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We discuss a representation of the Z3 gauge-Higgs lattice field theory at finite density in terms of dual

variables, i.e., loops of flux and surfaces. In the dual representation the complex action problem of the

conventional formulation is resolved and Monte Carlo simulations at arbitrary chemical potential become

possible. A suitable algorithm based on plaquette occupation numbers and link fluxes is introduced and we

analyze the model at zero temperature and finite density both in the weak and strong coupling phases. We

show that at zero temperature the model has different first order phase transitions as a function of the

chemical potential both for the weak and strong coupling phases. The exploratory study demonstrates that

alternative degrees of freedom may successfully be used for Monte Carlo simulations in several systems

with gauge and matter fields.
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I. INTRODUCTORY REMARKS

In the last three decades lattice quantum chromodynam-
ics (QCD) has seen an impressive development into a
reliable tool for obtaining nonperturbative results in hadron
physics. However, for one important application, the study
of QCD at finite density, the lattice formulation has so far
not lived up to our expectations. The reason is that for
nonzero chemical potential the fermion determinant is
complex and cannot be interpreted as a probability in a
Monte Carlo simulation. Various approaches to circumvent
this problem were explored and the reviews at the annual
lattice conferences provide a regular update [1,2].

An interesting approach to lattice systems with a complex
action problem is to search for a mapping to alternative
variables where the partition sum is a sum over real and
positive contributions such that in terms of the new variables
the complex action problem is gone. Even for theories with-
out a complex action problem an alternative representation of
the partition sum could allow for improved Monte Carlo
simulations with new algorithmic ideas. A prominent simple
example is the worm algorithm [3] for spin systems such as
the Ising model which is based on a representation of the
partition sum in terms of closed loops of Z2 flux.

In recent years several examples for new algorithmic
approaches that are based on transformations of lattice field
theories to new variables were presented for a wide range
of applications: low dimensional systems [4], strongly
coupled lattice field theories [5], systems with 4-fermi
interactions [6], effective theories for QCD [7,8], scalar
field theories [9–13] and U(1) lattice gauge theory [14,15].
Similar in spirit, simulations directly based on the Trotter
formula for lattice field theories in Hamiltonian approach
were explored [16]. Many interesting conceptual and algo-
rithmic ideas emerged in these papers and systems that
previously were not fully accessible to Monte Carlo simu-
lations can now be explored.

So far the studies with alternative variables (dual varia-
bles) were mostly concerned with fluxlike structures living
on links, with the exception of the studies [14,15] of pure
U(1) gauge theory where the dual variables are surfaces. In
theories where gauge fields interact with matter fields, such
as QCD, quantum electrodynamics or gauge-Higgs sys-
tems a dual representation will contain both: surfaces for
the gauge fields and fluxes for matter fields which serve as
boundaries for open surfaces.
In this article we develop the idea of using dual represen-

tations for simulations of lattice field theories further and
explore dual representations for the Z3 gauge-Higgs sys-
tems. This is a first step towards systems which couple gauge
and matter fields and where surfaces interacting with fluxes
appear in the dual representation. As a matter of fact all
Abelian gauge-Higgs theories have a dual representation
similar to the one we here discuss for the Z3 case and the
techniques presented here can be adapted to other Abelian
cases. The choice to use the gauge group Z3 in this explor-
atory study is partly motivated by the possibility to couple a
chemical potential and to explore finite density physics for
Z3, which as the center group of SU(3) plays an interesting
role in the phenomenology of QCD. At zero temperature we
explore the various phase transitions as a function of the
chemical potential. The main goal of this work is to develop
further alternative representations of lattice field theories and
their use in Monte Carlo simulations.
In the next section we derive the dual representation of

the partition sum in terms of fluxes and surfaces. In Sec. III
we discuss observables and develop our strategy for the
Monte Carlo simulation in terms of the dual variables. In
Sec. IV we first compare the dual simulation of pure Z3

lattice gauge theory and the full system at � ¼ 0 to results
from a Monte Carlo calculation in the conventional
approach. This is followed by the presentation of the
results at finite density (Sec. V). A summary in Sec. VI
completes the paper.
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II. DUAL REPRESENTATION OF THE
Z3 GAUGE-HIGGS MODEL

In this section we discuss the derivation of the dual
representation for the Z3 gauge-Higgs model on the lattice.
Both the Higgs and the gauge variables are elements of the

group Z3 ¼ f1; ei2�=3; e�i�=3g, and it is possible to couple a
chemical potential �. In the conventional representation
the model then has a complex action problem at �> 0.

The Higgs field variables �x live on the sites of a

N3
s � Nt lattice and are parametrized as �x ¼ eisx2�=3

with sx 2 f�1; 0;þ1g. The gauge fields live on the

links and are written as Ux;� ¼ eiax;�2�=3 with ax;� 2
f�1; 0;þ1g. For both fields periodic boundary conditions
are used in all four directions. The action S ¼ SG þ SH is
split into a gauge action SG and the action for the Higgs
field SH. For the gauge action we use Wilson’s form
(without constant term),

SG ¼ ��

2

X
x

X
�<�

½Ux;�� þU?
x;���; (1)

where the double sum runs over all plaquettes Ux;�� ¼
Ux;�Uxþ�̂;�U

?
xþ�̂;�U

?
x;�. The action for the Higgs field in a

gauge field background configuration is

SH ¼ ��
X
x;�

½e�	�;4�?
xUx;��xþ�̂ þ e��	�;4�?

xU
?
x��̂;��x��̂�:

(2)

The hopping terms in the 4-direction (¼temporaldirection)
are coupled to the chemical potential �. The factor �
controls the coupling between the Higgs and the gauge
fields. Essentially it plays the role of an inverse Higgs
mass: If the Higgs field is infinitely heavy (� ¼ 0) it
decouples from the dynamics of the system. The partition
sum is obtained by summing the Boltzmann factor over all
possible configurations

Z ¼ X
fs;ag

e�SG�SH ; (3)

with

X
fs;ag

¼
�Y

x

X1
sx¼�1

��Y
x;�

X1
ax;�¼�1

�
: (4)

For deriving the dual representation of the Higgs field
action we use two identities which may be checked by
explicit evaluation of both sides of the equations for the
three cases s ¼ �1, 0,1. For the spatial nearest neighbor
terms without chemical potential we use (s ¼ �1,0, 1)

expð�ei2�3 s þ �e�i2�3 sÞ ¼ C�

X1
k¼�1

Bjkj
� ei

2�
3 sk;

