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We show how the leading physical and Wilson low-energy constants associated with Wilson fermions

in lattice gauge theory can be determined individually by using spectral information of the Wilson Dirac

operator with fixed index at finite volume. The methods are demonstrated in simulations with leading-

order improved Wilson fermions. In addition to the expected suppression of the leading term in Wilson

chiral perturbation theory we observe a substantial reduction also of the higher-order Wilson low-energy

constants.
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I. INTRODUCTION

One of the challenges facing lattice gauge theory simu-
lations near the chiral limit is how to disentangle ultraviolet
lattice artifacts from chiral behavior. As simulations with
Wilson fermions approach the physical point of almost
massless u and d quarks [1–5], this obstruction needs to
be overcome. The traditional method is to proceed through
the Symanzik effective continuum field theory, which
includes a series expansion in the lattice spacing a.
Associated with each power of a is a set of higher-
dimensional operators whose transformation properties
under chiral rotations determine the effective low-energy
field theory, Wilson chiral perturbation theory. This pro-
gram has been carried out to high order [6]. For a nice
review, see, e.g., Ref. [7].

From the numerical point of view, the introduction of a
whole new set of Wilson low-energy constants in addition
to the physical low-energy parameters of QCD is, however,
a challenge. One has to deal with several new fitting
parameters, and hence the need to fit more observables.
Moreover, for typical observables in the so-called p regime
of Wilson chiral perturbation theory, one finds that observ-
ables tend to depend on particular combinations of the
Wilson low-energy constants, not directly on their individ-
ual values.

In this paper, we wish to advocate a new strategy
towards determining the leading physical and Wilson
low-energy constants which is based on the new analytical
results for spectral correlators of theWilson-Dirac operator
[8–15]. The idea is very simple, and relies on using the
wealth of detailed information contained in the spectral
density and spectral correlation functions of the Wilson
Dirac operatorDW and its Hermitian counterpartD5. Here,

as in earlier work on how to determine QCD low-energy
constants based on the Dirac operator spectrum [16], the
fact that one has a new finite-volume scaling regime plays a
crucial role in increasing the accuracy of the method. In
particular, we shall demonstrate how the chiral condensate,
the quark mass and the Wilson low-energy constants W6,
W7 and W8 can be obtained from the Wilson Dirac spec-
trum. It is central for this method that one can divide lattice
configurations into sectors of fixed index �, as determined
by the spectral flow [17]. When combined with more
traditional approaches from determining combinations of
Wilson low-energy constants in the p regime by measur-
ing, e.g., small differences in the charged and neutral pion
masses [18,19] or from other combinations of correlation
functions [20], one has a series of strong consistency
checks on the obtained values.
Perturbative results for the effect of Oða2Þ terms on the

spectrum have been compared to numerical simulations
and used to determine Wilson low-energy constants in
Ref. [21]. There have also been two initial studies of the
detailed analytical predictions for the Wilson Dirac opera-
tor spectrum [22,23], results of which already looked
promising. Here we explore the effect of introducing a
simpleOðaÞ clover improvement [24], using the coefficient
given by leading-order weak-coupling perturbation theory.
As we shall demonstrate below, one of the unexpected
consequences of this simple OðaÞ improvement is that
also Oða2Þ low-energy constants of Wilson chiral pertur-
bation theory are substantially reduced. Moreover, certain
asymmetries in the data of Refs. [22,23] that clearly could
not be explained by Wilson chiral perturbation theory
up to, and including, Oða2Þ effects are also substantially
reduced by this clover improvement. This shows that
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simple clover improvement even reduces the terms of order
OðamÞ, where m is the quark mass. This is good news for
lattice simulations, and a result that could not have been
anticipated a priori. All numerical data in this paper refer
to the quenched approximation. It would obviously be of
interest to have a confirmation of our results with the
fermion determinant included.

Our paper is organized as follows. In the next section,
we briefly review the theoretical setting and introduce our
lattice setup. In Sec. III, we present our new numerical
results, and explain how different observables can be
used to probe individual Wilson low-energy coefficients.
We end in Sec. IV with conclusions and an outlook for
future work.

