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We calculate the vacuum to meson matrix elements of the dimension-4 operator �c�4D
$

ic and

dimension-5 operator �c"ijk�jcBk of the 1
�þ meson on the lattice and compare them to the correspond-

ing matrix elements of the ordinary mesons to discern if it is a hybrid. For the charmoniums and strange

quarkoniums, we find that the matrix elements of 1�þ are comparable in size as compared to other known

q �q mesons. They are particularly similar to those of the 2þþ meson, since their dimension-4 operators are

in the same Lorentz multiplet. Based on these observations, we find no evidence to support the notion that

the lowest 1�þ mesons in the c �c and s�s regions are hybrids. As far as the exotic quantum number is

concerned, the nonrelativistic reduction reveals that the leading terms in the dimension-4 and dimension-5

operators of 1�þ are identical up to a proportional constant and it involves a center-of-mass momentum

operator of the quark-antiquark pair. This explains why 1�þ is an exotic quantum number in the

constituent quark model where the center of mass of the q �q is not a dynamical degree of freedom.

Since QCD has gluon fields in the context of the flux tube which is appropriate for heavy quarkoniums to

allow the valence q �q to recoil against them, it can accommodate such states as 1�þ. By the same token,

hadronic models with additional constituents besides the quarks can also accommodate the q �q center-of-

mass motion. To account for the quantum numbers of these q �q mesons in QCD and hadron models in the

nonrelativistic case, the parity and total angular momentum should be modified to P ¼ ð�ÞLþlþ1 and
~J ¼ ~Lþ ~lþ ~S, where L is the orbital angular momentum of the q �q pair in the meson.

DOI: 10.1103/PhysRevD.86.094511 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

In the course of studying the glueball spectrum in the
MIT bag model [1–4] and potential models [5,6], it is an
underlying assumption that there are valence gluons as
there are quarks. It is then a natural extension to consider
hybrids of constituent quarks and gluons in the form of
q �qg. This has been studied in the potential models [7,8],
bag model [9–13], flux-tube model [14,15], QCD sum rules
[16–18], ADS/QCD [19], and lattice QCD [20–28]. One of
the interesting attributes of these hybrids is that they can
have exotic JPC quantum numbers—these are JPC’s that
are not accessible by the q �qmesons in the constitute quark
model where the charge and parity of a q �q meson are
given by

P ¼ ð�Þlþ1 C ¼ ð�ÞlþS; (1)

and the angular momentum by

~J ¼ ~lþ ~S: (2)

In light of this, these hybrids with exotic quantum num-
bers, particularly the 1�þ, has been studied in the above
quoted references. Experimentally, there are two candi-
dates for the 1�þ—one is �1ð1400Þ [29] and the other is
�1ð1600Þ [30]. They are observed in the �� and ��
channels.

In view of fact that exotic quantum numbers are not
accessible by the constituent quark-antiquark pair, it is
suggested that the interpolation field for the hybrids of
the q �qg type will necessarily involve a gauge field tensor,
i.e., of the form �c�cG, where� involves � matrices and
covariant derivatives and G stands for the field tensor G��.

It is an operator with dimension � 5. However, it was
pointed out by Li more than 30 years ago that these exotic
quantum numbers can be constructed from the quark bi-
linears �c�c without the field tensor [31]. For example,

the JPC of �c�4D
$

ic is 1�þ which is a dimension-4 opera-
tor. This type of operator has been constructed on the
lattice [23] and lattice calculations have been calculated
with them in addition to the dimension-5 operator
"ijk �c�jcBk [23,27,28]. The exotic mesons can be in the

form of tetraquark mesoniums qq �q �q which will require a
dimension-6 interpolation field. We will not address them
in the present work.
The existence of the dimension-4 operator for 1�þ that

does not involve the gauge filed tensor raises several ques-
tions:
(i) Since there exists an interpolation operator which

does not involve the field tensor, does that mean
the meson with this interpolation field is not a
hybrid? One could point out that the dimension-4
operators involve a covariant derivative which al-
lows it to couple to a constituent gluon, unlike the
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dimension-3 operators �c�c , where � is a � ma-
trix, for the pseudoscalar and vector mesons.
However, one can counter this argument by point-
ing out that the tensor meson (2þþ), like 1�þ,
does not have a dimension-3 interpolation field.
The minimum dimension of its interpolation field

is a dimension-4 operator �c�iD
$

jc which is very

similar to that of the dimension-4 operator for 1�þ
[31] and yet 2þþ is an ordinary quantum number.
So, how does one find out whether a meson is a
hybrid or not?

(ii) Since 1�þ is an exotic quantum number, how come
one can have an operator which does not involve the
field tensor? If one carries out a nonrelativistic
reduction of the operator, would one be able to
reveal why it is not accessible to the constituent
quark model?

