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We deliver an exploratory lattice QCD examination of the K�ð892Þ meson decay width via the p-wave

scattering phase shift of a pion-kaon (�K) system in the isospin I ¼ 1=2 channel. The modified

Rummukainen-Gottlieb formula for a two-particle system with arbitrary mass is employed to extract

phase shifts, which clearly reveal the existence of a resonance at a mass around the K�ð892Þ meson mass.

The effective range formula is applied to describe the energy dependence of the phase shift and we extract

the effectiveK� ! �K coupling constant as gK��K ¼ 6:38ð78Þ. The decay width estimated from the phase

shift is about 64:9� 8:0 MeV, which is in reasonable accordance with the experiment. Our lattice

investigations are conducted on a 203 � 48 MILC gauge configuration with the Nf ¼ 2þ 1 flavors of

the asqtad-improved staggered dynamical sea quarks at ðm� þmKÞ=mK� � 0:739 and lattice spacing

a � 0:15 fm.
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I. INTRODUCTION

It is well-known that the K�ð892Þ meson is a resonance.
In 2012, the Particle Data Group (PDG) listed the K�ð892Þ
meson IðJPÞ ¼ 1

2 ð1�Þ, with a mass of 891:66� 0:26 MeV

and a narrow width of 50:8� 0:9 MeV [1]. Some recent
experimental analyses [2–6] have precisely measured its
resonance parameters. Moreover, several theoretical efforts
have been undertaken to calculate its hadronic coupling
constants [7–9]. Since the K�ð892Þ meson is a low-lying
vector meson with strangeness, a study of its decay width is
definitely a straightforward probing of the three-flavor
structure of the low-energy hadronic interactions; thus, it
is very helpful for us to comprehend the dynamical trait of
the hadron reactions with QCD.

The most feasible approach to extract the resonance
parameters of the vector K�ð892Þ meson nonperturbatively
from first principles is to resort to lattice QCD. The prin-
cipal decay channel (with a branching rate of 99.9%) of the
K�ð892Þ meson is to one pion and one kaon in the p-wave
[1], which can then be precisely dealt with on the lattice,
and there is a pioneering quenched lattice QCD study on its
coupling constant gK��K through evaluating the appropri-
ate three-point correlation function [10]. Among unstable
hadrons, the vector � meson is ideal (see reasons in
Ref. [11]) for lattice QCD investigations of a resonance,
and it is extensively studied [10–18]; nevertheless, so far,
lattice QCD research on the resonance parameters of the
K�ð892Þ meson directly from the p-wave �K scattering
phase in the I ¼ 1=2 channel has not been reported yet,
mainly because the rectangular diagram is exceptionally
hard to rigorously calculate, the statistical error of the

numerically computed K� mass is not too small, and there
are not enough theoretical formulas available to describe
the �K system in the moving frame.
Motivated by the recent extensions and developments of

the Rummukainen-Gottlieb formula [19] to a generic two-
particle system with arbitrary masses in the moving frame
[20–26] and Nebreda and Pelaez’s brilliant expositions on
the K�ð892Þ resonance [27], and also encouraged by our
previous work on the precise extraction of the K� mass
[28], the exploratory calculations of the scalar meson
decay widths [21,29,30], and the reliable extraction of
the �K scattering length in the I ¼ 1=2 channel [31], we
will further explore its decay width directly from lattice
QCD simulations.
In the present work, we will obtain the K�ð892Þ decay

width by calculating the p-wave �K scattering phase
shift in the I ¼ 1=2 channel. We will discuss the energy
eigenstates of the �K system with total zero momentum in
the center-of-mass frame, and total nonzero momentum in
the moving frame, respectively. The calculations are
launched on a MILC gauge configuration with the Nf ¼
2þ 1 flavors of the Asqtad-improved staggered dynami-
cal sea quarks [32,33]. The meson masses extracted from
our previous spectrum analysis [28] yielded ðm�þmKÞ=
mK� �0:739, and the lattice parameters were determined
by the MILC collaboration, namely, the lattice extent L is
about 3.0 fm and the lattice space inverse 1=a ¼
1:373 GeV [32,33]. The Lüscher formula [34–36] is
employed to study the �K system in the center-of-
mass frame, and we utilize a newly established finite-
size formula—which is the extension of the famous
Rummukainen-Gottlieb formula [19] to the generic two-
particle system in the moving frame [20–26]—to estimate
the p-wave �K scattering phase shift in the I ¼ 1=2
channel. These simulations are conducted at two energy
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eigenstates which allow us to examine the presence of the
K�ð892Þ resonance.

This paper is organized as follows. In Sec. II we elabo-
rate on our calculation method. Our concrete lattice calcu-
lations are provided in Sec. III. We deliver our results in
Sec. IV, and reach our conclusions and outlooks in Sec. V.
Numerical calculations of the zeta function are courteously
supplied in the Appendix for reference.

II. FORMALISM AND METHOD OF
MEASUREMENT

A. The relativistic Breit-Wigner formula

The K�ð892Þ resonance possesses quantum numbers
IðJPÞ ¼ 1

2 ð1�Þ and principally decays into one pion and

one kaon in the p-wave with a branching rate of 99.9% [1].
In an elastic �K scattering, the relativistic Breit-Wigner
formula for the p-wave scattering phase �1 in the reso-
nance region with the center-of-mass energy MR and a
decay width �R can be written as [1]

tan�1 ¼
ffiffiffi
s

p
�RðsÞ

M2
R � s

; s ¼ E2
CM; (1)

where ECM is the center-of-mass energy, and s is the
Mandelstam variable or the invariant mass of the �K
system. The decay width �RðsÞ can be expressed by way
of the effective K� ! �K coupling constant gK��K as [27]

�RðsÞ ¼
g2K��K
6�

p3

s
;

p ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðm� �mKÞ2�½s� ðm� þmKÞ2�

q
:

(2)

Combining Eqs. (1) and (2), a representation of the p-wave
scattering phase as a function of the invariant mass

ffiffiffi
s

p
is

offered by the effective range formula,

tan�1 ¼
g2K��K
6�

p3ffiffiffi
s

p ðM2
R � sÞ ; (3)

which suits the experimental measurements rather well,
and permits us either a linear fit or to solve for the two
unknown parameters: the coupling constant gK��K and the
resonance position MR from the scattering phase extracted
through lattice QCD. The K�ð892Þ decay width �K� can
then be computed by

�K� ¼ �RðsÞjs¼M2
R
¼ g2K��K

6�

p3
K�

M2
R

;

pK� ¼ 1

2MR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

R � ðm� �mKÞ2�½M2
R � ðm� þmKÞ2�

q
:

(4)

Thus, Eqs. (3) and (4) provide us with an approach to
extracting the K�ð892Þ decay width �K� through studying
the dependence of the p-wave �K scattering phase shift �1

on the invariant mass
ffiffiffi
s

p
. We should stress at this point that

we will extensively use the effective range formula ap-
proximation in this work since the relativistic Breit-Wigner
formula holds perfectly for relatively narrower objects and
the K�ð892Þ resonance has a rather narrow decay width of
50:8� 0:9 MeV [1].

B. Finite-volume methods

In the present study, we deliberate on theK�ð892Þmeson
decay into one pion and one kaon in the p-wave, and only
focus on the �K system with the isospin representation of
ðI; IzÞ ¼ ð1=2; 1=2Þ.