C� ¼ e2� þ 2e��

3
; B� ¼ e2� � e��

e2� þ 2e��
:

(5)

For the temporal hops where the chemical potential enters
we need (s ¼ �1, 0, 1)

expð�e�ei2�3 s þ �e��e�i2�3 sÞ ¼ X1
k¼�1

Mke
i2�3 sk;

Mk ¼ 1

3

�
e2� coshð�Þ þ 2e�� coshð�Þ

� cos

� ffiffiffi
3

p
� sinhð�Þ � k

2�

3

��
: (6)

These auxiliary formulas are now used in an expansion of
the Boltzmann factor. We find (the index j runs from 1 to 3,
V ¼ N3

s is the spatial volume and we use the representa-

tions �x ¼ eisx2�=3 and Ux;� ¼ eiax;�2�=3)Y
x;�

expð�e�	�;4ei
2�
3 ½sxþ�̂�sxþax;��

þ �e��	�;4e�i2�3 ½sxþ�̂�sxþax;��Þ
¼ C3V

�

X
fkg

�Y
x;j

B
jkx;jj
� ei

2�
3 ½sxþĵ�sxþax;j�kx;j

�

�
�Y

x

Mkx;4e
i2�3 ½sxþ4̂�sxþax;4�kx;4

�
: (7)

We have introduced the shorthand notation
P

fkg ¼Q
x;�

P
1
kx;�¼�1 for the sum over all configurations of the

expansion indices k. Inserting the expanded Boltzmann
factor into the partition sum for the Higgs field in a given
gauge field background (represented by the coefficients
a�;x) we find

ZH½a� ¼
X
fsg
e�SH ¼ C3V

�

X
fkg

�Y
x;j

B
jkx;jj
�

��Y
x

Mkx;4

�

�
�Y
x;�

ei
2�
3 ax;�kx;�

��Y
x

X1
sx¼�1

e
�i2�3 sx

P
�

½kx;��kx��̂;���
;

(8)

where we have suitably reorganized the product over the
link terms. The product of sums in the last term of this
expression is the remaining sum over the configurations of
the Higgs fields (parametrized by sx). Each of the individ-
ual sums over the sx vanishes, unless

P
�½kx;� � kx��̂;��

is a multiple of 3. It is useful to define the triality function
TðnÞ as

TðnÞ ¼
(
1 if nmod 3 ¼ 0;

0 if nmod 3 � 0:
(9)

Using the triality function TðnÞ we write the Higgs-field
partition sum as

ZH½a� ¼ C3V
� 3V

X
fkg

�Y
x;j

B
jkx;jj
�

��Y
x

Mkx;4

��Y
x;�

ei
2�
3 ax;�kx;�

�

�
�Y

x

T

�X
�

½kx;� � kx��̂;��
��
: (10)
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The last factor implements a constraint at each site x, i.e.,
the net flux through x, given by

P
�½kx;� � kx��̂;��, has to

vanish modulo 3.
If the net flux through a site were to vanish exactly

(not only modulo 3) the constraint would imply that only
closed loops of flux are allowed. The fact that the net flux
through each site vanishes only modulo 3 augments the
closed loop condition with an additional rule allowing
three units of flux to emerge from a site or to vanish at
a site.

The next step is to use the flux representation (10) for
the Higgs part in the expression for the full partition sum.

The Boltzmann factor for the gauge part is also expanded,
reusing the identity (5) in the form (a ¼ �1, 0, 1)

exp

�
�

2
ei

2�
3 a þ �

2
e�i2�3 a

�
¼ C�

X1
p¼�1

Bjpj
� ei

2�
3 ap;

C� ¼ e� þ 2e�
�
2

3
; B� ¼ e� � e�

�
2

e� þ 2e�
�
2

:

(11)

Representing the Boltzmann factor for the gauge fields
with this formula and inserting it in the full partition sum
we find after some reordering of terms

Z¼X
fag
e�SGZH½a�¼C3V

� 3VC6V
�

X
fp;kg

�Y
x;j

B
jkx;jj
�

��Y
x

Mkx;4

�� Y
x;�<�

B
jpx;��j
�

��Y
x

T

�X
�

½kx;��kx��̂;��
��

�
�Y
x;�

X1
ax;�¼�1

exp

�
i
2�

3
ax;�

�X
�<


½px;�
�px�
̂;�
��
X

<�

½px;
��px�
̂;
��þkx;�

���
: (12)

We have introduced plaquette occupation numbers px;��

which may assume the values�1, 0 andþ1 and for unique
labeling of the plaquettes we only consider px;�� with
�< �. As before, by

P
fpg we denote the sum over all

configurations of the px;��. The last product of sums in
(12) gives rise to triality constraints for all links which
combine the plaquette occupation numbers of all pla-
quettes attached to that link and the k flux residing on
that link. In a more compact notation the final result for
the partition sum of the Z3 gauge-Higgs model reads

Z ¼ C
X
fpg

X
fkg

CP½p; k�CF½k�W P½p�W F½k�: (13)

The first sum runs over all configurations of the integer
valued plaquette occupation variables px;�� 2 f�1; 0;þ1g
assigned to the plaquettes of the lattice, while the second
sum is over all configurations of the flux variables kx;� 2
f�1; 0;þ1g living on the links of the lattice. The flux
variables k are subject to the constraint CF½k� given by

CF½k� ¼
Y
x

T

�X
�

½kx;� � kx��̂;��
�
; (14)

which enforces the conservation of k flux modulo 3 at each
site of the lattice [see (9) for the definition of TðnÞ]. This
flux conservation restricts the admissible configurations to
closed oriented loops of k flux. A second constraint,

CP½p;k�¼
Y
x;�

T

�X
�<


½px;�
�px�
̂;�
�

� X

<�

½px;
��px�
̂;
��þkx;�

�
; (15)

connects the plaquette occupation numbers p with the k
variables: At every link it enforces the combined flux of the
plaquette occupation numbers attached to that link plus the

k flux on that link to vanish modulo 3. Similar to the closed
loop interpretation for the k flux, the link constraint forces
the plaquette occupation numbers p into forming closed
surfaces, or open surfaces bounded by loops of k flux, and
again the surface rule is augmented by the modulo 3
exemption as for the fluxes.
Both the plaquette occupation numbers and the fluxes

come with corresponding weight factors, given by

W P½p� ¼
Y

x;�<�

B
jpx;��j
� ;

W F½k� ¼
�Y
x;j

B
jkx;jj
�

��Y
x

Mkx;4

�
;

(16)

where the explicit expressions for B� and B� are given in

(5) and (11). The partition sum (13) comes with an overall
normalization factor C ¼ ð35C3

�C
6
�ÞV where V ¼ N3

s and

C� and C� are given in (5) and (11).

