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4Laboratori Nazionali del Gran Sasso, INFN, Assergi, Italy
(Received 20 June 2012; published 13 November 2012)

New physics in the chromomagnetic flavor changing transition s ! dg� can avoid the strong Glashow-

Iliopoulos-Maiani suppression of the standard model and lead to large contributions to CP-violating

observables, in particular to the �0 parameter, that we address here. We discuss the case of the left-right

symmetric models, where this contribution implies bounds on the phases of the right-handed quark mixing

matrix, or in generic models with large phases a strong bound on the left-right symmetry scale. To the

leading order, a numeric formula for �0 as a function of the short-distance coefficients for a wide class of

models of new physics is given.
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Flavor-changing processes still offer one of the best
means for spotting signs of physics beyond the standard
model (SM). The K decays into pions are among the best
studied channels both experimentally and theoretically, and
despite the hadronic uncertainties in the theoretical predic-
tions, can serve as a great tool for probing new physics.
The reason is that for a number of observables, in particular
the CP violating ones, the SM contribution is extremely
small, mainly due to the Glashow-Iliopoulos-Maiani (GIM)
mechanism [1] and the fact that the CP violating phase in
the SM is suppressed by the smallness of the quark mixing
angles. In turn, in the SM the GIMmechanism is intimately
related to the chiral nature of the weak interactions. As a
result, probes of processes involving the GIM mechanism
are well suited to test for nonchiral interactions.

This is paradigmatic in one popular extension of the SM,
left-right (LR) symmetry [2], which altogether gives a
framework for restoration of parity in fundamental inter-
actions, nonzero neutrino masses, as well as violation of
lepton number and flavor [3] both at the reach of the
coming round of experiments, fitting especially well with
the scenario of TeV scale LR symmetry [4–6]. The related
direct searches at LHC, with important signatures through
the new interactions and same-sign dileptons [7], can ex-
plore this possibility up to �6 TeV [8] and are already
beginning to probe this interesting region [9–11]. It is then
important to assess the bounds on the model from existing
phenomena.

In the LR models, based the SUð2ÞL � SUð2ÞR �
Uð1ÞB�L gauge group, modifications of GIM are mainly
due to the new right-handed gauge boson WR and to its
mixing with the standard weak gauge boson WL. Bounds
on the scale of the new right-handed gauge interaction
were already addressed since the early days, a notorious
example being the �MK box diagram [12,13] where the
GIM enhancement adds to a chiral enhancement of the
matrix elements, and still leads today to the strongest

bound on the scale of LR symmetry, MWR
* 2:5–3 TeV

[4]. Similar effects hold for the CP-violation parameter �
[14]. The bottom line is that the interplay of nonchiral
interactions with the hierarchy of quark masses and mix-
ings can lead to dramatic effects in loop diagrams. This is
especially true in the phenomenology of strange mesons,
and in particular for the direct CP-violation parameter �0
and the chromomagnetic loop, that we address.
The gluonic penguin operators have been traditionally

associated to �0=�, because they pointed immediately to a
possibly sizable effect. However, in the SM a partial can-
cellation between the dominant gluonic and electroweak
penguins translates into a large theoretical uncertainty,
linked to hadronic matrix elements. For a review on the
evaluation of �0=� and additional literature, we refer to
Refs. [15–17]. In any case, �0 is naturally tiny in the SM,
and can serve as an efficient tool for constraining new
physics.
In this work, we address the contributions of nonchiral

interactions in the chromomagnetic operator, and its effect
on �0. In the analysis we first give a parametrization of the
effects of new physics in �0 which is applicable to a wide
class of models with nonchiral interactions. In the context
of left-right symmetry, as it is known current-current op-
erators mediated through the left-right gauge boson mixing
gives large contributions to the K ! �� amplitude. This
issue was studied in detail in Refs. [4,18–20], together with
the other flavor constraints on the model. However, the
effect of the chromomagnetic operator was not considered.
We study its impact due to the effectiveK ! �� transition
whose hadronic matrix element computed within the chiral
quark model (�QM) [21].
The �QM provides an interpolation between short-

distance QCD and its effective description in terms of the
octet of Goldstone mesons, below the scale of chiral sym-
metry breaking (for a recent discussion, see Ref. [22]). The
chiral Lagrangian coefficients are determined order by
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order in the momentum expansion by integration of the
constituent quarks and depend on three nonperturbative
parameters: the constituent quark mass and the quark
and gluon condensates. Via a fit of the �I ¼ 1=2 rule in
K ! �� decays, the authors of Ref. [15] obtained a non-
trivial phenomenological determination of these three pa-
rameters that allowed for a correlated calculation of �0=�
and of the �S ¼ 2 bag parameter BK within the �QM
approach, at next-to-leading order (NLO) in the chiral
expansion [23–25]. We will use these values of the para-
meters in our analysis.

For the LR model, we shall see that only the chromo-
magnetic operator plays a dominant role in �0, once other
existing constraints from K and B physics are considered,
and implies a bound on the free phases involved, in
the hypothesis of TeV scale LR symmetry. For other
new-physics models, constraints from �0 via the chromo-
magnetic operator were studied in Refs. [26–28].

The paper is organized as follows: In Sec. I, we describe
the effective operators involved when nonchiral new phys-
ics is present, including the dipole ones. We also review the
short distance coefficients in the case of the LR theory.
In Sec. II, by running with the mixed anomalous dimen-
sions, we compute the Wilson coefficients at 0.8 GeV,
which is our chosen scale for matching with chiral per-
turbation theory. In Sec. III, we describe (and update) the
bosonization of the chromomagnetic operator. This enables
us to make contact with theK ! �� amplitude and with �0
in Sec. IV in general and in Sec. V for the LR model.
In Sec. VI, we draw our conclusions.

