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We present an analysis of normal and inverted hierarchical neutrino mass models within the framework

of tri-bimaximal mixing. Considering the neutrinos to be quasidegenerate (QDN), we study two different

neutrino mass models with mass eigenvalues ðm1;�m2; m3Þ and ðm1; m2; m3Þ for both normal hierarchical

and inverted hierarchical cases. Parameterizing the neutrino mass matrix using best-fit oscillation and

cosmology data for a QDN scenario, we find the right-handed Majorana mass matrix using the type I

seesaw formula for two types of Dirac neutrino mass matrices: charged lepton type and up quark type.

Incorporating the presence of the type II seesaw term which arises naturally in generic left-right

symmetric models along with the type I term, we compare the predictions for neutrino mass parameters

with the experimental values. Within such a framework and incorporating both oscillation as well as

cosmology data, we show that a QDN scenario of neutrino masses can still survive in nature with some

minor exceptions. A viable extension of the standard model with an Abelian-gauged flavor symmetry is

briefly discussed which can give rise to the desired structure of the Dirac and Majorana mass matrices.
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I. INTRODUCTION

Recent neutrino oscillation experiments have provided
significant amount of evidence which confirms the exis-
tence of the nonzero yet tiny neutrino masses [1]. We know
that the smallness of three standard model (SM) neutrino
masses [1] can be naturally explained via the seesaw
mechanism. In general, the seesaw mechanism can be of
three types: type I [2], type II [3], and type III [4]. All these
mechanisms involve the inclusion of additional fermionic
or scalar fields to generate tiny neutrino masses at tree
level. Although these seesaw models can naturally explain
the smallness of neutrino mass compared to the electro-
weak scale, we are still far away from understanding the
origin of neutrino mass hierarchies as suggested by experi-
ments. Recent neutrino oscillation experiments T2K [5],
Double ChooZ [6], Daya-Bay [7], and RENO [8] provide
the values of various neutrino oscillation parameters as
follows:

�m2
21 ¼ ð7:12–8:20Þ � 10�5;

j�m2
31j ¼ ð2:21–2:64Þ � 10�3;

sin2�12 ¼ 0:27–0:37;

sin2�23 ¼ 0:37–0:67;

sin2�13 ¼ 0:017–0:033:

(1)

The above recent data have positive evidence for nonzero
�13 as well, which was earlier thought to be zero or negli-
gibly small. The values of these mixing angles have non-
trivial impact on the neutrino mass hierarchy as studied in a

recent paper [9] where the author showed that the atmos-
pheric angle �23 is found to discriminate the possible hier-
archies in the type I and type II seesaw frameworks using
different texture zero-massmatrices. In this context, to know
the actual hierarchy of the neutrino masses has become
equally important like the issue of nonzero �13 both from
neutrino physics as well as from a cosmology point of view.
The recent cosmological upper bound [10] on the sum of
three absolute neutrino masses

P
imi � 0:28 eV has ruled

out quasidegenerate neutrino (QDN) mass models with
mi � 0:1 eV. This has made studying the survivability of
QDN models as important as the issue of the normal and
inverted hierarchical natures of neutrino masses.
Detailed analysis of normal versus inverted hierarchical

neutrino masses using different approaches started just
after the discovery of the neutrino oscillation phenomena.
The inverted hierarchical neutrino was studied exclusively
in Ref. [11] considering neutrino as a pseudo-Dirac particle
with nonconservation of Le � L� � L�, where Ll denotes

lepton number corresponding to individual lepton (l) gen-
eration. Use of specific grand unified models explaining
the seesaw mechanisms has also been done in the last few
years to study the hierarchy of neutrino masses. An analy-
sis done in Ref. [12] showed that every normal neutrino
mass hierarchy solution of a grand unified model corre-
sponds to an inverted hierarchy solution. It was also men-
tioned in their work that any future observation of inverted
hierarchy would tend to disfavor the grand unified models
based on the conventional type I seesaw mechanism. But
models with type II and type III or models based on
conserved Le � L� � L� symmetry may favor the

inverted hierarchical nature of neutrino masses. Models
based on seesaw mechanism with three right-handed neu-
trinos can also generate inverted hierarchical neutrino
masses [13] within the framework of bimaximal mixing.
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As stressed earlier, along with the hierarchy of neutrino
masses, the explanation of nonzero �13 as well as CP
violation is also an unsolved agenda in neutrino physics.
From the supernova neutrinos point of view, it was shown
[14] that one can discriminate the inverted hierarchy from
the normal one if sin2�13 � a few� 10�4. If a particular
neutrino mass hierarchy is assumed this can bias cosmo-
logical parameter constraints [15] like the dark energy
equation of state parameter as well as the sum of the
neutrino masses.