II. THE THEORETICAL FRAMEWORK

The essential input that allows us to compute the effects
of Oða2Þ on the Wilson Dirac operator spectrum is the
consistency, shown by Sharpe [25], of the method up to
contact terms of order am. As in Refs. [8,9], we use the
�-regime counting where m� �4 and a� �2, keeping
terms up to and including Oð�4Þ (the different possible
counting rules have been discussed in Ref. [26]). In the
language of finite-size scaling, it means that we are con-
sidering a regime in which

mV; zV; a2V;

are kept fixed. Here z is a source of the pseudoscalar
density �c�5c .

Using the convention of Refs. [8,9], we write the effec-
tive Lagrangian up to that order as

LðUÞ ¼ 1

2
ðmþ zÞ�TrUþ 1

2
ðm� zÞ�TrUy

� a2W6½TrðUþUyÞ�2 � a2W7½TrðU�UyÞ�2
� a2W8TrðU2 þUy2Þ; (1)

and we define the partition function in sectors of fixed
index � by

Z�
Nf
ðm; z; aÞ ¼

Z
UðNfÞ

dUdet�Ue�VLðUÞ: (2)

The quenched or partially quenched limits are defined in
the usual way. Operationally, the separation into sectors of
fixed index � as given above corresponds to a separation
based on the spectral flow of the Wilson Dirac operator [9].
This gives a double motivation for following the spectral
flow numerically, since it also provides us with the
real eigenvalues of the Wilson Dirac operator DW (see
below).

We denote the usual Hermitian Wilson Dirac operator
by D5:

D5 � �5ðDW þmÞ: (3)

The source z introduced above couples to �c�5c . It is
useful because the fermion determinant of the QCD path
integral is then, up to a sign, given by

detð�5ðDW þmÞ þ zÞ ¼ detðD5 þ zÞ: (4)

This prompts one to consider the spectral resolvent of the
Hermitian Wilson Dirac operator D5,

GðzÞ �
�
Tr

�
1

D5 þ z� i�

��
¼

�X
k

1

�5
k þ z� i�

�
; (5)

where �5
k are the eigenvalues of D5. From this, the density

of eigenvalues of D5 follows:

�5ð�5Þ ¼ 1

�
Im½Gð��5Þ�j�!0þ: (6)

Let us now briefly review some basic facts about the
eigenvalues of DW and D5 [9], many of which follow
directly from the early paper [27]. As is well known,
eigenvalues of DW are either real or come in complex
conjugate pairs. The real eigenvalues of DW play particu-
larly important roles, since they provide a definition of
gauge field topology as the lattice spacing a is taken to
zero. Even at nonzero lattice spacing these real modes are
special. It follows from the definition of D5 that its eigen-
values �5 are functions of the massm: �5 ¼ �5ðmÞ. Tuning
m to a value mc at which a zero eigenvalue occurs,
�5ðmcÞ ¼ 0, is particularly interesting since

D5� ¼ 0 ) DW� ¼ �mc�: (7)

This shows that finding a zero of �5ðmÞ corresponds to
identifying a real mode of DW . It is straightforward to see
that the argument runs both ways, so that a real eigenvalue
of DW also corresponds to a zero of �5ðmÞ. Moreover, in a
compact notation, one can show that for given eigenstates
jji of real modes of DW [9,27],

d�5
j ðmÞ
dm

��������m¼mc

¼ hjj�5jji; (8)

so that the slope at a crossing of the spectral flow is given
by the chirality of the state jji. As the continuum is
approached, this chirality goes to �1. At any finite lattice
spacing the chirality vanishes identically for all nonreal
modes [27].
The chirality of the real modes is also directly related to

the index � described above since around the physical
branch [9], X

real

signhjj�5jji ¼ �; (9)

a relation which displays the topological nature of the
index: the number of zero crossings, counted with signs.
As the lattice spacing a is reduced the number of multiple
crossings near the physical branch of the spectrum goes to
zero. On typical configurations in the present study, the
definition of � given by the spectral flow as shown above
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agreed with the (improved) naive topological charge of
the so-called ‘‘Boulder method,’’ [28] which we applied
after six hypercubic (HYP) smearings to the gauge fields.
The few cases were the two determinations differed were
usually associated with multiple crossings, with the last
one at a fairly large �W

real.