I. NEW PHYSICS

The effective Lagrangian for flavor changing can be

written in the form L�S¼1 ¼ �ðGF=
ffiffiffi
2

p ÞPiCiQi þ H:c:,
where Qi are the relevant operators and Ci the correspond-
ing coefficients (and GF the Fermi constant). In the stan-
dard model the �S ¼ 1 processes are usually described by
a (over)complete set of operators [29,30]. They involve
tree-level operators as well as QED and QCD penguins. In
models with both chiralities such as the left-right model,
the standard set of operators has to be extended. In the case
of �S ¼ 1 discussed here the complete set at low energy
involves 28 operators,

QLL
1 ¼ ð�s�u�ÞLð �u�d�ÞL; QRR

1 ¼ ð�s�u�ÞRð �u�d�ÞR;
QLL

2 ¼ ð�suÞLð �udÞL; QRR
2 ¼ ð �suÞRð �udÞR;

Q3 ¼ ð�sdÞLð �qqÞL; Q0
3 ¼ ð �sdÞRð �qqÞR;

Q4 ¼ ð�s�d�ÞLð �q�q�ÞL; Q0
4 ¼ ð �s�d�ÞRð �q�q�ÞR;

Q9 ¼ 3

2
ð �sdÞLeqð �qqÞL; Q0

9 ¼
3

2
ð�sdÞReqð �qqÞR;

Q10 ¼ 3

2
ð �s�d�ÞLeqð �q�q�ÞL; Q0

10 ¼
3

2
ð �s�d�ÞReqð �q�q�ÞL;

QRL
1 ¼ ð�s�u�ÞRð �u�d�ÞL; QLR

1 ¼ ð�s�u�ÞLð �u�d�ÞR;

QRL
2 ¼ ð �suÞRð �udÞL; QLR

2 ¼ ð�suÞLð �udÞR;
Q5 ¼ ð �sdÞLð �qqÞR; Q0

5 ¼ ð�sdÞRð �qqÞL;
Q6 ¼ ð �s�d�ÞLð �q�q�ÞR; Q0

6 ¼ ð�s�d�ÞRð �q�q�ÞL;
Q7 ¼ 3

2
ð�sdÞLeqð �qqÞR; Q0

7 ¼
3

2
ð�sdÞReqð �qqÞL;

Q8 ¼ 3

2
ð�s�d�ÞLeqð �q�q�ÞR; Q0

8 ¼
3

2
ð�s�d�ÞReqð �q�q�ÞL;

QL
g ¼ gsms

8�2
�s���t

aG��
a Ld; QR

g ¼ gsms

8�2
�s���t

aG��
a Rd;

QL
	 ¼ ems

8�2
�s���F

��
a Ld; QR

	 ¼ ems

8�2
�s���F

��
a Rd:

(1)

The notation is ð �qqÞL;R ¼ �q	�ð1� 	5Þq, L, R ¼
ð1� 	5Þ=2, and the summation on q ¼ u, d, s is implicit.
QLL

1;2 are the SM operators usually denoted as Q1;2. The

dipole operators Qg;	 are normalized with ms, for an easy

comparison with existing calculations, and for keeping
unaltered the anomalous dimension. It is known that
some of the operators above are accompanied by an en-
hancement due to the different chiral structure, either in the
short distance coefficient, in the running, or in the matrix
element. Such a situation occurs for the chromomagnetic

operators QL;R
g , as we describe below.

At leading order the operators generated by the SM and
the LR short distance physics areQAB

2 ,Q4,Q
0
4,Q6,Q

0
6,Q7,

Q0
7, Q9, Q

0
9, Q

A
g , Q

A
	, with A, B ¼ L, R. Their coefficients

are the current-current ones:

CLL
2 ¼ 
LL

u ; CLR
2 ¼ ��
LR

u ;

CRR
2 ¼ �
RR

u ; CRL
2 ¼ �
RL

u ;
(2)

the penguin ones are

C4 ¼ C6 ¼ �s

4�
�i


LL
i FLL

1 ðxiÞ;

C0
4 ¼ C0

6 ¼
�s

4�
��i


RR
i FRR

1 ð�xiÞ;

C7 ¼ C9 ¼ �eu
4�

�i

LL
i ELL

1 ðxiÞ;

C0
7 ¼ C0

9 ¼
�eu
4�

��i

RR
i ERR

1 ð�xiÞ;

(3)

and the dipole ones are

msC
L
g ¼ �i½ms


LL
i FLL

2 þ �mi

RL
i FLR

2 þmd�

RR
i FRR

2 �;
msC

R
g ¼ �i½md


LL
i FLL

2 þ ��mi

LR
i FLR

2 þms�

RR
i FRR

2 �;
msC

L
	 ¼ �i½ms


LL
i ELL

2 þ �mi

RL
i ELR

2 þmd�

RR
i ERR

2 �;
msC

R
	 ¼ �i½md


LL
i ELL

2 þ ��mi

LR
i ELR

2 þms�

RR
i ERR

2 �:
(4)

In the above, eu ¼ 2=3 is the u-quark charge, xi ¼
m2

i =m
2
WL

with i ¼ u, c, t, and FAB
ð1;2Þ and EAB

2 are the loop

functions, given in Appendix A. Then, � ¼ M2
WL
=M2

WR
is

the ratio of the electroweak to the LR scale and � is the
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WL-WR mixing. Note that in the hypothesis of LR symme-
try at TeV scale, �� 10�3. Also � is of order � or less; for
instance, in the minimal LR models it is � ’ ��ei� 2x

1þx2
,

with x < 1 the (modulus of the) ratio of the two vacuum
expectation values of the Higgs bidoublet and � its phase.
We will consider below the specific case of minimal LR
models, referring to Refs. [4,31] for definitions and details.
Finally, 
AB

i ¼ V�A
is V

B
id, where VL and VR are the Cabibbo-

Kobayashi-Maskawa matrix and its right-handed analogue.
A crucial new ingredient in VR is the presence of (five)
additional phases, besides the Dirac one. These can be
parametrized as (U ¼ u, c, t, D ¼ d, s, b)

VR
UD ¼ ei�U V̂R

UDe
i�D ; (5)

with V̂R the mixing matrix in standard Cabibbo-
Kobayashi-Maskawa form.