In view of the importance of understanding the hierar-
chies as stressed above, this paper presents an analysis of
normal and inverted neutrino mass hierarchies incorporating
the contributions from both type I and type II seesaw
mechanisms. However, our analysis does not attempt to
explain nonzero �13 as has already been explained in the
literature by considering deviations from the TBM mixing
using different corrections. The present analysis is done
within the framework of TBM mixing which theoretically,
is a very close approximate description of neutrino mixing.
In the present analysis we use the appropriate neutrino mass
patterns in the framework of TBM mixing by considering
neutrinos to be QDN. The mass matrices are parameterized
for the QDN case with the help of present neutrino oscil-
lation data and the cosmological upper bound on the sum of
neutrino masses. Using these QDN mass matrices and con-
sidering two possible structures of the Dirac neutrino mass
matrix mLR: charged lepton (CL) type and up quark (UQ)
type, we calculate the right-handed Majorana mass matrix
using type I seesaw formula. We then take into account the
contributions from type II seesaw term in a generic left-right
symmetric theory [16]. In the presence of both type I and
type II seesaw contributions, we perform our detailed analy-
sis to calculate the predictions for neutrino parameters to
show the survivability of the QDN scenario. In the end, we
also outline a simple extension of the standard model by an
Abelian-gauged flavor symmetry which can give rise to the
specific structure of Dirac neutrino mass matrices used in
the analysis.

This paper is organized as follows: in Sec. II, we discuss
the methodology of the type II seesaw mechanism. In
Sec. III, we discuss our numerical analysis and results. In
Sec. IV, we outline a simple extension of standard model
by an Abelian-gauged flavor symmetry which can natu-
rally give rise to the desired structure of mass matrices. We
conclude in Sec. V.

II. METHODOLOGYAND TYPE II
SEESAW MECHANISM

The type I seesaw framework is the simplest mechanism
for generating tiny neutrino masses and mixing. There is
also another type of noncanonical seesaw formula (known
as the type-II seesaw formula) [3] where a left-handed
Higgs triplet �L picks up a vacuum expectation value
(vev). This is possible both in the minimal extension of

the standard model by �L or in other well-motivated
extensions like left-right symmetric model (LRSM) [16].
The seesaw formula can be written as

mLL ¼ mII
LL þmI

LL; (2)

where the usual type I seesaw formula is given by the
expression,

mI
LL ¼ �mLRM

�1
RRm

T
LR: (3)

Here, mLR is the Dirac neutrino mass matrix. The above
seesaw formula with both type I and type II contributions
can naturally arise in extension of standard model with
three right-handed neutrinos and one copy of�L. However,
we will use this formula in the framework of LRSM where
MRR arises naturally as a result of parity breaking at high
energy and both the type I and type II terms can be written
in terms of MRR as we will see below.
In this present analysis, we consider mLR in a diagonal

form andMRR in general nondiagonal form. In LRSMwith
Higgs triplets,MRR can be expressed asMRR ¼ vRfR with
vR being the vev of the right-handed triplet Higgs field �R

imparting Majorana masses to the right-handed neutrinos
and fR is the corresponding Yukawa coupling. The first
term mII

LL in Eq. (2) is due to the vev of SUð2ÞL Higgs
triplet. In the usual LRSM, mII

LL and MRR are proportional
to the vev’s of the electrically neutral components of scalar
Higgs triplets �L and �R, respectively. Thus,m

II
LL ¼ fLvL

andMRR ¼ fRvR, where vL;R denote the vev’s and fL;R are

symmetric 3� 3 matrices. The left-right symmetry
demands fR ¼ fL ¼ f. The induced vev for the left-
handed triplet vL can be shown for generic LRSM to be

vL ¼ �
M2

W

vR

withMW ’ 80:4 GeV being the weak boson mass such that

jvLj � MW � jvRj:
In general, � is a function of various couplings in the scalar
potential of generic LRSM and without any fine-tuning � is
expected to be of the order unity (�� 1). The type II
seesaw formula in Eq. (2) can now be expressed as

mLL ¼ �ðMW=vRÞ2MRR �mLRM
�1
RRm

T
LR: (4)

With the above seesaw formula (4), the neutrino mass
matrices are constructed by considering contributions from
both type I and type II terms. Here, MRR is defined as
MRR ¼ vRfR. If fR is held fixed, both terms in Eq. (4) vary
as 1=vR. Here, we hold MRR fixed, so the first term is vR

dependent while second term is fixed. However, different
choices of vR for fixed MRR would lead to different values
of mII

LL while keeping mI
LL unchanged. This ambiguity is

seen in the literature where different choices of vR are
made according to convenience [17–20]. However, in this

paper, we will always take vR as vR¼�
M2

W

vL
’��1015 GeV
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[20]. It is worth mentioning that here the SUð2ÞR�
Uð1ÞB�L gauge symmetry-breaking scale (as in generic
LRSM) vR is the same as the scale of parity breaking
[17]. Using this form of vR, the seesaw formula (4)
becomes

mLL ¼ �

�
MW

�� 1015

�
2
MRR �mLRM

�1
RRm

T
LR: (5)

Since a type II term is inversely proportional to �, smaller
values of this parameter (say, �� 0) would give rise to a
more dominating type II term whereas �� 1 would cor-
respond to the minimum possible contributions from a type
II term.