III. OBSERVABLES AND MONTE CARLO UPDATE

Having mapped the partition sums onto the dual varia-
bles we now also need to identify the representation of the
observables in terms of the dual degrees of freedom. In this
exploratory study we concentrate on thermodynamical
observables, i.e., observables that are obtained as deriva-
tives of lnZ with respect to the various couplings [17]. For
the gauge sector we obtain the average plaquette hUi and
the corresponding susceptibility �U as first and second
derivatives with respect to the inverse gauge coupling �,

hUi ¼ 1

6N3
sNt

@

@�
lnZ; �U ¼ 1

6N3
sNt

@2

@�2
lnZ: (17)

Both observables are normalized by the total number of
plaquettes. The � dependence of the dual representation is
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encoded in the weight factors given by the product (16)

over powers Bjpj
� of the factors B� defined in (11). There is

an additional � dependence from the overall factor C
which also contains B�. This factor is necessary for the

correct representation of the observables listed in (17).
It is straightforward to evaluate the expressions (17) in

the dual representation and one obtains

hUi¼B�þ 1

6N3
sNt

B0
�

B�

� X
x;�<�

jpx;��j
�
;

�U¼B0
�þ

1

6N3
sNt

B00
�B��ðB0

�Þ2
B2
�

� X
x;�<�

jpx;��j
�

þ 1

6N3
sNt

�B0
�

B�

�
2
��� X

x;�<�

jpx;��j
�
2
�
�
� X
x;�<�

jpx;��j
�
2
�
:

(18)

For the Higgs sector we study the particle number
density n and the corresponding susceptibility �n which
may be obtained as derivatives with respect to � (again
normalized with the 4-volume):

n ¼ 1

N3
sNt

@

@�
lnZ; �n ¼ 1

N3
sNt

@2

@�2
lnZ: (19)

The corresponding observables in the dual representation
are

n ¼ 1

N3
sNt

hR1N 1 þ R0N 0 þ R�1N �1i;

�n ¼ 1

N3
sNt

½hQ1N 1 þQ0N 0 þQ�1N �1i

þ hðR1N 1 þ R0N 0 þ R�1N �1Þ2i
� hR1N 1 þ R0N 0 þ R�1N �1i2�: (20)

We introduced the abbreviations N s, s ¼ �1, 0, 1 for the
total number of temporal link variables kx;4 that have a

value s ¼ �1, 0, 1. TheRk andQk with k¼�1, 0, 1 denote
the ratios Rk ¼ M0

k=Mk and Qk ¼ ½M00
kMk � ðM0

kÞ2�=M2
k ,

where the Mk are the factors defined in (6) and the primes
are used for their derivatives with respect to �.

Although the partition sums and the observables may
seem somewhat involved in the dual representation, the
dual Monte Carlo update turns out to be rather simple. We
begin its discussion with introducing an update for pure
gauge theory which in the next section we study as a first
test case. The pure gauge update then serves as the starting
point for developing the full algorithm where we will
augment the pure gauge algorithm with another simple
step to update the Higgs field as well.

In the dual representation the pure gauge theory is a
theory of only the plaquette variables and the partition sum
can be written as [see (13)],

ZG ¼ X
fpg

CP½p�WP½p�; (21)

where the sum is over configurations of the plaquette
occupation numbers px;�� 2 f�1; 0; 1g. The constraint

CP½p� is simply the plaquette constraint (15) evaluated
for the case when all k fluxes are set to kx;� ¼ 0. The
constraint is a product over all links and for each link the
oriented flux of all plaquettes attached to that link has to be
a multiple of 3 [see (15)]. As discussed in the previous
section the constraints give rise to the occupied plaquettes
forming surfaces. Here, where we consider pure gauge
theory, we have only closed surfaces since without matter
fields there are no k fluxes that could serve as boundaries of
open surfaces.
For the update of the plaquette variables we start from a

configuration of the plaquette occupation numbers px;��

where all the link constraints are satisfied, using the sim-
plest choice, i.e., the trivial configuration with px;�� ¼ 0
for all x and all �, �. Starting from the trivial configuration
we offer trial configurations which leave the constraints
intact and accept them with the usual Metropolis
probability.
The trial configurations are generated by increasing or

decreasing the plaquette occupation numbers on the faces
of 3-cubes which we embed in four dimensions. Let
1 � �1 < �2 < �3 � 4 denote the three directions that
define the 3-cube. Then there are four possible choices of
the �i, i.e., four different 3-cubes can be embedded in four
dimensions. Once the three directions �i are fixed we select
a site x for the lower left front corner of the cube and
change the plaquette occupation numbers on the faces of
the cube by �1 according to one of the two possibilities
depicted in Fig. 1.
To take into account the fact that the plaquette occupa-

tion numbers are restricted to�1, 0 andþ1, the addition of
�1 is understood only modulo 3. Addition modulo 3 is
defined as the usual addition of the numbersþ1, 0 and�1,
except for the two casesþ1þ 1 � �1 and�1� 1 � þ1.
It is easy to check that the two changes illustrated in
Fig. 1 leave the constraints at the sides of the cubes intact.
The two possible changes are proposed with equal proba-
bility and are then accepted with the usual Metropolis
probability. The corresponding acceptance rate is a product

−1

ν

ν
ν

1
2

3

+1

−1

+1 −1
+1

−1

+1

+1

−1
+1

−1

FIG. 1. Cube update: We illustrate the changes we propose for
the plaquette occupation numbers at the faces of an embedded
3-cube with edges along the directions 1 � �1 < �2 < �3 � 4.
The two choices in the lhs and rhs figures are proposed with
equal probability.
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of factors ðB�Þ�1 according to the plaquette occupation

numbers at the faces of the cubes [see Eq. (16)]. A full
cube sweep is a loop over all four possible embeddings of
3-cubes and over the N3

s � Nt possibilities to place a
particular cube.

