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We present the results of a calculation of the positive-parity ground-state charmed-baryon spectrum using

2þ 1þ 1 flavors of dynamical quarks. The calculation uses a relativistic heavy-quark action for the valence

charmquark, clover-Wilson fermions for thevalence light and strange quarks, and highly improved staggered

sea quarks. The spectrum is calculated with a lightest pion mass around 220MeV, and three lattice spacings

(a � 0:12 , 0.09, and 0.06 fm) are used to extrapolate to the continuum. The light-quarkmass extrapolation is

performed using heavy-hadron chiral perturbation theory up to Oðm3
�Þ and at next-to-leading order in the

heavy-quark mass. For the well-measured charmed baryons, our results show consistency with the experi-

mental values. For the controversial J ¼ 1=2�cc, we obtain the isospin-averaged valuem�cc
¼ 3595ð39Þ�

ð20Þð6Þ MeV (the three uncertainties are statistics, fitting-window systematic, and systematics from other

lattice artifacts, such as lattice scale setting andpion-mass determination),which shows a1:7� deviation from

the experimental value. We predict the yet-to-be-discovered doubly and triply charmed baryons ��
cc, �cc,

��
cc and�ccc to havemasses 3648(42)(18)(7), 3679(40)(17)(5), 3765(43)(17)(5), and 4761(52)(21)(6)MeV,

respectively.
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I. INTRODUCTION

In recent years, interest in charmed-baryon spectroscopy
has resurfaced. This excitement has been partly triggered by
the first observation of a candidate doubly charmed baryon
�þ

ccð3520Þ by SELEX [1], as well as a potential isospin
partner �þþ

cc ð3460Þ [2]. The SELEX Collaboration later
confirmed their observation of �þ

ccð3520Þ [3], but the
BABAR [4] and BELLE [5] experiments have seen no evi-
dence for either state of the isospin doublet ð�þ

cc;�
þþ
cc Þ. The

SELEX evidence for this doublet implies unprecedented
dynamics. If these two states are indeed isospin partners,
the 60-MeVmass difference between the two stateswould be
unprecedented. If they do not form an isospin doublet, then
there should be evidence for their corresponding isospin
partners. The ground-state doubly charmed baryon has
been previously studied theoretically via various methods,
including the nonrelativistic quark model [6], the relativistic
three-quark model [7], the relativistic quark model [8], QCD
sum rules [9], heavy-quark effective theory [10], the
Feynman-Hellmann theorem [11], and lattice quantum chro-
modynamics (LQCD) [12–18]. Overall, theoretical predic-
tions for this state suggest the�cc mass to be 100–200 MeV
higher than the�þ

ccð3520Þ observed by SELEX.1

There remain many undiscovered doubly and
triply charmed baryon states. The recently upgraded
Beijing Electron-Positron Collider (BEPCII) detector,
the Beijing Spectrometer (BES-III), the LHC, and the
future Gesellschaft f €ur Schwerionenforschung project,
the Antiproton Annihilation at Darmstadt (PANDA) ex-
periment, will help further disentangle the heavy-baryon
spectrum and resolve puzzles like the one mentioned
above. LQCD calculations serve as direct first-principles
theoretical input for these experiments.
Currently, LQCD provides the best option for perform-

ing reliable calculations of low-energy QCD observables.
LQCD is a numerical calculation of QCD, which is nec-
essarily performed in a finite discretized and Euclidean
spacetime volume. These approximations introduce an
infrared cutoff (the spatial extent L) and an ultraviolet
cutoff (the lattice spacing a). The latter of these artifacts
has been a source of large systematic errors in the heavy-
quark sector of QCD. For heavy-quark masses satisfying
amQ � 1, it is natural to control the discretization errors

using nonrelativistic QCD (NRQCD) [20]. NRQCD has
proven particularly useful when studying physics regard-
ing the bottom quark, but for lattice spacings � 0:12 fm
the charm-quark mass is too small to make the NRQCD
approximation justifiable. Alternatively, one can imple-
ment relativistic heavy-quark actions [21–25], where all
OððamQÞnÞ corrections are systematically removed.

Several groups have performed lattice charmed-baryon
calculations using the quenched approximation
[17,18,26,27]. Although these have served as benchmark
calculations of the charmed-baryon sector, the quenched

*briceno@uw.edu
1Only results for the�þ

ccð3520Þ [1] have been published, and this
is the only doubly charmed state recognized by the Particle Data
Group [19]; therefore, in this work, we will assume this to be the
JP ¼ 1

2
þ doubly charmedground stateandcompare the correspond-

ing theoretical predictions of this state. It is important to note that the
quantum numbers of the�þ

ccð3520Þ have not yet been identified.
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approximation is a large source of systematic error that is
difficult to estimate. Three previous groups have studied
the charmed-baryon spectrum using dynamical quarks
[12–16,28,29].

Na et al. [15,16] performed a rather extensive calcula-
tion of charm- and bottom-baryon masses at three different
lattice spacings (a � 0:15, 0.12, and 0.09 fm). They used
chiral perturbation theory ð�PTÞ-inspired polynomial ex-
trapolations of the light-quark masses but refrained from
performing a continuum extrapolation of their results.
From their results for the doubly charmed baryons, one
could infer a 40–100 MeV systematic error associated with
discretization effects.

Liu et al. [12–14] did a rather nice exploratory calcula-
tion over four different pion masses and performed what is
probably the best (to this day) chiral extrapolation of the
J ¼ 1=2þ charmed-baryon spectrum using a relativistic
heavy quark action for the charm quark. There are a few
places where this calculation could be further improved.
First, the lightest pion used in their calculation was about
290MeV; with advances in technology, we can get closer to
the physical point. For baryons with no light degrees of
freedom, this is a minor issue, but for isodoublet doubly
charmed baryons the light-quark mass dependence is non-
trivial. Second, they performed all calculations at a single
coarse lattice spacing, a � 0:125 fm, which lies near the
upper limit of reliable spacings for studying charm physics.
In their work, they used power-counting arguments to
give estimates of the discretization effects. In particular,
in the doubly charmed sector, they assigned a rather
conservative systematic uncertainty associated with discre-
tization effects, �mhcc ¼ �78 MeV. This is by far their

largest uncertainty across all states; for example, their result
for the lightest doubly charmed baryon is m�cc

¼
3665ð17Þð14Þþ0

�78. Lastly, they restricted themselves to

studying the J¼1=2þ sector. The J¼1=2þ and J¼3=2þ
charmed baryons are related by heavy-quark symmetries,
which results in their chiral extrapolations being coupled.
This is particularly relevant when performing a
�PT-motivated extrapolation of the ð�cc;�

�
ccÞ doublet to

the physical point.
The European Twisted Mass (ETM) Collaboration

recently presented results for �c, �c, �
�
c, �cc, �

�
cc, and

�ccc, using Nf ¼ 2 dynamical sea quarks with a lightest

pion mass of about 260 MeV at three lattice spacings
a 2 f0:056ð1Þ; 0:0666ð6Þ; 0:0885ð6Þg fm, and a relativistic
action for the valence charm quark [29]. They used
�PT-inspired polynomials for the light-quark mass ex-
trapolation, neglecting Oð1=mQÞ corrections and chiral-

log contributions. Having performed calculations at three
lattice spacings allowed them to quantify their discretiza-
tion error, which was incorporated into their systematics.
Although historically, the use of Nf ¼ 2 dynamical sea

quarks was a reasonable approximation, this (like full
quenching) introduces a source of systematic error that

can only be quantified when results are directly compared
to Nf ¼ 2þ 1 or Nf ¼ 2þ 1þ 1 calculations.

In order to confidently deal with systematics due to
discretization effects, it is necessary to perform calcula-
tions with highly improved actions, relativistic heavy-
quark actions, and multiple lattice spacings in order to
extrapolate to the continuum. With these goals in mind,
we evaluated the positive-parity ground-state charm-
baryon spectrum using two pion masses (with a lightest
m� around 220 MeV) and three lattice spacings (a � 0:12,
0.09, and 0.06 fm). In this work, we made three extensions
to our previous preliminary calculation [30]. First, we used
an ensemble at the superfine a � 0:06 fm lattice spacing in
order to further constrain the continuum extrapolation.
Second, when extrapolating the charmed-baryon masses
to the physical m�, we used heavy-hadron �PT (HH�PT)
[31–34] at next-to-leading order (NLO) in m� and in the
heavy-quark mass expansion, while in our previous work
we had restricted ourselves to the LO m� dependence. In
order to do this, we extended previous HH�PT results
[35,36] to include Oð1=mQÞ corrections. Third, we quanti-
fied systematics associated with finite-volume effects,
scale setting, the determination of m�, Oðm4

�; a
2m�Þ cor-

rections to the expressions used to extrapolate to the physi-
cal point, and the strange-mass tuning.
This paper is structured as follows. In Sec. II, we outline

the formulation of the lattice calculation, including the
actions used for the sea, valence light, and valence charm
quarks, as well our procedure for setting the scale inde-
pendently, and the construction of our correlation func-
tions. In Sec. III, we present the tuning of the charm-quark
action and show the results for the charmonium spectrum.
In this section, we present the results for the mDs

�m�c=2

splitting, which is shown to have rather large lattice-
spacing dependence, but the result presented is in agree-
ment with experiment when extrapolated to the continuum.
Section IV outlines our analysis of the charmed-baryon
spectrum and includes a detailed discussion of the
Oðm3

�; 1=mQÞ HH�PT expressions for the masses. In this

section, the a dependence of the charmed-baryon sector is
discussed, as well the systematics mentioned at the end of
the previous paragraph. Finally, in Sec. V, we give a
summary of our results and a comparison of the yet-to-
be-discovered masses across different models.

II. LATTICE FORMULATION

A. Light-quark action

In this work, we used Nf¼2þ1þ1 gauge configura-

tions that were generated by the MILC Collaboration with
the highly improved staggered quark (HISQ) [37–41]
action for the sea quarks. The implementation of the
HISQ action, first proposed by the HPQCD/UKQCD
Collaboration [39–41], has been shown to further reduce
lattice artifacts as compared to the asqtad action [37].