We now remind the reader of a few basic facts about the
spectrum of the Hermitian Wilson Dirac operator [17]. In
the continuum, the spectrum of the Dirac operator D is
chiral: for every nonzero eigenvalue i� there is a matching
eigenvalue�i�. This holds configuration by configuration,
and is a simple consequence of the �-matrix identity
f��; �5g ¼ 0. The corresponding Hermitian Dirac operator
�5ðDþmÞ is also chirally symmetric:

�5ðDþmÞ�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
��; (10)

and the pairing is preserved: for every eigenvalue pair�i�

of D there is a pair of eigenvalues �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
. For the

zero modes of D, where there is no chiral pairing, there is
also no pairing of eigenvalues of �5ðDþmÞ: these eigen-
values become either þm or �m, depending on their
chiralities. The zero modes of D are chiral eigenstates.
For the Wilson Dirac operator DW these properties are
violated. In particular, the spectrum of DW is in the com-
plex plane and it is not chirally paired. Likewise, the
spectrum of D5 ¼ �5ðDW þmÞ is not symmetric configu-
ration by configuration, although the density �5ð�5Þ is
symmetric in the � ¼ 0 sector.

Analytical predictions for the quenched spectrum of D5

have been given in Refs. [8,9], although focus there was on
the simplifying case when only W8 is considered nonvan-
ishing. General analytical expressions including W6, W7

and W8 were also provided in those references. The con-
stants W6, W7, and W8 have fixed signs [8,9,13,20]: Only
for W6, W7 < 0 and W8 > 0 is Wilson chiral perturbation
theory the effective theory of lattice QCD with a
�5-Hermitian Wilson Dirac operator.

For the clover-improved case studied here, we shall find

that a
ffiffiffiffiffiffiffiffiffiffiffiffiffijWijV

p � 1. In that case �5 depends only on the
combination jW6j þ jW7j rather than on W6 and W7 sepa-
rately [9]. We shall therefore keep W7 ¼ 0 throughout the
rest of this paper, and show how we can disentangle the
dependence on W6 from that on W8.

III. SIMULATIONS AND NUMERICAL RESULTS

We use two of the gauge field ensembles already con-
sidered in our previous work [22]. Both were generated
with the Iwasaki gauge action [29] and have a lattice size of
L ¼ 1:5 fm. Some further properties are given in Table I,
including the lattice spacing inferred from r0=a values
from [30,31] using r0 ¼ 0:5 fm to set the physical scale,
and the number of configurations analyzed with j�j ¼ 0, 1,
and 2. We have applied one HYP smearing [32] to the
gauge fields before constructing the clover Dirac operator

with the tree-level clover coefficient csw ¼ 1. It is known
[33] that the tree-level clover coefficient is fairly close to a
nonperturbatively improved value when using HYP
smeared gauge fields.
We now turn to an analysis of our lattice data. We start

by numerical results obtained on the 164 lattice. As a first
test of the impact of clover improvement, we show in Fig. 1
the density of real modes ofDW in the � ¼ 1 sector. On the
same plot is shown earlier data from Ref. [22] without
clover improvement. It is evident that clover improvement
as expected shifts the position of the peak towards the
origin. Moreover, it is also clear that the clover improve-
ment has reduced the width of the peak substantially. In the
analytic computation within Wilson chiral perturbation
theory [8,9] this width is determined by the terms of order
a2. Hence we conclude that the clover term also has a
positive effect on the order a2 terms. Finally, the fact that
the peak has become more symmetric must necessarily be
due to an improvement of the terms of order OðamÞ � �6

and higher. As our analytical results extend only to order �4

we unfortunately cannot quantify this suppression of the
asymmetry further. Overall this seems to show that clover
improvement works better than we had reasons to expect,
see also Ref. [34]. We now turn to the effect of clover
improvement on the spectrum of D5. Since in the small-a

TABLE I. Ensemble of pure gauge configurations considered,
generated with the Iwasaki gauge action. Listed are 	Iw, the size
in lattice units, the lattice spacing, the bare mass in the clover
Dirac operator and the number of configurations in the sectors
with j�j ¼ 0, 1, and 2.