On a finite lattice with periodic boundary conditions
there are additional admissible configurations of the pla-
quette occupation numbers which are not properly treated
by the cube updates alone. They consist of surfaces that
close around the periodic boundaries. To take them into
account we offer an additional set of trial configurations,
where we change all plaquette occupation numbers in a
plane by �1 (addition is again understood modulo 3) and
accept this change with the corresponding Metropolis
probability which is a product of powers of B� according

to the plaquette occupation numbers on the plane of the
trial configuration. For a complete ‘‘plane sweep’’ we offer
this change for all possible planes (six possible orientations
of the planes with N2

s or NsNt slices for each orientation).
For the update of pure gauge theory we mix plane and cube
sweeps.

For updating the full gauge-Higgs systems also the
matter fields need to be taken into account. They are
represented by the link variables. The update of the k fluxes
is more interesting since they enter in two constraints: At
each site the total flux of the k variables has to vanish
modulo 3. Furthermore, at each link the corresponding k
flux enters the constraint for the plaquette occupation
numbers attached to that link. To deal with this situation
we use proposal configurations that change a plaquette
occupation number and the k fluxes at the links of that
plaquette. The two choices for such a change are depicted
in Fig. 2, where 1 � �1 < �2 � 4 are the two directions
that define the plane of the plaquette.

It is easy to see that the two moves we propose do not
change the constraints on the sites or on the links (addition
is again only understood modulo 3 as for the cube and
plane updates). The two changes in Fig. 2 are proposed
with equal probability and are accepted with the
Metropolis acceptance rate. This is a product of a ratio of
the plaquette weights B� and a product over ratios of the

four link weights, i.e., powers of B� for the spatial links,

and factors Mk for the temporal links. A full plaquette

sweep then consists of a loop over all six embeddings of
the planes of the plaquettes and all N3

s � Nt possibilities to
place the plaquette.
To summarize, for updating the full gauge-Higgs model

we use combined sweeps that mix full cube sweeps, full
plane sweeps and full plaquette sweeps for the k variables.
It is interesting to note that when the Higgs field is

coupled, i.e., for �> 0, the cube and plane sweeps could
be omitted and it would be sufficient to work with the
plaquette sweeps alone. The reason is that a cube update
can be achieved by six plaquette updates, and a plane
sweep by a combination of plaquette updates in the
respective plane. However, we found that in particular
omitting the cube updates may lead to a poorer perform-
ance of the algorithm in cases where the weights for the k
fluxes are small. We remark that for the Higgs model
without gauge fields a very efficient worm algorithm [3]
can be constructed, and also for the full Z3 case a surface
type of generalization of the worm idea is possible [18]
(see also Ref. [15] for tests in this direction).

IV. COMPARISON WITH CONVENTIONAL
�¼ 0 RESULTS

A. Pure gauge theory

Having discussed the dual representation and the
Monte Carlo algorithm in the dual picture we now come
to the evaluation of the dual Monte Carlo approach. As a
warm-up exercise we begin with the case of pure gauge
theory, where the Monte Carlo update is based on the cube
and plane updates. The observables we consider are the
plaquette expectation value hUi and the corresponding
susceptibility �U. Their definitions and the corresponding
dual expressions are given in (17) and (18).
In Fig. 3 we show the results for hUi and �U in pure Z3

lattice gauge theory (� ¼ 0), and compare the outcome of
the dual simulation (circles) to the results from the con-
ventional approach (crosses) using lattices with volumes of
size 104. The statistics is 10000 configurations separated
by ten cube sweeps and one plane sweep and another
10000 cube sweeps mixed with 1000 plane sweeps were
used for equilibration. All errors we show in this work are
statistical errors determined with the jackknife method.
Figure 3 shows that the results of the dual simulation

perfectly agree with the outcome of the conventional
approach. Near �c � 0:7 the system apparently undergoes
a quite prominent first order transition which separates the
strong (�<�c) and weak coupling (�>�c) phases, and
also near the transition the results for the first and second
derivatives of the free energy (i.e., hUi and �U) obtained
with the conventional and dual approaches agree perfectly.
We conclude that for the case of pure Z3 lattice gauge
theory the mapping to the dual representation, the identi-
fication of the observables and the simulation with the cube
and plane algorithms work.

−1
+1

−1

−1

+1
+1

ν
ν

1
2

+1
+1

−1

−1

FIG. 2. Plaquette update: We illustrate the changes we propose
for the plaquette occupation numbers at the plaquette and the
corresponding changes of the flux variables at the links of the
plaquette. The directions 1 � �1 < �2 � 4 determine the plane
of the plaquette and the two choices in the lhs and rhs figures are
proposed with equal probability.
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It is interesting to inspect the acceptance rate for the

plane sweeps. We find that the acceptance is zero for the

strong coupling phase, i.e., for�<�c. For a small volume

of size 44 we then see the onset of nonzero acceptance at

�c � 0:7 reaching a value of 0.28 at � ¼ 1:0. Repeating
the same analysis on volumes of size 104 we again find

nonzero acceptance only above �c � 0:7, but the increase
with � is much slower, and at � ¼ 1:0 we still see an

acceptance rate smaller than 0.01. We conclude that the

nontrivially winding sheets of occupation are a finite size

effect that very quickly dies out with increasing volume.
At this point we remark that the case of pure U(1) gauge

theory in a dual representation which is similar to our Z3

form [19] has been studied numerically in Refs. [14,15]
(see also the discussion in Ref. [2]). The algorithms in
Ref. [14] are very similar to our updates (however, partly
without the global plane updates). In Ref. [15] defects (i.e.,
boundaries) are introduced for the surfaces and a general-
ization of the worm algorithm [3] to surfaces is explored.