To answer these questions, we shall establish criteria
for identifying the hybrid and carry out a lattice calcula-
tion with both the dimension-4 and dimension-5 interpo-
lation fields to compare their respective spectral weights
against those of ordinary mesons. We will also carry out a
nonrelativistic reduction to figure out why the exotic quan-
tum numbers are not accessible to the constituent quark
model. We shall present the meson interpolation fields
organized in dimensions 3, 4, and 5 for various mesons
in Sec. II, set criteria for distinguishing hybrids from
ordinary mesons, and discuss the origin of the exotic
quantum numbers. The numerical details are given in
Sec. III and the results are given in Sec. IV. We will end
with a summary in Sec. V.

II. FORMALISM

We shall discuss several types of meson interpolation
fields and set up criteria in order to distinguish the hybrids
from the ordinary mesons via the vacuum-to-meson tran-
sition matrix elements.

A. Meson interpolation fields and criteria for hybrids

In lattice calculations, one relies on interpolation fields
with the desired quantum numbers (e.g., JPC, isospin,
strangeness, etc.) to project to the physical spectrum with
the corresponding quantum numbers. In the following, we
give a list of these interpolation fields for the low-lying
ordinary mesons (pseudoscalar, vector, axial vector, scalar,
and tensor) and 1�þ. They are classified according to the
following types:

(i) �c�c (� is a gamma matrix), a dimension-3 opera-
tor, is labeled as the � type;

(ii) �c��D
$
c (D

$ ¼ ~D�DQ ), a dimension-4 operator,
is labeled as the D type;

(iii) �c�� Bc (Bi � 1
2"ijkGjk), a dimension-5 opera-

tor, is labeled as the B type.
A more complete list can be found in Ref. [23].

Here, we only list 1�þ as an example of mesons with
exotic quantum numbers that cannot be accessed by
dimension-3 operators. We should point out that ordinary
J ¼ 2 mesons do not have dimension-3 interpolation
operators either. There are two kinds of dimension-4

1�þ operators ( �c a�4D
$

ic
a and "ijk �c

a�jD
$

kc
a). These

two kinds of operators have very similar nonrelativistic
forms as will be discussed in Sec. II B.
A meson correlator at zero momentum is

CijðtÞ ¼
X
~x

hOið ~x; tÞOjð0; 0Þi: (3)

At large time separation, it is dominated by the lowest state
of the spectrum with the prescribed quantum number

CijðtÞ !
t!�a

1

2m
h0jOijMihMjOjj0ie�mt; (4)

where m is the mass of the lowest state. Besides the mass,
one also obtains the vacuum to meson transition matrix
elements h0jOjMi.
We should point out that, notwithstanding claims in

many lattice calculations, the interpolation operators
do not necessarily reflect the nature of the composition
of the hadrons. They merely reveal how strongly the op-
erators couple to the specific hadron, such as realized in
decay constants. For example, the topological charge op-

erator G��
~G�� projects to � and �0 strongly. From the

anomalous Ward identity for massless fermions @�A
0
� ¼

Nf

16�2 G��
~G��, one has�

0j Nf

16�2
G��

~G��j�0
�
¼ m2

�0f�: (5)

This does not mean that �0 is a glueball, even though the
matrix element is larger than the matrix element of the
isovector axial-vector current for the pion,

h0j@�A3
�j�i ¼ m2

�f�; (6)

due to the larger �0 mass as compared to pion. In fact, the
flavor-mixing angle between �1 and �8 for �, �

0 has been
well studied with the help of axial anomaly [32]. Including
the glueball mixing from the KLOE experiment of � !
��, ��0, the matrix elements of h0j Nf

16�2 G��
~G��jMi for

M ¼ �, �0 and glueball G are found to be of the same
order, even though in the large Nc analysis, the matrix
elements for �, �0 are parametrically smaller by
Oð1= ffiffiffiffiffiffi

Nc

p Þ than that of the glueball [33]. This is known
to be related to anomaly. On the other hand, the matrix
element h0j �q�5qjGi is more than an order of magnitude
smaller than those of h0j �q�5qj�;�0iðq ¼ u; d; sÞ [33]. This
shows that the lower-dimension quark field operators
couple to the glueball much weaker than to the q �qmesons.
This has been taken as a criterion to distinguish the glue-
ball from the q �q mesons under the condition that the
glueball does not mix with the q �q mesons strongly.
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In view of the above analysis of the pseudoscalar me-
sons, it is suggested [34] that the smallness of the matrix
element of lower-dimension quark operator compared to
those of established q �q mesons is a better signal for the
glueball than those with the higher dimensional glue opera-
tors. By the same token, we shall adopt a similar criterion for
detecting the hybrids by examining the dimension-4D-type

matrix element h0j �c��D
$
c jMi and the dimension-5

B-type matrix element h0j �c�� Bc jMi of the 1�þ and
compare them with those of the other ordinary mesons. If
the D matrix element of 1�þ is much smaller than others
and the B matrix element much larger than (or at least as
large as) the others, then it is a hybrid. Otherwise, it is not.
Special attention will be paid to the comparison with the
2þþ meson. Neither 1�þ nor 2þþ has dimension-3 inter-
polation field and their dimension-4 operators are in the

same Lorentz multiplet; i.e., �c��D
$

�c .