The terms in the expressions (2)–(4) for the coefficients
should be understood as generated at the decoupling of the
relevant heavy states, and thus at different scales, namely:
MWL

or mt for the current-current and top-dominated

loops, mc for the charm dominated loops etc, and mWR

for the right-right (RR) current-current.
A similar set of operators QAB

1;2c with the c-quark replac-

ing u, is also generated by the short distance physics, and
also by renormalization at scales larger than mc. On the
other hand, the further operators involving the t quark are
not explicitly required: for the LL and RR operators this is
due to the GIM cancelation above mt (also in the running);
for the LR ones, they are only generated at electroweak
scale through the LR-mixing � .1 Last, there are also penguin
operators built through the LR-mixing, which are chirally
suppressed and give subleading (negligible) contributions.

From (4), it can be seen that the coefficients CL;R
g receive

a large contribution in the LR model, due to the different
GIMmechanism. In fact, the mass insertion on the external
fermion legs in the SM (ms) is replaced in the LR model by
a mass insertion inside the loop (mi). The loop is then
dominated by mc leading to an enhancement of mc=ms �
100. In addition, the factor 
AB

c =
LL
t gives a further large

enhancement of 103, which compensates the LR-scale
suppression � . Both QL

g and QR
g are present, and the LR

contribution ends up being a factor �200 larger than the
SM one, at short distance:

jHðLRÞ
g j

jHðSMÞ
g j ’

2mcF
LR
2 ðxcÞjV�

cdVcs�j
msF

LL
2 ðxtÞjV�

tdVtsj
’ 2� 105� ’ 200: (6)

Here, the factor 2 accounts for the contributions LRþ RL,

and we considered V̂R ’ VL, which is a general prediction
of minimal LR models [4].
The new phases (5) contained in VR, together with

the enhancement above, can directly induce a sizeable
CP violation. It is therefore important to address the
effect of this operator on �0, which we study along the
lines of Refs. [33,34]. In order to deal with this low
energy phenomenon, two steps are necessary: the first
is to renormalize the coefficients at low energy, in the
range of chiral perturbation theory; the second is to
use the matrix elements h2�jQijK0i, or equivalently to
match with chiral perturbation theory. In the following
section, we renormalize the full set of coefficients down
to the scale of 0.8 GeV, and in the next we match with
the chiral Lagrangian in the context of the chiral quark
model.
The need to evaluate the Wilson coefficients at such a

low QCD scale is dictated by the requirement to use the
matrix elements calculated in the context of chiral quark
model in chiral perturbation theory, whose cutoff is the
chiral symmetry breaking scale. In order to assess quan-
titatively the scale dependence of the result, we remark
that by varying the matching scale between 0.8 and

1 GeV, the chromomagnetic CL;R
g and the current-current

ones CLR;RL
1;2 vary at most by 5% and 10%, respectively.

These uncertainties are well below those of the matrix
elements.

II. RUNNING TO LOW SCALE

The mixing of operators (1) is described in detail in
Appendix B. At leading order, the operators can be split
into two sets, of opposite chiralities, corresponding to the
two columns in (1). The low energy coefficients together
with the matrix elements of all the operators are also
sufficient to give an estimate of the impact on �0 for quite
a large class of models of new physics. This will be
presented in Sec. IV.
In the particular case of the LR model, the low energy

coefficients are shown in Table I. The running takes
into account the whole set of operators including the
SM penguins, but we show the result only for the opera-
tors containing the LR scale � or � which have an impact

on �0, and the magnetic operator QL;R
	 which is also

enhanced. The results are normalized to 
u, to compare

with existing calculations. The coefficients CL;R
g , com-

pared with the complex part of the SM result, CL
gðSMÞ ’

0:34
t [33], confirm the important role of Qg from new

physics.
In the detail of the running it is worth noting that, despite

the reduction of �0:5 due to their own anomalous dimen-

sion, CL;R
g receive contributions from CLL;LR;RL;RR

1;2 . The

largest additional contribution is due to CRL;LR
1;2c at scales

above mc, while the contributions from CRL;LR
1;2u are

1Clearly, if QLR
1;2t were generated at high scale, they should be

taken into account, because due to the mixed chirality a GIM
cancelation is not effective in the running (see also comments in
Appendix B). Also, some more operators of the form ð�sdÞL �ð �ddþ �ssÞL;R mixing with the penguins are present in general, see
Ref. [32], but they are not generated in the LR model and it is
also difficult to generate them in models where new physics sets
in at scales higher than the electroweak scale.
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suppressed by the u quark mass. This is due to the internal
mass insertion in the (two) loop graphs responsible for
the operator mixing in the anomalous dimension matrix,
and is another consequence of the nonchiral nature of these
operators. As a side result, this additional contribution
preserves the same combination of phases appearing in

the original short-distance CL;R
g .

From Table I, we can calculate the contributions to �0 of
these operators. This requires the evaluation of matrix

elements which we review now for QL;R
g .

III. BOSONIZATION OF Qg

The bosonization ofQg was addressed in Ref. [33] in the

context of the chiral quark model. Here we review the
computation, which leads a minor numerical correction.

Under chiral SUð3ÞL � SUð3ÞR rotations, the Qg opera-

tors transform as ð3L; 3RÞ, and thus they give rise to parti-
cular terms in the chiral Lagrangian. While by symmetry
arguments there are diverse possibilities (see e.g., Ref. [35]
in naive dimensional analysis) in the context of the chiral
quark model, only one form arises [33]. This is true in the
SM as with the separate operators QL

g , Q
R
g . One has

L Qg
¼ Tr½ð�yX
� þ 
�Xy�ÞD��

yD���; (7)

where 
� ¼ ð
6 � i
7Þ=2, and where the matrix of two
coefficients X ¼ diagð0; GR

8 ; G
L
8 Þ replaces the single

coefficient Gð4Þ
8 and the running quark mass matrix

M ¼ diagðmu;md;msÞ of the analogous calculation in the

SM. In fact, the coefficients CL;R
g of the �S ¼ 1 transition

induce a tiny breaking of the chiral symmetry which plays
the same role as the s and d quarkmasses in the SM.We also
observe that from the point of view of chiral perturbation
theory the above Lagrangian is Oðp4Þ in the LL and
RR terms proportional to light quark masses, but Oðp2Þ in
the LR and RL terms, proportional to mc. In any case, the

coefficientsGL;R
8 will, respectively, be proportional to CL;R

g .