B. The full Z3 gauge-Higgs model at �¼ 0

Let us now come to the full Z3 gauge-Higgs model.
Again we would like to test the dual approach and verify
its validity by comparison with a conventional simulation,
which is possible for � ¼ 0.
For checking the correct implementation of the dual

approach we compare the results for simulations at �¼0
using two different values of the coupling � (� ¼ 0:1 and
� ¼ 0:5) and plot the observables as a function of �. In
Figs. 4 and 5 we show the results for hUi (lhs plots) and �U

(rhs) as a function of �. Figure 4 is for � ¼ 0:1 and Fig. 5
for � ¼ 0:5. We compare the results from a conventional
simulation (crosses) to the outcome from the dual approach
(circles) and again use volumes of size 104 and the same
sequence and amount of the different update sweeps as for
pure gauge theory.
For � ¼ 0:1 the first order transition persists and we see

very little change in our observables hUi and �U when
comparing the results to pure gauge theory. Again we
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FIG. 3 (color online). Results for plaquette hUi (lhs plot) and the plaquette susceptibility �U in pure Z3 gauge theory as a function of
the inverse gauge coupling �. We compare the conventional (crosses) and the dual approach (circles).
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FIG. 4 (color online). Results for hUi (lhs plot) and �U in full Z3 gauge-Higgs theory at � ¼ 0:1 and � ¼ 0:0 as a function of the
inverse gauge coupling �. We compare the conventional (crosses) and the dual approach (circles).
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observe that the results from the dual simulation and the
conventional approach match very well. However, since at
� ¼ 0:1 and vanishing chemical potential � the influence
of the Higgs field seems to be small, we consider a second,
larger value of �.

The results for hUi and �U at � ¼ 0:5 and � ¼ 0:0 are
shown in Fig. 5. We now observe quite a change in the
behavior of the observables in comparison to the pure
gauge and � ¼ 0:1 cases. The phase transition has appar-
ently disappeared and we only find a smooth crossover type
of behavior between the strong and weak coupling phases.
The maximum of the susceptibility �U has shifted to rather
small values—the crossover takes place near � ¼ 0:28.
The important fact is that, also here at a larger value of
�, where obviously the Higgs field has a much stronger
influence, the results from the conventional approach and
the dual simulation agree very well, again confirming the
correctness of the implementation of the dual approach.

V. THE Z3 GAUGE-HIGGS MODEL
AT FINITE DENSITY

Let us now come to the more interesting case of finite
density. Here conventional simulations fail and the full
potential of the dual approach can be unveiled. Before
we start with the presentation of Monte Carlo results we
first discuss some characteristic features of the dual repre-
sentation at finite density.

A. Finite density dynamics in the dual representation

The dual representation of the Z3 gauge-Higgs model
uses two sets of degrees of freedom: the plaquette occupa-
tion numbers p and the fluxes k. For the analysis of the
mechanisms that drive the systems at finite density it is
useful to think a little bit about the dynamics of the dual
variables, and this subsection is devoted to that task.

The dual degrees of freedom assume values in
f�1;0;þ1g, i.e., px;��2f�1;0;þ1g and kx;�2f�1;0;þ1g.

A trivial value of the plaquette occupation number, i.e.,
px;�� ¼ 0, comes with a Boltzmann factor of 1 [compare

(16)], while nontrivial values px;�� � 1 give rise to a factor
of B� < 1 [see (11) for the definition of B�]. Thus non-

trivial values of plaquette occupation numbers p are sup-
pressed by their Boltzmann factor. On the other hand
configurations with many px;�� � 0 have a much higher

entropy and (as always) the interplay of entropy and
Boltzmann factor gives rise to the first order transition of
the pure gauge theory discussed in Sec. IVA. The corre-
sponding observables hUi and �U are simple functions of
the plaquette occupation numbers and their fluctuations.
We stress at this point that both observables have a
�-dependent additive term [compare (18)]. For the pla-
quette expectation value the additive term is given by B�,

and hUi is nonvanishing for �> 0 even when all plaquette
occupation numbers p are trivial, since B� > 0 for �> 0.

Similar to the plaquette occupation numbers, the spatial
flux variables kx;j, j ¼ 1, 2, 3, have a Boltzmann factor of 1

for kx;j ¼ 0 and a Boltzmann factor B� < 1 for kx;j ¼ �1

[see (16)]. As for the case of the plaquette occupation
numbers, we find for the k variables that trivial values of
the spatial fluxes are preferred by the Boltzmann factor.
The temporal flux variables kx;4 are connected with the

Boltzmann factors Ms with s 2 f�1; 0; 1g defined in (6).
For �> 0 we have Mþ1 >M�1 (see also the discussion
below) and temporal flux with kx;4 ¼ þ1 is favored over

negative temporal flux, i.e., kx;4 ¼ �1.
To illustrate the physical picture in terms of the dual

representation, in Fig. 6 we show a few low-lying excita-
tions of the Z3 gauge-Higgs model in the dual representa-
tion. Thick red lines oriented with arrows are used for the k
flux and filled blue squares for nonvanishing plaquette
occupation numbers, and the circles in the squares indicate
the orientation of the plaquette according to the sign of
the corresponding plaquette occupation number px;��. The

simplest excitations (the lhs diagram in Fig. 6) are an
occupied plaquette surrounded by flux. At each link the
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FIG. 5 (color online). Same as in Fig. 4, but nowe � ¼ 0:5.

GAUGE AND MATTER FIELDS AS SURFACES AND LOOPS . . . PHYSICAL REVIEW D 86, 094506 (2012)

094506-7



flux is compensated by the plaquette. Occupied plaquettes
with suitable relative orientation can be attached to each
other (see the example in the center diagram). At the link
where they are joined the flux is absent and the contribu-
tions from the plaquette occupation numbers compensate.
Finally the excitation in the rhs diagram makes use of the
fact that flux and plaquette numbers need to vanish only
modulo 3. Three units of flux emerge from a site, travel in
time and then terminate at another site. The constraints are
again saturated with plaquettes, such that at the central
temporal link three plaquettes together obey the constraint.
This excitation, which resembles a baryon, carries three
factors of Mþ1 and thus is enhanced by the chemical
potential.

Without chemical potential the Boltzmann factor for
the excitations shown in Fig. 6 follows a simple rule: The
more nonvanishing plaquette occupation numbers p and

fluxes k a configuration has, the lower is the corresponding
Boltzmann weight, and the dynamics discussed in
Sec. IVB for the full Z3 gauge-Higgs system at � ¼ 0 is
again determined by the interplay of entropy and
Boltzmann weight.
The situation is more complex when the chemical

potential � is turned on. Then the weights for the temporal
flux variables kx;4 obeyMþ1 >M�1 and the probability for

positive temporal fluxes is increased relative to the proba-
bility for negative fluxes. In the lhs plots of Fig. 7 we show
the ratios Mþ1=M0 and M�1=M0 as a function of � using
� ¼ 0:1. The Metropolis probabilities for accepting a step
from kx;4 ¼ 0 to kx;4 ¼ þ1 and kx;4 ¼ �1, respectively,
are given by maxð1;Mþ1=M0Þ and maxð1;M�1=M0Þ. We
see that for all � � 0 we have Mþ1=M0 >M�1=M0 and
temporal fluxes kx;4 ¼ þ1 are always favored over nega-