BRICEÑO, LIN, AND BOLTON PHYSICAL REVIEW D 86, 094504 (2012)

094504-2



Staggered actions reduce the number of doublers to four
‘‘tastes,’’ which are reduced to the desired number of true
flavors by taking the fourth root of the fermionic determi-
nant. As a result, staggered actions have two sources of
discretization errors. The first is due to the discretization of
the derivative, while the second is associated with taste-
exchange interactions in quark-quark scattering. It has
been shown that the latter type of errors are suppressed at
� 1% level when the HISQ action is used for light quarks
at lattice spacings of 0.1 fm or less [41]. Furthermore, its
suppression of OððamÞ4Þ errors makes the HISQ action a
desirable candidate for studying charm physics on the
lattice [41]. Lastly, despite the HISQ action being signifi-
cantly more computationally expensive than the asqtad
action [42], it is still more economical than a nonstaggered
action. This has allowed the MILC Collaboration to re-
cently generate multiple Nf¼2þ1þ1 HISQ ensembles,

with a range of lattice spacings a 2 ½0:045; 0:15� fm and
three light-quark (up, down) masses corresponding to
m� 2 f140; 220; 310g MeV. This variety of ensembles al-
lows for clean extrapolations to the physical pion mass and
the continuum limit.

Hypercubic blocking [43] is implemented on the gauge
configurations in order to further reduce the ultraviolet
noise from the gauge field. For the valence light (up,
down, and strange) fermions a tree-level tadpole-improved
clover-Wilson action is used,2 since the construction of
baryon operators with staggered fermions is rather com-
plicated. However, for the coarser and lighter pion mass
ensembles (such as 140-MeV pion mass at 0.12 fm), one
runs into the problem of exceptional configurations where
the clover-Dirac operator has near-zero modes [47]. Thus,
in this work, we were limited to heavier light-quark masses
which correspond to m� 2 f220; 310g MeV with lattice
spacings of around 0.06, 0.09, and 0.12 fm.

Because the actions used for the sea and valence quarks
differ, the calculation presented uses a mixed action, and
for nonzero lattice spacing, unitarity is violated. In order to

restore unitarity, it is necessary to match the valence- and
sea-quark masses, as well as to extrapolate the results to the
continuum. Because of the fourfold degeneracy of the
staggered action, in the continuum limit it has an SUð8ÞL �
SUð8ÞR �Uð1ÞV chiral symmetry. In this limit, each pion
obtains 15 degenerate partners. A finite lattice spacing
breaks this symmetry and lifts the degeneracy [48].
Therefore, there is an ambiguity when tuning the valence-
quark mass to the sea-quark mass. We chose to simulta-
neously tune the light- and strange-quark masses to assure
that the valence pion and kaon masses match those of the
lightest Goldstone Kogut-Susskind sea pion and kaon
masses, as shown in Table I. The Goldstone Kogut-
Susskind sea pion is the lightest pion, the only one that
becomes massless in the chiral limit for a nonzero lattice
spacing. Ideally, one would want to perform all calcula-
tions at a range of light, strange, and charm masses and
simultaneously extrapolate all masses to their physical
values. Because of limited computational resources, we
performed calculations at a single strange-quark mass,
but as will be discussed in Sec. II D our determination of
mK at the continuum and physicalm� is in agreement with
experiment. This gives us confidence that the strange-
quark mass is tuned properly.

B. Correlation functions and fitting method

Before discussing the tuning of the charm-quark action,
let us explain how we constructed our correlation functions
and extracted hadronic masses. For a given interpolating

hadron operator,OðiÞ
H , we construct the two-point correlation

functions

CðijÞ
H ðt� t0Þ ¼

X
x

hOðiÞ
H ðt;xÞOðjÞy

H ðt0;x0Þi; (1)

where the superscripts i and j label the smearing type of
the annihilation and creation operator, respectively, fx0; t0g
labels source location, and fx; tg the sink location. In order to
reduce statistical noise, the two-point functions are averaged
over four source locations for each gauge configuration.
Both the baryonic and mesonic correlation functions are

calculated with gauge-invariant Gaussian-smeared (S)

TABLE I. Details of the configurations and propagators used in this work. The subscript ‘‘sea’’ labels the lightest sea pseudoscalar
masses from the HISQ action [37,38], while the subscript ‘‘val’’ labels the valence masses. The sea hadron masses have a single
uncertainty due to the statistics, while the valence masses include statistical and systematic uncertainty due to fitting-window selection
as defined in Sec. II B. Additionally, listed are the spatial (L) and temporal extents (T) in lattice units, the value of m�L, the number of
configurations, and the number of measurements performed for each ensemble.

� ðam�Þsea ðamKÞsea ðam�Þval ðamKÞval L3 � T Lm� Ncfgs Nprops

A1 6.00 0.18931(10) 0.32375(12) 0.18850(79)(55) 0.32358(58)(67) 243 � 64 4.5 504 2016

A2 6.00 0.13407(6) 0.30806(9) 0.13584(79)(59) 0.30894(52)(60) 323 � 64 4.4 477 1908

B1 6.30 0.14066(13) 0.24085(14) 0.14050(40)(28) 0.24032(39)(23) 323 � 96 4.5 391 1564

B2 6.30 0.09845(9) 0.22670(12) 0.09950(53)(23) 0.22464(27)(35) 483 � 96 4.8 432 1568

C1 6.72 0.09444(9) 0.16204(11) 0.09444(38)(9) 0.16086(29)(68) 483 � 144 4.5 330 1320

2The light clover propagators were generated and provided by
the PNDME Collaboration [44–46].
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sources and point (P) sinks. For the mesons, we use the
generalized Prony matrix (PM) method [49] over the
smeared-smeared (SS) and smeared-point (SP) correlation
functions. The PMmethod uses the fact that each choice of
smearing parameters corresponds to a particular linear
combination of the exponentiated masses (mj) and the

corresponding overlap factors (Aj), C
ðiÞ
H ðtÞ ¼ AðiÞ

0 e�m0t þ
AðiÞ
1 e�m1t þ 	 	 	 . By computing correlation functions with

two sets of smearing parameters, we can determine the two
lowest energy states that have overlap with the interpolat-
ing operator used by solving the eigenvalue equation

MyHðtþ 1Þ � VyHðtÞ ¼ 0; (2)

where yTHðtÞ ¼ ðCðSSÞ
H ðtÞ; CðSPÞ

H ðtÞÞ. One solution to this
equation is given by [49]

M ¼
� X�þtW

t¼�

yHðtþ 1ÞyTHðtÞ
��1

V ¼
� X�þtW

t¼�

yHðtÞyTHðtÞ
��1

;

(3)

where the window size tW must be 
 1 in order to ensure
the matrices within the brackets are invertible. For each
hadron, � is chosen in order to maximize the plateau of the
ground state. The statistical uncertainties of the extracted
hadron masses are evaluated using the jackknife method.

We test the PM method for a subset of the baryonic
masses and compare the results with those extracted from
single-exponential and double-exponential fits to the SP
correlation function at large Euclidean time. We find these
to be in agreement within our systematics, with the single-
exponential having the smaller uncertainty. As a result, we
choose to extract all masses from the single-exponential
behavior of the SP correlation function.

For all energies extracted, we determine the statistical
uncertainty and a systematic associated with choosing a
fitting window ½ti; tf�. In order to estimate the latter, for all

fitting windows that fall within ½ti; tf þ 2� we calculate the
energy, �2, and goodness of fit QðdÞ [defined as

ð2d=2�ðd=2ÞÞ�1
R1
�2 d�

2
0ð�2

0Þd=2�1e��2
0
=2], which depends

on the number of degrees of freedom d and is optimally
near 1. From this ensemble of energies, we define the
systematic as the standard deviation of the energies
weighted by QðdÞ.

C. Charm-quark action

Since the charm-quark mass is too light to justifiably
implement a nonrelativistic action for the lattice spacings
used in our calculation, it is necessary to use a relativistic
action. To systematically remove the OððmcaÞnÞ discreti-
zation artifacts (where mc is the charm-quark mass), we
use the following relativistic heavy-quark action for the
valence charm quark [22–25]:

SQ ¼ X
x;x0

�Qx

�
m0 þ �0D0 � a

2
D2

0 þ 	

�
�iDi � a

2
D2

i

�

� a

4
cB�ijFij � a

2
cE�0iF0i

�
xx0
Qx0 ; (4)

where Qx is the heavy-quark field at the site x, �	 are the
Hermitian gamma matrices that satisfy the Euclidean
Clifford algebra �
	 ¼ i½�
; �	�=2, D
 is the first-order

lattice derivative, and F
	 is the Yang-Mills field-strength

tensor. The parameters fm0; 	; cB; cEg must be tuned to
assure OððmcaÞnÞ terms have been removed. For the co-
efficients cB and cE we use the tree-level tadpole-improved
results [12–14,50] cB ¼ 	=u30, cE ¼ 1þ 	=ð2u30Þ with the

tadpole factor u0 defined as u0 ¼ ð1=3ÞhPpTrðUpÞi1=4,
where Up is the product of gauge links around the funda-

mental lattice plaquette p.
The coefficients m0 and 	 were simultaneously deter-

mined nonperturbatively by requiring the ratio m1S=m� �
ðm�c

þ 3mJ=c Þ=ð4m�Þ to be equal to its experimental

value, 1.83429(56), and f�c; J=c g to satisfy the correct
dispersion relation, E2

H ¼ m2
H þ p2. In constructing the

charmonium correlation functions, we used the local inter-
polating operators shown in Table III. The dispersion
relation was matched using �c and J=c energies at the
six lowest momenta: (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1),
(2, 0, 0), (2, 1, 0) in units of ð2�=LÞa�1, and their rotational
equivalents. In practice, we performed the initial tuning
with a subset of 40 gauge configurations (with four sources
each). Clearly this procedure does not guarantee correct
tuning upon analysis of the full ensemble. Therefore, we
used two separate charm-quark masses and extrapolated
to the physical charmonium mass. These two points al-
lowed us to interpolate linearly in amc to the physical
charm-quark mass defined by m1S=m� ¼ 1:83429ð56Þ.
The valence charm-quark masses used for each ensemble
are shown in Table II. Figure 1 shows examples of the
resulting dispersion relations for the �c and J=c with full

TABLE II. The lattice spacings and�masses cited include the
statistical and systematic uncertainties due to the fitting window.
The lattice spacings are determined by the chiral extrapolation of
the � mass to the physical value of ðm�=m�Þ2 for each value of
�a. Additionally listed are the two bare masses of the valence
charm quarks used for each ensemble.

a½fm� am� amc1 amc2

A1 0.11926(77)(51) 1.0291(56)(37) 0.901 0.872

A2 0.11926(77)(51) 1.0192(31)(21) 0.900 0.853

B1 0.0871(10)(5) 0.7562(81)(52) 0.561 0.536

B2 0.0871(10)(5) 0.7463(52)(25) 0.552 0.522

C1 0.0578(13)(19) 0.5148(17)(39) 0.319 0.309

aNote that we calculate the � mass [am� ¼ 0:5007ð65Þð96Þ] on
200 configurations a a � 0:06 fm, 220 Mev to fix the lattice
spacing for ensemble C1.
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statistics after extrapolating to the physical charm mass
from one of the ensembles, C1, and they show that the
slopes are consistent with 1.