To determine them, it is convenient to evaluate some ampli-
tude both through the above chiral Lagrangian and in the
chiral quarkmodel, and compare the results [33].We do this
in the ‘‘unrotated’’ picture [17]. The simplest process is
the off-shellK� ! �� transition,which at one loop is given
by the three diagrams shown in Fig. 1. The two external
gluon lines are attached to the gluons in the external thermal
QCD vacuum and lead to a coefficient proportional to the
gluon condensate. To deal with the thermal and color aver-
age, it is best to adopt Fock-Schwinger fixed-point gauge
(x�A� ¼ 0) [36]. Due to this gauge choice, translations are

broken and twofixed ‘‘sink’’ points for the gluonmomentum
are defined, chosen here to be x ¼ 0 and x at the K and �
vertices. Then the three diagrams in Fig. 1 are

AðK� ! ��Þ ¼ 2m2

f2

Z d4q

16�4
ðaþ bþ cÞ;

a ¼ tr½ð6q� 6kþmÞ6Að6qþmÞqgð6qþmÞð6q� 6pþmÞ��½q;m�2�½q� k;m��½q� p;m�;
b ¼ tr½ð6q� 6kþmÞqgð6q� 6kþmÞ6Að6qþmÞð6q� 6pþmÞ��½q;m��½q� k;m�2�½q� p;m�;
c ¼ tr½ð6qþmÞqgð6qþmÞð6q� 6pþmÞ6Að6qþ 6k� 6pþmÞ��½q;m�2�½q� p;m��½q� pþ k;m�;

(8)

where p is the K and �momentum; k is the incoming gluon momentum;�½p;m�¼1=ðp2�m2Þ; qg ¼ �iGFgsmsðCL
gLþ

CR
gRÞG�����=

ffiffiffi
2

p
and m is the constituent quark mass. Also (see Ref. [36]) 6A ¼ ðgs=2Þ	�G��@=@k� where a derivative

with respect to the gluon momentum has to be taken, after which k is set to zero.2 By the same prescriptions, one shows that
no external gluon momentum flows through the chromomagnetic operator. Finally, the two gluon field-strengths are
averaged in the gluon condensate, G�;�G	; ! ð�2=6g2sÞh��GGiðg�	g� � g�g�	Þ.

TABLE I. Coefficients for the dominant new operators in the
minimal LR model, evaluated at � ¼ 0:8 GeV.

CRL;LR
1 
uð1:07Þj�je�ið���s;d��uÞ

CRL;LR
2 
uð0:80Þj�je�ið���s;d��uÞ

CRR
1 
uð�0:54Þ�e�ið�s��dÞ

CRR
2 
uð1:24Þ�e�ið�s��dÞ

CL;R
g 
uð�10:7Þj�je�ið���d;s��cÞ

CL;R
	 
uð�3:31Þj�je�ið���d;s��cÞ FIG. 1. Diagrams for the bosonization of Qg, in the fixed point

gauge. Note the flow of gluon momentum k.

2Due to the absence of translational invariance, the use of the one-external-gluon effective quark propagator in the fixed point gauge
[37] is not correct in diagram (b), where the gluon momentum flows to the origin (K) passing through the operator insertion. This leads
to a mismatch between diagrams a and b and to a numerical correction of the result in Ref. [33].
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The loop integration produces a term at order zero in p
which is canceled in the leading chiral Lagrangian in
agreement with the Feinberg-Kabir-Weinberg theorem
[38]. The second order term gives the desired result

AðK� ! ��Þ ¼ iGFffiffiffi
2

p ms

CL
g þ CR

g

16�2

�
�

�
GG

�
p2 ð7þ 1þ 8Þ

48f2m
;

(9)

the three numbers being relative to diagrams a, b, c.
Comparing this amplitude with the one calculated from
the chiral Lagrangian (7), one finally finds the coefficients

GL;R
8 ¼ 2

1

12m

�
�

�
GG

�
GFffiffiffi
2

p msC
L;R
g

16�2
: (10)

The factor of 2 corrects 11=4 appearing in Ref. [33] and
leads to a 30% reduction of the matrix element. This result
is also confirmed by a similar calculation within the
‘‘rotated’’ picture.

Before using this result for the calculation of �0, let us
note that the additional contribution from the off-shell
chromomagnetic sdg vertex, shown in Ref. [39] to be of
the same order as Qg in the SM, is strongly suppressed in

the case of nonchiral interactions (again because the mass
insertion happens inside the W loop).

Finally, a double insertion of Qg, leads directly to

(long-distance) �S ¼ 2 processes and can be calculated
similarly. However, the process is doubly loop and GF

suppressed and the result is negligible for both �MK and
� (see Appendix D).

IV. RESULT FOR �0

The direct CP parameter �0 is defined by

�0 ¼ iffiffiffi
2

p !

�
ImA2

ReA2

� ImA0

ReA0

�
q

p
eið2�0Þ; (11)

where p, q are the K0, �K0 mixing parameters and ! �
A2=A0 ’ 1=22:2. The ratio p=q ’ 1 with an excellent
approximation. The isospin amplitudes AI (I ¼ 0, 2) are
defined from the �S ¼ 1 effective Hamiltonian as
hð2�ÞIjð�iÞH�S¼1jK0i ¼ AIe

iI , where I are the strong
phases of �� scattering. We calculate the imaginary part
of the amplitudes, while for the real part we take the
experimental value: ReA0 ¼ 3:33� 10�7 GeV and
ReA2 ¼ 1:49� 10�8 GeV.