Using the vacuum-to-meson matrix element to discern
the hybrid nature of the meson has been adopted by Dudek
[28], where a variational calculation with different dimen-
sional operators is carried out for mesons. It is asserted that
overlap with the dim-5 B-type indicates hybridlike char-
acter [28]. This criterion, which was implicitly adopted by
other lattice calculations [20–27], faces several problems.
First of all, the transition matrix elements Zwere compared
only among the states (ground and excited) of mesons with
the same JPC. For a variational calculation with a finite
number of operators, the matrix elements for one particular
operator will be bound to have a largest value for one of the
states in the excitation spectrum. Therefore, there will
always be a hybrid, by definition, for each JPC which has

any overlap with the �qqD½2�
J¼1 operator (i.e., dim-5 B-type

operator in our notation) involving the gauge field tensor
G. This is hardly a test to discern whether a state is a hybrid
or not. Particularly, when these matrix elements are nor-
malized in such a way that the largest value is set to unity
for each of the operators used, there is noway to compare Z
from different operators for the same state, as they (having
different derivatives with d ¼ 0, 1, 2, 3) have different
dimensions. Instead, one should at least compare the ma-

trix elements of the �qqD½2�
J¼1 (dim-5) and �qqD½1�

J¼1 (dim-4)

operators between 1�þ and 2þþ. But this is not done.
Second, as we stressed earlier, one cannot naively judge
the nature of a state by the appearance of the interpolation

field. We used the topological operator G ~G as an example
for illustration. According to many phenomenological and

experimental analyses of the matrix elements h0jG ~Gj�i,
h0jG ~Gj�0i, and h0jG ~Gjglueballi, it is found that, in some
solutions, � and �0 matrix elements are larger than that of
the glueball [32,33]. This is not surprising as this is how
U(1) anomaly is resolved in terms of the topological sus-
ceptibility in the Witten and Veneziano large Nc approach.
But according to the proposal in Ref. [28] and, for that
matter, many works on the subject, � and �0 should be

classified as glueballs, irrespective of how strongly these
states couple to the quark interpolation field with the dim-3
�q�5q operators. This serves as a counterexample for this
criterion. Moreover, this criterion breaks down for a pion
as noted in Ref. [28]. It is found [28] that the Z factors of
the lowest pion state are the largest for both the �q�5q

operator (dim-3) and the �NR �D½2�
J¼1 (dim-5) operators.

According to the proposed criterion [28], the pion should
be a hybrid. To avoid these difficulty and have a credible
and practical criterion to distinguish a hybrid from the
ordinary mesons, we think it is essential to compare matrix
elements for the operators of the same dimension across
the board of different mesons. This is what we propose
to do.

B. Nonrelativistic operators

To address the question of the exotic quantum number, it
would be useful to find out the nonrelativistic form of the
interpolation operators listed in Sec. II A. We use Foldy-
Wouthuysen-Tani transformation [35] for nonrelativistic
reduction to the heavy quark and antiquark fields described
by the Pauli spinors � and �.
The Dirac spinor c and �c are expanded in terms of �

and � in 1=m as

c ¼ e
��D
2m

�

�

 !

¼
�
1þ � �D

2m
þ � � ~D� �D

8m2
Oð1=m3Þ

�
�

�

 !

¼ �

�

 !
þ i

2m

�	 � ~D�

	 � ~Dc

 !
þ ð ~D2Þ

8m2

�

�

 !
þOð1=m3Þ;

(7)

�c ¼ �y ��y� �
e�

��DQ
2m

¼ �y ��y� �þ i

2m
�y	 �DQ y �y	 �DQ y
� 	

(8)

þ ðDQ 2Þ
8m2 �y ��y� �þOð1=m3Þ; (9)

where

�i ¼ 0 �i	i

i	i 0


 �
; �4 ¼ I 0

0 �I


 �
;

�5 ¼ 0 I
I 0


 �
; �i � "ijk	jk ¼ 	i 0

0 	i


 �
;

Di ¼ @i þ iAa
i T

a:

(10)

Operator D used here is the spatial part of the covariant
derivative and m is the heavy-quark mass. The Pauli spin-
ors�=�y and �y=� are the annihilation/creation operators
for the heavy quark and antiquark which satisfy the relation
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�j0i ¼ �yj0i ¼ 0; h0j�y ¼ h0j� ¼ 0: (11)

With the above approximation, we could reduce the
operators listed in Table I with a given JPC to the form

of �yO� and �yOy� with O which now involves 	, D
$
,

and B. We shall still classify them according to their
dimensions and label them the same as before, i.e., �
type (dimension-3), D type (dimension-4), and B type
(dimension-5). The operators for �yO� to leading order

in 1=m are listed in Table II. Note that D
$
acts on the quark

and antiquark fields, while @ acts on the glue field B.