After fixing the symmetry-breaking scales as above, we
carry out a complete analysis of the normal and inverted
hierarchical models of neutrino masses in the framework of
TBMmixing. We vary the dimensionless parameter � from
0.001 to 1.0 and check the survivability of neutrino mass
models with contributions from type I and type II terms.
We adopt a natural selection for the survival of neutrino
mass models which have the least deviation of � from
unity. The nearer the value of � to one the better the chance
for the survival of the model in question. Thus, the value of
� is an important parameter for the proposed natural
selection of the neutrino mass models in question.

III. NUMERICAL ANALYSIS AND RESULTS

For detail numerical analysis we use the specific �-�
symmetric neutrino mass matrix [21] which gives rise to
TBM type mixing pattern

mLL ¼
A B B

B 1
2 ðAþ BþDÞ 1

2 ðAþ B�DÞ
B 1

2 ðAþ B�DÞ 1
2 ðAþ BþDÞ

0
BB@

1
CCA; (6)

which has eigenvalues m1 ¼ A� B, m2 ¼ Aþ 2B, and
m3 ¼ D. Then we parameterize the above matrix for the
QDN case. From presently available cosmological con-
straints, the upper bound on the sum of neutrino masses
has come down to the lowest value

P
imi � 0:28 eV [10],

which has ruled out QDN neutrino models with mi �
0:1 eV. Parametrization of the matrix (6) is done with
this upper bound and taking the largest allowed value
mi � 0:1 eV consistent with the latest cosmological data.
A classification for threefold QDN neutrino masses [22]
with a maximum Majorana CP-violating phase in their
eigenvalues is used here. CP phase patterns in the mass
eigenvalues for both NH and IH are taken as ðm1;�m2; m3Þ
(denoted asþ�þ) and ðm1; m2; m3Þ (denoted asþþþ).
Using the best-fit global values of neutrino oscillation
observational data [23] on solar and atmospheric neutrino
mass squared differences, and taking mi � 0:1 eV, predic-
tions for neutrino parameters are calculated within the
cosmological upper bounds mentioned above. First, we
calculate the neutrino mass parameters using the above

TABLE I. Input parameters and predictions for different pa-
rameters consistent with experiments using type I seesaw only.

Parameters IHðþ�þÞ IHðþþþÞ NHðþ�þÞ NHðþþþÞ
�m2

21½10�5 eV2� 7.65 7.65 7.65 7.65

j�m2
13j½10�3 eV2� 2.40 2.40 2.40 2.40

m3ðeVÞ 0.08 0.08 0.10 0.10

sin2�23 0.50 0.50 0.50 0.50

sin2�12 0.33 0.33 0.33 0.33

m1ðeVÞ 0.09340 0.09340 0.08674 0.08675

m2ðeVÞ �0:09380 0.09380 �0:08717 0.08717P
imiðeVÞ 0.267 0.267 0.274 0.274

A 0.031 0.09353 0.02877 0.08688

B �0:0624 0.00013 �0:05797 0.00014

D 0.08 0.08 0.10 0.10

TABLE II. Right-handed Majorana neutrino masses in GeV.

ðm; nÞ (6, 2) (8, 4)

IHðþ þþÞ
3:8� 105 �2:26� 105 �4:67� 106

�2:26� 105 7:23� 1010 �1:18� 1011

�4:67� 106 �1:18� 1011 3:09� 1013

0
B@

1
CA �2:19� 103 �1:34� 103 �5:75� 105

�1:34� 103 4:32� 108 �1:45� 1010

�5:75� 105 �1:45� 1010 7:87� 1013

0
B@

1
CA

IHðþ �þÞ
123061 �1:043� 108 �2:16� 109

�1:04� 108 2:80� 1010 �1:04� 1012

�2:16� 109 �1:04� 1012 1:20� 1013

0
B@

1
CA 733:40 �6:22� 105 �2:66� 108

�6:22� 105 1:67� 108 �1:28� 1011

�2:66� 108 �1:28� 1011 3:04� 1013

0
B@

1
CA

NHðþ þþÞ
3:95� 105 �2:91� 105: �6:01� 106

�2:91� 105 6:72� 1010 9:64� 1010

�6:01� 106 9:64� 1010 2:87� 1013

0
B@

1
CA 2:36� 103 �1:73� 103 �7:40� 105

�1:73� 103 4:01� 108 1:19� 1010

�7:40� 105 1:19� 1010 7:3� 1013

0
B@

1
CA

NHðþ �þÞ
1:3� 105 �1:12� 108 �2:32� 109

�1:12� 108 1:93� 1010 �8:92� 1011

�2:32� 109 �8:92� 1011 8:27� 1012

0
B@

1
CA 790:241 �6:70� 105 �2:86� 108

�6:70� 105 1:16� 108 �1:10� 1011

�2:86� 108 �1:10� 1011 2:10� 1013

0
B@

1
CA
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form of the matrix (6) taking into account only type I
seesaw contributions. These predictions along with the
input parameters for IH and NH cases in the presence of
only type I seesaw are presented in Table I. Then we take
into account contributions from the type II seesaw term
given in Eq. (5) to study the survivability of the neutrino
mass models. Using the inverse type I seesaw formula