1. Center-of-mass frame

In the center-of-mass frame, when the K�ð892Þmeson is
at rest, the possible energy eigenvalues of the noninteract-
ing �K system are provided by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ p2
q

;

where p ¼ jpj, p ¼ ð2�=LÞn, and n 2 Z3. In a typical
lattice investigation, this energy for n � 0 is significantly
bigger than theK�ð892Þ resonance massmK� . For example,
in our concrete study, the lowest energy for n � 0 calcu-
lated from the previous determination of m�, mK, and mK�

[28] is E ¼ 1:12�mK� , which is self-evidently not quali-
fied to study the K�ð892Þ decay. Hence, we have no choice
but to consider the n ¼ 0 case, and the energy E ¼
0:739�mK� , which is still not a favorable option.
When considering the interaction of the �K system, the

energy eigenstates are displaced by the hadronic interac-
tion from E to �E, and the energy eigenvalue for the �K
system can be written as

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ k2
q

; k ¼ 2�

L
q;

where q 2 R. Solving this equation for the scattering
momentum k, we get

k ¼ 1

2 �E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ �E2 � ðm� �mKÞ2�½ �E2 � ðm� þmKÞ2�

q
:

In this article, we are primarily interested in the energy
eigenstates of the �K system in the elastic region m� þ
mK < �E< 2ðm� þmKÞ. In the center-of-mass frame these
energy eigenstates transform as a vector (to be specific, the
irreducible representation � ¼ Tþ

1 ) under the cubic group
Oh. The Lüscher formula links the energy �E to the p-wave
�K scattering phase �1 [34–36], namely,

tan�1ðkÞ ¼ �3=2q

Z00ð1; q2Þ
; (5)

where the zeta function is formally defined by

Z00ðs; q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
n2Z3

1

ðjnj2 � q2Þs : (6)
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The Z00ðs; q2Þ has a finite value only if Res > 3=2; never-
theless it could be analytically continued to s ¼ 1. We
usually evaluate Z00ðs;q2Þ using the method described in
Ref. [37]. We notice that there exists an equivalent Lüscher
formula in Ref. [38], which is the generalization of the
Lüscher quantization condition to multiple two-body chan-
nels. Moreover, it is easy to calculate and more accurate
than the Lüscher formula in the relativistic case.

2. Moving frame

To implement the physical kinematics such that the
energy of the �K system is rather close to the K� meson
mass, we can employ a moving frame (or laboratory frame)
[19]. We have presented the detailed discussions of �K
system in the moving frame in Ref. [30]; here we just
review its essential parts.

Using a moving frame with total nonzero momentum
P ¼ ð2�=LÞd, d 2 Z3, the energy eigenvalues for the
noninteracting �K system are given by

EMF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ p2
2

q
;

where p1 ¼ jp1j, p2 ¼ jp2j, and p1, p2 define the three-
momenta of� andK, respectively, which meet the periodic
boundary condition,

p1 ¼ 2�

L
n1; p2 ¼ 2�

L
n2; n1;n2 2 Z3;

and the total momentum P satisfies P ¼ p1 þ p2.
In the moving frame, the center-of-mass is shifting with

a velocity of v ¼ P=EMF. Using the standard Lorentz trans-

formation with a boost factor � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, the ECM can

be calculated by

ECM ¼ ��1EMF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p�2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ p�2
q

;

where the total center-of-mass momentum disappears in
the center-of-mass frame, namely,

p� ¼ jp�j; p� ¼ p�
1 ¼ �p�

2;

where and whereafter we delimit the center-of-mass
momenta with an asterisk (*). We can readily verify that
the p� are quantized to the values [30]

p� ¼ 2�

L
r; r 2 Pd;

where the set Pd is

Pd ¼
�
rjr ¼ ~��1

�
nþ d

2
�
�
1þm2

K �m2
�

E2
CM

��
;n 2 Z3

�
;

(7)

where the boost factor operates in the direction of the
velocity v, and for the notational compactness we use the
shorthand notation

~�p ¼ �pk þ p?; ~��1p ¼ ��1pk þ p?; (8)

where pk and p? are the ingredients of p parallel and

perpendicular to the velocity v, respectively, i.e.,

pk ¼ p � v
jvj2 v; p? ¼ p� pk:

Since the relativistic four-momentum squared is invariant,
ECM is connected to EMF via the standard Lorentz trans-
formation E2

CM ¼ E2
MF � P2.

We are particularly interested in one moving frame: the
pion is at rest, the kaon has momentum p ¼ ð2�=LÞe3
(namely, d ¼ e3), and the K�ð892Þ meson has momentum
P ¼ p. For our concrete case, we found that its invariant
mass is

ffiffiffi
s

p ¼ 0:8788�mK� , which is significantly closer
to mK� than that in the center-of-mass frame. Therefore,
here we will only consider this case.
In the interacting case, �ECM can be calculated by

�ECM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ k2
q

; k ¼ 2�

L
q;

where q 2 R. Solving this equation for the scattering
momentum k, we have

k ¼ 1

2 �E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ �E2

CM � ðm� �mKÞ2�½ �E2
CM � ðm� þmKÞ2�

q
: (9)

We prefer to rewrite Eq. (9) in an elegant form for later use:

k2 ¼ 1

4

�
�ECM þm2

� �m2
K

�ECM

�
2 �m2

�; (10)

which is used to calculate the scattering momentum k and
to investigate the lattice discretization effect.
The energy eigenstates of the �K system for our chosen

moving frame transform under the tetragonal group C4v.
Only the irreducible representations A1 and E are associ-
ated with the p-wave �K scattering states in a torus. We
compute the energies related with the A1 sector in the
present study. The hadronic interaction displaces the en-
ergy eigenstates of the �K system from E to �E, and the
energy eigenstates �E are linked to the �K scattering phase
shift �1 with the �K system’s Rummukainen-Gottlieb
formula [20,21,23], namely,

tan�1ðkÞ ¼ ��3=2q

Zd
00ð1; q2Þ þ 2ffiffi

5
p q�2Zd

20ð1; q2Þ
; (11)

where we ignore the higher scattering phase shifts
�lðl ¼ 2; 3; 4; . . .Þ [22], and the modified zeta functions
are formally defined as

Zd
00ðs;q2Þ ¼

X
r2Pd

1

ðjrj2 � q2Þs ;

Zd
20ðs;q2Þ ¼

X
r2Pd

r2Y20ð�rÞ
ðr2 � q2Þs ;

(12)

where �r represents the solid angle parameters ð�;�Þ of r
in spherical coordinates and the Ylm are the standard
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spherical harmonic functions, and the set Pd is denoted in
Eq. (7). The k is the scattering momentum defined from the

invariant mass
ffiffiffi
s

p
as

ffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

K

q
. We

elaborated the calculation method of Zd
00ð1; q2Þ in

Appendix of Ref. [30], and we will give the calculation
method of Zd

20ð1;q2Þ in the Appendix here, although there

is a general calculation of the zeta function Zd
lmðs; q2Þ in

Refs. [21,22,38]. Equation (11) is employed to achieve the
scattering phase shift from the energy eigenvalue measured
by the lattice calculations.

C. Correlation matrix

To compute two energy eigenvalues, i.e., �En (n ¼ 1, 2),
we constitute a 2� 2 matrix of the time correlation
function,

CðtÞ ¼ h0jOy
�KðtÞO�Kð0Þj0i h0jOy

�KðtÞOK� ð0Þj0i
h0jOy

K� ðtÞO�Kð0Þj0i h0jOy
K� ðtÞOK� ð0Þj0i

0
@

1
A;
(13)

where OK� ðtÞ is an interpolating operator for the vector
K�ð892Þ meson with the specified momentum p ¼
ð2�=LÞe3 (namely, d ¼ e3) and the polarization vector
parallel to p, and O�KðtÞ is an interpolating operator
for the �K system with the given momentum p ¼
ð2�=LÞe3. The interpolating operators OK� and O�K

employed in the present work are exactly the same as
those in our previous studies [28,31], and the notations
and conventions adopted here are also the same; never-
theless, to make this article self-contained, all the
required definitions will be provided in the following.