C. Exotic quantum numbers

We see from the nonrelativistic reduction in the above
section that the dimension-4 (D-type) interpolation field

for the 1�þ meson involves a symmetric combination ofDQ

and ~D. This is the center of mass momentum operator of
the q �q pair. We now see why this operator is not admissible
in the quark model with only the constituent quark degree
of freedom. In this model, the center of mass of q �q is not a
dynamical variable due to translational invariance, while
the quantum number JPC is defined in the center of mass of

the q �q pair. In QCD, on the other hand, there are gluons
besides the quarks so that the q �q pair can have orbital
angular momentum relative to the glue stuff, much like the
orbital motion of the electron pairs around the nucleus in
the atom, or the planetary motion of the earth-moon pair
around the sun. This is also true in models where there are
other constituents that the q �q pair can recoil against. For
example, in the MIT bag model, the q �q can have orbital
angular momentum against the bag if the latter is made
dynamical [36]. In the chiral quark model, the q �q can
recoil against the pion. In the context of the flux-tube
model which is a good and appropriate picture for heavy
quarkoniums, the P-wave quarkonium is pictured to have
the flux-tube rotate in phase with the heavy quark and
antiquark at its opposite ends. Since the flux tube is not
excited internally with transverse vibration, it is not a
hybrid in the flux-tube model [14]. By the same token,
one can picture the heavy 1þ meson with the flux tube
folding up so that the the center of mass of the q �q pair
rotates against the folded flux tube with no vibrational
excitation of the tube.
In fact, the issue of the the exotic quantum number and

its relation to the center-of-mass motion of the q �q has been
raised in the MIT bag model [1,37]. An example is given
for the 2þ� meson where the quark and antiquark orbital
wave functions are given as

�ð2þ�Þ ¼ 1ffiffiffi
2

p ðS1
2

�P3
2
	 P3

2

�S1
2
Þ: (12)

Since both C ¼ � are possible, they double the spectrum
from the conventional constituent q �q model. It is pointed
out that the symmetric combination leads to a P wave for
the center of mass of the q �q. In the nuclear shell model
with harmonic oscillator potential, this is considered a
spurious center-of-mass excitation since the center of
mass is pinned down by the harmonic oscillator potential.
If the bag is not dynamical like the external harmonic
oscillator in the shell model, it can be removed with
center-of-mass correction [38]. However, if the bag is

TABLE II. Nonrelativistic form for the three kinds of operators (�, D, and B) as shown in
Table I. Here we list the operators O in the interpolation field �yO�. Repeated indices are
summed over.

� D B

0�þ I 1
2mc

D
$

iD
$

i i	iBi

1�� 	i
1

2mc
	jD

$
jD
$

i Bi

0þþ 1
2mc

D
$

i	i 	iD
$

i
1

2mc
D
$

iBi

1þþ 1
2mc

"ijkD
$

j	k "ijk	jD
$

k
1

2mc
ð"ijkD$jBk þ i@ið	jBjÞÞ

1þ� 1
2mc

D
$

i D
$

i
1

2mc
	jD

$
jBi

2þþ j"ijkj	jD
$

k
1

2mc
j"ijkjðD$jBk þ i"jmn	m@nðBkÞÞ

1�þ 1
2mc

ð	 �DQD$i þD
$

i	 � ~DÞ "ijk	jBk

1
2mc

ðDQ i	jD
$

j þ 	jD
$

j
~DiÞ

TABLE I. Interpolation operators �c�c (dimension-3, � type),
�c��D

$
c (dimension-4, D type), and �c�� Bc (dimension-5,

B type). �i � 1
2"ijk	jk and repeated indices are summed over.

� D B

0�þ �5 �iD
$

i �iBi

1�� �i D
$

i �5Bi

0þþ I �iD
$

i �iBi

1þþ �5�i "ijk�jD
$

k "ijk�jBk

1þ� �i �5D
$

i Bi

2þþ j"ijkj�jD
$

k j"ijkj�jBk

1�þ �4D
$

i "ijk�jBk

"ijk�jD
$

k
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considered dynamical with surface fluctuations [36], this
center-of-mass motion is physical and so is the 2þ� state.
By analogy, one can consider the 1�� states with the
combination

�ð1��Þ ¼ 1ffiffiffi
2

p ð1S1
2
2 �S1

2
	 2S1

2
1 �S1

2
Þ; (13)

with the antisymmetric combination being the 1�þ
state where both the center of mass and relative coordi-
nates are in the P wave for harmonic oscillator wave
functions.