D. Lattice-spacing determination and discussion
of mH=m� ratios

As mentioned earlier, it is necessary to evaluate the
spectrum at multiple lattice spacings in order to simulta-
neously restore unitarity and remove discretization errors.
With this in mind, we perform the calculation at three
lattice spacings, a � 0:06, 0.09, and 0.12 fm. For the
coarse (a � 0:12 fm) and fine (a � 0:09 fm) lattice
spacings, we use two different light-quark masses corre-
sponding to m� � 220, 310 MeV; for the superfine
(a � 0:06 fm) ensemble we use a single light quark,
m� � 310 MeV. We calculate the�mass on 200 configu-
rations for a � 0:06 fm and m� � 220 MeV to fix the
lattice spacing for ensemble C1.

In order to obtain physical masses in the continuum, it is
necessary to determine the lattice spacing for the five
ensembles used. Currently, the most precise determination
of lattice spacings for the MILC ensembles is by the
HPQCD Collaboration [39]; however, their determinations
of the lattice spacings for theB2 andC1 ensembles remain
unpublished. For this reason, we perform our own deter-
mination. Because of the small m2

� dependence of m� (at
the few-percent level), we choose to set the scale by
extrapolating the value of am� across all ensembles with
the same value of � to the physical pion mass. We define

the lattice spacing by dividing am
phys
� by the physical �

mass, 1672.45(49) MeV.
In constructing the correlation functions for the �, we

use ð�Þi ¼ �klmPþðP3=2
E ÞijqksðqlTs �jqms Þ as the interpolating

operator. The strange-quark annihilation operator is

denoted qks with color index k, �
i ¼ C�i are the symmetric

spin matrices (where C is the charge-conjugation matrix),
Pþ ¼ ð1þ �4Þ=2 is the positive-parity projection opera-

tor, and ðP3=2
E Þij ¼ �ij � 1

3�
i�j are the spin-projection

operators for spin-3=2 particles.
One can determine m� as a function of m2

� via SUð3Þ
�PT, but this expression suffers from rather large expan-
sion parameters (mK=��, m�=��) and does not always

describe lattice baryon masses well. Alternatively, it has
been proposed that the hyperon masses can be extrapolated
using a two-flavor chiral perturbation theory [51]. With a
faster convergence than its three-flavor counterpart, the
advantages of this approach are clear. The cost is mani-
fested in a larger set of unknown coefficients. Using SUð2Þ
�PT for the hyperons, the�mass as a function ofm2

� up to
Oðm6

�Þ is [51]

m�¼m0
�þ m2

�

4�f�
�ð2Þ

� þ m4
�

ð4�f�Þ3
�
�ð4Þ

� log
m2

�


2
þ�ð4Þ

�

�

þ m6
�

ð4�f�Þ5
�
�ð6Þ

� log2
m2

�


2
þ�ð6Þ

� log
m2

�


2
þ�ð6Þ

�

�
; (5)

where f� ¼ 130:7ð4Þ MeV is the pion decay constant, and
the f��; ��; ��g are the low-energy coefficients (LECs)
of the theory. Because at each lattice spacing we have (at
most) two ensembles with two corresponding values of
m�, we are forced to truncate Eq. (5) at Oðm2

�Þ in order
to retain a reasonable level of precision. This truncation
introduces a systematic uncertainty into our calculations
that will be accounted for in Sec. IVB.
Further details of the ensembles, including our deter-

mination of the lattice spacing and the � mass are listed
in Table II. The values determined by the MILC
Collaboration are a ¼ 0:1211ð2Þ fm for the coarse and

FIG. 1 (color online). A sample dispersion relation for the �c and J=c . The six points correspond to energies (and uncertainties) for
the at the six lowest-momenta states: (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,0) in units of ð2�=LÞa�1, and their permutations. The
line is the resulting fit to the data using the relativistic dispersion relation E2

H ¼ m2
H þ c2p2, and the dark band includes the statistical

and systematic errors added in quadrature. The energies shown are obtained using the full statistics of the C1 ensemble and have been
extrapolated to the physical charm mass. From the fit we obtain the speed of light and its statistical and systematic uncertainties,
c�c

¼ 1:0039ð28Þð9Þ and cJ=c ¼ 0:9964ð35Þð5Þ.
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a ¼ 0:0884ð2Þ fm for the fine. The HPQCD Collaboration
performed a rather extensive program in which they deter-
mined the lattice spacing for each ensemble using three
different quantities: � 2S� 1S splitting, the decay con-
stant of the �s meson, and the r1=a ratio [39]. We deter-
mine a single lattice spacing for each value of � and find
central values that are consistently below both the MILC
and HPQCD central values. This difference in the defini-
tion of the lattice spacing should have no impact on
continuum-extrapolated results.

Table II shows that the lattice spacing for the ensemble
C1 is currently determined at the �4% level of precision.
For the same reasons discussed above, we choose to de-
termine the physical hadron masses using the mH=m�

ratio. As will be shown, the mH=m� is determined at the
sub-1% level for all ensembles and particles. Because of
the removal of the Oðm4

�Þ terms in Eq. (5), we proceed to
truncate all of our chiral fits at theOðm3

�Þ level of accuracy,
and estimate a systematic error associated with this ap-
proximation (see Sec. IVB).

Because we are using the strange mass to set the scale, it
is important to first test the strange-mass tuning, which we
do using the kaon mass. For all the pseudoscalar mesons,
we use the standard local operators OH ¼ �qkf�5q

k
f0 , where

qkf is the annihilation operator for a quark with flavor f and

color index k. As discussed in Ref. [52], when reducing the
symmetry of �PT from SUð3Þ to SUð2Þ, kaons can be
represented as a matter field that couples to the SUð2Þ
chiral currents. This treatment of the kaons is referred to
as K�PT. The advantage of K�PT is that the largest
expansion parameter is m2

�=m
2
K < m2

K=ð4�f�Þ2. Using
K�PT, the kaon mass as a function of m� is found to
be [52]

mK

m�

¼m0
K

m0
�

�
�
�Kþ mK��

4�f�m�

�
m2

�

m�

þcaðmphys
� aÞ2þOðm4

�Þ;

(6)

where m0
K is the bare kaon mass, and the a dependence is

parametrized by caðmphys
� aÞ2. For the kaon and for all other

hadrons studied in this work, the continuum-limit mass is
recovered by multiplying the ratio at the physical point by
the physical � mass, 1672:45ð49Þ MeV.

In Table I the valence kaon masses are shown for each
ensemble. In Fig. 2, we show the values for the kaon mass
for each ensemble with the corresponding statistical and
systematic uncertainties as a function of m�=m�, as well
as the chiral extrapolation at the continuum. Figure 2
shows that the lattice-spacing dependence of the kaon is
rather small, and that the extrapolated value, mKþ ¼
488:7ð5:3Þð5:3Þð5:7Þ MeV [the three uncertainties are sta-
tistics, fitting-window systematic, and systematics from
scale setting, Oðm4

�; a
2m�Þ corrections to the expressions

used to extrapolate to the physical point, finite volume, and
strange-mass tuning as discussed in Sec. IVB], agrees with

experiment within our systematics. This confirms our
strange-mass tuning as well as our scale determination
and extrapolation procedure using the mH=m� ratio.

III. CHARMONIUM SPECTRUM

In this section, we calculate the charmonium 1S splitting
and the rest of the charmonium spectrum in the continuum
limit, and we compare them with experimental and pre-
vious dynamical lattice results. We use the ratios of spin
averages of�c and J=c masses to� baryon masses to tune
the charm-quark mass for each ensemble; thus, the splitting
between them is not fixed in our calculations. Any devia-
tions from the well-measured experimental values give us
an estimation of the final systematics.
In constructing the meson correlation functions, we

restrict ourselves to the local interpolating operators
shown in Table III. In order to evaluate the full correla-
tion functions of the charmonium spectrum, we need to
perform two different types of propagator contractions, as
depicted in Fig. 3, connected and disconnected diagrams.
Disconnected diagrams would increase the number of
propagators needed by approximately 2 orders of magni-
tude but are suppressed by the Okubo-Zweig-Iizuka rule
[53]. Previous lattice calculations at zero temperature have
shown disconnected diagrams in the charmed sector are
rather noisy, and their contributions to the hyperfine split-
ting are in the range of 1–4 MeV and consistent with zero
[54–56]. Thus, we neglect contributions arising from dis-
connected diagrams here. Figure 4 displays examples of
the effective-mass plots after performing the generalized
Prony matrix method for the charmonium sector, and the

TABLE III. Interpolating operators for the charmonium spec-
trum. Qk

c labels the charm quark with color index k.