	Iw Size a [fm] am0 � ¼ 0 j�j ¼ 1 j�j ¼ 2

2.635 164 0.093 �0:03 1276 2257 1518

2.79 204 0.075 �0:027 1202 2128 1408
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FIG. 1 (color online). The effect of clover improvement on the
density of the real eigenvalues ofDW . The black line is the clover
improved data and the red (gray) line is the data before clover
improvement. Not only does the peak shift towards the origin, the
clover term also makes it much more narrow and symmetric.
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limit the real eigenvalues ofDW map directly to the peak at
�5 ¼ m, we certainly expect improvement here as well.

The histograms in Fig. 2 give the eigenvalue density of
the Hermitian Wilson Dirac operator in the � ¼ 0, 1 and 2
sectors as obtained from the 164 lattices. Displayed also are
two fits of the analytic curves obtained from Wilson chiral

perturbation theory. With the additional Wilson low-
energy constants there are in total 5 parameters to fit
(�V=a, m�V, W6a

2V, W7a
2V and W8a

2V). Fortunately
the analytic results of Refs. [9,22] give us a series of
insights that allow us to address these constants in turn.
First of all, as mentioned above, the Wilson low-energy
constantsWi have fixed signsW6 < 0,W7 < 0 andW8 > 0
[8,9,13,20]. Moreover, [9,10] in the limit where

a
ffiffiffiffiffiffiffiffiffiffiffiffiffijWijV

p � 1 there is a factorization of the eigenmodes
of D5, while those in the index peak have a specific
dependence on the Wi’s the rest of the eigenvalue density

is not affected to leading order in a
ffiffiffiffiffiffiffiffiffiffiffiffiffijWijV

p
, see Fig. 6

below for an illustration. This has the following most
useful consequences:
(1) The eigenvalue density on the opposite side of the

index peak is almost continuumlike.
(2) The smallest eigenvalues on this side of the origin

are located very close to �m and thus offer a clean
way to extract the quark mass parameter.

(3) The value of � can be estimated by scaling the �5

axis and m until the data on this side of the gap
match the continuum predictions.

(4) The values of theWi’s are finally obtained from their
effect on the index peak (see below).

The fits were made, using the above insights, to the
j�j ¼ 1 data and have a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�W6V
p ¼ 0:1 and W8 ¼ 0 (blue

line) respectively W6 ¼ 0 and a
ffiffiffiffiffiffiffiffiffiffi
W8V

p ¼ 0:1 (red line). In
both cases �V=a ¼ 173 and m�V ¼ 2:5.
As can be seen from the middle panel of Fig. 2 the

j�j ¼ 1 data work well both with W6 alone (blue curve)
and with W8 alone (red curve).
Having fixed the values of the low-energy constants by

the j�j ¼ 1 data we can now check the two corresponding
predictions from Wilson chiral perturbation theory against
the � ¼ 0 and j�j ¼ 2 data. In the top panel for � ¼ 0 both
predictions do well, however, for the j�j ¼ 2 data only the
prediction from the fit with W6 alone reproduces the peak
structure of the would-be topological modes.
In Fig. 3, we plot the analytic predictions (the values of

the low-energy constants still fixed as above) for the real
eigenvalues of the Wilson Dirac operator against the real
eigenvalues of the j�j ¼ 1 and j�j ¼ 2 sectors. In the top
panel the red lines display the predictions corresponding to
the fit with W8 alone. The predictions from the fit with W6

alone are given in the lower panel (blue lines). Again the
j�j ¼ 2 data for the real eigenvalues clearly favors the
prediction with W6 alone.
The reason why W6 and W8 have such a different effect

on the analytic prediction with j�j ¼ 2 is the following:
TheW6-term in the � regime of Wilson chiral perturbation
theory corresponds to a Gaussian fluctuating mass [9]. The