MRR ¼ mT
LRm

�1
LLmLR (7)

first we calculate the MRR for each case using Dirac
neutrino mass (mLR) in the diagonal form. In this analysis,
mLR is being taken as either the charged lepton mass matrix
or the up quark mass matrix. The general form of the Dirac
neutrino mass is

mLR ¼
�m 0 0

0 �n 0

0 0 1

0
BB@

1
CCAmf; (8)
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 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1
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FIG. 1 (color online). Variation of the predicted values of �m2
31 as a function of � in NH case for both charged lepton and up quark

type mLR as well as both types of maximal Majorana CP phases.

Normal Hierarhy
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FIG. 2 (color online). Variation of the predicted values of �m2
21 as a function of � in NH case for both charged lepton and up quark

type mLR as well as both types of maximal Majorana CP phases.
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where mf corresponds to m� tan� for ðm; nÞ ¼ ð6; 2Þ,
tan� ¼ 40 in case of a charged lepton, andmt for ðm; nÞ ¼
ð8; 4Þ in the case of up quarks [24,25]. � ¼ 0:22 is the
standardWolfenstein parameter.MRR for both the cases are
presented in the Table II.

Entering the values of MRR in Eq. (5), we compute the
type Iþ II neutrino mass matrix mLL and find the mass
eigenvalues and eigenvectors to compute the j�m2

31j and
�m2

21 and corresponding mixing angles for various val-

ues of �. Deviations of these predicted �m2’s from the

data central values are then plotted in Figs. 1–4 against
the parameter �. It is observed from the figures that all
the mass models survive at �� 1 except the fact that for
UQ type mLR, the predictions for �m2

21 has deviated

slightly from the 3� range of experimental data. On
the other hand, predictions for the mixing angles, i.e.,
�12, �23, show that all the models survive provided � is
close to 1 (or in other words, type II term has minimal
contribution). The calculated values of neutrino parame-
ters for � ¼ 0:25, 0.50, 0.75, 1.0 are given in Tables III,
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FIG. 3 (color online). Variation of the predicted values of �m2
13 as a function of � in IH case for both charged lepton and up quark

type mLR as well as both types of maximal Majorana CP phases.
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FIG. 4 (color online). Variation of the predicted values of �m2
21 as a function of � in IH case for both charged lepton and up quark

type mLR as well as both types of maximal Majorana CP phases.
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IV, V, and VI. From this analysis we observe that QDN
neutrino mass models can survive in nature within the
framework of TBM mixing (with a few exceptions), with
contributions from both type I and type II seesaw
mechanisms.

IV. AVIABLE MODELWITH A GAUGED
ABELIAN FLAVOR SYMMETRY

The standard model (SM) of particle physics, if
extended by the inclusion of three right-handed neutrinos
which are singlet under the SM gauge group, can give rise
to tiny neutrino mass by the type I seesaw mechanism [2].
Alternatively, if the SM is extended by a scalar triplet, a
tiny neutrino mass can arise from the type II seesaw
mechanism [3] after the neutral component of the scalar
triplet acquires a tiny vacuum expectation value. Being
singlets under the gauge group, the mass matrix of the
right-handed neutrinos can have off-diagonal terms as
well. Similarly, the gauge structure of the SM does not
prevent off-diagonal Dirac Yukawa couplings. In other
words, both the Dirac and right-handed Majorana mass
matrices can be nondiagonal in general. However, through-
out our analysis in the previous sections, we have restricted
the Dirac neutrino mass matrix to its diagonal form only.
This can be achieved by incorporating additional symme-
tries (global or local) with family nonuniversal gauge
charges so that off-diagonal mass terms are not allowed.
In this paper, we take up one such highly motivated
extended symmetry: the Abelian gauge extension of the
SM. It should be noted that although our analysis in the
previous sections considered the type II seesaw formula (4)
for a general left-right symmetric model, here we outline a
simpler extension of the standard model by an Abelian-
gauged flavor symmetry to explain the desired form of the
mass matrices.