1. �K sector

Here we use the original derivations and conventions
[39–43] to review the necessary formulas for the lattice
QCD calculation of the p-wave scattering phase shift of the
�K system for the isospin I ¼ 1=2 channel in a torus. Let
us review the �K system of one Nambu-Goldstone pion
with zero momentum and one Nambu-Goldstone kaon
with momentum p in the Asqtad-improved staggered dy-
namical fermion formalism. Using the operators O�ðx1Þ,
O�ðx3Þ for pions at points x1, x3, and the operatorsOKðx2Þ,
OKðx4Þ for kaons at points x2, x4, respectively, with the
pion and kaon interpolating field operators denoted by

O�þðx; tÞ ¼ � �dðx; tÞ�5uðx; tÞ;
O�0ðx; tÞ ¼ 1ffiffiffi

2
p ½ �uðx; tÞ�5uðx; tÞ � �dðx; tÞ�5dðx; tÞ�;

OK0ðx; tÞ ¼ �sðx; tÞ�5dðx; tÞ;
OKþðx; tÞ ¼ �sðx; tÞ�5uðx; tÞ;
we can then describe the �K four-point correlation
functions as

C�Kðx4; x3; x2; x1Þ ¼ hOKðx4ÞO�ðx3ÞOy
Kðx2ÞOy

�ðx1Þi:
After summing over the spatial coordinates x1, x2, x3, and
x4, we gain the �K four-point correlation function with
momentum p,

C�Kðp; t4; t3; t2; t1Þ ¼
X
x1

X
x2

X
x3

X
x4

eip�ðx4�x2Þ

� C�Kðx4; x3; x2; x1Þ;
where x1 � ðx1; t1Þ, x2 � ðx2; t2Þ, x3 � ðx3; t3Þ, and
x4 � ðx4; t4Þ, and t represents the time difference, i.e., t �
t3 � t1. To avoid the complicated Fierz rearrangement of
the quark lines [41], we select t1 ¼ 0, t2 ¼ 1, t3 ¼ t, and
t4 ¼ tþ 1. We write the �K operator in the I ¼ 1=2
channel as [43]

O
I¼1

2

�K ðp; tÞ ¼
1ffiffiffi
3

p
n ffiffiffi

2
p

�þðtÞK0ðp; tþ 1Þ
� �0ðtÞKþðp; tþ 1Þ

o
; (14)

where p is the total momentum of the �K system or the
momentum of the K meson. This �K operator has the
isospin representation of ðI; IzÞ ¼ ð1=2; 1=2Þ.
Assuming that u and d quarks have equal mass, only

three quark line diagrams contribute to �K scattering
amplitudes [43]. The quark line diagrams dedicated to
the �K four-point correlation function are elucidated in
Fig. 1, where they are labeled as direct diagram (D),
crossed diagram (C), and rectangular diagram (R), respec-
tively. The direct and crossed diagrams can be readily
computed [40,41] by means of only two wall sources fixed
at the time slices t1 and t2, which enables a relatively cheap
lattice calculation of the I ¼ 3=2 �K scattering length
[44,45]. Nevertheless, the rectangular diagram (R) needs
an additional quark propagator connecting the time slices
t3 and t4, which causes the strict evaluation of this diagram
to be extraordinarily expensive.
Sasaki et al. handled this problem, viz., the technique

with a fixed kaon sink operator to reduce the computational
resources [46]. Lang et al. recently solved it by the use
of the Laplacian-Heaviside smeared quarks within the

FIG. 1. Diagrams contributing to �K four-point functions.
Short bars stand for wall sources. Open circles are sinks for
local pion or kaon operators. The thicker lines represent the
strange quark lines.
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distillation method [47].1 In our previous work [21], we
settled this by using the moving wall sources without
gauge fixing first introduced by Kuramashi et al. [40,41],
namely, we calculated these diagrams by evaluating T
quark propagators corresponding to the moving wall
source at all of the time slices t¼0;���;T�1 on a L3�T
lattice, which is denoted as [40,41]X

n00
Dn0;n00Gtðn00Þ ¼

X
x

�n0;ðx;tÞ; 0 	 t 	 T � 1;

whereD is the Dirac quark matrix for the staggered Kogut-
Susskind quark action, and the subscript t in the quark
propagatorG stands for the position of the wall source. The
association of the quark propagators GtðnÞ which we use
for the �K four-point functions is illustrated in Fig. 1. In
practice, for the nonzero momentum we employ an up
quark source with 1, and a strange quark source with
eip�x on each site for the pion and kaon creation operator,
respectively. D, C, and R, are schematically shown in
Fig. 1, and we can represent them by means of the quark
propagators G, namely,

CD
�Kðp; t4; t3; t2; t1Þ ¼

X
x3

X
x4

eip�x4hTr½Gy
t1ðx3; t3ÞGt1ðx3; t3Þ�

� Tr½Gy
t2ðx4; t4ÞGt2ðx4; t4Þ�i;

CC
�Kðp; t4; t3; t2; t1Þ ¼

X
x3

X
x4

eip�x4hTr½Gy
t1ðx3; t3ÞGt2ðx3; t3Þ

�Gy
t2ðx4; t4ÞGt1ðx4; t4Þ�i;

CR
�Kðp; t4; t3; t2; t1Þ ¼

X
x2

X
x3

eip�x2hTr½Gy
t1ðx2; t2ÞGt4ðx2; t2Þ

�Gy
t4ðx3; t3ÞGt1ðx3; t3Þ�i;

where the traces are taken over color, and the Hermiticity
properties of the propagator G have been applied to elimi-
nate the �5 factors.

As discussed in Refs. [40,41], the rectangular diagram
produces gauge-variant noise, and we reduce it, viz., by
performing the gauge field average without gauge fixing, as
we practiced in Refs. [21,30,48,49]. All three diagrams in
Fig. 1 are needed to calculate the �K scattering in the
I ¼ 1=2 channel. As it is investigated in Ref. [43], in the
isospin limit, the �K correlation function in the I ¼ 1=2
channel is described in terms of only three diagrams,
namely,

C�Kðp; tÞ � hO�Kðp; tÞjO�Kð0; 0Þi

¼ Dþ 1

2
NfC� 3

2
NfR; (16)

where the operator O�K denoted in Eq. (14) creates a �K
state with total isospin 1=2 and momentum p. The
staggered-flavor factor Nf is inserted to address the flavor

degrees of freedom of the Kogut-Susskind staggered
fermion [39]. We should keep in mind the fact that if we
carry out the appropriate root of the staggered fermion
determinant2 in the continuum limit, the same number of
flavors flow around internal quark loops as in QCD [39].
Therefore, at the level of the diagrams, all contributions are
exactly as in QCD [39].
In our concrete calculation we also evaluate the ratios3

RXðtÞ ¼ CX
�Kðp; 0; 1; t; tþ 1Þ

C�ð0; 0; tÞCKðp; 1; tþ 1Þ ;
X ¼ D;C; and R;

(17)

where C�ð0; 0; tÞ and CKðp; 1; tþ 1Þ are pion and kaon
correlators with momentum 0 and p, respectively.
We should bear in mind that the dedications of

non-Nambu-Goldstone pions and non-Nambu-Goldstone
kaons in the intermediate states are exponentially reduced
for large times owing to their relatively heavier masses as
compared to these of Nambu-Goldstone pions and Nambu-
Goldstone kaons [39–41]. Thus, we can grant that the �K
interpolator does not couple remarkably to other�K tastes,
and ignore this systematic error.