Hadron 2sþ1LJ JPC Interpolator

�c
1S0 0�þ �Qk

c�5Q
k
c

ðJ=c Þi 3S1 1�� �Qk
c�

iQk
c

�c0
1P0 0þþ �Qk

cQ
k
c

ð�c1Þi 3P1 1þþ �Qk
c�5�

iQk
c

ðhcÞji 3P1 1þ� �Qk
c�

j�iQk
c

FIG. 2 (color online). �PT and continuum extrapolations of
the kaon mass. The line indicates the fit of the data that has been
extrapolated to a ¼ 0. The dark band includes the statistical and
systematic errors added in quadrature.
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charmonium masses for each ensemble are shown in
Table IV in lattice units.

For every hadron, we calculated the ratio of its mass to
the � mass, mH=m� at the two different values of the
charm-quark mass. After interpolating these to the physical
charm-quark mass for each ensemble, we simultaneously
extrapolated the five values of the hadron masses to the
continuum and the physicalm�. To perform the light-quark
mass extrapolation we use the SUð2Þ �PT expression,
which up to Oðm3

�Þ is linear in m2
�:

mc �c

m�

¼ m0
c �c

m0
�

þ m2
�

4�f�m�

�
�c �c �mc �c��

m�

�

þ caðmphys
� aÞ2 þOðm4

�Þ; (7)

where m0
c �c is the bare charmonium mass, and the a depen-

dence is parametrized by caðmphys
� aÞ2.

Using this procedure, we have verified that our calcu-
lations reproduce the experimental low-lying charmed-
meson spectrum. In Fig. 5, we show our results for the
charmonium spectrum (as well as the hyperfine splitting
�1S � MJ=c �M�c

) after extrapolating to the physical

point. As a result, our error bars are larger than those of

other calculations. For comparison, we show in Fig. 5 a
sample of previous dynamical lattice calculations that have
studied the charmonium spectrum. By comparing the level
of precision of am� (see Table II) and amc �c (see Table IV),
one can see that it is the uncertainty of am� that dominates
the overall uncertainty of the mc �c=m� ratio.
The works by Bali et al. and Mohler et al. are far more

extensive than the small sample that is being represented
here. Both groups used the variational method over differ-
ent sources and sinks to not only extract ground-state
energies but also those of the excited states. Mohler et al.
evaluated the spectrum for the fc �c; c�s; c�lg systems for a
range of six pion masses ranging from 702 to 156 MeVat a
single lattice spacing, a � 0:09 fm. On the other hand,
Bali et al. evaluated the fc �cg spectrum, including discon-
nected diagrams, at three lattice spacings but did not
provide a continuum-extrapolated result for the spectrum
or an estimate of the discretization error.
The conclusion of Fig. 5 is evident: these noncontinuum

results come with a large systematic error due to nonzero
lattice spacing. This error decreases with lattice spacing,
but from Fig. 5, it is clear that in order to reproduce the
physical spectrum, it is necessary to extrapolate masses to
the continuum. For example, in the top panel of Fig. 5, we

FIG. 3. Diagrams that contribute to the charmonium correlation functions. In this work, we evaluate the contribution from connected
diagrams (left) and neglect disconnected diagrams (right). The latter are Okubo-Zweig-Iizuka suppressed, and previous lattice
calculations have determined their contributions to be consistent with zero [54–56].

FIG. 4 (color online). Sample effective-mass plots of the charmonium spectrum from the various ensembles. The error bar shown
includes the statistical and systematic uncertainty (from varying the fitted range) added in quadrature.
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see that despite our masses having the largest uncertainties,
ours are the only results that are consistently in agreement
with experiment. We conclude that previous calculations
that do not extrapolate their results to the continuum have
underestimated their systematic errors.

When tuning the charm mass to the spin-averaged mass,

1S, the most natural quantity to study is the hyperfine
splitting �1S. As a result, this splitting has received a great
deal of attention in the community. One surprising feature
is that for a finite lattice spacing, �1S is underestimated

TABLE IV. Charmonium andDs masses in lattice units for the five ensembles and two charm masses. Errors listed are statistical and
fitting-window systematic. The fitting window is given in square brackets.

Hadron mc ðamHÞA1 ðamHÞA2 ðamHÞB1 ðamHÞB2 ðamHÞC1
1S mc1 1.86213(61)(21) [7–15] 1.85571(32)(5) [8–14] 1.37703(27)(18) [10–17] 1.36696(41)(26) [12–22] 0.93723(18)(11) [11–31]

mc2 1.83438(47)(24) [7–15] 1.80666(32)(5) [8–14] 1.34397(28)(20) [10–17] 1.32897(41)(15) [12–22] 0.92157(18)(9) [11–31]

�c mc1 1.86213(61)(19) [6–12] 1.85571(32)(4) [15–23] 1.37703(27)(15) [23–35] 1.36696(41)(39) [19–24] 0.93723(18)(14) [17–35]

mc2 1.83438(47)(27) [6–12] 1.80666(32)(4) [15–23] 1.34397(28)(20) [23–35] 1.32897(41)(13) [19–24] 0.92157(18)(16) [17–35]

J=c mc1 1.91025(50)(29) [5–16] 1.90212(54)(21) [12–16] 1.41634(78)(19) [25–29] 1.40612(53)(18) [20–25] 0.96470(29)(38) [17–35]

mc2 1.88354(44)(30) [5–16] 1.85446(55)(15) [12–16] 1.38428(81)(29) [25–29]] 1.36975(54)(9) [20–25] 0.94955(30)(22) [17–35]

�c0 mc1 2.1382(22)(19) [4–8] 2.1264(23)(34) [5–11] 1.5873(29)(27) [6–9] 1.5599(44)(22) [11–22] 1.0619(34)(20) [16–21]

mc2 2.1126(19)(17) [4–8] 2.0787(23)(28) [5–11] 1.5537(28)(25) [6–9] 1.5209(46)(21) [11–22] 1.0557(19)(20) [16–21]

�c1 mc1 2.164(11)(5) [10–15] 2.1574(56)(36) [8–11] 1.6121(26)(12) [3–8] 1.6001(53)(31) [11–22] 1.0966(37)(16) [11–17]

mc2 2.133(10)(4) [10–15] 2.1104(57)(44) [8–11] 1.5807(26)(16) [3–8] 1.5631(55)(33) [11–22] 1.0814(39)(10) [11–17]

hc mc1 2.1612(93)(60) [6–9] 2.1573(54)(62) [8–13] 1.6296(59)(45) [9–16] 1.6078(59)(45) [11–22] 1.0904(89)(36) [17–23]

mc2 2.1373(90)(65) [6–9] 2.1105(55)(35) [8–13] 1.5952(83)(74) [9–16] 1.5709(59)(47) [11–22] 1.0869(53)(20) [17–23]

Ds mc1 1.20785(70)(38) [12–22] 1.20348(65)(29) [7–14] 0.89883(46)(40) [12–28] 0.88914(62)(46) [12–22] 0.61196(53)(37) [17–25]

mc2 1.19203(69)(40) [12–22] 1.17734(64)(26) [7–14] 0.88112(45)(36) [12–28] 0.86803(59)(45) [12–22] 0.60333(52)(28) [17–25]

FIG. 5 (color online). Our determination of the low-lying charmonium spectrum after extrapolating to the physical point, labeled as
‘‘Briceno et al.,’’ as well as a survey of previous unquenched lattice calculations [41,56–58,68]. Calculations are labeled by the number
of dynamical flavors (Nf) and the approximate lattice spacing (a) used. If the calculation evaluated the spectrum at multiple lattice
spacings and extrapolated quantities to the continuum limit ½a ! 0� it is labeled ‘‘Cont. Ext.’’. Mohler et al. determined the spitting
between f�c0; �c1; hcg and 1S [57]; in order to compare their results with ours, we have set 1S to its physical value, while leaving their
hyperfine splitting unchanged. The statistical uncertainty is shown as a thick inner error bar, while the statistical and systematic
uncertainties (if estimated in the paper) added in quadrature are shown as a larger thin error bar. Our systematic uncertainties include
errors originating from the fitting window, scale setting, pion mass determination, finite-volume effects, Oðm4

�; a
2m�Þ corrections to

the expressions used to extrapolate to the physical point, and the strange-mass tuning (as discussed in Sec. IVB). The light bands
indicate the experimentally measured masses or hyperfine splitting with their corresponding uncertainties [19].
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[41,57]. In our calculations we find the value of �1S agrees
with experiment only after extrapolating to the continuum.
This is consistent with the findings of the HPQCD/
UKQCD Collaboration [57] and Fermilab Lattice and
MILC Collaborations [58], as shown in the lower part of
Fig. 5. Therefore, it cannot be overstated that charmed
quantities need to be evaluated at multiple lattice spacings
to properly quantify the systematics.

In order to further test the strange- and charm-mass
tuning, we evaluated the �sc � mDs

�m�c=2 splitting.

This is the binding-energy difference between the heavy-
light and heavy-heavy systems; there is no reliable analyti-
cal procedure for calculating this quantity. Since the
strange-charm meson Ds has no light degrees of freedom,
up to Oðm3

�Þ its mass is linear in m2
�; therefore, the �sc

splitting can be extrapolated using

�sc

m�

¼ �0
sc

m0
�

þ m2
�

4�f�m�

�
��sc

� ���sc

m�

�

þ caðmphys
� aÞ2 þOðm4

�Þ; (8)

where �0
sc denotes the bare splitting.

In Table IV, the Ds and �c meson masses are shown for
each ensemble. Figure 6 shows the values for the �sc

splitting after continuum extrapolation, along with their
corresponding statistical and systematic uncertainties (see
Sec. IVB). Figure 6 shows that the a dependence of �sc is
sizable; in fact, continuum extrapolation is necessary in
order to reproduce the physical value. In performing the
continuum extrapolation of �sc, we find the a-dependent
LEC to be ca ¼ �0:0088ð46Þ. Since our determination of
the c �c and c�s spectrum is in agreement with experiment,
we believe that the estimates of the systematics in
Sec. IVB accurately reflect the sources of systematic error
of the calculation presented in this paper.