The amplitudes A0 and A2 for the standard operators are

collected in Appendix C. The ones of QL;R
g are easily

calculated from the chiral Lagrangian (7). One has the
isospin decomposition

A
QLþR

g

0 ¼
ffiffiffi
2

3

s
A
QLþR

g

� ; A
QLþR

g

2 ¼
ffiffiffi
1

3

s
A
QLþR

g

� ; (12)

where the amplitude for K0 ! �þ�� is

A
QLþR

g

� ¼
ffiffiffi
2

p
f3

m2
�ðGL

8 �GR
8 Þ

¼ GFm
2
�

6mf3

�
�

�
GG

�
msðCL

g � CR
g Þ

16�2
; (13)

and the one for K0 ! �0�0 vanishes. In the following we
use f ¼ 93 MeV, and for the gluon condensate and con-
stituent quark mass we adopt the central values h��GGi ¼ð334 MeVÞ4, and m ¼ 200 MeV [15], obtained by consis-
tently fitting in the model the �I ¼ 1=2 selection rule.
Using the running and the matrix elements, one can

generically describe the contributions to �0 of the different
operators, as a weighted sum of the coefficients contribut-
ing from the desired scales �n:

j�0j ¼
��������X

n

X
i

wið�nÞImCið�nÞ
��������; (14)

where, at each scale�n, the Cið�nÞ are the coefficients and
wið�nÞ their weights. The scales �n can be either taken as
the ones where the short distance coefficients are gener-
ated, i.e.,mW ,mc, etc., in which case thewi account for the
running and the matrix elements, or some low energy scale
if one includes the running in the Ci. In Table II, we collect
the numeric values of wi computed by taking into account
the complete running from a choice of different scales
down to 0.8 GeV, together with the required matrix
elements (see Appendix C).
As discussed in Appendix C, the hadronic uncertainties

present in the B factors of departure from vacuum satura-
tion approximation can be sizable and may vary from 10 to
50% for the better known operators, to a factor of order one
for Qg and QLR

1;2. For the SM operators, the values adopted

in Table II are taken from the chiral quark model calcu-
lation [15]. For the LR operators QLR

1;2, a determination is

missing but an guess can be given by noting their similarity
with operators Q7;8.

ForQL;R
g , while the leading order chiral bosonization (7)

results in a m2
�=m

2
K suppression [see (13)], this may cease

to be true in higher orders and may result in a further
enhancement. Together with chiral loops, this is likely to
lead to order one correction coefficientsBg

0;2 to be added to

Eq. (12). While we stress the need for a dedicated assess-
ment of these corrections in the view of new physics, in the
present analysis we conservatively assumeBg

0;2 ¼ 1, keep-

ing in mind that a possible enhancement would make our
bounds below stronger.
Clearly, taking the central values of the hadronic matrix

elements is sufficient for the scope of assessing the rele-
vance of contributions beyond the SM, and, in particular, in
view of the leading role of the chromomagnetic operators
shown by the present analysis. Also, the renormalization
evolution is performed at leading order, as is the deter-
mination of the starting conditions in Eqs. (2)–(4).
Nevertheless, since the penguins can be considered as
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NLO contributions, a NLO correction to the current-
current starting conditions was also inserted (see
Ref. [30]). In this respect let us again remark that while a
NLO analysis is necessary for the SM, it is not crucial for
assessing the constraint from �0 on new physics. We beli-
eve Table II with formula (14) to be useful in analyzing
the impact of �0 for quite a wide class of new physics
models.

V. CONSEQUENCES FOR THE LR MODEL

We can finally estimate the numerical impact on �0 of the
new physics operators in the case of LR symmetry, using
the values of the low energy coefficients summarized in
Table I and the last line of Table II (or equivalently the
appropriate short distance coefficients with the first lines).
We find

j�0LRj ’ jj�j1:25½sinð���u��dÞþ sinð���u��sÞ�
þ j�j0:010½sinð���c��dÞþ sinð���c��sÞ�
þ�0:013sinð�d��sÞj; (15)

where the first line is due to the dominant QLR;RL
1;2 , the

second to QL;R
g , and the last to QRR

1;2 .
3 The penguin contri-

butions are only responsible for minor corrections in the
above numeric result.

For TeV LR-scale (�� 10�3), we see that the above
contributions can give overdominant contributions to �0,
even having assumed similar left and right quark mixing
angles, as in the minimal LR models. This is true both for

QL;R
g and for the other operators. Their impact may be

different and it depends, in addition to the LR scale �,
on the CP phase � and on the extra phases in VR. The
actual implications for a given LR model depend thus on
the available freedom in choosing these phases. Let us
describe the bounds in different scenarios, assuming that
the new physics can contribute as much as 100% to �0.

Assuming generic O(1) free phases, the LR scale is
constrained to lie above a large limit MWR

* 25 TeV. In

fact this amounts to the highest limit on the right-handed
scale. It is also worth recalling that for order one phases
another large bound of about MWR

* 15 TeV results from

�, while limits from B mass difference and CP violation
are less stringent [4,19]. The argument can however be

turned around and (15) can be used to put constraints on the
phases, in the scenario of TeV LR symmetry.
In the minimal LR models, phases are either strictly

predicted or are free, depending on the choice of LR
symmetry, which can be generalized parity (P , exchanging
fermions c L $ c R) or generalized charge conjugation (C,
exchanging fermions c L $ c c

R), following the analysis of
Ref. [4].
An important common constraint resulting in both cases

from � is that �d � �s is close to 0 (or marginally to �) at
least as 10�2. This implies that the contribution of QRR

1;2 to

�0 can be neglected [the last line in (15)]. This can already
be seen from the low energy coefficients in Table I. From
the same Table I, it is also important to note an other
consequence of the � constraint, namely, that thanks to
�s ’ �d the coefficients are practically complex conjugated
under L $ R exchange. As a result, the contributions to �0,
which are proportional to L� R combinations [as CL

g �
CR
g , see (13)] are purely imaginary and thus with maximal

imaginary part. On the contrary, only the combinations
Lþ R would enter in other CP-violating observables in-
volving an even number of mesons, making the imaginary
part suppressed by �s � �d & 10�2. This is the case for
instance for the contribution of the magnetic operators

OL;R
	 to the CP asymmetry in K ! �eþe�, which is thus

suppressed, despite the enhancement of the Wilson coeffi-
cient. This situation can be contrasted with the one occur-
ring, e.g., in supersymmetric models, where a correlation
between �0 and K ! �‘þ‘� can be inferred [26].