2. K�ð892Þ sector
In our previous work [28], we presented a detailed

procedure to measure the K� correlator h0jK�yðtÞ�
K�ð0Þj0i. In principle, we can calculate the propagators
for two local vector K� mesons, �i 
 �i VT and �0�i 

�0�i PV [60,61]. However, in this paper we simply quote
the results for the local VT K� meson since it delivers quite
stable results in the analysis of the mass spectrum.
Moreover, the numerical evaluation of the K� ! �K
three-point function is much easier if we adopt the local
VT K� operator. Therefore, we employ an interpolation
operator with the isospin I ¼ 1=2 and JP ¼ 1� at the
source and sink, namely,

OðxÞ � X
a

uaðxÞ�i 
 �i �saðxÞ;

1It is well-known that the rectangular diagram (or backtrack-
ing contractions, box diagram [47]) is most challenging and
important for the I ¼ 1=2 channel, and obtaining a reliable
signal of it is vital to our final result. We observe that the signal
of the rectangular diagram in Ref. [47] is at a reasonable level.

2There is some evidence demonstrating that conducting the
fourth root of the fermion determinant recovers the contribution
from a single Dirac fermion, see Ref. [50] for more details. In
this work, we suppose that the fourth root trick reproduces the
correct continuum limit of QCD, and the results of this work rely
on this hypothesis. For the most recent discussions about the
fourth-root trick, please see Refs. [51–59].

3If we impose the Dirichlet boundary condition in the temporal
direction, we can easily extract the energy shift �E from the ratio
RX [40,41]. Moreover, we can readily check that when t � T=2,
even if we choose the periodic boundary condition in the
temporal direction, we can still roughly estimate �E from these
ratios.
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where a are the color indices, and we omit the Dirac spinor
index. The time slice correlator for the K� meson in the
momentum p state can be evaluated as

CK� ðp; tÞ ¼ X
x

X
a;b

eip�xhubðx; tÞ�i 
 �i �sbðx; tÞsað0; 0Þ�i


 �i �u
a
gð0; 0Þi;

where 0, x are the spatial points of the K� state at source
and sink, respectively.

For staggered quarks, the meson propagators have the
generic single-particle form

CðtÞ ¼ X
i

Aie
�mit þX

i

A0
ið�1Þte�m0

it þ ðt ! Nt � tÞ;

where the oscillating terms correspond to particles with
opposite parity. For the K� meson correlator, we consider
only one mass with each parity, and the oscillating parity
partner is the p-wave meson with JP ¼ 1þ. The K1 meson
has JP ¼ 1þ, so it is the candidate for the oscillating parity
partner of the vector K� meson. However, these states with
JP ¼ 1þ can just as well be multihadron states [62]. With
staggered fermions, the multihadron possibilities include
the various taste combinations, so we cannot identify its
parity partner with the K1 (see more discussions in
Ref. [28]). Thus, the K�ð892Þ correlator was fit to the
following physical model:

CK� ðtÞ ¼ bK�e�mK� t þ bK1
ð�1Þte�MK1

t þ ðt ! Nt � tÞ;
(18)

where bK1
and bK� are two overlap factors.

3. Off-diagonal sector

A calculation of the generic three-point function is
briefly discussed in Ref. [10]. To rigorously evaluate it
we must compute a number of spatial volume propagators,
namely N3

L (163 for our case). To avoid the apparent
intractability of exactly computing this problem, Gottlieb
et al. introduced the exponential method, which calculates
a two-point function with the presence of a source and then
differentiates with the source strength to achieve the cor-
responding three-point functions [7,8]. To investigate vec-
tor meson decay into pseudoscalars from quenched lattice
QCD [10], Loft and DeGrand adopted a two-stage tech-
nique [63,64], which takes approximately twice as long
as the calculation of the mass spectra [10]. Later, when
studying the resonance parameter of the vector � meson
[10–18], a stochastic method [65–67] or its variants are
chiefly employed to evaluate the three-point correlation
functions.

Motivated by the precise evaluation of the�� four-point
correlation functions by Kuramashi et al. [40,41] with the
moving wall source technique [31], analogously, we have
successfully extended this technique to evaluate the three-
point correlation function, and have obtained rather good

signals for the three-point functions of the �� ! � [29]
and �K ! � [30]. In this work we will continue to use this
technique to evaluate the �K ! K� three-point correlation
function.
To prevent the complicated color Fierz transformation of

the quark lines [41], we choose t1 � t2. In practice, we
pick t1 ¼ 0, t2 ¼ 1, and t3 ¼ t for the �K ! K� three-
point correlation function, and pick t1 ¼ 0, t2 ¼ t, and
t3 ¼ tþ 1 for the K� ! �K three-point function. The
quark line diagrams corresponding to the K� ! �K and
�K ! K� three-point functions are illustrated in Figs. 2(a)
and 2(b), respectively.
The �K ! K� three-point function can be easily eval-

uated using only two wall sources [21,30]. Nevertheless,
the evaluation of K� ! �K three-point function is hard,
since it requires additional quark propagator connecting
time slices t2 and t3. In practice, we employ an up quark
source with 1 on each site for the pion creation operator,
and a strange quark source with eip�x on each site for the
kaon creation operator. The K� ! �K and �K ! K�
three-point functions are schematically illustrated in
Fig. 2, and we write them in terms of quark propagators G:

C�K!K� ðp;t3;t2;t1Þ¼
X
x3;x2

eip�x3hTr½Gt1ðx3;t3Þ�5

�Gy
t2ðx3;t3Þ�3G

y
t1ðx2;t2Þ��5i;

CK�!�Kðp;t3;t2;t1Þ¼
X
x2;x3

eip�x2hTr½Gt1ðx2;t2Þ�3

�Gy
t3ðx2;t2Þ�5G

y
t1ðx3;t3Þ��5i; (19)

where the trace is over the color index. The Dirac matrices
are used as an interpolating field for the ith meson: �5 for
pseudoscalars and �3 for the vector meson.

D. Extraction of energies

To map out avoided level crossings between the K�
resonance and its decay products (i.e., � and K), it is
important to separate the ground state from the first excited

FIG. 2. Diagrams contributing to the �K ! K� and K� ! �K
three-point functions. Short bars stand for the wall sources. The
thicker lines represent the strange quark lines. (a) Quark con-
tractions of �K ! K�, where open circles are sinks for the local
K� operator. (b) Quark contractions of K� ! �K, where open
circles are sinks for the local pion operator.

ZIWEN FU AND KAN FU PHYSICAL REVIEW D 86, 094507 (2012)

094507-6



state by calculating the 2� 2 correlation function matrix
CðtÞ denoted in Eq. (13). We apply the variational method
[36] and construct a ratio of the correlation function
matrices as

Mðt; tRÞ ¼ CðtÞC�1ðtRÞ; (20)

with some reference time tR [36] to extract the two lowest
energy eigenvalues �En (n ¼ 1, 2), which can be obtained
by a cosh-fit to two eigenvalues 	nðt; tRÞ (n ¼ 1, 2) of
the correlation matrix Mðt; tRÞ. Considering the use of the
staggered fermion, it is easy to verify explicitly that
	nðt; tRÞ (n ¼ 1, 2) has an oscillating term [68–70],
namely,

	nðt; tRÞ ¼ An cosh

�
�En

�
t� T

2

��

þ ð�1ÞtBn cosh

�
�E0

n

�
t� T

2

��
; (21)

for a large t, which means that 0 � tR < t � T=2 to
suppress both the excited states and the wrap-around
contributions [30,71–73].4 Without loss of generality, we
suppose 	1ðt; tRÞ> 	2ðt; tRÞ.

