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2Departamento de Fı́sica Teórica, Universidad de Zaragoza, E-50009 Zaragoza, Spain

3Southern Methodist University, Dallas, Texas 75275, USA
4Laboratory of Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

5Bergische Universität Wuppertal, Gaussstrasse 20, D-42119 Wuppertal, Germany
(Received 15 August 2012; revised manuscript received 16 October 2012; published 2 November 2012)

We calculate the J=c mass, leptonic width and radiative decay rate to ��c from lattice QCD including

u, d and s quarks in the sea for the first time. We use the highly improved staggered quark formalism and

nonperturbatively normalized vector currents for the leptonic and radiative decay rates. Our results are:

MJ=c �M�c
¼ 116:5ð3:2Þ MeV; �ðJ=c ! eþe�Þ ¼ 5:48ð16Þ keV; �ðJ=c ! ��cÞ ¼ 2:49ð19Þ keV.

The first two are in good agreement with experiment, with �ðJ=c ! eþe�Þ providing a test of a decay

matrix element in QCD, independent of Cabibbo-Kobayashi-Maskawa uncertainties, to 2%. At the same

time results for the time moments of the correlation function can be compared to values from the charm

contribution to �ðeþe� ! hadronsÞ, giving a 1.5% test of QCD. Our results show that an improved

experimental error would enable a similarly strong test from �ðJ=c ! ��cÞ.
DOI: 10.1103/PhysRevD.86.094501 PACS numbers: 11.15.Ha, 12.38.Gc, 14.40.Pq, 14.65.Dw

I. INTRODUCTION

Precision tests of lattice QCD against experiment are
critical to provide benchmarks against which to calibrate
the reliability of predictions from lattice QCD [1]. Most
tests to date have relied on the spectrum of gold-plated
hadron masses—for example, the mass of the Ds meson
can be calculated in lattice QCD with an error of 3 MeV
(having fixed the masses of the c and s masses from other
mesons) and the result agrees with experiment [2,3]. Here
we give another such test by determining the mass of the
J=c to a precision of 3 MeV.

Tests of decay matrix elements are harder to do very
accurately. We need precision tests of these because it is the
predictions of decay matrix elements from lattice QCD that
enable, for example, progress with the flavor physics pro-
gram [4] of overdetermining the Cabibbo-Kobayashi-
Maskawa (CKM) matrix to find signs of new physics [5].
The leptonic decay rate of the� via aW boson provides one
such test. The QCD input to this is the pion decay constant,
which is determined to 1% in lattice QCD [6]. If we take
Vud from nuclear � decay [7], we have a 2% determination
of the leptonic decay rate to be compared to experiment.
The leptonic decay rates of other charged pseudoscalars can
also be determined to a few percent from lattice QCD [4]
but then the comparison with experiment is generally
needed to determine the appropriate CKM element.

Independent tests of matrix elements, without CKM uncer-
tainties, come only from electromagnetic decays. Here we
provide two such tests through two different decay rates of
the J=c : annihilation to eþe� via a photon and radiative
decay to the �c. We give the first results from full lattice
QCD including u, d and s quarks in the sea, although earlier
calculations have been done in quenched QCD [8] and
including u and d sea quarks [9,10].
We are able to determine these matrix elements to a few

percent because of our development of an accurate and
fully relativistic approach to c quarks (as well as u, d and s)
in lattice QCD called the highly improved staggered quark
(HISQ) formalism [11]. In this formalism we are able to
normalize the vector current which mediates the electro-
magnetic decay accurately and nonperturbatively and we
show how to do that here.
The layout of the paper is as follows: Section II

describes the lattice calculation and then Sec. III gives
results for the J=c mass, leptonic width (along with time
moments of the J=c correlator) and radiative decay rate in
turn. We compare our results to experiment and to previous
lattice QCD calculations in Sec. IV. Section V gives our
conclusions. The Appendixes discuss the more technical
issues of discretization errors and our two different meth-
ods for current renormalization.

II. LATTICE CALCULATION

We use 6 ensembles of lattice gluon configurations at 4
different, widely separated, values of the lattice spacing,
provided by theMILCCollaboration [12]. The configurations
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include the effect of u, d and s quarks in the sea with the
improved staggered (asqtad) formalism. The u and dmasses
are taken to be the samewithmu=d=ms approximately 0.2 on

most of the ensembles. Based on our experience of other
gold-plated mesons [2] we expect sea quark mass effects to
be small for the J=c because it has no valence light quarks.
We can test this by comparison of results on sets 1 and 2
where the sea value ofmu;d changes by a factor of 2 and with

set 3 where the sea value ofms changes by 70%. Table I lists
the parameters of the ensembles.