The Abelian gauge extension of the standard model is
one of the best motivating examples of beyond standard

model physics. For a review see Ref. [26]. Such a model is
also motivated within the framework of grand unified
theory models, for example, E6. The supersymmetric ver-
sion of such models have an additional advantage in the
sense that they provide a solution to the minimal super-
symmetric standard model � problem. Such an Abelian
gauge extension of SM was studied recently in Ref. [27] in
the context of neutrino mass and cosmology.
Here we consider an extension of the standard model

gauge group with one Abelian Uð1ÞX gauge symmetry.
Thus, the model we propose here is an SUð3Þc � SUð2ÞL �
Uð1ÞY �Uð1ÞX gauge theory with three chiral generations
of SM and three additional right-handed neutrinos. We will
consider family nonuniversal Uð1ÞX couplings.
The fermion content of our model is

Qi ¼
u

d

 !
�
�
3;2;

1

6
;nqi

�
; Li ¼

�

e

 !
�
�
1;2;�1

2
;nli

�
;

uci �
�
3�;1;

2

3
;nui

�
; dci �

�
3�;1;�1

3
;ndi

�
;

eci �ð1;1;�1;neiÞ; �c
i �ð1;1;0;nriÞ;

where i ¼ 1, 2, 3 goes over the three generations of the
standard model and the numbers in the brackets correspond
to the quantum number under the gauge group SUð3Þc �
SUð2ÞL �Uð1ÞY �Uð1ÞX. The Uð1ÞX gauge quantum
numbers should be such that they do not give rise to
anomalies. We consider the following solution of the
anomaly matching conditions:

nqi ¼ nui ¼ ndi ¼ 0; nli ¼ nei ¼ nri ¼ niX
nli ¼

X
nei ¼

X
nri ¼ 0;

X
n3li ¼

X
n3ei ¼

X
n3ri ¼ 0:

TABLE III. Predictions for neutrino parameters using type Iþ II seesaw for CL type mLR with inverted hierarchy.

Parameters

IHðþ �þÞ,
� ¼ 0:25

IHðþ �þÞ,
� ¼ 0:50

IHðþ �þÞ,
� ¼ 0:75

IHðþ �þÞ,
� ¼ 1:00

IHðþ þþÞ,
� ¼ 0:25

IHðþ þþÞ,
� ¼ 0:50

IHðþ þþÞ,
� ¼ 0:75

IHðþ þþÞ,
� ¼ 1:00

�m2
21½10�5 eV2� 6.19 6.91 7.14 7.25 10.01 8.57 8.18 8.02

j�m2
31j½10�3 eV2� 2.31 2.32 2.32 2.32 2.29 2.31 2.31 2.31

sin2�23 0.50 0.50 0.50 0.50 0.51 0.50 0.50 0.50

sin2�12 0.33 0.33 0.33 0.33 0.15 0.22 0.26 0.33

TABLE IV. Predictions for neutrino parameters using type Iþ II seesaw for CL type mLR with normal hierarchy.

Parameters

NHðþ �þÞ,
� ¼ 0:25

NHðþ �þÞ,
� ¼ 0:50

NHðþ �þÞ,
� ¼ 0:75

NHðþ �þÞ,
� ¼ 1:00

NHðþ þþÞ,
� ¼ 0:25

NHðþ þþÞ,
� ¼ 0:50

NHðþ þþÞ,
� ¼ 0:75

NHðþ þþÞ,
� ¼ 1:00

�m2
21½10�5eV2� 6.72 7.16 7.30 7.36 9.76 8.63 8.32 8.19

j�m2
31j½10�3 eV2� 2.48 2.48 2.48 2.47 2.51 2.49 2.49 2.48

sin2�23 0.49 0.49 0.50 0.50 0.48 0.49 0.49 0.50

sin2�12 0.33 0.33 0.33 0.33 0.20 0.25 0.27 0.33
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In particular, if we choose n1 ¼ 0, n2 ¼ n, n3 ¼ �n, only
the following types of Dirac Yukawa terms will be present
in the Lagrangian:

L Y 	 Yii
�
�LiH�c

i þ Yii
e
�LiH

yeci ;

where H is the Higgs field responsible for breaking elec-
troweak symmetry and has the quantum numbers
ð1; 2;� 1

2 ; 0Þ with respect to the gauge group. For the

chosen Abelian charges, two singlet Higgs fields must exist
S1ð1; 1; 0; 0Þ, S2ð1; 1; 0; 2nÞ to give rise to a general struc-
ture of the right-handed Neutrino mass matrix. One of
these singlet fields S2ð1; 1; 0; 2nÞ (after acquiring a nonzero
vev) also breaks the gauge symmetry SUð3Þc � SUð2ÞL �
Uð1ÞY �Uð1ÞX to that of the standard model. Also, since
the quarks have zero charges under the additional Abelian
symmetry, they continue to have the usual CKM (Cabibbo-
Kobayashi-Maskawa) structure of the mixing matrix. Such
a model can have rich phenomenology from a collider as
well as a cosmology point of view. However, for the
purpose of our current work, we outline this model just
to explain one possible origin of the specific structure
(diagonal) of Dirac neutrino mass matrix mLR used in the
analysis. A more detailed investigation of such a model is
left for future studies.