III. LATTICE CALCULATION

A. Simulation parameters

We use the MILC gauge configurations in the presence
of the Nf ¼ 2þ 1 dynamical flavors of the Asqtad-

improved staggered dynamical fermions [60,61] and a
Symanzik-improved gluon action [74]: a detailed descrip-
tion of the simulation parameters can be found in
Refs. [32,33]. We should keep in mind that the MILC
gauge configurations are generated using the staggered
formulation of lattice fermions [75] with the fourth root
of the fermion determinant [60].

We measured the�K four-point correlation functions on
the 0.15 fm MILC medium coarse lattice ensemble of 400
203 � 48 gauge configurations with the bare quark masses
amud ¼ 0:00484 and ams ¼ 0:0484 and bare gauge cou-
pling 10=g2 ¼ 6:566, which has a physical volume of
approximately 3.0 fm. The inverse lattice spacing a�1 ¼
1:373þ34

�14 GeV [32,33]. The mass of the dynamical strange

quark is quite close to its physical value, and the masses of
the u and d quarks are degenerate. Periodic boundary
conditions are imposed on three spatial directions and the
temporal direction.

B. Computations

To compute the �K four-point functions, we employ the
standard conjugate gradient method to achieve the

necessary matrix element of the inverse Dirac fermion
matrix. We compute the correlators on all the time slices,
and explicitly combine the results from each of the NT ¼
48 time slices, namely, the diagonal correlator C11ðtÞ is
measured through

C11ðtÞ ¼ hð�KÞðtÞð�KÞyð0Þi

¼ 1

T

X
ts

hð�KÞðtþ tsÞð�KÞyðtsÞi:

After averaging the propagator over all NT ¼ 48 possible
values, we find that the statistics are significantly
improved.
For each time slice, six fermion matrix inversions are

required corresponding to the three possible color choices
for the pion source and kaon source, respectively.
Therefore, we perform a total of 288 inversions on each
gauge configuration. This large number of matrix inver-
sions, carried out on 400 gauge configurations, provides
the gigantic statistics required to reliably calculate the �K
four-point functions.
For the diagonal correlator C22ðtÞ, the K�ð892Þ correla-

tor, we have produced the point-to-point correlators with
high accuracy in our previous study [28]. Therefore, we
can simply exploit these calculated propagators to calcu-
late the K�ð892Þ correlator:

C22ðtÞ ¼ 1

T

X
ts

hK�yðtþ tsÞK�ðtsÞi;

where, again, we sum the correlator over all the time slices
ts and take the average.
We evaluate the first off-diagonal correlator C21ðtÞ

through

C21ðtÞ ¼ hK�ðtÞð�KÞyð0Þi ¼ 1

T

X
ts

hK�ðtþ tsÞð�KÞyðtsÞi;

where the summation is over all time slices ts. Through the
relation C12ðtÞ ¼ C�

21ðtÞ we can gratuitously gain the sec-
ond off-diagonal correlator C12ðtÞ.
In the present study, we evaluate the two-point correla-

tion functions for the pion and kaon as well, namely,

G�ð0; tÞ ¼ 1

T

X
ts

h0j�yð0; tþ tsÞ�ð0; tsÞj0i;

GKðp; tÞ ¼ 1

T

X
ts

h0jKyðp; tþ tsÞKðp; tsÞj0i;
(22)

where G�ð0; tÞ is the two-point correlation function for the
pion meson with zero momentum, and GKðp; tÞ is the
propagator for the kaon meson with momentum p.

IV. SIMULATION RESULTS

In our previous work [28], we measured the point-to-
point pion and kaon correlators with high accuracy.

4In Ref. [30] we gave a detailed discussion about a con-
tamination from wraparound effects. In practice, we will
select the fitting time ranges satisfying tmax 	 16, and reason-
ably neglect it.
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Exploiting these correlators, we can reliably extract the
pion mass (m�) and kaon mass (mK), which are in fair
agreement with the previous MILC determinations in
Ref. [33]. In Table I we list the pion mass m�, the mass
mK, and the energy EK of the kaon meson with momentum
p ¼ ð2�=LÞe3, which are extracted through a single expo-
nential fit to G�ðt; 0Þ and GKðt;pÞ in Eq. (22). We also
show the mass and energy of the vector K�ð892Þ meson
with momentum p ¼ ð2�=LÞe3, which are calculated from
the K�ð892Þ correlator.

We must stress at this point that, in this work, we just use
the calculatedK�ð892ÞmassmK� to indicate the position of
the free K�ð892Þ mass.

A. Diagrams D, C, and R

In Fig. 3 the individual ratios RX (X ¼ D, C and R),
which correspond to the diagrams in Fig. 1, are illustrated
as functions of t. We can see that diagram D has the
biggest contribution, followed by diagram C and diagram
R. Clear signals observed up to t ¼ 20 for the rectangular
amplitude demonstrate that the technique of the moving

wall source without gauge fixing used here is practically
applicable.
The values of the direct amplitude RD are rather close to

unity, indicating that the interaction in this channel is quite
weak. The crossed amplitude RC, on the other hand,
increases linearly, implying a repulsion in this channel.
After a starting increase up to t� 4, the rectangular am-
plitude RR demonstrates a roughly linear decrease up until
t� 15, and loss of signals after that, suggesting an attrac-
tive force between the pion and kaon. These characteristics
are what we expected from the theoretical predictions
[39,76]. We can observe that the crossed and rectangular
amplitudes take the same value at t ¼ 0, and similar values
for small t. Since our analytical representations for both
amplitudes are identical at this value of t, they should
manifest analogously until the asymptotic �K state is
reached.
According to the analytical arguments in Ref. [77], we

can infer that the ratio for the rectangular diagram RR has
errors, which should increase exponentially as emKt for
large time separation. The magnitude of the errors is in
quantitative agreement with this theoretical prediction, as
displayed in Fig. 4. Fitting the errors �RRðtÞ by a single
exponential fit ansatz �RRðtÞ � expð
RtÞ over the range
10 	 t 	 16, we can achieve the corresponding fitting
values of 
R with a
R ¼ 0:358, which can be reasonably
compared with the corresponding kaon masses mK deter-
mined in our previous work [28] and also listed in Table I.
This demonstrates, on the other hand, that the technique of
the moving wall source without gauge fixing used in this
work is practically feasible.

B. Energy eigenvalues

We calculate two eigenvalues 	nðt; tRÞ (n ¼ 1, 2) for the
matrixMðt; tRÞ denoted in Eq. (20) with the reference time
tR ¼ 5. In Fig. 5 we illustrate our lattice simulation results
for 	nðt; tRÞ (n ¼ 1, 2) on a logarithmic scale as a function
of time t along with a correlated fit to the asymptotic form

TABLE I. Masses m of pion, kaon, and K�ð892Þ mesons, and
energies E of kaon and K�ð892Þ mesons with momentum p ¼
ð2�=LÞe3, extracted from the corresponding time correlation
functions.