Nevertheless, the enhancement of CL;R
	 would survive in

CP-asymmetries with an odd number of mesons, like K !
��‘þ‘� (whose analysis brings in the leptonic sector of
the LR models and is beyond our study).
Let us then describe the impact of the first two lines in

(15) to �0, for the two possible choices of LR symmetry.
In the case of P , due to the hermiticity of the Yukawa

couplings, the phases in VR are all predicted in terms of the
phase �, and they are all close to 0 or �. The neutron
electric dipole moment (EDM) then poses a strong con-
straint which together with � and �0 leads to the strong limit
MWR

> 8–10 TeV [19]. As discussed in Ref. [4], a TeV-

scale LR symmetry is still allowed by resorting to an
unappealing fine-tuning with the QCD strong phase ��. In
this case, the �0 gives alone a bound, because from � one
must have x sin� ’ 10�3 [4,19], so that the limit x ! 0
i.e., � ! 0 that would suppress �0 in (15) is not permitted.
Then, by using the values for the predicted phases (see

TABLE II. Weigths wi (times 10) of the coefficients Ci in the determination of �0, applicable to coefficients from different scales.
The weights relative to the opposite chirality operators have opposite sign.

wi � 10 wRL
1c wRL

2c wRL
1 wRL

2 wLL
1c wLL

2c wLL
1 wLL

2 w3 w4 w5 w6 w7 w8 w9 w10 wL
g

� ¼ mW 0.52 �0:068 160. 52. 0.086 �0:55 2.0 �0:24�0:14 �3:4 8.1 22. 110. 340. 3.2 0.5 0.020

� ¼ mc 0. 0. 51. 15. 0. 0. 1.9 1.0 0.16 �0:74 2.7 8.0 32. 110. 2.8 1.9 0.038

� ¼ 0:8 GeV 0. 0. 42. 11. 0. 0. 2.0 1.2 0.22 �0:55 2.2 6.7 25. 88. 2.8 2.1 0.043

3Also 
LL
c is complex, but its phase is Oð1=1000Þ and is

subleading in this expression.
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Eq. (29) in Ref. [19]) and exploiting conservatively the free
signs, in particular u and c opposite, one finds the numeric
result4

j�0LRj ’ 5:7� 10�6ð�=10�3Þ: (16)

This result holds in the natural regime x < 0:1, where
analytic expressions for the phases are available.
Comparing �0LR with 100% (50%) of j�0jexp’3:92�10�6,

we obtain the constraint MWR
* 3ð4Þ TeV. Here the main

contribution comes from QLR;RL
1;2 , while QL;R

g contribute

subdominantly, with the effect of softening the limit with
respect to the conclusions of Ref. [4].5

In the more interesting case of C as LR symmetry, the
phases (5) in VR are free. This time, the bound from �
together with the Bd;s systems put the stronger constraint

�d � �s < 10�3 [4]. As a result, from (15) one has

j�0LRj ’ j�jj2:50sinð���u��dÞþ0:020sinð���c��dÞj:
(17)

The first line due to QLR;RL
1;2 is dominant, but one can note

that the phase combination appearing there is indepen-
dently constrained by the neutron EDM: as studied in
Refs. [4,19,40] one has j�j sinð�� �u � �dÞ< 10�7.
This implies that the current-current contribution can be
neglected here, and thus we are left with the dominance of

the second line, due toQL;R
g . For �0LR to at most saturate the

experimental value, one has the constraint

j�jj sinð�� �c � �dÞj< 2:0� 10�4 (18)

(or a correspondingly more stringent one for a subdomi-
nant j�0jLR). This represents a correlated bound between
the phases and the LR symmetry scale/mixing. For uncon-
strained phases �c þ �d one would requireMWR

* 8 TeV,

or vanishing LR mixing, while for TeV-scale LR symmetry
and large LRmixing, one puts a constraint of�10�1 on the
involved combination of phases.

This constraint is relatively stronger than the one re-
ported in Ref. [41], where a different evaluation of the Qg

matrix element was adopted, and where only the ‘‘charm’’
couplings were considered. As discussed above, the
uncertainty (possible enhancement) in the matrix element

ofQg could make this bound even stronger by an order one

factor.
The bound (18) is also stronger than the analogous limit

inferred from the s ! d	 decays [41,42], which through

QL;R
	 involve the same enhancement and the same phases as

the chromomagnetic operator.

VI. SUMMARYAND CONCLUSIONS

In this work we addressed the effect on �0 of new
physics in the chromomagnetic dipole operators, which
can have a huge enhancement with respect to the SM,
especially in the presence of nonchiral interactions. The
paradigmatic example for this effect appears in minimal
left-right symmetric theories, where the WL-WR gauge-
boson mixing leads to an enhancement of 105 in the short
distance loop coefficient, so that even with a scale of new
physics in the TeV region, an enhancement of two orders
of magnitude results. Together with the presence of new
phases in the right quark mixing matrix, this can lead to a
dramatic impact in �0.
To evaluate quantitatively the effect, we considered the

dipole operators together with the full set of four quark
operators which can give rise to CP violation in K ! ��
decays. We considered their renormalization and mixing
(at leading order) from short distance to the low scale of
matching with chiral perturbation theory, where the ma-
trix elements can be estimated. For the chromomagnetic
dipole operators, we reevaluated the corresponding matrix
element in the context of the chiral quark model (correct-
ing the previous existing calculation). For the SM opera-
tors, we adopted the estimates consistently determined in
previous analysis of �0=� [15]. These were also used for
an estimate for the LR current-current operators QLR

1;2 (see

discussion in Sec. IV and Appendix C). The set of high
energy operators considered is fairly complete, and can
serve also for estimates of the impact of other new
physics models on �0.
We applied the results to the case of the minimal left-

right model, showing that �0 receives contributions from
the chromomagnetic operator as well as from the current-

current ones QLR;RL
1;2 . These are in general large, but we

noted that they are severely constrained by the nEDM, with
the result that the chromomagnetic operators turn out to be
dominant. One can expect this to be a fairly generic situ-

ation, because new CP phases contributing to QLR;RL
1;2 are

usually contributing as well to the nEDM.
In the LR model, focusing on the case of generalized

charge-conjugation C taken as LR symmetry, where new
phases are free, this allows us to derive a correlated
constraint between the LR-gauge boson mixing (or LR-
symmetry scale) and the relevant phases. The bound
amounts to � & 10�4 (or MWR

> 8 TeV) for arbitrary

phases or, in the scenario of TeV-scale LR symmetry, a
constraint of 10�1;2 on the involved phases.