tive ones. For values of � up to �� 2:8 the discrepancy
between Mþ1=M0 and M�1=M0 remains large and the
nonzero chemical potential pumps positive temporal k
flux into the system. However, this k flux has to be com-
pensated by plaquettes which costs Boltzmann weight and
dampens the increase of temporal flux with kx;4 ¼ þ1.
This interplay between the pumping with � and the damp-
ing by the Boltzmann factor of the plaquette variables can
give rise to a phase transition at some critical value of �,
when the positive temporal k flux starts to dominate and
drags along the plaquette occupation numbers. In the next
subsection we will see that this is indeed the case for
suitable values of the couplings.
It is, however, important to note that for�> 2:8 the two

ratios Mþ1=M0 and M�1=M0 start to approach each other
again and they both have limit 1 for large �. This implies
that at large values of � the probabilities for temporal
fluxes kx;4 ¼ þ1, kx;4 ¼ 0 and kx;4 ¼ �1 are equal, and

tim
e

space

FIG. 6 (color online). Examples of low-lying excitations in the
dual representation of the Z3 gauge-Higgs model. We use thick
lines with arrows for the k flux variables and squares (with a
circle showing the orientation) for the plaquette occupation
numbers p. The rules for admissible configurations dictate
that at each site the total flux from the k variables has to be a
multiple of 3. In addition for each link the combined flux of k
variables and plaquette occupation numbers p also has to be a
multiple of 3.
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FIG. 7 (color online). Lhs: The ratios Mþ1=M0 and M�1=M0 that determine the transition from temporal flux kx;4 ¼ 0 to kx;4 ¼ þ1
and kx;4 ¼ �1 as a function of � at � ¼ 0:1. Rhs: The coefficients Rs ¼ M0

s=Ms that determine the contributions of temporal flux

kx;4 ¼ s with s 2 f�1; 0;þ1g to the particle number density n in the dual representation (20).
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the chemical potential does not favor an orientation for the
kx;4. Thus for sufficiently large � the Boltzmann factor of

the plaquette occupation numbers may again dominate the
physics. This raises an interesting question that then has to
be answered in this region: How can the particle number
density n keep growing with� if the weightsMs that drive
the � dependence for small � become degenerate at large
�? The answer lies in the flux representation of n given in
(20): The numbers N s, s2fþ1;0;�1g, for temporal links
with kx;4¼s are weighted with the factors Rs¼M0

s=Ms.

Also these ratios approach each other for large � and all
three grow as e� (rhs plot in Fig. 7). UsingN þ1 þN 0 þ
N �1 ¼ N3

sNt we conclude from (20) that for large � we
have n / Rs / �e�. In the plots for n and �n of Fig. 8 we
display these limiting curves and find that the Monte Carlo
data nicely approach the expected asymptotic behavior.
We found similarly good asymptotic behavior also for
the weak coupling results shown in Fig. 11, but since there
we use a smaller interval on the x axis this is not entirely
obvious from the plots.

It is a remarkable feature of the dual representation that
part of the behavior of observables (e.g., the asymptotic
behavior in the above example) is already encoded in the
expansion factors of the partition sum and the representa-
tion of the observables in terms of dual variables.

B. Finite density results at strong coupling

Let us now come to the numerical results at finite
density. We numerically analyzed the finite density behav-
ior for both values of� that were considered in Sec. IV, i.e.,
� ¼ 0:1 and � ¼ 0:5. For the � ¼ 0:5 case we did not find
transitions as a function of � and thus do not present the
corresponding results in this exploratory study. Instead we
focus on � ¼ 0:1 and study the system for two couplings
on both sides of the transition located at �c � 0:7. We
begin with the value � ¼ 0:6 in the strong coupling region
in this subsection, continuing with � ¼ 0:8 in the weak
coupling regime in the next subsection.
For the finite density study we use lattices of sizes

N3
s � 50, with Ns ranging from 2 to 12. The reason for
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FIG. 8 (color online). Results for hUi, �U, n and �n in the strong coupling region of Z3 gauge-Higgs theory (� ¼ 0:1 and � ¼ 0:6)
as a function of the chemical potential�. We compare the results for three different spatial volumes with Ns ¼ 4, 8 and 12. The dashed
curves in the plots for n and �n are the asymptotic curves expected from the behavior of the coefficients Ms for large � (see the
discussion in Sec. VA).
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the large Nt ¼ 50 is that we want to study the system at
zero temperature. Although with Nt ¼ 50 the temperature
T ¼ 1=50 ¼ 0:02 in lattice units is not exactly zero, this
value is much smaller than any other involved scale and
constitutes a good approximation of T ¼ 0. We consider
the full set of observables discussed in Sec. III, i.e., in
addition to the plaquette hUi and its susceptibility �U we
now also analyze the particle number density n and its
susceptibility �n.

In Fig. 8 we show the results for the four observables as a
function of the chemical potential � and compare runs on
N3

s � 50 lattices with different spatial extents Ns ¼ 4, 8
and 12. The data for Ns ¼ 8 and Ns ¼ 12 fall on top of
each other and only the Ns ¼ 4 data show a slight discrep-
ancy near �� 2:57 due to finite volume effects (the tran-
sition zone is shifted towards a slightly smaller �). It is
obvious that for � ¼ �c � 2:57 the system undergoes a
first order transition: Both first derivatives, the plaquette
expectation value hUi and the particle number density n
show a clear discontinuity. The corresponding susceptibil-
ities �U and �n diverge at �c, which is, however, some-
what hard to see here since the transition is so sharp: As a
matter of fact for very finely spaced values of� near�c we
find values for �n that are three orders of magnitude larger
than the scale used in the plot. A second indication that
the transition is very narrow is the fact that only forNs ¼ 4
we see small finite volume effects: The transition is

shifted slightly to the left and appears somewhat rounded
(at least for the first derivatives hUi and n). This trend
towards visible finite size effects continues when using
Ns ¼ 2 (data not shown).
Finally, a data set at 123 � 100, which corresponds to an

even lower temperature of T ¼ 0:01 in lattice units, falls
on top of the 123 � 50 data. We conclude that we reliably
describe the situation at zero temperature, and that for
� ¼ 0:1 and � ¼ 0:6 the system undergoes a very narrow
first order transition at �c � 2:57.
From the fact that the plaquette undergoes such a drastic

change at �c we conclude that the gauge dynamics plays
an important role in the transition. This is also reflected in
the finding that the critical value �c depends on �. For
� ¼ 0:6 we observed �c � 2:57, while for � ¼ 0:65 it is
at �c � 2:35, and �c � 3:0 for � ¼ 0:55.
Finally we point out that for large� the results for n and