The lattice spacing is determined on an ensemble-by-
ensemble basis using a parameter r1 that comes from
fits to the static quark potential calculated on the lattice
[12]. This parameter has small statistical and fitting
errors but its physical value is not accessible to experiment
and so must be determined using other quantities, calcu-
lated on the lattice, that are. We have determined r1 ¼
0:3133ð23Þ fm using four different quantities ranging from
the (2S-1S) splitting in the � system to the decay constant
of the �s (fixing fK and f� from experiment) [13]. Using
our value for r1 and the MILC values for r1=a given in
Table I we can determine a in femtometers on each en-
semble or, equivalently, a�1 in GeV needed to convert
lattice quantities to physical units.

On these ensembles we calculate c quark propagators
using the HISQ action and combine them into meson
correlation functions. The quark propagators are made
from a ‘‘random wall’’ source—a color 3-vector of U(1)
random numbers—on a given time slice to reduce the
statistical noise. An added reduction comes from the use of
a random starting point for the equally spaced time sources
we use on the coarse and fine ensembles. We include
only connected correlation functions here—disconnected
contributions for the J=c are related to its hadronic width
which is in keV and therefore negligible here.

The c quark mass is tuned from the �c meson mass [2].
The appropriate ‘‘experimental’’ mass for the �c for our
calculations is 2.986(3) GeV, differing from the experimen-
tal result of 2.981(1) GeV [7] because of missing electro-
magnetic, �c annihilation and c-in-the-sea effects that we
estimate perturbatively [14]. The HISQ lattice c quark

masses for the ensembles we are using were determined
in [2].
Meson masses and decay constants are determined from

simple ‘‘2-point’’ meson correlation functions made from
combining quark propagators with appropriate spin matri-
ces at source and sink to project onto the correct JPC. For
staggered quarks, where the spin degree of freedom has
disappeared, the spin projection matrices are replaced with
space-time-dependent phases of �1. Because of fermion
doubling, there are in fact 16 ‘‘tastes’’ of every meson
made by combining a point splitting of the quark and
antiquark source and sink along with the appropriate �1
phases. The most accurate meson correlation functions
come from either local or 1-link separated sources and
sinks and we will restrict ourselves to these here.
Because the taste splittings are discretization effects we
are free to use whichever taste is the most convenient for a
given calculation.
For the pseudoscalar mesons the mass differences

between the different tastes have a simple picture with
the mass increasing as the amount of point splitting in
the source or sink operator increases. The lightest mass
particle is the Goldstone meson whose correlator is simply
the modulus squared of the propagator and whose squared
mass vanishes linearly with the quark mass. This is the one
that is used to tune the quark mass. The other taste pseu-
doscalar mesons have a mass for which the difference of
mass squared with the Goldstone meson is a constant with
quark mass which vanishes as �2

sa
2. These taste-splitting

discretization errors are particularly small with the HISQ
action [11]. They also become smaller, in proportion to the
meson mass, as the meson mass increases and so are very
small for mesons made of c quarks [11]. The mass differ-
ence between the Goldstone meson and the next heaviest
pseudoscalar meson is visible, however. Both masses can
be determined very accurately in lattice QCD because they
both correspond to local operators. The Goldstone meson
corresponds to the local �5 operator and the local non-
Goldstone to the local �0�5 operator. We will use both of
these mesons in our calculation of the radiative decay rate
of the J=c .

TABLE I. Ensembles (sets) of MILC configurations used for this analysis. The sea asqtad quark masses m
asq
l (l ¼ u=d) and m

asq
s are

given in the MILC convention where u0 is the plaquette tadpole parameter. The lattice spacing values in units of r1 after ‘‘smoothing’’
are given in the second column [12]. Here sets 1, 2 and 3 are ‘‘coarse’’; set 4, ‘‘fine’’; set 5 ‘‘superfine’’ and set 6 ‘‘ultrafine.’’ The size
of the lattices is given by L3

s � Lt. The final two columns give the difference between the sea quark mass and its physical value in units
of the s quark mass [2].