To conclude this part of the discussion, we see that the
‘‘exotic’’ quantum numbers exist in QCD and models with
additional constituents besides the q �q pair. The ‘‘exotic-
ness’’ is only in the context of the constituent quark model
with only q �q degrees of freedom. These quantum numbers
can be accommodated with parity and total angular mo-
mentum from Eqs. (1) and (2) supplanted by

P ¼ ð�ÞLþlþ1 ~J ¼ ~Lþ ~lþ ~S; (14)

where L is the orbital angular momentum of the q �q pair in
the hadron. The charge parity C ¼ ð�ÞlþS remains the
same, provided that other degrees of freedom in the hadron
are not excited and gives C ¼ þ. In the case of 1�þ,
L ¼ l ¼ S ¼ 1 and the two operators in Table II corre-

spond to ~Sþ ~L ¼ 0 and ~Sþ ~l ¼ 0, respectively. Other
exotic quantum numbers, e.g., 0þ�, 2þ�, 3�þ, can all be
accommodated in Eq. (14).

III. NUMERICAL DETAILS

We shall give lattice details including the action, the
parameters, as well as the operators used for the interpo-
lation fields of various mesons.

A. Clover improved Wilson action

We adopt the anisotropicWilson gauge action [39] in the
quenched approximation for the present study. The Clover
improved anisotropic Wilson fermion action [40] is

Mxy ¼ 
xy	þAxy

Axy ¼ 
xy

�
1=ð2�maxÞ þ �t

X3
i¼1

	0iF 0i

þ �sð	12F 12 þ 	23F 23 þ 	31F 31Þ
�

�X
�

��½ð1� ��ÞU�ðxÞ
xþ�;y

þ ð1þ ��ÞUy
�ðx��Þ
x��;y�; (15)

where the coefficients are given by

�i ¼ �

2us
; �0 ¼ �

2
; 	 ¼ 1

2�
� 1

2�max

;

�t ¼ �
ð1þ �Þ
4u2s

; �s ¼ �

2u4s
;

(16)

with � ¼ as=at being the bare aspect ratio of the asym-
metric lattice, and � the bare speed of light parameter.
Another parameter us, taken to be the fourth root of the
average spatial plaquette value, is used to incorporate the
tadpole improvement of the spatial gauge link UiðxÞ.
With this fermion action, the bare mass of the quark is

m0as ¼ 1

2�
� �� 3�: (17)

The lattice used in this study is of the size 12� 12�
12� 96 at 
 ¼ 2:8 which gives as ¼ 0:138 fm, with the
aspect ratio � ¼ as=at ¼ 5.
The bare � of the charm quark is set to 0.060325 with the

bare speed of light parameter � ¼ 0:74, which is deter-
mined by fitting the mass of J=c . Similarly, The bare � of
the strange quark is set to 0.0615 which gives the vector
mass close to that of �.

B. Masses and vacuum to meson transition
matrix elements

To construct two-point functions, we use the �-type wall
operators for mesons which have dimension-3 interpola-
tion fields. For those which do not have dimension-3
interpolation fields, we use the B-type wall source to
enhance the signals. This is illustrated in Fig. 1. Bw denotes

FIG. 1. Sketch of two point functions. The lines denote quark and antiquark propagators. The black dot is the glue field tensor B
attached at the quark wall source and sink.
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the wall source and sink for the B-type operator. We
note that the glue field tensor B can be attached to either
the quark field or the antiquark field at the source and
sink. It is indicated by a black dot in the figure. When
both the wall source and sink are of the B-type opera-
tors, it is necessary to sum the two kinds of diagrams
(middle one in Fig. 1) to obtain an eigenstate of charge
parity. When the sink is the point operator which has a
definite charge parity, one diagram with the B attached
to either the quark or antiquark wall source (the right
diagram in Fig. 1) will suffice. �p, Dp, and Bp denote

the point sinks.

The wall source is placed on 16 of the total 96 time slices
separately for each of the 1000 configurations to gain
statistics. We calculate the correlators with both the source
and sink being the wall B-type operators (Bw) and with
B-wall and point sinks with the �, D, and B operators
(�p, Dp, and Bp). The color magnetic field B is smeared

twice for the wall source and sink and the double antisym-

metric derivative operator "ijk �cD
$

jD
$

kc is used to replace
�c cBi for the point sink.
The ground state mass and the vacuum to meson tran-

sition matrix element are extracted from the following
correlators:

h½ �c ð�� BÞc �ywallðtÞ½ �c ð�� BÞc �wallð0Þi !
t�a

NV

jh0j½ �c ð�� BÞc �walljJPCij2
2m

ðe�mt þ e�mðnT�tÞÞ;

hOpðtÞ½ �c ð�� BÞc �wallð0Þi !
t�a

NV

h0jOpjJPCihJPCj½ �c ð�� BÞc �wallj0i
2m

ðe�mt þ e�mðnT�tÞÞ;
(18)

where NV ¼ L3 is the three-volume factor. From these two equations, one can obtain the matrix element h0jOpjJPCi,

h0jOpjJPCi ¼
2
4 2mðe�mt þ e�mðnT�tÞÞ
NVh½ �c ð�� BÞc Þ�ywall½ �c ð�� BÞc �walli

3
51=2

hOp½ �c ð�� BÞc �walli: (19)

Similarly, we also obtain the masses and �-type matrix
elements with the �-type wall source (right and left dia-
grams in Fig. 1).