IV. CHARMED-BARYON SPECTRUM

With confidence that our tuning reproduces the low-lying
c �c, c�s, l �s spectrum within our systematics, we proceed to
evaluate the positive-parity charmed-baryon spectrum.
Heavy-quark symmetry dictates that the quantum numbers
of the light degrees of freedom of any heavy-light system
are conserved. One can identify approximately degenerate
multiplets by these quantum numbers. For singly charmed
baryons, the light degrees of freedom can have total spin
equal to zero or one. Under SUð3ÞV chiral symmetry, the
spin-singlet multiplet transforms as a �3 irrep. The spin
triplet is a 6 irrep when the total angular momentum is
J ¼ 1=2 and a 6� irrep when the total angular momentum is
J ¼ 3=2. In the heavy-quark limit, these are degenerate.
The doubly charmed baryons form a 3 irrep when the total
angular momentum is J ¼ 1=2 and a 3� irrep when the total
angular momentum is J ¼ 3=2. The triply charmed bary-
ons are singlets under SUð3ÞV . This algebra was manifested
by the interpolating operators used in this calculation, as
shown in Table V [59]. Figure 7 displays examples of the
effective-mass plots for various correlation functions.
Table VI lists the baryon masses in lattice units for each
charm-quark mass and ensemble along with the statistical
and fitting-window systematic uncertainties and the chosen
fitting window.

FIG. 6 (color online). �PT and continuum extrapolations of
the �sc ¼ mDs

�m�c=2 splitting. The line indicates the fit of the

data that has been extrapolated to a ¼ 0. The dark band includes
the statistical and systematic errors added in quadrature.

TABLE V. The interpolating operators for the positive-parity baryons [59]. qu;d;s respectively
denote the up-, down-, and strange-quark annihilation operators, Qc denotes the charm-quark
operator, fk; l; mg are color indices, while fi; jg denote polarization indices. ð�A;�iÞ are the
antisymmetric and symmetric spin matrices ðC�5; C�

iÞ, where C is the charge-conjugation
matrix. In order to have the best possible overlap with the state of interest, we have used the spin

projection operators ðP3=2
E Þij ¼ �ij � 1

3�
i�j and ðP1=2

E Þij ¼ �ij � ðP3=2
E Þij ¼ 1

3�
i�j and the

positive-parity projection operator Pþ ¼ ð1þ �4Þ=2.
JP ¼ 1

2
þ JP ¼ 3

2
þ

�c ¼ �klmPþQk
cðqlTu �Aqmd Þ

�c ¼ �klmPþQk
cðqlTu �Aqms Þ ð��

cÞi ¼ �klmPþðP3=2
E ÞijQk

cðqlTu �jqmu Þ,
ð�cÞi ¼ �klmPþðP1=2

E ÞijQkfcðqlTu �jqmu Þ ð��
cÞi ¼ �klmffiffi

2
p PþðP3=2

E ÞijQk
cðqlTu �jqms þ qlTs �jqmu Þ

ð�0
cÞi ¼ �klmffiffi

2
p PþðP1=2

E ÞijQk
cðqlTu �jqms þ qlTs �jqmu Þ ð��

cÞi ¼ �klmPþðP3=2
E ÞijQk

cðqlTs �jqms Þ
ð�cÞi ¼ �klmPþðP1=2

E ÞijQk
cðqlTs �jqms Þ ð��

ccÞi ¼ �klmPþðP3=2
E ÞijqkuðQlT

c �jQm
c Þ

ð�ccÞi ¼ �klmPþðP1=2
E ÞijqkuðQlT

c �jQm
c Þ ð��

ccÞi ¼ �klmPþðP3=2
E ÞijqksðQlT

c �jQm
c Þ

ð�ccÞi ¼ �klmPþðP1=2
E ÞijqksðQlT

c �jQm
c Þ ð�cccÞi ¼ �klmPþðP3=2

E ÞijQk
cðQlT

c �jQm
c Þ
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A. Chiral and continuum extrapolation

As discussed in Sec. II C, the ratios of each charmed-
hadron mass to the� mass are interpolated to the physical
charm mass, defined by m1S=m� ¼ 1:83429ð56Þ. After

this is done for each ensemble, it is necessary to extrapolate

the ratios to the physical light-quark mass and continuum.

Because of the rather large expansion parameter of

SUð3Þ �PT and poorer convergence rate, we use SUð2Þ
HH�PT to extrapolate the baryon masses to the physical

pion mass. Previous HH�PT calculations of the singly

FIG. 7 (color online). Sample effective-mass plots from the various ensembles of the charmed-baryon sector. The error bar shown
includes the statistical and systematic uncertainty (from varying the fitted range) added in quadrature.

TABLE VI. Charmed-baryon masses for the five ensembles in lattice units, statistical and fitting-window systematic uncertainties,
and fitting windows.

Hadron mc ðamHÞA1 ðamHÞA2 ðamHÞB1 ðamHÞB2 ðamHÞC1
�c mc1 1.4561(42)(70) [7–15] 1.4228(77)(73) [8–14] 1.0808(42)(33) [10–14] 1.0328(102)(79) [15–24] 0.7339(56)(15) [18–21]

mc2 1.4401(42)(70) [7–15] 1.3976(76)(69) [8–14] 1.0643(41)(35) [10–14] 1.0136(98)(62) [15–24] 0.7258(56)(15) [18–21]

�c mc1 1.5333(24)(28) [7–14] 1.5120(31)(20) [7–14] 1.1438(37)(21) [13–17] 1.1115(37)(47) [13–26] 0.7747(48)(10) [25–28]

mc2 1.5174(24)(27) [7–14] 1.4871(31)(21) [7–14] 1.1274(37)(19) [13–17] 1.0922(33)(20) [13–26] 0.7665(48)(10) [25–28]

�c mc1 1.5521(40)(30) [7–10] 1.5286(50)(54) [7–15] 1.1703(43)(25) [10–15] 1.1351(80)(78) [12–22] 0.7968(32)(54) [12–21]

mc2 1.5359(40)(30) [7–10] 1.5028(50)(51) [7–15] 1.1530(43)(29) [10–15] 1.1134(74)(52) [12–22] 0.7883(32)(54) [12–21]

��
c mc1 1.6178(43)(48) [6–10] 1.5760(91)(44) [8–14] 1.1979(83)(53) [12–18] 1.1731(105)(167) [12–19] 0.8055(83)(29) [18–23]

mc2 1.6020(43)(50) [6–10] 1.5516(91)(42) [8–14] 1.1812(82)(55) [12–18] 1.1569(97)(76) [12–19] 0.7975(83)(29) [18–23]

�0
c mc1 1.5878(60)(78) [11–22] 1.5820(55)(54) [10–17] 1.1925(51)(14) [15–21] 1.1682(49)(34) [14–20] 0.8089(23)(22) [11–22]

mc2 1.5717(60)(86) [11–22] 1.5564(55)(51) [10–17] 1.1753(50)(15) [15–21] 1.1471(44)(16) [14–20] 0.8005(22)(23) [11–22]

��
c mc1 1.662(3)(14) [7–17] 1.6388(58)(41) [9–13] 1.2314(65)(41) [14–20] 1.2060(54)(48) [13–20] 0.8328(54)(17) [19–23]

mc2 1.646(3)(14) [7–17] 1.6142(57)(39) [9–13] 1.2157(64)(39) [14–20] 1.1896(51)(9) [13–20] 0.8248(53)(17) [19–23]

�c mc1 1.6487(69)(16) [15–23] 1.6393(22)(24) [7–13] 1.2280(45)(17) [18–22] 1.2129(28)(3) [14–18] 0.8341(25)(25) [17–23]

mc2 1.6322(69)(16) [15–23] 1.6138(22)(24) [7–13] 1.2112(45)(16) [18–22] 1.1919(25)(3) [14–18] 0.8262(24)(24) [17–23]

��
c mc1 1.6960(38)(52) [10–19] 1.6882(27)(29) [7–13] 1.2567(64)(34) [18–25] 1.2493(32)(17) [13–18] 0.8567(24)(24) [14–29]

mc2 1.6805(38)(52) [10–19] 1.6638(27)(28) [7–13] 1.2408(64)(29) [18–25] 1.2313(29)(7) [13–18] 0.8489(23)(25) [14–29]

�cc mc1 2.2349(33)(42) [10–24] 2.2194(67)(61) [14–21] 1.6628(21)(13) [6–15] 1.6413(46)(17) [16–24] 1.1298(25)(12) [18–28]

mc2 2.2037(33)(39) [10–24] 2.1701(66)(56) [14–21] 1.6394(48)(50) [6–15] 1.6070(39)(21) [16–24] 1.1139(25)(12) [18–28]

��
cc mc1 2.3053(26)(27) [7–15] 2.2455(115)(72) [14–18] 1.6381(55)(47) [17–25] 1.6801(66)(37) [16–21] 1.1570(91)(32) [31–40]

mc2 2.2744(25)(27) [7–15] 2.1970(114)(73) [14–18] 1.6808(29)(44) [17–25] 1.6459(56)(27) [16–21] 1.1416(91)(34) [31–40]

�cc mc1 2.2893(28)(9) [16–25] 2.2739(22)(12) [14–26] 1.7008(18)(2) [17–25] 1.6786(33)(14) [23–27] 1.1562(14)(4) [18–28]

mc2 2.2580(28)(10) [16–25] 2.2247(21)(12) [14–26] 1.6677(18)(3) [17–25] 1.6417(28)(6) [23–27] 1.1403(14)(4) [18–28]

��
cc mc1 2.3385(66)(29) [10–18] 2.3178(31)(19) [14–22] 1.7331(43)(10) [22–28] 1.7180(38)(23) [19–25] 1.1796(21)(6) [25–30]

mc2 2.3078(66)(29) [10–18] 2.2694(31)(19) [14–22] 1.7001(43)(9) [22–28] 1.6799(35)(16) [19–25] 1.1641(21)(6) [25–30]

�ccc mc1 2.9621(16)(9) [15–23] 2.9466(15)(17) [15–23] 2.1953(15)(7) [31–38] 2.1788(18)(2) [20–27] 1.4921(22)(8) [37–42]

mc2 2.9161(16)(8) [15–23] 2.8753(15)(17) [15–23] 2.1472(16)(8) [31–38] 2.1239(17)(2) [20–27] 1.4690(23)(4) [37–42]
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charmed-baryon masses used the static limit, mQ ! 1
[35,36]. At Oð1=mQÞ new operators are introduced that

explicitly break the 6-6� degeneracy [60], resulting in three
independent bare splittings f��3;6;��3;6� ;�6;6� g. We extend

previous work to include the Oð1=mQÞ corrections for the
f�c;�c;�

�
cg and f�c;�

0
c;�

�
cg multiplets by evaluating the

contribution arising from the two self-energy diagrams
depicted in Fig. 8.