�n approach the asymptotic curves / � expð�Þ (dashed
lines in the plots) which we derived in Sec. VA from the
behavior of the coefficients Ms.
To further understand the nature of the transition,

in Fig. 9 we show 3-D illustrations of the plaquette and
flux occupation numbers for a value of � ¼ 2:4<�c

(top row of plots) and � ¼ 2:7>�c. We consider three-
dimensional sections of the four-dimensional lattice with
only spatial directions (lhs pair of plots in each row) and
three-dimensional sections with the vertical direction

FIG. 9 (color online). 3-D illustration of typical configurations of plaquette occupation numbers p and fluxes k in the strong coupling
phase (� ¼ 0:6, � ¼ 0:1) for � ¼ 2:4<�c (top row of plots) and for � ¼ 2:7>�c (bottom). We use three-dimensional sections of
the lattice embedded in four dimensions and show purely spatial sections (first and second plot in each row) and sections where the
vertical direction is time (third and fourth plot). In each pair the lhs section shows the nontrivial plaquette occupation numbers and the
rhs plot the nontrivial link variables.
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being time (rhs pair of plots). In each pair the lhs section
illustrates the plaquette occupation numbers (plaquettes
with p ¼ þ1 are blue; those with p ¼ �1 are red), while
the rhs section of each pair displays the corresponding
fluxes (links with k ¼ þ1 are blue; those with k ¼ �1
are red).

It is obvious that below �c (top row of plots) the occu-
pation numbers for plaquettes and for fluxes are very small,
while for �>�c (bottom) we see a large abundance of
nonzero occupation numbers. The transition thus is be-
tween a dilute phase where all occupation numbers are
small and a condensed phase characterized by high occu-
pation numbers for both fluxes and plaquettes. Furthermore,
a close inspection of the 3-D plot for the fluxes at �>�c

on the temporal section (lower right plot) shows that posi-
tive temporal flux (vertical blue lines in the plot) dominates,
as expected from the finite density picture in terms of the
dual variables discussed in the previous subsection.

We remark at this point that the value of hUi � 0:35
which we observe below �c is mainly due to the constant
term in the dual representation (18). Here we use � ¼ 0:6
for the inverse gauge coupling and the constant term has a
value of 0.327. Thus also at very low plaquette occupation
numbers p the plaquette has a value of hUi � 0:35 at
� ¼ 0:6. The jump of hUi� from 0.35 to almost 1 at �c

is due to the condensation of nontrivial plaquette occupa-
tion numbers p as is obvious from Fig. 9.

To further illuminate the picture of a condensation of the
plaquette occupation numbers triggered by temporal k flux
enhanced by �, we now look at plots for the occupation
numbers for plaquettes and fluxes as a function of the
chemical potential �. Figure 10 shows the number of
nontrivial spatial plaquettes Ps, i.e., the total number of
px;�� � 0, the number of temporal nontrivial plaquettes Pt

(px;�4 � 0), the number of nontrivial spatial fluxes S
(kx;j � 0), and the numbers of positive and negative tem-

poral fluxes Tþ and T� (kx;4 ¼ þ1 and kx;4 ¼ �1). All
these occupation numbers are normalized such that the
maximally possible occupation number is 1.

The occupation numbers for spatial (Ps) and temporal
(Pt) plaquettes essentially vanish below �c and then take a
jump where both show an occupation of roughly 0.37, with
the temporal plaquettes slightly enhanced. This behavior
clearly reflects the condensation of the plaquettes we had
discussed above. Similarly the occupation number S for the
spatial flux nearly vanishes below �c where it jumps to a
finite value. The occupation numbers for positive and nega-
tive temporal flux, Tþ and T�, show an interesting behavior:
Both essentially vanish below �c. At the transition their
degeneracy is lifted and both jump to different values. As the
chemical potential is increased further the occupation num-
bers for positive and negative temporal flux both approach
the value 1=3 (marked by a dashed horizontal line) which is
the value one expects when the corresponding Boltzmann
weights Ms become degenerate (see the discussion in the

previous subsection where we analyzed the behavior of the
weight factors Ms shown in Fig. 7).

C. Finite density results at weak coupling

We continue with the discussion of the finite density
behavior for the weak coupling region, i.e., for � ¼ 0:8
and again � ¼ 0:1. Here the situation is different since in
the weak coupling phase already at� ¼ 0we have hUi�1,
i.e., the plaquette occupation numbers are already con-
densed. As in the previous subsection we consider the
plaquette hUi, its susceptibility �U, the particle number
density n and the corresponding susceptibility �n. In
Fig. 11 we show our results as a function of �, comparing
runs on N3

s � 50 lattices with different spatial extents
Ns ¼ 4, 8 and 12.
The susceptibility �n shows clearly that also in the weak

coupling regime at � ¼ 0:8 we find a phase transition
which is located at �c � 1:35. Inspection of the particle
number density shows that n has a discontinuity at �c and
we are again dealing with a first order transition here. As
for the transition in the strong coupling regime which we
discussed in the last subsection, also here the finite volume
effects are rather small and are visible only for the Ns ¼ 4
data. The transition is very narrow and as before we remark
that the maxima in our data for �n are much higher than the
range used for the vertical axis.
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FIG. 10 (color online). Occupation numbers for the dual var-
iables at strong coupling (� ¼ 0:6, � ¼ 0:1) as a function of �
from our 124 � 50 lattices. We show the number of nontrivial
spatial plaquettes Ps, i.e., the total number of px;�� � 0, the
number of temporal nontrivial plaquettes Pt (px;�4 � 0), the
number of nontrivial spatial fluxes S (kx;j � 0), and the numbers

of positive and negative temporal fluxes Tþ and T� (kx;4 ¼ þ1
and kx;4 ¼ �1, respectively). All occupation numbers are given

as intensive quantities, normalized such that the maximally
possible occupation number is 1. The horizontal line marks the
value 1=3 which the occupation numbers Tþ and T� are ex-
pected to approach for large �.
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For the plaquette expectation value hUi the situation is
different from the strong coupling phase of the last sub-
section. Since here we start with hUi � 1 below �c, the
change of hUi at �c is rather unspectacular with the pla-
quette simply developing a mild slope. Correspondingly
the susceptibility �U shows a slight drop above �c as the
plaquette numbers become completely saturated. We con-
clude that the transition in the weak coupling phase is pre-
dominantly driven by the matter fields, i.e., the flux variables
k in the dual language. This finding is supported by the fact
that changing the coupling � from 0.8 to nearby values in
the weak coupling regime (� ¼ 0:75 and � ¼ 0:85) has no
noticeable effect on the value of �c. This underlines the
statement that the transition is driven by the flux variables
in the background of condensed plaquette occupation
numbers p.