� K K�ð892Þ
am 0.17503(17) 0.39913(27) 0.7757(70)

aE 0.50465(48) 0.8278(82)

FIG. 3 (color online). Individual amplitude ratios RXðtÞ for the
�K four-point function evaluated by the moving wall source
without gauge fixing as functions of t. Direct diagram (magenta
diamonds) shifted by 0.8, crossed diagram (red octagons) and
rectangular diagram (blue squares).

FIG. 4 (color online). The error of the ratio RRðtÞ as a function
of time slice t. The solid lines are single exponential fits over the
range 10 	 t 	 16.
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offered in Eq. (21). From these fits we can then obtain the
desired energies �En (n ¼ 1, 2) which will be employed to
extract the p-wave scattering phase shifts.

As we noticed in Refs. [29–31], we realize that properly
extracting the energy eigenvalues is vital to our final con-
clusions. Since the Periodic boundary condition is imposed
on three spatial directions and the temporal direction, we
should suppress the wraparound contaminations [11,31].
By defining a fitting range ½tmin; tmax� and varying the
values of the minimum fitting distance tmin and the
maximum fitting distance tmax, we obtain these energies
in a correct manner. In practice, we make tmin ¼ tR þ 1
and increase the reference time tR to reduce the excited
contaminations [11]. Moreover, we choose tmax to be away
from the time slice T=2 to reduce the wraparound effects
[11]. Furthermore, we extract two eigenvalues 	nðn ¼
1; 2Þ with the effective energy plots, a variant of the effec-
tive mass plots, and they are fit to Eq. (21) by changing
tmin, and with tmax at either 15 or where the fractional
statistical errors exceeded about 20% for two successive
time slices. The effective energy plots as a function of tmin

are illustrated in Fig. 6.
The energy eigenvalues �Enðn ¼ 1; 2Þ were chosen by

looking for the combination of a plateau in the effective
energy plots as functions of tmin and a reasonable fit
quality. We observed that the effective energies show
only relatively small errors within a minimum time dis-
tance region 5 	 tmin 	 8 for �E1 and 5 	 tmin 	 6 for �E2,
respectively. The fit quality �2=dof of the fitting parame-
ters tR, tmin, and tmax along with the fitted numbers for �En

(n ¼ 1, 2) are summarized in Table II.
The energy of the pion and kaon in the noninteracting

case (namely, E1) is computed from the pion mass m� and
the kaon energy EK listed in Table I as E1 ¼ m� þ EK.
This number is listed in the upper part of Table III. We

distinctly observe that �E1 <E1 < �E2, which means that the
phase shift for 	1ðt; tRÞ and 	2ðt; tRÞ is positive and nega-
tive, respectively. This evidently reveals the presence of a
resonance between them.

C. Finite-size effects

We should pay attention to discretization error inherent
in the �K system’s Rummukainen-Gottlieb formula (11).
This stems from the Lorentz transformation from the mov-
ing frame to the center-of-mass frame. When applying the
Lorentz symmetry in the continuum limit, we utilize the
relations [21,30]

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
MF�p2

q
; k2¼1

4

� ffiffiffi
s

p þm2
��m2

Kffiffiffi
s

p
�
2�m2

�; (23)

in the Lorentz transformation for the invariant mass
ffiffiffi
s

p
, the

energy of the �K system in the moving frame EMF, and the

FIG. 5 (color online). The eigenvalues 	1ðt; tRÞ and 	2ðt; tRÞ.
Occasional points with negative central values for the eigenvalue
	2ðt; tRÞ are not plotted. The solid lines are correlated fits to
Eq. (21), from which the energy eigenvalues �En (n ¼ 1, 2) are
extracted. The lower curve (n ¼ 2) is slightly steeper than the
upper curve (n ¼ 1).

FIG. 6 (color online). The effective energy plots, a �En (n ¼ 1,
2), as functions of tmin. (a) The effective energy plot for �E1 and
(b) that for �E2.

TABLE II. The fitted values of the energy eigenvalues for the
ground state (n ¼ 1) and the first excited state (n ¼ 2). Here we
tabulate the reference time tR, the lower and upper bound of the
fitting range, tmin and tmax, the number of degrees of freedom
(dof) for the fit quality �2=dof, and the fitted results for the
energy eigenvalues �En (n ¼ 1, 2) in lattice units.

n tR tmin tmax a �En �2=dof

1 5 6 15 0.67507(40) 12:2=6
2 5 6 15 0.8534(78) 9:6=6
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scattering momentum k. Nevertheless, on the lattice the
discretization effects definitely violate the Lorentz sym-
metry and Eq. (23) is only effective up to the discretization
errors.

Following the recommendations in Ref. [30], we calcu-
late the invariant mass

ffiffiffi
s

p
and the scattering momentum k

from the energy in the moving frame EMF of �K system
using

coshð ffiffiffi
s

p Þ ¼ coshðEMFÞ � 2sin2
�
p

2

�
;

2sin2ðk=2Þ ¼ cosh

� ffiffiffi
s

p
2

þm2
� �m2

K

2
ffiffiffi
s

p
�
� coshðm�Þ;

(24)

and then evaluate the p-wave scattering phase shift �1 by
inserting the scattering momentum k into the finite-size
formula in Eq. (11).

To grasp these discretization effects, in the present study
we compute the invariant mass

ffiffiffi
s

p
and the scattering

momentum k from the energy-momentum relations both
in the continuum (23) and on the lattice (24), and then
extract the p-wave scattering phase shift �1 by inserting
the scattering momentum k into Eq. (11). We view the
disparity stemming from the two options of the energy-
momentum relations as the discretization error, which is
expected to disappear in the continuum limit. The results
for the invariant mass

ffiffiffi
s

p
, the scattering momentum k, and

the p-wave scattering phase shift �1 are summarized in
Table III.

D. Extraction of the scattering phase shift
and decay width

From Table III, the noticeable differences due to the two
options of the energy-momentum relations are obviously

observed in
ffiffiffi
s

p
and k. Moreover, the differences for the

p-wave scattering phase shift �1 due to the lattice discre-
tization effects can be comparable with the statistical
errors, and even considerably larger than its statistical error
for the n ¼ 1 case. These characteristics are also revealed
in Fig. 7, where the p-wave scattering phase shift sin2�1

is displayed. In Table III, we see that the sign of the
p-wave scattering phase shift �1 at

ffiffiffi
s

p
<mK� [amK� ¼

0:7757ð70Þ] is positive, indicating an attractive interaction,
and that at

ffiffiffi
s

p
>mK� it is negative, suggesting a repulsive

interaction. These features are what we expected. It verifies
that there exists a resonance around the K�ð892ÞmassmK� .
In principle, it is foolproof work to extract the K�ð892Þ

meson decay width through fitting the p-wave scattering
phase shift data with the effective range formula since the
kinematic factor in the decay width clearly depends on the
quark mass [27]. Moveover, the quark mass we studied
here is larger than its natural value; therefore, an extrapo-
lation is indispensable. Nevertheless, in the present work,
because of our limited computational resources, we simply
made a lattice simulation on one set of the quark mass;
therefore, we have no choice but to adopt an alternative
method. As we explained in Sec. II A, we parameterize the
resonant characteristic of the p-wave scattering phase shift
�1 with the coupling constant gK��K, namely,

tan�1 ¼
g2K��K
6�

k3ffiffiffi
s

p ðM2
R � sÞ ; (25)

where MR is the resonance mass.

FIG. 7 (color online). The scattering phase sin2�1, positions of
mK� , and resonance mass MR. Cont refer to the results achieved
with energy-momentum expressions in the continuum (23) and
Lat to those with relations on the lattice (24). The two lines are
obtained by Eq. (25) with parameters gK��K and MR given in
Eqs. (26) and (27), respectively. The abscissa is in lattice units.