V. DISCUSSION

Analysis of the effect of Majorana CP phases in case of
quasidegenerate neutrinos is done with contributions from

both type I and type II seesaw formulas within the frame-
work of TBM mixing. Fitting the neutrino mass matrix
with best-fit oscillation and cosmology data, the right-
handed neutrino mass matrix is calculated using type I
seesaw formula only for both CL-type and UQ-type
Dirac neutrino mass matrices. Adding a type II seesaw
term (which arises in generic left-right symmetric models)

to the type I term, the predictions for neutrino parameters
are calculated. It is observed that for the minimal possible
contribution of a type II seesaw term (which corresponds to
the value of the dimensionless parameter � in a type II
seesaw term of order 1) to the neutrino mass matrix, all the
neutrino mass models can survive in nature except the fact
that for UQ type mLR the predictions for �m2

21 have

deviated slightly from the 3� range of experimental data.
Apart from this exception, all other predicted values of the
neutrino parameters are consistent with neutrino oscilla-
tion data. Apart from neutrino oscillation data, these pre-

dictions are also within the limit of the cosmological upper
bound

P
imi � 0:28 eV. In view of above, the scenario of

quasidegenerate neutrinos can survive in nature within the
framework of type I and type II seesaw mechanisms and
hence cannot be ruled out yet. However, here we stick to
the TBM mixing framework and have not made any
attempt to explain the nonzero �13 as confirmed recently
by several neutrino oscillation experiments. As an exten-

sion of this work, one can incorporate various corrections
to mLL to explain nonzero �13, which we have left for
future studies.

TABLE V. Predictions for neutrino parameters using type Iþ II seesaw for UQ type mLR with inverted hierarchy.

Parameters

IHðþ �þÞ,
� ¼ 0:25

IHðþ �þÞ,
� ¼ 0:50

IHðþ �þÞ,
� ¼ 0:75

IHðþ �þÞ,
� ¼ 1:00

IHðþ þþÞ,
� ¼ 0:25

IHðþ þþÞ,
� ¼ 0:50

IHðþ þþÞ,
� ¼ 0:75

IHðþ þþÞ,
� ¼ 1:00

�m2
21½10�5 eV2� 3.28 5.49 6.20 6.53 15.98 10.86 9.49 8.94

j�m2
31j½10�3 eV2� 2.30 2.31 2.31 2.31 2.24 2.28 2.30 2.30

sin2�23 0.50 0.50 0.50 0.50 0.54 0.52 0.51 0.50

sin2�12 0.33 0.33 0.33 0.33 0.12 0.22 0.27 0.33

TABLE VI. Predictions for neutrino parameters using type Iþ II seesaw for UQ type mLR with normal hierarchy.

Parameters

NHðþ �þÞ,
� ¼ 0:25

NHðþ �þÞ,
� ¼ 0:50

NHðþ �þÞ,
� ¼ 0:75

NHðþ �þÞ,
� ¼ 1:00

NHðþ þþÞ,
� ¼ 0:25

NHðþ þþÞ,
� ¼ 0:50

NHðþ þþÞ,
� ¼ 0:75

NHðþ þþÞ,
� ¼ 1:00

�m2
21½10�5 eV2� 4.83 6.23 6.68 6.89 14.00 10.36 9.33 8.90

j�m2
31j½10�3 eV2� 2.49 2.48 2.48 2.48 2.58 2.52 2.50 2.50

sin2�23 0.49 0.50 0.50 0.50 0.46 0.48 0.49 0.50

sin2�12 0.33 0.33 0.33 0.33 0.15 0.20 0.26 0.33

QUASIDEGENERATE NEUTRINOS IN TYPE II SEESAW MODELS PHYSICAL REVIEW D 86, 095006 (2012)

095006-7



[1] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett.
86, 5656 (2001); Q. R. Ahmad et al. (SNO), Phys. Rev.
Lett. 89, 011301 (2002); Phys. Rev. Lett. 89, 011302
(2002); J. N. Bahcall and C. Pena-Garay, New J. Phys. 6,
63 (2004); K. Nakamura et al., J. Phys. G 37, 075021
(2010).

[2] P. Minkowski, Phys. Lett. 67B, 421 (1977); M. Gell-
Mann, P. Ramond, and R. Slansky, CERN Report
No. print-80-0576, 1980; T. Yanagida, in Proceedings of
the Workshop on the Baryon Number of the Universe and
Unified Theories (Tsukuba, Japan, 1979); R. N. Mohapatra
and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); J.
Schechter and J.W. F. Valle, Phys. Rev. D 22, 2227 (1980).