IV. NUMERICAL RESULTS AND DISCUSSION

A. Charmoniums

We first calculate the masses and the matrix elements for
the charmonium with the charm quark � ¼ 0:060325 that
was tuned to the physical J=� mass. The masses from
different correlators are listed in Table III.

The effective masses of �cð0�þÞ and J=�ð1��Þ are
plotted in Fig. 2 with the B- and �-type wall sources and
�p, Dp, and Bp for the zero momentum point sinks. The

effective masses of �c0ð0þþÞ and �c1ð1þþÞ from the wall
sources are plotted in Fig. 3 for several point sinks. The
effective masses of �c2ð2þþÞ and �c1ð1�þÞ from the wall
sources are plotted in Fig. 4 for several point sinks.

We see that the masses obtained from different correla-
tors with different sources and sinks are all consistent with

each other and the pattern of the charmonium masses,
besides 1�þ, are in reasonable agreement with experi-
ments, except the hyperfine splitting which is known to
be smaller than experiment for the quenched approxima-
tion [41]. We note that dimension-4 and -5 operators
produce the same mass of 1�þ within errors. We take
this to imply that they are the same state.
The effective masses of the pseudoscalar (�c) and vector

(J=�) charmonium are plotted in Fig. 2 for the cases with
�w and Bw sources and �p,Dp, and Bp sinks. The effective

masses for the scalar (�c0) and axial vector (�c1) are
plotted in Fig. 3 and those for the tensor (�c2) and 1�þ
are plotted in Fig. 4. As we can see from Table III, they
agree for different sources and sinks within errors.
Different interpolation fields project to the same lowest
states in all channels studied here.
Before we discuss the results on the matrix elements, we

should point out a relation between the dimension-4
D-type and dimension-5 B-type operators in the nonrela-
tivistic limit.

TABLE III. Masses of charmonium states from �-and B-type sources and point sinks.

�w ! �p Bw ! �p Bw ! Bp Bw ! Dp PDG

0�þ 3000� 3 3000� 3 2999� 3 3000� 3 2980:3� 1:2
1�� 3096� 3 3095� 3 3093� 3 3094� 3 3096:916� 0:011
0þþ 3458� 30 3485� 18 3485� 21 3476� 18 3414:75� 0:31
1þþ 3497� 21 3491� 10 3492� 28 3492� 28 3510:66� 0:07
1þ� 3489� 30 3475� 21 3486� 12 3494� 6 3525:42� 0:29
2þþ � � � � � � 3529� 40 3501� 13 3556:20� 0:09
1�þ � � � � � � 4205� 84 4234� 42 . . .
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The double derivative operator in the leading nonrelativistic expansion of the 1�þ interpolation field can be expanded as

�yðDQ iD
$

jþD
$

j
~DiÞc ¼�yð@Q i:@Qj� ~@i: ~@j�@Q i: ~@jþ@Qj: ~@iÞc þ�yð2i:@jðAiÞ�2½Ai;Aj�Þc þ�yð2ið@Q i:Ajþ i:Aj: ~@iÞc : (20)

Since we are projecting to the zero momentum meson state in the lattice calculation with periodic condition in the spatial
direction, we haveZ

d3x�y@Q i:@Qjc ¼
Z

d3x�y ~@j: ~@ic ;
Z

d3x�y@Q i: ~@jc ¼
Z

d3x�y@Qj: ~@ic ;

Z
d3x@ið�yAjc Þ ¼

Z
d3x�yð@Q i:Aj þ Aj: ~@iÞc þ �y@jðAiÞc ¼ 0:

(21)
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FIG. 3 (color online). The same as Fig. 2 for �c0 and �c1.
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From Eqs. (20) and (21), we obtainZ
d3x�yðDQ iD

$
j þD

$
j
~DiÞc ¼

Z
d3x�yð2i:@jðAiÞ � 2i:@iðAjÞ � 2½Ai; Aj�Þc ¼

Z
d3x2i�yGijc : (22)

Therefore the leading nonrelativistic terms of the zero-momentum 1�þ interpolation fields are

Z
d3x �c a�4D

$
ic

a !
N:R:

i

2m

Z
d3x�yð	 �DQD$iþD

$
i	 � ~DÞ�¼ 1

2m

Z
d3x�y2	jGji�¼� 1

2m
2"ijk

Z
d3x�y	jBk�; (23)

Z
d3x �c a"ijk�jD

$
kc

a !
N:R:

i

2m

Z
d3x�yðDQ i	 �D$þ	 �D$ ~DiÞ�¼ 1

2m

Z
d3x�y2	jGij�¼ 1

2m
2"ijk

Z
d3x�y	jBk�: (24)

We see that, up to a sign and a proportional constant
(i.e., heavy quark mass m), both dimension-4 D-type op-
erators of 1�þ are equivalent to the dimension-5 B-type
operator with the magnetic field in the nonrelativistic limit.
The matrix elements from all three operators are expected
to be the same up to a known constant and OðaÞ for heavy
quarkoniums.