Set r1=a au0m
asq
l au0m

asq
s Ls=a Lt=a �xl �xs

1 2.647(3) 0.005 0.05 24 64 0.11 0.43

2 2.618(3) 0.01 0.05 20 64 0.25 0.43

3 2.658(3) 0.01 0.03 20 64 0.25 �0:14

4 3.699(3) 0.0062 0.031 28 96 0.20 0.19

5 5.296(7) 0.0036 0.018 48 144 0.16 �0:03

6 7.115(20) 0.0028 0.014 64 192 0.17 0.04
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Vector meson taste splittings are significantly smaller
than for pseudoscalars and typically not visible for light
mesons above the statistical errors. For the charmonium
vectors we use the local �i operator to determine the
leptonic decay rate and two different 1-link split operators
for the radiative decay. We discuss mass differences from
taste splittings further in Appendix A.

III. RESULTS

A. MJ=c

The determination of the mass of the J=c is most
accurately done through the determination of the charmo-
nium hyperfine splitting, i.e. the mass difference with the
pseudoscalar �c meson. For the �c we use the Goldstone
meson, as discussed in Sec. II, because this is the most
accurately determined in lattice QCD and is the meson we
use to fix the c quark mass. We studied this meson in detail
in [2]. For the J=c we use the local �i operator to create
and destroy the vector meson. The J=c correlators are then
obtained by combining quark propagators from the default
random wall with antiquark propagators from a source
using the same random wall but patterned with phases,
for example, ð�1Þx for the vector polarized in the x direc-
tion. ð�1Þx is also inserted at the sink where the propaga-
tors are tied together.

The J=c and �c correlators at zero spatial momentum
are fit simultaneously so that correlations between them are
taken into account. The fit form for the average J=c
correlator as a function of time separation between source
and sink, t, is

�C2ptðtÞ ¼
X
in;io

a2infnðMin; tÞ � ~a2iofoð ~Mio; tÞ (1)

with

fnðM; tÞ ¼ e�Mt þ e�MðLt�tÞ:

foðM; tÞ ¼ ð�1Þt=afnðM; tÞ;
(2)

and Lt the time extent of the lattice. in ¼ 0 is the ground
state and larger in values denote radial or other excitations
with the same JPC quantum numbers. The Min are the

masses of the corresponding particles. There are ‘‘oscillat-
ing’’ terms coming from opposite parity states, denoted io.
The Goldstone �c meson has the same fit form except that
there are no oscillating contributions (when the �c is at
rest). Note that we do not use any ‘‘smearing’’ functions for
the propagators at either source or sink.

To fit we use a number of exponentials in, and where
appropriate io, in the range 2–6, loosely constraining the
higher order exponentials by the use of Bayesian priors
[15]. As the number of exponentials increases, we see the
�2 value fall below 1 and the results for the fitted values
and errors for the parameters for the ground state i ¼ 0
stabilize. This allows us to determine the ground-state
parameters a0 and M0 as accurately as possible while
including the full systematic error from the presence of

higher excitations in the correlation function. We take the
fit parameters to be the logarithm of the ground-state
masses M0 and ~M0 and the logarithms of the differences
in mass between successive radial excitations (which are
then forced to be positive). The Bayesian prior value for
M0 for the �c is obtained from a simple ‘‘effective mass’’
in the correlator and the prior width on the value is taken as
0.3. The prior value onM0 for the J=c is taken to be 100�
50 MeV above the �c. The prior value for mass splittings
to and between excitations is taken as 600(300) MeV. The
amplitudes ain and aio are given prior widths of 1.0. We

apply a cut on the range of eigenvalues from the correlation
matrix that are used in the fit of 10�4. We also cut out small
t=a [and ðLt � tÞ=a] values below 6 from our fit to reduce
the effect of higher excitations.
Figure 1 shows the quality of our results with a plot of

the J=c correlation function. It is divided by the ground-
state exponential function so that it shows a plateau in the
center of value a20. The results for the ground-state masses

in lattice units of the J=c and �c and the difference
between them, a�Mhyp, are given in Table II. The differ-

ence is typically more accurate than that obtained by
simply subtracting the masses because of the correlation
between the correlators.
The hyperfine splitting is converted to physical units

using the values for a on each ensemble as discussed in
Sec. II. The results are shown in Fig. 2. Figure 2 includes the
error from the determination of the lattice spacing on each
point. This dominates the error but is correlated between the
points and that should be borne in mind in looking at the
figure. It is important to realize that the naive lattice spacing
error is magnified by a factor of approximately 2 in the
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FIG. 1 (color online). Our average J=c correlator divided by
the ground-state exponential [fnðM0; tÞ from Eq. (2)] as a function
of lattice time. Lines are drawn to join the points (which include
statistical errors) for clarity. The fitted result for the ground-state
amplitude a20 is given by the blue band. The fit includes 6 normal