Again we also compare the results for n and �n to the
expected asymptotic behavior (dashed curves in the plot).
We found that as in the strong coupling case the lattice data
very nicely approach the expected asymptotic behavior
(although this is not very clearly visible for the range of
� values chosen in Fig. 11).

In order to analyze the nature of the transition in the
weak coupling regime, in Fig. 12 we repeat the 3-D illus-
tration of the plaquette occupation numbers and fluxes of
the previous subsection. It is obvious that the plaquette
occupation numbers are large on both sides of the transi-
tion, and the fluxes undergo their transition in a condensed
medium of plaquette occupation numbers. The flux tran-
sition is again manifest in an abrupt increase of flux,
although with a smaller amplitude than in the strong cou-
pling phase. As before we see a dominance of positive
temporal flux above �c, i.e, vertical blue lines in the lower
right plot.
We conclude the discussion of the transition in terms of

the dual variables by again analyzing the occupation num-
bers as a function of the chemical potential. In Fig. 13 we
show the weak coupling results for nontrivial occupation
numbers of spatial and temporal plaquettes ðPs; PtÞ, of
spatial flux (S), and the occupation numbers for positive
and negative temporal flux (Tþ; T�). We use the same
definitions as in Fig. 10 for the strong coupling phase.
Obviously the plaquette occupation numbers are large for
all values of �, and only a very mild change at �c � 1:35
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FIG. 11 (color online). Results for hUi, �U, n and �n in the weak coupling regime of Z3 gauge-Higgs theory (� ¼ 0:1 and � ¼ 0:8)
as a function of the chemical potential�. We compare the results for three different spatial volumes with Ns ¼ 4, 8 and 12. The dashed
curves in the bottom plots represent the asymptotic behavior of n and �n at large �.
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is visible. The flux variables show a small step at�c which,
however, is less pronounced than in the strong coupling
case. Again we observe a strong splitting between the
positive and negative temporal fluxes which reflects the
influence of the chemical potential. At the largest values of

� we observe that the occupation numbers for positive and
negative temporal flux approach each other in agreement
with the physical picture developed on the discussion
of Fig. 7.

VI. SUMMARYAND DISCUSSION

In this article we explored the possibility of a dual
simulation of gauge theories with matter fields. Although
our study is for a simple model, the Z3 gauge-Higgs model,
it captures some of the features that are expected also for
more interesting theories, in particular the appearance of
surfaces for the gauge fields and loops of flux for matter. In
addition it was demonstrated that the complex action prob-
lem of the conventional representation at nonzero chemical
potential is solved in the dual approach.
A suitable Monte Carlo update was developed which

properly treats the constraints of flux conservation at the
sites and the surface constraints based at the links of the
lattice (both constraints are modulo 3). In a detailed com-
parison in the pure gauge case and at vanishing chemical
potential it was shown that the dual approach and the
algorithm reproduce the results from a simulation in the
conventional representation, thus establishing the validity
of the dual approach.
To test the approach at finite chemical potential�where

conventional techniques fail, we explored the behavior of
observables as a function of � for two sets of couplings in
the strong and weak coupling domains. In both cases we

FIG. 12 (color online). 3-D illustration of typical configurations of plaquette occupation numbers p and fluxes k in the weak coupling
phase (� ¼ 0:8, � ¼ 0:1) for � ¼ 1:3<�c (top row of plots) and for � ¼ 1:5>�c (bottom). We use three-dimensional sections
through the lattice embedded in four dimensions and show purely spatial sections (first and second plot in each row) and sections
where the vertical direction is time (third and fourth plot). In each pair the lhs section shows the nontrivial plaquette occupation
numbers and the rhs plot the nontrivial link variables.
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FIG. 13 (color online). Same as Fig. 11 now at � ¼ 0:8,
� ¼ 0:1: We show the number of nontrivial spatial plaquettes
Ps, the number of temporal nontrivial plaquettes Pt, the number
of nontrivial spatial fluxes S and the numbers of positive and
negative temporal fluxes Tþ and T�. The horizontal line marks
the asymptotic value 1=3 for Tþ and T�.
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found first order transitions which were discussed not only
based on usual observables, but also in terms of occupation
numbers for the dual variables. We stress at this point that
our two case studies in the strong and weak coupling
regimes do of course not constitute a systematic analysis
of the phase diagram for the Z3 gauge-Higgs model—a
task we do not aim at here.

The techniques developed in this paper can easily be
generalized to other gauge-Higgs systems with Abelian
groups [20]. The dual degrees of freedom are again sur-
faces and loops of flux, although the structure of the
constraints and the weight factors will differ for other
Abelian groups. Some of the aspects and properties found
in the Z3 system might, however, turn out to be universal
features of a dual approach:

(i) The dual formulation represents the system using only
gauge invariant degrees of freedom, i.e., suitable oc-
cupation numbers for the plaquettes and the gauge
invariant nearest neighbor terms of the matter fields.

(ii) Part of the dynamics is encoded in expansion coeffi-
cients of the partition sum and the observables (e.g.,
the asymptotic� behavior in the system studied here).

(iii) Suitable Monte Carlo algorithms turn out to be
rather simple, and at least for some cases a worm-
type generalization to surfaces may be possible.

(iv) The dual representation is not only a tool to solve
the complex action problem, but also allows for a
conclusive discussion of the mechanisms at the
various phase transitions in terms of the dual
variables.

It is obvious that the current results only present first
steps towards the more important cases of non-Abelian
gauge fields or systems with fermions. Nevertheless we
expect that some of the techniques developed in the dual
approach to Abelian gauge-Higgs systems might prove
useful also for these more interesting cases.
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