 peak from the continuum atm is therefore smeared into a
Gaussian with an amplitude that simply scales with �.
In particular, W6 does not induce eigenvalue repulsion
between the real modes. On the contrary it was shown in
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FIG. 2 (color online). The spectral density of the Hermitian
Wilson Dirac operator on the 164 lattices. The numerically
determined eigenvalues have been rescaled with �V=a ¼ 173
for the comparison to the analytic results. The j�j ¼ 2 data in the
lower panel allow us to separate the effect ofW6 from that ofW8.
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Refs. [9,10] that for small but nonzero a2W8V the density
of the real eigenvalues of DW takes the form of the �� �
Gaussian unitary ensemble scaled by 4a2W8V. The effect
of W8 is therefore to induce the eigenvalue repulsion
familiar from random matrix theory between the real
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FIG. 3 (color online). The density of the real eigenvalues of
DW , rescaled with �V=a ¼ 173. Clearly the prediction with
W8 ¼ 0 (blue lines lower panel) gives the better description of
the j�j ¼ 2 data.
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FIG. 4 (color online). The density of the real eigenvalues of
DW for j�j ¼ 2 on the 164 lattice plotted together with the
accumulated density of the first two positive eigenvalues of D5

on the same configurations shifted by the bare mass. The
excellent match between the two demonstrates that the corre-
sponding eigenvectors are almost chiral.
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FIG. 5 (color online). The spectral density of the Hermitian
Wilson Dirac operator on the 204 lattices. The eigenvalues have
been rescaled with�V=a ¼ 220. In blue and red are two fits (see
the main text) to the j�j ¼ 1 data in the middle panel. In the top
and lower panel the predictions obtained from these fits are
plotted against the data.
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modes. In this way, we get a clear distinction between the
effect of W6 and W8.

The fact that the real modes of DW and the nearly
topological peak in the spectrum of D5 both lead to the
same conclusion is not accidental. In Fig. 4, we plot the
real modes ofDW for j�j ¼ 2 together with the distribution
of the first two positive eigenvalues of D5 appropriately
shifted by the bare mass. The essentially perfect match
between the two distributions demonstrates that the corre-
sponding eigenvectors are almost chiral as is expected for
ja2WiVj � 1, see Fig. 4 of Ref. [9] and the associated
discussion.

Let us now consider the 204 data set. In Fig. 5, the
eigenvalue density of the Hermitian Wilson Dirac operator
is displayed for � ¼ 0 (top panel), j�j ¼ 1 (middle panel)
and j�j ¼ 2 (lower panel). Again we have made two fits to
the j�j ¼ 1 data, one withW8 ¼ 0 (blue line) and one with
W6 ¼ 0 (red line). The values in this case are a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�W6V
p ¼

0:06 and W8 ¼ 0 (blue line), respectively, W6 ¼ 0 and
a

ffiffiffiffiffiffiffiffiffiffi
W8V

p ¼ 0:06 (red line) both with �V=a ¼ 220 and
m�V ¼ 2:3.

These values were determined according to the strategy
outlined above. To illustrate the factorization of the behav-
ior used we show in Fig. 6 the fit for � ¼ 1 and W8 ¼ 0
together with the continuum, a ¼ 0, curve at the same
quark mass. As is clear, the leading-order effect for

a
ffiffiffiffiffiffiffiffiffiffiffiffiffijWijV

p � 1 is on the index peak only.
The two fits both describe the j�j ¼ 1 data well and the

prediction for j�j ¼ 0 also works nicely for both fits. For
j�j ¼ 2 the analytic predictions again differ in the region
of the topological modes. Also here it is the prediction with
W6 alone that gives the only acceptable fit to the j�j ¼ 2
data. This again allows us to conclude that W6 gives the

dominant contribution to the discrepancy from the
continuum.
Finally, to summarize the effect of clover improvement:

Before clover improvement [22] we found that the values

of a
ffiffiffiffiffiffiffiffiffiffiffiffiffijW8jV

p
were roughly 0.35 for both the 164 and 204

lattices. Here, after clover improvement, we find that

a
ffiffiffiffiffiffiffiffiffiffiffiffiffijW8jV

p
is consistent with zero and that a

ffiffiffiffiffiffiffiffiffiffiffiffiffijW6jV
p

takes
the values 0.10 and 0.06, respectively. Moreover, the asym-
metry of the density of the real modes has been substan-
tially reduced by the addition of the clover term. This
indicates an improvement also at order OðamÞ. While
this unexpected order Oða2Þ and OðamÞ improvement is
an analytic challenge to understand, it is clearly good news
for lattice QCD.

IV. CONCLUSIONS AND OUTLOOK

We have shown how the microscopic eigenvalue density
of the Wilson Dirac operator can be used to determine both
physical and lattice-artifact low-energy constants from
lattice QCD simulations. We have demonstrated this with
quenched clover-improved simulations. The method relies
crucially on our ability to divide the lattice configurations
into sectors with fixed index.
While initial numerical tests [22,23] had already dem-

onstrated the feasibility of computing the microscopic
spectrum of the Wilson Dirac operator and comparing it
to analytical predictions, there were aspects of the mea-
sured spectra that displayed a systematic disagreement
with the analytical predictions. In particular, the observed
asymmetry in the spectrum of the real modes of DW . This
asymmetry has been known to be present in data from very
early on, and yet it is a firm prediction of Wilson chiral
perturbation theory up to and including Oða2Þ that the
spectrum must be symmetric. A quick analysis reveals
that terms involving odd powers of am in the effective
theory are needed to explain such an asymmetry. This
is beyond present analytical predictions. Here we have
improved at order a through use of the conventional clover
term. Since the effective theory contains an arbitrary linear
shift in the mass term anyway, such an improvement is, in
this context, not interesting in itself. But clearly clover
improvement has an impact on higher-order coefficients
as well. We have found that clover improvement in fact
substantially reduces the higher-order Wilson constants
and makes the spectrum of real modes much more sym-
metric, and hence in good agreement with analytical pre-
dictions. Because of the close connection between real
modes of DW and the ‘‘topological’’ (threshold) eigenval-
ues of D5, this improves the eigenvalue spectrum of D5

as well.
Apart from demonstrating substantially better agree-

ment between theory and numerical data, we have taken
the opportunity to explain new ways to measure Wilson
low-energy constants based on spectral data of the Wilson
Dirac operator. In particular, we have shown how a detailed
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FIG. 6 (color online). Comparison of the microscopic eigen-
value density of the Hermitian Wilson Dirac operator in the
continuum a ¼ 0 (black curve) and with a
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only this peak is affected by the discretization.
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understanding of how the different Oða2Þ operators in the
Wilson chiral Lagrangian influence the spectrum can be
used to isolate dependencies on the individual low-energy
constants. This should be very helpful in determining the
numerical values of the constants in dynamical simula-
tions. Crucial in this context is the separation of configu-
rations into sectors of fixed index �, the Wilson analogue
of a topological charge. In each sector there are definite
predictions with which to compare the data.

The present study should be extended to full-scale simu-
lations with dynamical fermions. Analytical predictions
are already available for two light flavors [12]. This gives
entirely new ways to measure the low-energy constants of
Wilson chiral perturbation theory that can be compared to
and combined with alternative approaches using more
conventional space-time dependent observables in the p
regime. Although computationally more complicated, it
would also be most interesting to carry out analogous
studies of the full complex spectrum ofDW . The analytical
predictions are available in Refs. [11,13]. In particular, the

realization of either the Aoki phase [35] or the Sharpe-
Singleton scenario [6] is closely linked to the complex
spectrum of DW [13].
Finally, due to the unexpected higher order improvement

caused by the clover term it would be interesting to test the
effect of clover improvement also in twisted mass lattice
QCD. As we have demonstrated here, the spectral density
of the lattice Dirac operator is an efficient tool for such an
analysis. The necessary analytical predictions fromWilson
chiral perturbation with a maximally twisted mass have
recently been derived [36].
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