First, consider the f�c;�c;�
�
cg multiplet. Up to Oðm3

�Þ,
the m� dependence of the ratio of the particle masses to
m� can be written as

m�c

m�

¼ m0
�c

m0
�

þ ���c
m2

�

ð4�f�Þm�

� 6g23
ð4�f�Þ2m�

�
1

3
F ðm�;��c�c

; 
Þ þ 2

3
F ðm�;��c�

�
c
; 
Þ

�
þ caðmphys

� aÞ2;

m�c

m�

¼ m0
�c

þ �0
�c�c

m0
�

þ ���c
m2

�

ð4�f�Þm�

� 2g23
3ð4�f�Þ2m�

F ðm�;���c�c
; 
Þ

þ g22
ð4�f�Þ2m�

�
4

9
F ðm�; 0; 
Þ þ 8

9
F ðm�;��c�

�
c
; 
Þ

�
þ caðmphys

� aÞ2;

m��
c

m�

¼ m0
�c

þ �0
�c�

�
c

m0
�

þ ����
c
m2

�

ð4�f�Þm�

� 2g23
3ð4�f�Þ2m�

F ðm�;���c�
�
c
; 
Þ

þ g22
ð4�f�Þ2m�

�
10

9
F ðm�; 0; 
Þ þ 2

9
F ðm�;���c�

�
c
; 
Þ

�
þ caðmphys

� aÞ2; (9)

where ��H ¼ ð�H �m0
H��=m�Þ, m0, and �0 label the bare masses and splittings, and g’s and �’s are the LECs of the

theory. The chiral function F is defined as

F ðm;�; 
Þ ¼ ð�2 �m2 þ i�Þ3=2 ln
�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
�
� 3

2
�m2 ln

�
m2


2

�
� �3 ln

�
4�2

m2

�
; (10)

with F ðm; 0; 
Þ ¼ �m3
�. From Eq. (9), in the static limit we reproduce the previous results [35,36]. For the extrapolation

to the continuum limit, we consider the lattice-spacing dependence of �rðaÞ ¼ caðmphys
� aÞ2 for each baryon within the

same multiplet to have the same behavior.
In order to stabilize our fits, we evaluate the splittings f��c�c

;��c�
�
c
;��c�

�
c
g for each ensemble and extrapolate them to

the physical pion mass with the assumption that their lattice-spacing dependence is suppressed. The resulting splittings
serve as input to the chiral function in Eq. (11). In addition, when minimizing �2 we require the axial couplings to be real,
g2 > 0. This requirement assures that the HH�PT Lagrangian is Hermitian, and it reduces the parameter space of the
minimization routine, thereby resulting in smaller uncertainties while leaving the mean values of the extrapolated masses
unchanged. The scale
 is set to 700MeV; we do not observe a difference in the results when
 is varied among {600MeV,

700 MeV, 800 MeV}. Using the physical value of mphys
� =fphys� ¼ 12:796ð37Þ, we find the LECs shown in Table VII. In

Fig. 9, we display our fits at the continuum (a ¼ 0) along with the value of mH=m� for each ensemble as a function of
m�=m�. From Fig. 9, one sees all masses are within 1:1� of the experimental values. From Table VII, it is evident that only
the leading-order term in the chiral expression is determined well.

Next consider the multiplet f�c;�
0
c;�

�
cg:

FIG. 8. Two of the self-energy diagrams contributing to the
masses of a singly charmed baryon in the 6 irrep. The first
depicts contributions arising from loops containing a pion and a
member of the 6 irrep, while the second correspond to loops
containing a pion and a member of the 6� irrep. There are similar
self-energy diagrams for baryons in the 6� irrep.

TABLE VII. Results of SUð2Þ HH�PT LECs from fits of the f�c;�c;�
�
cg multiplet masses, �2, the number of degrees of freedom,

and the goodness of the fit QðdÞ (as defined in Sec. II B).

m0
�c
=m0

� �0
�c�c

=m0
� �0

�c�
�
c
=m0

� ���c
���c

����
c

g23 g22 ca �2 d.o.f. Q

1.352(33) 0.112(30) 0.162(72) 1.3(1.7) 1.2(5.2) 1(15) 0.2(4.9) 0(16) 0.0042(71) 6.4 6 0.4
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m�c

m�

¼ m0
�c

m0
�

þ ���c
m2

�

ð4�f�Þm�

� 3

2

g23
ð4�f�Þ2m�

�
1

3
F ðm�;��c�
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c
; 
Þ þ 2

3
F ðm�;��c�

�
c
; 
Þ

�
þ caðmphys

� aÞ2;

m�0
c

m�

¼ m0
�c

þ ��c�
0
c

m0
�

þ ���0
c
m2

�

ð4�f�Þm�

� 1

2

g23
ð4�f�Þ2m�

F ðm�;���c�
0
c
; 
Þ

þ 3

8

g22
ð4�f�Þ2m�

�
4

9
F ðm�; 0; 
Þ þ 8

9
F ðm�;��0

c�
�
c
; 
Þ

�
þ caðmphys

� aÞ2;

m��
c

m�

¼ m0
�c

þ ��c�
�
c

m0
�

þ ���
c
m2

�

ð4�f�Þm�

� 1

2

g23
ð4�f�Þ2m�

F ðm�;���c�
�
c
; 
Þ

þ 3

8

g22
ð4�f�Þ2m�

�
10

9
F ðm�; 0; 
Þ þ 2

9
F ðm�;���0

c�
�
c
; 
Þ

�
þ caðmphys

� aÞ2: (11)

The values obtained for the LECs are shown in Table VIII, and Fig. 10 displays our fits at the continuum. From
Fig. 10, it is clear that the extrapolated masses are within 1:1� from the experimental values. Furthermore, we are not
able to resolve any lattice-spacing dependence for this multiplet, and the chiral extrapolation is close to a constant for �0

c

and ��
c.

For the multiplet f�cc;�
�
ccg we use the previously determined expressions [61] to perform the chiral extrapolation

FIG. 9 (color online). NLO HH�PT and continuum simultaneous extrapolations of f�c;�c;�
�
cg masses. The line depicts the fit of

the data that has been extrapolated to a ¼ 0. The dark band includes the statistical and systematic errors added in quadrature.

TABLE VIII. Results of SUð2Þ HH�PT LECs from fits of the f�c;�
0
c;�

�
cg masses.

m0
�c
=m0

� �0
�c�

0
c
=m0

� �0
�c�

�
c
=m0

� ���c
���0

c
����

c
g23 g22 ca �2 d.o.f. Q

1.477(45) 0.054(63) 0.11(16) 0.73(60) 0.1(6.7) �0:4ð5:1Þ 3.0(7.1) 0.0(6.4) 0.006(10) 5.2 6 0.5
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m�cc

m�

¼m0
�cc

m0
�

þ ���cc
m2

�

ð4�f�Þm�

� g2
��cc�

�
cc

ð4�f�Þ2m�

�
1

9
F ðm�;0;
Þþ 8

9
F ðm�;��cc�

�
cc
;
Þ

�
þ caðmphys

� aÞ2þOðm4
�Þ;

m��
cc

m�

¼m0
�cc

þ��cc�
�
cc

m0
�

þ ����
cc

ð4�f�Þm
2
�m�� g2

��cc�
�
cc

ð4�f�Þ2m�

�
5

9
F ðm�;0;
Þþ 4

9
F ðm�;���cc�

�
cc
;
Þ

�
þ caðmphys

� aÞ2þOðm4
�Þ:

(12)

The results for the LECs are shown in Table IX, and Fig. 11
displays our fits at the continuum. It is remarkable in
Fig. 11 that the m2

� dependence of m�cc
is surprisingly

small compared to that ofm��
cc
. From Fig. 11, one can also

observe that our value of m�cc
is about 1:7� above the

experimentally observed mass.
Lastly, the SU(2) HH�PT extrapolation formula for all

isosinglet states, �c, �
�
c, �cc, �

�
cc, and �ccc, is given by

m�c

m�

¼ m0
�c

m0
�

þ ���c
m2

�

ð4�f�Þm�

þ caðmphys
� aÞ2 þOðm4

�Þ: (13)

In Table X, we summarize the fitted LECs of the
five isosinglet states. Figure 12 shows the continuum

extrapolation of the yet-to-be-observed f�cc;�
�
cc;�cccg

states along with the value of the ratio of their masses to
m� for each ensemble.

B. Systematics

In performing the continuum and chiral extrapolation,
we added five systematic errors in addition to the
fitting-window error. The first of these arises from the
uncertainty in determining m� and the lattice spacing.
We derive this uncertainty by simultaneously varying
m� and the lattice spacing within their corresponding
uncertainties (shown in Tables I and II, respectively)
when extrapolating the masses to the physical point.

FIG. 10 (color online). NLO HH�PT and continuum extrapolations of f�c;�
0
c;�

�
cg masses. The line depicts the fit of the data that

has been extrapolated to a ¼ 0. The dark band includes the statistical and systematic errors added in quadrature.