4This corresponds to the case j�d � �sj � 10�2. There is also
a second possibility, with j�d � �sj � �þOð10�2Þ and
x sin� 	 10�2, but it is disfavored by the Bd;s mass differences
and CP-violation. Moreover, in this case there are cancelations
in each line of (15) and the situation is more ambiguous, since it
depends on the precision to which the equality VL � VR of
mixing angles holds. We recall that with a global numerical
study of this model [4], the angles could be deviated as much as
20%, which would spoil these cancelations in �0. Therefore, also
in this case one can expect a dominant contribution as in (16).

5We also do not agreewith the strong bound derived inRef. [20],
using only the isospin-2 amplitude of the operator QLR

1 .
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The dominance of the Qg contribution can then lead to

constraints on processes involving the same combination
of phases. This is true for instance for the magnetic opera-

tors OL;R
	 which are also GIM-enhanced, and as we argued

will enter in K ! ��eþe� CP-violating asymmetries.
Also, (�� �c � �d) enters in the charmed mesons phys-
ics, the analysis of which is beyond the scope of this work.
Nevertheless, let us point out that it enters the decays of the
D meson via c ! u	, whose short distance contribution is
overwhelmed by the long distance ones [43], but also it
enters the CP-violation in the D ! KK, �� channels, for
which anomalous signals have been reported by the LHCb
collaboration [44]. The interesting analysis of the related
charm physics in the LR models will be the subject of a
separate work.
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APPENDIX A: LOOP FUNCTIONS

The loop functions relevant for the SM and the LR
model are [14,45–47]

FLL
1 ¼ xjð�18þ 11xj þ x2j Þ

12ðxj � 1Þ3 � ð4� 16xj þ 9x2j Þ lnxj
6ðxj � 1Þ4 ; ELL

1 ¼ � x2j ð5x2j � 2xj � 6Þ
18ðxj � 1Þ4 lnxj þ

19x3j � 25x2j

36ðxj � 1Þ3 þ 4

9
lnxj;

FLL
2 ¼ xjð2þ 3xj � 6x2j þ x3j þ 6xj lnxjÞ

4ðxj � 1Þ4 ; ELL
2 ¼ xjð8x2j þ 5xj � 7Þ

12ðxj � 1Þ3 þ x2j ð2� 3xjÞ
2ðxj � 1Þ4 lnxj;

FLR
2 ¼ �4þ 3xj þ x3j � 6xj lnxj

2ðxj � 1Þ3 ; ELR
2 ¼ 5x2j � 31xj þ 20

6ðxj � 1Þ2 � xjð2� 3xjÞ
ðxj � 1Þ3 lnxj; (A1)

where xj ¼ ð mj

MW
Þ2, j ¼ u, c, t. In addition to these, one has FRR

1;2 ¼ FLL
1;2ð�xiÞ and similarly for ERR

2 .

APPENDIX B: RUNNING OFALL �S¼ 1 OPERATORS

For our purposes, the relevant operators are the Qi appearing in (1) plus the eight QAB
1;2c where u quark is replaced by c.

At leading order (LO) the LR operators mix only with QL
g;	 (in addition to themselves). Similarly, the RL ones

mix only withQR
g;	. The operators can thus be divided in two decoupled sets of 18 operators each, related by the exchange

L $ R:

fQRL
1c ; Q

RL
2c ; Q

RL
1 ; QRL

2 ; QLL
1c ; Q

LL
2c ; Q

LL
1 ; QLL

2 ; Q3; Q4; Q5; Q6; Q7; Q8; Q9; Q10; Q
L
g; Q

L
	g; (B1)

fQLR
1c ; Q

LR
2c ; Q

LR
1 ; QLR

2 ; QRR
1c ; Q

RR
2c ; Q

RR
1 ; QRR

2 ; Q0
3; Q

0
4; Q

0
5; Q

0
6; Q

0
7; Q

0
8; Q

0
9; Q

0
10; Q

R
g ;Q

R
	g; (B2)

as in the two columns of Eq. (1). The corresponding vectors of coefficients in the two sets, ~CL;Rð�Þ, evolve separately
according to the renormalization group equation

�
@

@ ln�
þ �ðgÞ @

@g
þ 	mi

@

@ lnmi

�
~CL;Rð�Þ ¼ 	Tð�Þ ~CL;Rð�Þ; (B3)

with i ¼ u, s, c. The 18� 18 anomalous dimension matrix 	 is the same in the L and R sectors and reads [47,48]
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where nf and nu are, respectively, the number of active
quarks, and of active up-type quarks. The mixing of the
Q1;...;10 operators with the (chromo)magnetic operators
appears at NLO [48], and we adopt the anomalous
dimensions in the ’t Hooft-Veltman scheme. Note, the

off-diagonal terms in the last two columns carry explic-
itly the ratio of mass insertions responsible of the
operator mixing. In fact, while for the mixing of
the LL and penguin operators with the magnetic ones
the mass insertion on the external legs is ms and
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coincides with the normalization of Qg;	, for the mixing
QLR;RL

1;2 ! Qg;	 the mass insertion is that of the internal
quark (mu or mc), breaking the usual GIM cancelations.
It also follows that the traditional description in terms
of the yi and zi variables [30] is no longer appropriate,
and we need to perform the running of the whole vector
of coefficients ~CL (and ~CR). Clearly, for the SM part
the results coincide, as the GIM cancelation is effective
in the mixing with the dipole operators. Finally, the
operators involving the charm quark are integrated out
at their threshold, and accordingly the anomalous
dimension matrix is projected, below this scale, on
the remaining set of low energy operators QAB

1;2 , Q3–10,
QL

g , Q
L
	.

We perform the running choosing �sðMZÞ ¼ 0:1176,
and with starting coefficients introduced separately at the
relative scales of decoupling. The running is performed
down to 0.8 GeV where the matrix elements are
evaluated.