TABLE III. Summary of the energy eigenvalues �En (n ¼ 1, 2)
and p-wave scattering phase shift �1 for the �K system in a
torus. E1 is the energy of the free pion-kaon system. �Enðn ¼
1; 2Þ is obtained from fitting to eigenvalues 	nðt; tRÞ (n ¼ 1, 2).
The invariant mass

ffiffiffi
s

p
, the scattering momentum k, and the

p-wave scattering phase shift �1 extracted through the energy-
momentum expression (23) in the continuum are regarded as
Cont, and those achieved with Eq. (24) on the lattice are
regarded as Lat. The scattering momentum k0 is denoted by k

2
0 ¼

1=4� ð ffiffiffi
s

p þ ðm2
� �m2

KÞ=
ffiffiffi
s

p Þ2 �m2
�. All values with the mass

dimension are in lattice units.

n ¼ 1 n ¼ 2
En 0.67968(51) —
�En 0.67507(40) 0.8534(78)

Cont Lat Cont Latffiffiffi
s

p
0.59751(45) 0.60350(45) 0.7934(84) 0.8004(84)

k2 0.00588(13) 0.00750(14) 0.0690(30) 0.0729(31)

k20 — 0.00745(13) — 0.0717(30)

tan�1 0.0294(93) 0.0091(22) �2:01ð43Þ �2:48ð63Þ
sin2�1 0.00087(55) 0.000083(39) 0.802(68) 0.860(62)
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According to the elaborations in Refs. [27,78], we can
suppose that the coupling constant gK��K varies quite
slowly with the changing quark mass. Therefore, Eq. (25)
enables us to solve for two unknown parameters, namely,
the coupling constant gK��K, and the resonance mass MR.

The invariant mass
ffiffiffi
s

p
and the scattering momentum

k appearing in Eq. (25) satisfy the energy-momentum
relations (23). Hence, the discretization error may arise
from the choice of

ffiffiffi
s

p
and k in the application of Eq. (25) to

the p-wave scattering phase shift extracted from lattice
QCD. Luckily, our lattice simulation results demonstrate
that this does not cause a serious numerical problem. In
Table III we also provide the scattering momentum k0
calculated by k20 ¼ 1=4� ð ffiffiffi

s
p þ ðm2

� �m2
KÞ=

ffiffiffi
s

p Þ2 �m2
�.

We can observe that the difference between k and k0 is not
significant, and we can neglect this systemic error for the
present study. In practice, we employ the scattering
momentum k0 when applying Eq. (25).

The lattice simulation results of the coupling constant
gK��K and the resonance mass MR solved by Eq. (25) are

gK��K ¼ 11:73� 2:08; MR ¼ 0:739ð20Þ;
MR=mK� ¼ 0:953ð28Þ; (26)

where we utilize the energy-momentum relations (23) in
the continuum, and the K� meson mass mK� is obtained
from our previous study [28]. If we adopt the energy-
momentum relations (24) on the lattice, we arive the
simulation results

gK��K ¼ 6:38ð78Þ; MR ¼ 0:7873ð97Þ;
MR=mK� ¼ 1:015ð16Þ: (27)

The obtained value of the coupling constant gK��K is in
reasonable agreement with gK��K � 5:5, which is obtained
from the residue of the amplitude at the pole position in
Ref. [27]. Moreover, it is in reasonable agreement with the
experimentally observed gK��K ¼ 5:64ð35Þ evaluated from
the experimental results of the decay width �K� ¼
50:8ð9Þ MeV [1] within the statistical error.

In Fig. 7, we illustrate the curves for sin2�1 achieved by
Eq. (25) with the coupling constant gK��K and the reso-
nance mass MR provided in Eqs. (26) and (27), respec-
tively. The positions at sin2�1 ¼ 1, which represent the
resonance mass MR, are also marked in Fig. 7 for the two
cases (black cross and red plus for the continuum and
lattice case, respectively). For visual comparison, we also
mark the K�ð892Þ mass mK� with a cyan plus. We can
observe that MR is in reasonable accordance with the
K�ð892Þ mass mK� .

Assuming that the dependence of gK��K on the quark
mass is small [27,78], we can roughly estimate theK�ð892Þ
meson decay width at the physical quark mass as

�phy ¼ g2K��K
6�

ðkphyÞ3
ðmphy

K� Þ2
; (28)

where m
phy
K� ¼ 891:66ð26Þ MeV is the physical K�ð892Þ

meson mass, which we take from the most recent Particle
Data Group (PDG) findings [1], and the scattering momen-
tum kphy is calculated by

ðkphyÞ2 ¼ 1

4

�
mphy

K� þ ðmphy
� Þ2 � ðmphy

K Þ2
m

phy
K�

�
2 � ðmphy

� Þ2;

where m
phy
� is physical pion mass (m

phy
� ¼

139:57018ð35ÞMeV) [1], and m
phy
K is the physical kaon

mass (m
phy
K ¼ 493:677ð13Þ MeV) [1]. This produces

�phy ¼ ð219� 39Þ MeV; (29)

where we utilize the data given in Eq. (26), and

�phy ¼ ð64:9� 8:0Þ MeV; (30)

where we use the data given in Eq. (27). The estimate in the
lattice case in Eq. (30) is in fair agreement with the corre-
sponding PDG data for the K� ! �K decay width, �K� ¼
50:8� 0:9 MeV. We can observe that the difference
stemming from our two options of the energy-momentum
relations is much larger than the statistical error.
This is quite an encouraging result, considering that we

make the assumption that the coupling constant gK��K does
not depend on the quark mass, and that we performed an
extrapolation, etc. One thing that greatly comforts us is that
we use the pion mass (about 240 MeV), which is rather
close to its realistic value (about 140 MeV), so we do not
carry out a long extrapolation.

V. CONCLUSIONS AND OUTLOOKS

In the present work, we have carried out a direct lattice
QCD computation of the p-wave �K scattering phase shift
in the I ¼ 1=2 channel near the K�ð892Þ resonance region
with total nonzero momentum in the moving frame, where
the rectangular graph plays a vital role, for the MILC
medium coarse (a � 0:15 fm) lattice ensemble in the pres-
ence of the Nf ¼ 2þ 1 flavors of the Asqtad-improved

staggered dynamical sea quarks. We employed the tech-
nique with the moving wall source without gauge fixing
[31] introduced by Kuramashi et al. in Refs. [40,41] to
calculate all three of the diagrams classified in Ref. [43]
with high precision, and observed a clear signal of the
attraction for the I ¼ 1=2 channel.
We have exhibited that the lattice calculation of the

p-wave scattering phase shifts for the I ¼ 1=2 �K system
and the estimation of the decay width of the K�ð892Þ
meson are feasible with our present limited computing
resources. The phase shift data clearly reveals the presence
of a resonance at a mass around the K�ð892Þ meson mass
obtained in our previous study [28]. This resonance can be
reasonably identified with the K�ð892Þ meson. Moreover,
we extracted the K�ð892Þ meson decay width from
the phase shift data and showed that it is reasonably
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comparable with the K�ð892Þ meson decay reported by the
PDG within the statistical error.