The matrix elements for the charmoniums are listed in
Table IV.

The matrix elements of 0.0059(5) and 0.0054(4) for the
two D operators of 1�þ are the same which are expected
from the above discussion. Equation (23) also shows that
they should be 1=ma times that of the dimension-5 B type
to OðaÞ. On the anisotropic lattice used here, dimension-
less 1

ma should be replaced by the anisotropic form,

1

ma
) �

mcat�

 0:7048; (25)

where � and � are defined in Eq. (16). Multiplying
this factor to the B-type matrix element 0.0082(6) gives
0.0058(4) which agrees with the D-type matrix elements
quite well.

Furthermore, comparing � and D operators for the
P-wave states 0þþ, 1þþ, and 1þ� in Table II shows that
they are related by 1

2m . Thus, we expect dimension-3 �

matrix elements to be � ¼ 1
2m ¼ 0:3524 times the

dimension-4 D matrix elements. To check this, we plot
2 times the � matrix element (m.e.) against the D matrix
elements in Fig. 5 for these states and also 2 times the D
matrix elements of 1�þ meson against the corresponding B

matrix elements. We fit the ratio of all the data and find the
slope to be 0.35(4). This is quite consistent with � ¼
0:3524. This shows that the matrix elements we studied
for the charmonium states are quite nonrelativistic in the
sense that higher orders in 1=m are not important to spoil
the equivalence relation we found in Eq. (23) and that cutoff
effect in OðaÞ is small. Since we are considering matrix
elements of operators with different dimensions, there is a
concern about operator mixing. The results in Fig. 5 suggest
that the mixing effects between the dim-3 �-type and the
dim-4D-type operators and also between the dim-4D-type
and dim-5 B-type opearators are also small.
At first sight, the Dmatrix elements of 1�þ are about an

order of magnitude smaller than those of the other mesons.
However, upon comparing with 2þþ in Table II, we see that

the 1�þ operators have an extra factor of ðDQ þ ~DÞ=2m
which is the velocity of the c �c pair. Since the speed of the
charm quark in J=� is about 0.3 c, we estimate the extra
factor to be 
0:3 (and likely to be less). Dividing this
factor from the 1�þ D matrix elements gives 
0:20ð2Þ
which is about a factor of 2 from that of the 2þþ meson and
comparable in size to the matrix elements of the other
charmonium states. Since the matrix elements of the lowest
dimension operators (i.e., D-type) of the 1�þ in the charm

TABLE IV. Matrix elements h0jOpjJPCi for charmoniums.

�p Dp Bp

0�þ 0:0697� 0:0014 0:0503� 0:0007 0:0251� 0:0006
1�� 0:0502� 0:0005 0:0149� 0:0001 0:0075� 0:0002
0þþ 0:035� 0:005 0:075� 0:015 0:009� 0:003
1þþ 0:020� 0:003 0:062� 0:005 0:0023� 0:0002
1þ� 0:014� 0:002 0:045� 0:005 0:0019� 0:0002
2þþ 0:044� 0:003 0:00080� 0:00008
1�þ 0:0059� 0:0005 0:0082� 0:0006

0:0054� 0:0004
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FIG. 5 (color online). Global fit for the ratios of � for �c0, �c1

and hc (2 D for 1�þ) m.e. to the corresponding m.e. of D (B
for 1�þ).
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region are comparable to and mostly smaller than those of
the other known charmonium states, it is not a hybrid by
the criteria discussed in Sec. II A. On the other hand, the
matrix element of B for 1�þ is comparable to those of the
other charmoniums, except 2þþ which is an order of
magnitude smaller. This is presumably due to the factor

of D
$
=2m in the 2þþ B operator in Table II. Incorporating

this factor of 
0:3 brings the B matrix element of 2þþ to
within a factor of 3 from that of the 1�þ. In fact, all the

P-wave operators have this D
$
=2m factor and their matrix

elements will be comparable or larger than that of 1�þ
when this factor is taken into account. The fact that 1�þ
does not have an extraordinarily large B matrix element

compared to other known charmonium states enhances the
notion that it cannot be considered a hybrid in the charm
region.

B. Strange quark mesons

Next, we consider lighter quarkonium with the strange
quark. The strange meson (s�s) masses in MeVare listed in
Table V.
The effective masses of �sð0�þÞ, �ð1��Þ, f0ðsÞð0þþÞ,

f1ðsÞð1þþÞ , f2ðsÞð2þþÞ, and the s�s 1�þ are plotted in

Figs. 6–8.
We see from Table Vand Figs. 6–8 that the masses from

different sources and sinks are the same within errors. The
matrix elements for h0jOpjJPCi for the s�smesons are listed

in Table VI.
For the light quarkonium s�s, we do not expect the non-

relativistic equivalence between the D-type and B-type
operators to hold. We shall compare the matrix elements
directly. It is worthwhile noting that the dimension-4 D
matrix elements of 1�þ are comparable to that of the 2þþ
meson and are not particularly smaller than those of the
other s�s mesons. Although the B matrix element of 1�þ is
larger than that of 2þþ, it is not larger than those of other
mesons. From these data, we see no evidence to distinguish
the 1�þ s�s from other established s�smesons and identify it
as a hybrid.