[3] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165
(1981); G. Lazarides, Q. Shaf, and C. Wetterich, Nucl.
Phys. B181, 287 (1981); C. Watterich, Nucl. Phys. B187,
343 (1981); B. Brahmachari and R.N. Mohapatra, Phys.
Rev. D 58, 015001 (1998); R. N. Mohapatra, Nucl. Phys.
B, Proc. Suppl. 138, 257 (2005); S. Antusch and S. F.
King, Phys. Lett. B 597, 199 (2004).

[4] R. Foot, H. Lew, X.G. He, and G. C. Joshi, Z. Phys. C 44,
441 (1989).

[5] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107,
041801 (2011).

[6] Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012).
[7] F. P. An et al. (DAYA-BAY Collaboration), Phys. Rev.

Lett. 108, 171803 (2012).
[8] J. K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett.

108, 191802 (2012).
[9] S. Verma, Nucl. Phys. B854, 340 (2012).
[10] S. A. Thomas, F. B. Abdalla, and O. Lahav, Phys. Rev.

Lett. 105, 031301 (2010).
[11] S. Petcov, Phys. Lett. 110B, 245 (1982).
[12] C. H. Albright, Phys. Lett. B 599, 285 (2004).
[13] S. F. King and N.N. Singh, Nucl. Phys. B596, 81 (2001).
[14] H. Minakata and H. Nunokawa, Phys. Lett. B 504, 301

(2001).
[15] F. De Bernardis, T. D. Kitching, A. Heavens, and A.

Melchiorri, Phys. Rev. D 80, 123509 (2009).
[16] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R. N.

Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); G.
Senjanovic and R.N. Mohapatra, Phys. Rev. D 12, 1502
(1975); R.N. Mohapatra and R. E. Marshak, Phys. Rev.

Lett. 44, 1316 (1980); N.G. Deshpande, J. F. Gunion, B.
Kayser, and F. I. Olness, Phys. Rev. D 44, 837 (1991).

[17] B. Bajc, G. Senjanovic, and F. Vissani, Phys. Rev. D 70,
093002 (2004); S. Bertolini, M. Frigerio, and M.
Malinsky, Phys. Rev. D 70, 095002 (2004); T. Hambye
and G. Senjanovic, Phys. Lett. B 582, 73 (2004); N. Sahu
and S. Uma Sankar, Phys. Rev. D 71, 013006 (2005).

[18] B. Dutta, Y. Mimura, and R.N. Mohapatra, Phys. Lett. B
603, 35 (2004).

[19] C. H. Albright and S.M. Barr, Phys. Rev. D 70, 033013
(2004); S.M. Barr, Phys. Rev. Lett. 92, 101601 (2004).

[20] A. S. Joshipura, E. A. Paschos, and W. Rodejohann, J.
High Energy Phys. 08 (2001) 029; Nucl. Phys. B611,
227 (2001).

[21] P. F. Harrison and W.G. Scott, Phys. Lett. B 547, 219
(2002).

[22] G. Altarelli and F. Feruglio, Phys. Rep. 320, 295
(1999).

[23] B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K.
Lande, C.K. Lee, P. S. Wildenhain, and J. Ullman,
Astrophys. J. 496, 505 (1998); J. N. Abdurashitov et al.
(SAGE Collaboration), J. Exp. Theor. Phys. 95, 181
(2002); T. A. Kirsten et al. (GALLEX and GNO
Collaborations), Nucl. Phys. B, Proc. Suppl. 118, 33
(2003); C. Cattadori, N. Ferri, and L. Pandola, Nucl.
Phys. B, Proc. Suppl. 143, 3 (2005); T. Schwetz, M.
Tortola, and J.W. F. Valle, New J. Phys. 10, 113011
(2008); 13, 063004 (2011); M.C. Gonzales-Garcia and
M. Maltoni, Phys. Rep. 460, 1 (2008); J.W. F. Valle,
Understanding and Probing Neutrino Oscillation,
Invited Talk in Neutrino-2010 (Athens), 2010; A.
Bandyopadhya et al., Rep. Prog. Phys. 72, 106201
(2009); S. T. Petcov, presented at 2011BCVSPIN, Hue,
Vietnam, Massive Neutrinos, Neutrino Mixing,
Oscillation, Leptonic CP Violation and Beyond, 2011.

[24] K. S. Babu, B. Dutta, and R.N. Mohapatra, Phys. Lett. B
458, 93 (1999); D. Falcone, Phys. Rev. D 65, 077301
(2002); Phys. Lett. B 479, 1 (2000).

[25] M.K. Das, M. Patgiri, and N.N. Singh, Pramana J. Phys.
65, 995 (2005).