We have adopted the effective range formula, which
allows us to exploit the effective K� ! �K coupling con-
stant gK��K to extrapolate from our lattice simulation point
ðm�þmKÞ=mK� ¼0:7388 to the physical point ðm�þmKÞ=
mK� ¼0:7102, assuming that the coupling constant gK��K
does not depend on the quark mass. This is just an approxi-
mate calculation, and therefore a more reliable computa-
tion of the decay width is highly desirable. As we pointed
out above, the decay width can be estimated directly from
the energy dependence of the phase shift data by fitting the
BWRF if we make the lattice simulations near the physical
quark mass and obtain simulation data which have several
energies near the resonance mass. We will keep on enthu-
siastically requesting for the possible computational allo-
cations to fulfil this valuable work.

Nevertheless, we should bear firmly in mind that some
critical issues should be resolved in the more sophisticated
calculation. One is to reduce the discretization errors, which,
as we illustrated in the previous section, are significantly
larger than the corresponding statistical errors. A naive way
of handling this question is to utilize a lattice gauge con-
figuration closer to the continuum limit. Another challeng-
ing and stimulating topic is to suppress the contaminations
of the p-wave scattering phase from the d-wave scattering
phase or higher, which we preliminarily touched on for the
�K system in Ref. [21] (see more valuable discussions in
Ref. [22]).Moreover, a comprehensive analysis to determine
the lattice size dependence of the phase shift by employing a
set of lattice sizes is highly desired. Nevertheless, all of these
open questions are beyond the scope of this paper since this
will demand a huge amount of computing allocations. We
postpone these expensive tasks for our future study.

This work concentrated mainly on the scattering phase
at two energies for a single lattice ensemble. Since, in this
approach, we had only a small number of energies at hand,
it becomes quite difficult to reliably map out the resonance
region. Therefore, when our preliminary lattice results are
compared with the experimentally measured quantities, it
is obvious that the lattice QCD simulations can not yet
match the experimental accuracy. Although a reliable
extraction of the K�ð892Þ resonance parameters from the
lattice is quite challenging and most prospective, our rudi-
mentary work reported here can still be viewed as an
important conceptual study, and the techniques employed
here will be useful for other resonances, such as the D�,
and possibly even for some exotic hadrons.
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APPENDIX: THE NUMERICAL EVALUATION
OF THE Zd

20ð1; q2Þ FUNCTION

In this appendix we provide one simple approach for the
numerical evaluation of the zeta function Zd

20ðs; q2Þ
defined in Eq. (12) in the moving frame for any value of
q2. Here we follow the original derivations and notations in
Refs. [22,30,37].
The definition of the zeta function Zd

20ðs;q2Þ in

Eq. (12) is

Zd
20ðs; q2Þ ¼

X
r2Pd

Y20ðrÞ
ðr2 � q2Þs ; (A1)

where YlmðrÞ � rlYlmð�rÞ. �r represents the solid angles
ð�;�Þ of r in spherical coordinates and the Ylm are the
spherical harmonic functions, and the summation for r is
taken over the set

Pd ¼
�
rjr ¼ ~��1

�
nþ �

2
d

�
;n 2 Z3

�
; (A2)

where

� ¼ 1þm2
K �m2

�

E2
CM

:

The operation �̂�1 is defined in Eq. (8). The zeta function
Zd

20ð1; q2Þ is used to evaluate the p-wave scattering phase

shift in the present work.
First we consider q2 > 0, and we separate the summa-

tion in Z20 into two parts as

X
r2Pd

Y20ðrÞ
ðr2�q2Þs¼

X
r2<q2

Y20ðrÞ
ðr2�q2Þsþ

X
r2>q2

Y20ðrÞ
ðr2�q2Þs ; (A3)

where the summation over r is performed with r 2 Pd

denoted in Eq. (A2). The second term can be expressed in
an integral form:

X
r2>q2

Y20ðrÞ
ðr2�q2Þs¼

1

�ðsÞ
X

r2>q2

Y20ðrÞ
�Z 1

0
dtts�1e�tðr2�q2Þ

þ
Z 1

1
dtts�1e�tðr2�q2Þ

�

¼ 1

�ðsÞ
Z 1

0
dtts�1eq

2t
X
r2Pd

Y20ðrÞe�r2t

� X
r2<q2

Y20ðrÞ
ðr2�q2Þsþ

X
r2Pd

Y20ðrÞ e
�ðr2�q2Þ

ðr2�q2Þs :

(A4)
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The second term nicely counteracts the first term in
Eq. (A3). Using the Poisson resummation formula, the first
term leads to

first term ¼ 1

�ðsÞ
Z 1

0
dtts�1etq

2
X
n2Z3

fn;

fn �
Z

d3xY20ðrÞe�tjrj2þi2�n�x;
(A5)

where r¼ �̂�1ðxþ 1
2�dÞ. We transform the integration vari-

able from x to r by considering d3x ¼ �d3r and x ¼ �̂r�
1
2�d. Then we can separate terms that depend only on r:

fn � �e�i��n�d Z d3rY20ðrÞe�tjrj2þi2��̂n�r:

Letting k � ��̂n, we rewrite the above equation as

fn � �e�i��n�de�k2=t2
Z

d3rY20ðrÞe�tðr�ik=tÞ2 ;

where r ¼ ðx; y; zÞ. By performing a variable substitution,
namely, r� ik=t ! r, we can strictly verify that

Z
d3rx2e�tðr�ik=tÞ2 ¼ 2�

t

Z 1

0
dx

�
x2 � k2x

t2

�
e�tx2

¼
�
�

t

�
3=2

�
1

2t
� k2x

t2

�
;

Z
d3ry2e�tðr�ik=tÞ2 ¼

�
�

t

�
3=2

�
1

2t
� k2y

t2

�
;

Z
d3rz2e�tðr�ik=tÞ2 ¼

�
�

t

�
3=2

�
1

2t
� k2z

t2

�
: (A6)

We finally obtain

fn � ��e�i��n�de�k2=t2 �
3=2

t7=2
Y20ðkÞ;

where Y20ðkÞ � k2Y20ð�kÞ. Now we can rewrite the first
term in Eq. (A4) as

first term ¼ �

�ðsÞ
Z 1

0
dtts�1etq

2 �
3
2

t
7
2

X
n2Z3

ð��̂nÞ2

� Y20ð�kÞei��n�de�ði��̂nÞ2=t: (A7)

After collecting all terms we arrive at the representation of
the zeta function at s ¼ 1,

Zd
20ð1; q2Þ ¼

X
r2Pd

r2Y20ð�rÞ e
�ðr2�q2Þ

r2 � q2

�
Z 1

0
dtetq

2 �
3
2

t
7
2

X
n2Z3

ð��̂nÞ2

� Y20ð�kÞe�i��n�de�ð��̂nÞ2=t: (A8)

For the case of q2 	 0, it is not necessary for us to
segregate the summation in Zd

20ðs;q2Þ, and it can also be

expressed in an integral form. Performing the same
procedures, we obtain the same expression as in
Eq. (A8). Hence, Eq. (A8) is applicable for both cases.
Substituting d ¼ ð0; 0; 1Þ into Eq. (A8), we arrive at the

representation of the zeta function Zd
20ðs; q2Þ appearing in

Eq. (12):

Zd
20ð1;q2Þ¼

X
r2Pd

r2Y20ð�rÞe
�ðr2�q2Þ

r2�q2

�
Z 1

0
dtetq

2�
3
2

t
7
2

X
n2Z3

ð��̂nÞ2Y20ð�kÞ

�cosð��n �dÞe�ð��̂nÞ2=t; (A9)

where the imaginary part of the zeta function is neatly
canceled out.
We also note that the general numerical evaluation of the

zeta function Zd
lmðs;q2Þ has been derived in Refs. [21,22].

We numerically compared both these representations of the
zetaZ20ð1; q2Þ function with this representation, and found
reasonable agreement.
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