ � 10�6 ð74� 7Þ � 10�6 ð29� 28Þ � 10�6

b002 ð12� 3Þ � 10�6 ð5� 5Þ � 10�6 ð�29� 6Þ � 10�6 ð154� 25Þ � 10�6

b110 ð�58� 26Þ � 10�6 ð51� 41Þ � 10�6 ð�282� 52Þ � 10�6 ð2392� 204Þ � 10�6

b101 ð�116� 13Þ � 10�6 ð�207� 20Þ � 10�6 ð408� 27Þ � 10�6 ð�392� 100Þ � 10�6

b011 ð85� 39Þ � 10�6 ð�82� 62Þ � 10�6 ð�104� 79Þ � 10�6 ð�1120� 306Þ � 10�6

b400 1:90571� 0:00004 1:90585� 0:00006 2:28541� 0:00008 2:1465� 0:0003

b040 0:036021� 0:000010 0:036021� 0:000016 0:04190� 0:00002 0:03945� 0:00008
b004 0:002232� 0:000006 0:002229� 0:000009 0:002670� 0:000012 0:00245� 0:00005
b310 1:40007� 0:00018 1:3899� 0:0003 1:3347� 0:0004 1:2650� 0:0015
b220 3:8269� 0:0003 3:8323� 0:0004 4:5879� 0:0006 4:338� 0:002

b130 �0:00386� 0:00018 �0:0033� 0:0003 �0:0035� 0:0004 �0:0103� 0:0014
b301 �3:79461� 0:00014 �3:7943� 0:0002 �4:5504� 0:0003 �4:2761� 0:0011
b211 �2:7984� 0:0004 �2:7775� 0:0007 �2:6661� 0:0009 �2:533� 0:003

b121 �7:5882� 0:0007 �7:5998� 0:0011 �9:1030� 0:0014 �8:592� 0:005
b031 0:0081� 0:0002 0:0061� 0:0003 0:0098� 0:0005 0:0168� 0:0017
b202 3:8004� 0:0003 3:8021� 0:0004 4:5567� 0:0006 4:291� 0:002

b112 2:8003� 0:0005 2:7871� 0:0009 2:6705� 0:0011 2:524� 0:04
b022 7:6032� 0:0006 7:6124� 0:0009 9:1181� 0:0012 8:599� 0:004
b103 �0:0023� 0:0002 �0:0012� 0:0004 �0:0026� 0:0005 �0:0120� 0:0018
b013 �0:00009� 0:00035 0:0002� 0:006 �0:0021� 0:0007 0:017� 0:003
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