TABLE IX. Results of SUð2Þ HH�PT LECs from fits of the f�cc;�
�
ccg multiplet masses.

m0
�cc

=m0
� �0

�cc�
�
cc
=m0

� ���cc
����

cc
g2
��cc�

�
cc

ca �2 d.o.f. Q

2.147(35) 0.025(24) �0:00002ð55Þ 0.00057(60) 0.00008(52) 0.013(19) 6.3 4 0.2
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This gives an ensemble of energies, and we obtain a
systematic uncertainty from the standard deviation of
this ensemble.

The second uncertainty is due to finite-volume (FV)
corrections. The dominant finite-volume effects for
baryon with light degrees of freedom from the FV coun-
terpart of self-energy diagrams are depicted in Fig. 8, and
in the p-regime these scale like e�m�L=ðm�LÞ [62]. More
specifically, up to an overall Oð1Þ constant, they can be
written as [62]

�mFV;l
H � m3

�

8�f2�

X
~n�~0

e�Lj ~njm�

m�Lj ~nj : (14)

Note, the overall constant depends on the axial coupling,
which we have found to be consistent with zero (see

Tables VII, VIII, and IX). For hadrons with no light
degrees of freedom, FV effects come in at Oðm4

�Þ in the
chiral expansion, and therefore are further suppressed by
a factor of m�=��, where �� � 700 MeV is the chiral

symmetry-breaking scale,

�mFV;h
H � m4

�

8�f2���

X
~n�~0

e�Lj ~njm�

m�Lj ~nj : (15)

In Table XI we evaluate both of these FV effects for
hadrons with and without light degrees of freedom.
In performing the chiral and continuum extrapolation

we have taken into account terms coming in at
Oða2; m2

�;m
3
�; 1=mQÞ and neglected Oðm4

�; a
2m�Þ terms.

In order to account forOðm4
�Þ corrections we add a system-

atics of the form [36]

�m
�PT
H � m4

�

ð4�f�Þ3
; (16)

which contributes at the MeV level for our ensembles.
In general, quantities obtained using mixed action

have discretization errors arising from artifacts of both
the sea and the valence actions. From mixed-action EFT
(MAEFT) we know that at leading order these artifacts
can be parametrized in terms of two quantities, a2�Mix

and a2�sea, the LO mixed-meson mass correction and

FIG. 11 (color online). NLO HH�PT and continuum extrapolations of f�cc;�
�
ccg masses. The line depicts the fit of the data that has

been extrapolated to a ¼ 0. The dark band includes the statistical and systematic errors added in quadrature. The dashed line indicates
the physical point m�=m� ¼ 0:083453ð25Þ.

TABLE X. LO SUð2Þ �PT LECs of isosinglet states �c, �
�
c,

�cc, �
�
cc, and �ccc.

Hadron m0
H=m

0
� ��H ca �2 d.o.f Q

�c 1.612(24) �0:49ð66Þ �0:005ð18Þ 0.57 2 0.57

��
c 1.670(23) �0:78ð62Þ �0:005ð18Þ 1.32 2 0.27

�cc 2.206(30) �0:27ð81Þ 0.010(24) 0.58 2 0.56

��
cc 2.247(33) �0:17ð88Þ 0.010(26) 0.81 2 0.44

�ccc 2.857(38) �0:7ð1:0Þ 0.019(29) 1.16 2 0.31
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sea-action lattice artifact, respectively3 [63–65]. These
contribute to the LO a dependence of the valence pion
mass, which have been accounted for in our continuum
extrapolation. These splittings also give rise to NLO correc-
tions to the MAEFT extrapolation formulas. In Ref. [66],
Orginos and Walker-Loud evaluated a2�Mix for Domain-
Wall valence quarks on the asqtad improved MILC lattices
with a � 0:125 fm and found it to be ð316ð4Þ MeVÞ2,
which is smaller than the corresponding value of a2�sea ¼
ð450 MeVÞ2. To this day, a2�Mix has not been determined
for clover-Wilson fermions on HISQ MILC lattices.
Assuming additional lattice artifacts are at most on the
same order as a2�sea, we can use power-counting arguments
to estimate the Oða2m�; a

3Þ corrections,

�mMA
H � ðm2

� þ a2�seaÞ3=2 �m3
�

ð4�f�Þ2
: (17)

The values of the a2�sea splittings, which is the mass differ-
ence between the Goldstone Kogut-Susskind sea pion
and the staggered taste-singlet meson, have been determined

numerically by the MILC Collaboration for the ensembles
we are using [37,38]. From these values we obtain the �mMA

H

shown in Table XI. Note, the overallOð1Þ constants present
in this correction depend on the axial coupling.
Furthermore, since we have used the strange mass to set

the scale, we need to account for possible mismatch between
the sea and valence strange-quark masses. We use power-
counting arguments to estimate the leading-order correction:

�ms
H � jðm2

KÞval � ðm2
KÞseaj

ð4�fKÞ ; (18)

FIG. 12 (color online). Chiral and continuum extrapolations of f�cc;�
�
cc;�cccg masses. The line depicts the fit of the data that has

been extrapolated to a ¼ 0. The dark band includes the statistical and systematic errors added in quadrature. The dashed line indicates
the physical point m�=m� ¼ 0:083453ð25Þ.

TABLE XI. Shown are estimates for the systematic errors for
each ensemble. From left to right columns, they are the system-
atic errors due to finite-volume effects for baryons with light
degrees of freedom, finite-volume effects for hadrons with no
light degrees of freedom, the truncation of the �PT extrapolation
formulas, corrections in the MAEFT expansion, and the sea/
valence strange-mass mismatch, respectively.

�mFV;l
H

[Mev]

�mFV;h
H

[Mev]

�m
�PT
H

[Mev]

�mMA
H

[Mev]

�ms
H

[Mev]

A1 1.3 0.6 2.1 9.1 0.2

A2 0.5 0.2 1.0 8.6 0.7

B1 1.3 0.6 2.3 1.4 0.6

B2 0.3 0.1 0.6 1.4 2.3

C1 1.3 0.6 2.1 0.1 2.1

3It was pointed out in the literature that mixed-meson masses
acquire an additional Oða2Þ correction that depends on the sea
action, a2�0

Mix [63]. Because we have taken into account all
Oða2Þ corrections and since we are only interested in using the
power-counting argument to give an estimate for higher-order
corrections, we do not make a distinction between these two
quantities.
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where fK ¼ 156:1ð9Þ MeV is the kaon decay constant. One
can certainly include a similar error for the light-quark mis-
match, but this would be below our level of precision
(0:1MeV).

We then add these five sources of systematics for each
ensemble and extrapolate them to the physical point, which
is shown as the third uncertainty of the physical masses in
Table XII.

V. DISCUSSION AND CONCLUSION

In this work, we presented the first unquenched contin-
uum determination of the low-lying charmed-baryon spec-
trum. The calculation uses a relativistic heavy-quark action
for the valence charm quark, clover-Wilson fermions for
the valence light and strange quarks, and HISQ sea quarks
generated by the MILC Collaboration [37,38]. The spec-
trum is calculated with a lightest pion mass around
220 MeV, and three lattice spacings (a�0:12;0:09;
and 0:06 fm) are used to extrapolate to the continuum.
At each ensemble, we interpolate the charm-quark mass
to the physical one by matching the charmonium 1S spin

average through the ratio ðmphys
�c

þ 3mphys
J=c Þ=ð4mphys

� Þ ¼
1:83429ð56Þ; the rest of the hadron (composed of charm
quarks) ratios mH=m� are linearly interpolated in amc to
the physical charm point.

In order to determine the lattice spacing for the five
ensembles, we chose to use the � mass due to its weak
m� dependence. This was done by extrapolating the value
of am� over all ensembles with the same value of � to the
physical pion mass. We then obtained the lattice spacing by
dividing am� by the physical�mass. The resulting values
of the lattice spacing are shown in Table II.

The main result of this work is the charmed hadron
spectrum shown in Table XII, which was obtained by
extrapolating measurements from the five ensembles to

the physical point defined by mphys
� =mphys

� ¼0:083453ð25Þ

and a ¼ 0 [19]. When performing the chiral and contin-
uum extrapolation we use HH�PT up to Oðm3

�; 1=mc; a
2Þ.

The three uncertainties of the masses shown correspond to
statistics, fitting-window error, and systematics from other
lattice artifacts, such as lattice-scale setting and pion-mass
determination (as discussed in Sec. IVB).
To test our tuning and extrapolation procedure, we verify

that our calculation reproduces the well-known low-lying
l�s, c �s, c �c spectrum. Since we use the strange-quark mass to
set the scale, we first determine the kaon mass. As shown in
Fig. 2, after extrapolating to the physical point we obtain
mKþ ¼ 488:7ð5:3Þð5:3Þð5:7Þ MeV, which is in perfect
agreement with experiment and displays minimal lattice-
spacing dependence. The remaining results for the c �s, c �c
spectrum are shown in Figs. 5 and 6, and it is evident that
we recover the physical spectrum in the mesonic sector.
Two particularly interesting quantities are the Ds � �c=2
splitting and the �1S, both of which show significant a
dependence. The fact that we only obtain agreement with
experiment after extrapolating to the continuum confirms
the necessity of performing calculations of the charmed
spectrum at multiple lattice spacings.
In Fig. 13, we display the results for the charmed-baryon

spectrum, along with a survey of previous unquenched
lattice calculations [12–16,29] and corresponding experi-
mental values for comparison [19]. Liu et al. [12–14]
evaluated the charmed-baryon spectrum for four different
pion masses (with lowest m� � 290 MeV) and a single
lattice spacing a � 0:125 fm. Na et al. [15,16] evaluated
the charmed-baryon spectrum at three different lattice
spacings (a � 0:15, 0.12, and 0.09 fm) but have yet to
present extrapolated values of the masses as well as an
estimate of their systematic uncertainties. The European
Twisted Mass Collaboration recently determined the
masses of �c, �c, �

�
c, �cc, �

�
cc, and �ccc, using Nf ¼ 2

dynamical sea quarks with a lightest pion mass of 260MeV
and three lattice spacings a2f0:056ð1Þ;0:0666ð6Þ;
0:0885ð6Þg fm [29]. The use of Nf ¼ 2 dynamical quarks

TABLE XII. Results for the charmed-hadron spectrum after extrapolating the masses in Tables IV and VI to the physical point. The
first uncertainty is due to statistics, the second to the fitting-window error, and the third corresponds to scale setting, finite-volume
effects, Oðm4

�; a
2m�Þ corrections to the expressions used to extrapolate to the physical point, and strange-mass tuning errors added in

quadrature (as discussed in Sec. IVB).