APPENDIX C: AMPLITUDES

For all the operators, the amplitudes A0;2 are expressed

in terms of their K ! ð��ÞI¼0;2 matrix elements hQii0;2:

A0 ¼
X
i

CihQii0; A2 ¼
X
i

CihQii2: (C1)

We report here the matrix elements for the relevant

QLL;LR;RL;RR
1;2 [14,15]:

hQLL
1 i0 ¼ �hQRR

1 i0 ¼ � 1

3
ffiffiffi
6

p XB1
0;

hQLL
1 i2 ¼ �hQRR

1 i2 ¼ 4

3
ffiffiffi
3

p XB1
2;

hQLL
2 i0 ¼ �hQRR

2 i2 ¼ 5

3
ffiffiffi
6

p XB2
0;

hQLL
2 i2 ¼ �hQRR

2 i2 ¼ 4

3
ffiffiffi
3

p XB2
2;

(C2)

hQLR
1 i0 ¼ �hQRL

1 i0 ¼
ffiffiffi
2

p ðX þ 9Y þ 3ZÞ
3

ffiffiffi
3

p B1;LR
0 ;

hQLR
1 i2 ¼ �hQRL

1 i2 ¼ 1

3

ffiffiffi
1

3

s
ðX � 6ZÞB1;LR

2 ;

hQLR
2 i0 ¼ �hQRL

2 i0 ¼
ffiffiffi
2

p ð3X þ 3Y þ ZÞ
3

ffiffiffi
3

p B2;LR
0 ;

hQLR
2 i2 ¼ �hQRL

2 i2 ¼ 1

3

ffiffiffi
1

3

s
ð3X � 2ZÞB2;LR

2 ;

(C3)

with

X � �h��j �d	�	5uj0ih�þj �u	�sj �K0i
¼ i

ffiffiffi
2

p
f�ðm2

K �m2
�Þ ’ 0:03i GeV3;

Y � �h�þ��j �uuj0ih0j �d	5sj �K0i
¼ i

ffiffiffi
2

p
fKA

2 ’ 0:22i GeV3;

Z � �h��j �d	5uj0ih�þj �usj �K0i
¼ i

ffiffiffi
2

p
f�A

2 ’ 0:18i GeV3;

(C4)

where A � m2
K=ðms þmdÞ, and f�;K the � and K decay

constants, and the quark masses are evaluated at � ¼
0:8 GeV (i.e., ms ’ 200 MeV). Since we use the matrix
elements at � ¼ 0:8 GeV, also the Bi coefficients of
departure from vacuum saturation have to be evaluated at
this scale.
The SM ones, determined in the chiral quark model

via a phenomenological approach based on the fit of the
�I ¼ 1=2 rule in K ! �� decays, can be taken from
Ref. [15] (see Table VI), where one can also find the
‘‘correlated’’ matrix elements for the operators Q3;...;10.

For the above current-current operators, one finds the

central values B1
0 ’ 9:5, B2

0 ’ 2:9, B1;2
2 ’ 0:41. For the

gluonic and electromagnetic penguins relevant to �0=�, it
is found B6

0 ’ 1:6 and B8
2 ’ 0:92.

Concerning the B1;2;LR, their evaluation is still lacking
both in the chiral quark model as on the lattice, and to
our knowledge also in 1=Nc expansion. Some hints can
be derived from the observation that the electromagnetic
penguins Q7;8 transform as ð8L; 8RÞ as do the QLR

1;2. Then,

their leading bosonization and chiral loops coincide (see
Ref. [23]) so that one can expect the B parameters of
QLR

1;2 to be very similar to those of Q8;7. For the isospin-2

amplitudes, this correspondence has even been argued
to be exact [20] so that using the results reported

in Ref. [15], we can set B1;2;LR
2 ¼ B7;8

2 ’ 0:92. For

isospin-0 amplitudes, the larger B7;8
0 ’ 2:5 hint for

B1;2;LR
0 also larger than one. In general, this is in accor-

dance with the strong phases from pion rescattering in
final state interactions which point to a correction factor
of �1:4 [49–51], and also more simply with the correc-
tion factor traditionally applied to Y in vacuum saturation
to account for the renormalization to the K scale in the
pion matrix element, ð1þm2

K=�
2
�PTÞ � 1:5, which en-

hances the isospin-0 amplitudes in Eq. (C3). Therefore,
for the present analysis, we adopt the conservative

choice of central values B1;2;LR
0 ’ 2 with Oð1Þ uncer-

tainty. For the left-right model, the impact of the
isospin-0 amplitudes of QLR

1;2 is fortunately limited. The

result in the first line of (15) changes by 20% within a

1–3 range of B1;2;LR
0 .
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APPENDIX D: DOUBLE INSERTION OF Qg

LEADING TO �S¼ 2

The gluonic dipole operators can give effects also on
the �S ¼ 2 processes, via its double insertion or via its
insertion together with other �S ¼ 1 operators, most
notably the SM current-current operators QLL

1;2; which

have large (real) coefficients. These combinations con-
stitute true long-distance contributions. A first estimate
was given in Ref. [52], and the resulting constraint is
not relevant for �MK and is marginal for � [41]. In the
presence of the whole set of new physics operators also
chiral loops with multiple possible insertions should be
evaluated, and we leave that for a future analysis.
However, a simple double insertion of Qg can be readily

estimated. It leads to K- �K mixing through the diagram
in Fig. 2. The two external gluons are averaged in the
vacuum gluon condensate, and the total mixing
Hamiltionian is

HK �K ¼ � 8

3

M2
K

f2
G2

F

2
m2

s

ðCL
gÞ2 þ ðCR

g Þ2
16�2

�
�

�
GG

�
K �K: (D1)

Considering from Table I the low energy values

CL;R
g ’ 2:7j�je�ið���c��d;sÞ, we find the impact on the

K �K mixing to be negligibly small, despite the huge
enhancement of the dipole loop: from �MK ¼
ReðHK �KÞ=2MK, we have

�M
QLþR

g

K & 10�21 GeV; ðfor � & 10�3Þ; (D2)

which is six orders of magnitude less than the experi-
mental value. Similarly, also the effect on � is negligible:
we have �� 0:3j�j2 cosð2�Þð�d � �sÞ. Since � < 10�3

and �d � �s is at most 10�2, this gives no constraint.
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