TABLE V. Masses of strange quarkoniums from �w-and
Bw-type sources and point sinks.

�w ! �p Bw ! �p Bw ! Bp Bw ! Dp

0�þ 714� 9 750� 15 713� 9 714� 10
1�� 1027� 9 1030� 12 1030� 15 1024� 12
0þþ 1570� 63 1566� 21 1568� 21 1567� 21
1þþ 1580� 35 1562� 21 1597� 40 1522� 39
1þ� 1613� 35 1569� 18 1608� 54 1598� 19
2þþ � � � � � � 1638� 21 1611� 60
1�þ � � � � � � 2066� 62 2115� 85
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V. CONCLUSION

We set out to address the question: in view of the fact

that there is a dimension-4 �c�4D
$
c interpolation field for

1�þ, which does not involve the gauge field tensor, how
does one identify it as a hybrid and distinguish it from the
ordinary mesons, which also have dimension-4 interpola-
tion fields with a covariant derivative and dimension-5
interpolation fields involving explicitly the color magnetic
field B in the form of �ijk �c�j � Bkc ? We emphasize that

one cannot judge the nature of a state by the appearance of
its interpolation field. This is amply illustrated by the

large matrix element h0jG ~Gj�;�0i which shows that,
even though � and �0 can be produced with the glue
interpolation field, it does not mean that they are glueballs.
The glueball nature will be better revealed by a weak
coupling to the �qq interpolation field. We have also come
up with an example where the zero momentum operators of

�ijk �c�j � Bkc and �c�4D
$
c for the heavy quarks are the

same up to a proportional constant, which is the quark
mass. This implies that the former operator with a field
tensor does not necessarily project to an excited glue state,
it could project to a state with the q �q pair in a Pwave in the
hadron as the latter interpolation field in the nonrelativistic
limit suggests.

In light of this, we compare the matrix element

of h0j �c�4D
$
c j1�þi and h0j �c "ijk�jcBkj1�þi to the

corresponding matrix elements of the other known q �q
mesons. In the case of charmoniums, we find both the D-
and B-type matrix elements of 1�þ are about the same size
as the other mesons. When a velocity of the c �c pair is taken
into account, they are also comparable to those of
�c2ð2þþÞ, which is most similar to 1�þ in that neither
has dimension-3 operator and their dimension-4 operators
are in the same Lorentz multiplet. We have also examined
the strange quarkoniums and found that the D- and B-type
matrix elements of 1�þ are comparable in size to those of
the other s�smesons. Based on these data, we conclude that
there is not much distinction between 1�þ and other known
q �q mesons. There is no evidence for it to be a hybrid.
The leading nonrelativistic expansion reveals that the

dimension-4 operator 1�þ takes the form of �y 1
2mc

�
ð	�DQD$iþD

$
i	� ~DÞ� and �y 1

2mc
ðDQ i	jD

$
j þ 	jD

$
j
~DiÞ�.

They involve a P wave of the q �q pair. Since the center of
mass of the q �q in a constituent quark model is only a
kinematical degree of freedom, confined center- of-mass
motion is not admissible in the constituent quark model.
This is why the JPC of 1�þ and others involving the
angular momentum of the q �q pair are considered exotic.
In QCD, the q �q pair can recoil against the nonexcited

glue field in the meson. Similarly, the q �q pair can have
orbital angular momentum relative to the bag in the MIT
bag model, to the pion in the chiral quark model and to the
flux tube in the flux-tube model. Thus, in QCD and in
models with additional constituents other than the q �q pair,
there can be meson states with these exotic quantum num-
bers. These additional JPC quantum numbers can be ac-
commodated by supplanting the parity and angular

momentum relations to P ¼ ð�ÞLþlþ1 and ~J ¼ ~Lþ ~lþ ~S.
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TABLE VI. The matrix elements h0jOpjJPCi for strange quar-
koniums.

�p D B

0�þ 0:0247� 0:0002 0:021� 0:002 0:005� 0:0001
1�� 0:0141� 0:0002 0:0113� 0:0005 0:0025� 0:0001
0þþ 0:043� 0:006 0:033� 0:005 0:017� 0:004
1þþ 0:029� 0:004 0:034� 0:004 0:0018� 0:0002
1þ� 0:019� 0:006 0:029� 0:005 0:0019� 0:0004
2þþ 0:010� 0:007 0:0003� 0:0001
1�þ 0:007� 0:001 0:004� 0:001

0:006� 0:002
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