[26] P. Langacker, Rev. Mod. Phys. 81, 1199 (2009).
[27] D. Borah, Phys. Rev. D 85, 015006 (2012); D. Borah and

R. Adhikari, Phys. Rev. D 85, 095002 (2012).

MRINAL KUMAR DAS, DEBASISH BORAH, AND RINKU MISHRA PHYSICAL REVIEW D 86, 095006 (2012)

095006-8

http://dx.doi.org/10.1103/PhysRevLett.86.5656
http://dx.doi.org/10.1103/PhysRevLett.86.5656
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011302
http://dx.doi.org/10.1103/PhysRevLett.89.011302
http://dx.doi.org/10.1088/1367-2630/6/1/063
http://dx.doi.org/10.1088/1367-2630/6/1/063
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1103/PhysRevD.22.2227
http://dx.doi.org/10.1103/PhysRevD.23.165
http://dx.doi.org/10.1103/PhysRevD.23.165
http://dx.doi.org/10.1016/0550-3213(81)90354-0
http://dx.doi.org/10.1016/0550-3213(81)90354-0
http://dx.doi.org/10.1016/0550-3213(81)90279-0
http://dx.doi.org/10.1016/0550-3213(81)90279-0
http://dx.doi.org/10.1103/PhysRevD.58.015001
http://dx.doi.org/10.1103/PhysRevD.58.015001
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.061
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.061
http://dx.doi.org/10.1016/j.physletb.2004.07.009
http://dx.doi.org/10.1007/BF01415558
http://dx.doi.org/10.1007/BF01415558
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.005
http://dx.doi.org/10.1103/PhysRevLett.105.031301
http://dx.doi.org/10.1103/PhysRevLett.105.031301
http://dx.doi.org/10.1016/0370-2693(82)91246-1
http://dx.doi.org/10.1016/j.physletb.2004.08.050
http://dx.doi.org/10.1016/S0550-3213(00)00688-X
http://dx.doi.org/10.1016/S0370-2693(01)00254-4
http://dx.doi.org/10.1016/S0370-2693(01)00254-4
http://dx.doi.org/10.1103/PhysRevD.80.123509
http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevD.11.2558
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevLett.44.1316
http://dx.doi.org/10.1103/PhysRevLett.44.1316
http://dx.doi.org/10.1103/PhysRevD.44.837
http://dx.doi.org/10.1103/PhysRevD.70.093002
http://dx.doi.org/10.1103/PhysRevD.70.093002
http://dx.doi.org/10.1103/PhysRevD.70.095002
http://dx.doi.org/10.1016/j.physletb.2003.11.061
http://dx.doi.org/10.1103/PhysRevD.71.013006
http://dx.doi.org/10.1016/j.physletb.2004.09.076
http://dx.doi.org/10.1016/j.physletb.2004.09.076
http://dx.doi.org/10.1103/PhysRevD.70.033013
http://dx.doi.org/10.1103/PhysRevD.70.033013
http://dx.doi.org/10.1103/PhysRevLett.92.101601
http://dx.doi.org/10.1088/1126-6708/2001/08/029
http://dx.doi.org/10.1088/1126-6708/2001/08/029
http://dx.doi.org/10.1016/S0550-3213(01)00346-7
http://dx.doi.org/10.1016/S0550-3213(01)00346-7
http://dx.doi.org/10.1016/S0370-2693(02)02772-7
http://dx.doi.org/10.1016/S0370-2693(02)02772-7
http://dx.doi.org/10.1016/S0370-1573(99)00067-8
http://dx.doi.org/10.1016/S0370-1573(99)00067-8
http://dx.doi.org/10.1086/apj.1998.496.issue-1
http://dx.doi.org/10.1134/1.1506424
http://dx.doi.org/10.1134/1.1506424
http://dx.doi.org/10.1016/S0920-5632(03)01301-X
http://dx.doi.org/10.1016/S0920-5632(03)01301-X
http://dx.doi.org/10.1016/j.nuclphysbps.2005.01.081
http://dx.doi.org/10.1016/j.nuclphysbps.2005.01.081
http://dx.doi.org/10.1088/1367-2630/10/11/113011
http://dx.doi.org/10.1088/1367-2630/10/11/113011
http://dx.doi.org/10.1088/1367-2630/13/6/063004
http://dx.doi.org/10.1016/j.physrep.2007.12.004
http://dx.doi.org/10.1088/0034-4885/72/10/106201
http://dx.doi.org/10.1088/0034-4885/72/10/106201
http://dx.doi.org/10.1016/S0370-2693(99)00583-3
http://dx.doi.org/10.1016/S0370-2693(99)00583-3
http://dx.doi.org/10.1103/PhysRevD.65.077301
http://dx.doi.org/10.1103/PhysRevD.65.077301
http://dx.doi.org/10.1016/S0370-2693(00)00354-3
http://dx.doi.org/10.1007/BF02705276
http://dx.doi.org/10.1007/BF02705276
http://dx.doi.org/10.1103/RevModPhys.81.1199
http://dx.doi.org/10.1103/PhysRevD.85.015006
http://dx.doi.org/10.1103/PhysRevD.85.095002