Hadron Latt. Pred. [MeV] Exp. [MeV] Hadron Latt. Pred. [MeV] Exp. [MeV]

�c 2995(26)(12)(5) 2980.3(1.2) �c 2481(24)(15)(7) 2454.02(2)

J=c 3092(27)(13)(6) 3096.916(11) ��
c 2559(30)(15)(7) 2518.4(6)

�c0 3397(31)(15)(6) 3414.75(31) �0
c 2568(25)(12)(6) 2575.6(3.1)

�c1 3540(38)(19)(5) 3510.66(7) ��
c 2655(26)(6)(7) 2645.9(6)

hc 3559(37)(18)(6) 3525.41(16) �c 2681(31)(12)(5) 2685.2(1.7)

�1S 110.9(1.1)(1.4)(5.3) 116.6(1.2) ��
c 2764(30)(14)(5) 2765.9(2.0)

Ds 1960(17)(18)(5) 1968.45(33) �cc 3595(39)(20)(7) 3518.9(9)

Ds � �c=2 468.7(4.8)(5.6)(5.8) 478.30(69) ��
cc 3648(42)(18)(7) 	 	 	

Kþ 488.7(5.3)(5.3)(5.6) 493.677(16) �cc 3679(40)(17)(5) 	 	 	
�c 2291(37)(22)(7) 2286.46(14) ��

cc 3765(43)(17)(5) 	 	 	
�c 2439(29)(25)(7) 2467.8(6) �ccc 4761(52)(21)(6) 	 	 	
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introduces a source of systematic error that is hard to
quantify and has not been addressed by the ETM
Collaboration. That being said, Fig. 13 shows that the
masses calculated by the ETM Collaboration are in agree-
ment with our results with the exception of the controver-
sial �cc, where our result is about 1:6� above the value
obtained by the ETM Collaboration.

All previous calculations of the charmed-baryon
spectrum have been performed with light-quark masses

corresponding to m� 
 260 MeV, placing our calculation
closest to the physical point. Perhaps the most pertinent
of the results presented is the �cc mass, 3595(39)(20)
(6) MeV. Unlike all previous calculations, we performed
a coupled extrapolation of the f�cc;�

�
ccg doublet to the

physical point. Although this led to a m�cc
closer to the

experimentally observed value in comparison to our pre-
vious work [30], our mean value of m�cc

is still above the

mass observed by the SELEX Collaboration by about

Experiment
Briceno et al. (Nf =2+1+1, Cont. Ext.)
Liu et al. (Nf =2+1, a~0.12fm, direct)
Liu et al. (Nf =2+1, a~0.12fm, splitting)
Na et al. (Nf =2+1, a~0.09fm)
ETM Collaboration (Nf =2, Cont. Ext.)

Experiment
Briceno et al. (Nf =2+1+1, Cont. Ext.)
Na et al. (Nf =2+1, a~0.09fm)
ETM Collaboration (Nf =2, Cont. Ext.)

FIG. 13 (color online). A survey of previous unquenched lattice calculations [12–16,29], along with the results of this paper labeled
as ‘‘Briceno et al.’’ Calculations that have evaluated the spectrum at multiple lattice spacings and have extrapolated quantities to the
continuum limit ½a ! 0� are labeled ‘‘Cont. Ext.,’’ while the other calculations are labeled by their lattice spacing. The statistical
uncertainty is shown as a thick inner error bar, while the statistical and systematic uncertainties added in quadrature are shown as a
larger thin outer error bar. Our systematic uncertainties include errors originating from the fitting window and scale setting. The
experimentally determined masses are shown for comparison [19].

FIG. 14 (color online). Comparison of our results (LQCD) for the masses of the lightest doubly and triply charmed baryons, with the
theoretical prediction from other models: QCD sum rules (QCDSR) [9,67], the nonrelativistic quark model (QM) [6], the relativistic
three-quark model (RTQM) [7], the relativistic quark model (RQM) [8], heavy-quark effective theory (HQET) [10], and the Feynman-
Hellmann theorem (FHT) [11].
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76 MeV [1,2] and our combined uncertainty for this par-
ticle is 44 MeV. Therefore, despite the fact that we see no
strong disagreement with the SELEX result, our result does
not agree with their experimentally observed mass. This is
in contrast with the recently published result by the ETM
Collaboration, m�cc

¼ 3513ð23Þð14Þ MeV [29], which is

the only unquenched LQCD calculation to be in agreement
with the SELEX Collaboration.

Therefore, it remains true that the �þ
cc requires further

investigation both from the experimental and the theoreti-
cal communities. In particular, from the experimental side
it would be desirable to obtain a clear determination of the
isospin doublet ð�þ

cc;�
þþ
cc Þmasses as well as identification

of the quantum numbers of such states. Although the
SELEX Collaboration has confirmed their observation of
�þ

ccð3520Þ, the BABAR [4] and BELLE [5] experiments
observed no evidence for either state of the doublet. From
the theoretical side, we expect to be able to perform
calculations closer to or at the physical pion mass in the
near future, thereby reducing the contribution from lattice
artifacts. In Fig. 14, we compare our results for the masses
of doubly and triply charmed baryons with predictions
from theoretical models. In particular, we show results
obtained using QCD sum rules [9,67], the nonrelativistic
quark model [6], the relativistic three-quark model [7],

the relativistic quark model [8], heavy-quark effective the-
ory [10], and the Feynman-Hellmann theorem [11]. Our
result for m�cc

is 3595(39)(20)(6) MeV, and from Fig. 14

we estimate the overall theoretical prediction for thismass to
be 3550–3650 MeV. These figures can guide experimental-
ists on the quest for the doubly and triply charmed-baryon
masses. Finally, we predict the yet-to-be-discovered doubly
and triply charmed-baryonmasses��

cc,�cc,�
�
cc,�ccc to be

3648(42)(18)(7), 3679(40)(17)(5), 3765(43)(17)(5), and
4761(52)(21)(6) MeV, respectively.

ACKNOWLEDGMENTS

We thank MILC Collaboration and PNDME
Collaboration for sharing their HISQ lattices and light
clover propagators with us. R. B. thanks Martin Savage
for fruitful discussions, and for his feedback on the first
manuscript of this paper. R. B. and D. B. thank Joseph
Wasem and Amy Nicholson for many useful discussions.
These calculations were performed using the Chroma
software suite [69] on Hyak clusters at the University of
Washington managed by the UW Information Technology,
using hardware awarded by NSF Grant No. PHY-
09227700. The authors were supported by the DOE
Grant No. DE-FG02-97ER4014.

[1] M. Mattson et al. (SELEX Collaboration), Phys. Rev. Lett.
89, 112001 (2002).

[2] J. Russ (SELEX Collaboration), arXiv:hep-ex/0209075.
[3] A. Ocherashvili et al. (SELEX Collaboration), Phys. Lett.

B 628, 18 (2005).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,

011103 (2006).
[5] R. Chistov et al. (BELLE Collaboration), Phys. Rev. Lett.

97, 162001 (2006).
[6] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817

(2008).
[7] A. Martynenko, Phys. Lett. B 663, 317 (2008).
[8] D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, Phys.

Rev. D 66, 014008 (2002).
[9] Z.-G. Wang, Eur. Phys. J. A 45, 267 (2010).
[10] J. Korner, M. Kramer, and D. Pirjol, Prog. Part. Nucl.

Phys. 33, 787 (1994).
[11] R. Roncaglia, D. Lichtenberg, and E. Predazzi, Phys. Rev.

D 52, 1722 (1995).
[12] L. Liu, H.-W. Lin, K. Orginos, and A. Walker-Loud, Phys.

Rev. D 81, 094505 (2010).
[13] H.-W. Lin, S. D. Cohen, L. Liu, N. Mathur, K. Orginos,

and A. Walker-Loud, Comput. Phys. Commun. 182, 24
(2011).

[14] L. Liu, H.-W. Lin, and K. Orginos, Proc. Sci.
LATTICE2008 (2008) 112.

[15] H. Na and S.A. Gottlieb, Proc. Sci. LAT2007 (2007) 124.

[16] H. Na and S. Gottlieb, Proc. Sci. LATTICE2008 (2008)
119.

[17] J. Flynn, F. Mescia, and A. S. B. Tariq (UKQCD
Collaboration), J. High Energy Phys. 07 (2003) 066.

[18] N. Mathur, R. Lewis, and R. Woloshyn, Phys. Rev. D 66,
014502 (2002).

[19] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[20] G. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.
Hornbostel, Phys. Rev. D 46, 4052 (1992).

[21] A. S. Kronfeld, Nucl. Phys. B, Proc. Suppl. 129, 46
(2004).

[22] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,
Phys. Rev. D 55, 3933 (1997).

[23] S. Aoki, Y. Kuramashi, and S.-i. Tominaga, Prog. Theor.
Phys. 109, 383 (2003).

[24] N. H. Christ, M. Li, and H.-W. Lin, Phys. Rev. D 76,
074505 (2007).

[25] H.-W. Lin and N. Christ, Phys. Rev. D 76, 074506 (2007).
[26] R. Lewis, N. Mathur, and R. Woloshyn, Phys. Rev. D 64,

094509 (2001).
[27] T.-W. Chiu and T.-H. Hsieh, Nucl. Phys. A755, 471

(2005).
[28] M. Papinutto, J. Carbonell, V. Drach, and C. Alexandrou

(ETM Collaboration), Proc. Sci. LATTICE2010 (2010)
120.

[29] C. Alexandrou et al., arXiv:1205.6856.
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