exponentials and 6 oscillating ones, which are responsible for the
oscillating behavior clearly seen in the results.
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hyperfine splitting because of the inverse relationship
between hyperfine splitting and quark mass. For example,
a shift by uncertainty � upwards in the inverse lattice
spacing causes a shift upwards in the meson mass by the
same proportion. To determine the total effect of this on the
hyperfine splitting we must include the effect of retuning
the c quark mass to make the meson mass correct again.
This means in this case retuning the quark mass down by
fraction � which shifts the hyperfine splitting upward by a
further factor of � to that coming simply from the lattice
spacing change. Thus the change in the hyperfine splitting,
representing its uncertainty, is approximately 2� [16].1

Thus lattice spacing uncertainties are typically much
more important in the determination of hyperfine splittings
than statistical errors.

We fit the hyperfine splitting as a function of lattice
spacing and sea quark masses to the form

fða; �xl; �xsÞ ¼ f0 �
X
ijkl

cijklðamcÞ2i
�
�x1
10

�
j
�
�x2
10

�
k
�
�x3
10

�
l

þ ðd0 þ d1ðamcÞ2ÞðM�c;latt �M�c;exptÞ:
(3)

Here f0 is the physical result, the sum over ijkl allows for
discretization errors and sea quark effects and the final
term allows for mistuning of the c quark mass. We allow
the discretization errors, which are evident in our results, to
have a scale set by the c quark mass. These appear only as
even powers of a for staggered quarks. �xl and �xs are the
mistuning of the sea quark masses:

�xq ¼
mq;sea �mq;phys

ms;phys

: (4)

�xl and �xs values are given for each ensemble in Table I
and are taken from Appendix A of [2]. Equation (3)
includes a term for each sea quark (u=d appearing twice,
and s), with the coefficients constrained to be the same so
that the fit function is symmetric with respect to inter-
change of any two. The division by 10 is because the scale
for dependence on light quark masses from chiral pertur-
bation theory is 4�f� � 10ms. We see no significant sea
quark mass dependence in the hyperfine splitting. A fairly
strong dependence was seen in the twisted mass calcula-
tions [10]. However, at least some of that dependence
could be attributed to the sea quark mass dependence of
the lattice spacing, since that is determined only in the
chiral limit. Here we determine the lattice spacing for each
ensemble and hence separate lattice spacing dependence
from physical sea quark mass effects. The sum over ijkl in
Eq. (3) allows for the possibility of lattice spacing depen-
dent sea quark mass effects.
We take a Bayesian prior [15] on f0 of 0.1(1) and then fix

c0000 to 1. The other cijkl are given priors of 0:0� 1:0

except for the c0jkl which determine the a-independent sea

quark mass dependence. These are taken to have priors
0:0� 0:33 because we expect sea quark mass effects to be
typically a factor of 3 smaller than valence quark mass
effects which would have chiral perturbation theory coef-
ficients of Oð1Þ. We include 5 terms in the a dependence
and 3 in the �x dependence. Including additional terms
makes no difference to the value for f0 or its error. The
priors for d0 and d1 are taken as 0.00(5), informed by the
expectation that the hyperfine splitting should be inversely
proportional to the mass, and by the effect of our mistuned
cmass on set 2 which agrees roughly with that expectation.
The fit gives f0 ¼ 116:5ð2:1Þ MeV, as the result for the

hyperfine splitting in the absence of electromagnetism,
c-in-the-sea and �cc annihilation. The first two affect the
�c and J=c equally and so have no effect on the hyperfine

TABLE II. Results in lattice units for the masses of �c and J=c and their difference on each ensemble along with the raw
(unrenormalized) decay constant and the corresponding Z factor. Columns 3 and 4 give the bare HISQ charm quark mass, tuned from
the �c and the corresponding coefficient 	 used in the Naik discretization improvement term of the HISQ action [2]. All of the charm
quark masses are very well tuned except for the lower result on set 2 (mca ¼ 0:66), which was deliberately mistuned to assess the
sensitivity of quantities to the tuning. Of the remaining masses the least well tuned is on superfine set 5 where M�c

is 0.5% too high.

Column 2 gives the number of configurations used and the number of time sources for propagators on each configuration. Results are
binned on time sources and binned over neighboring configurations for sets 5 and 6. The J=c correlators are averaged over
polarizations except on sets 2 and 3 where only one polarization was calculated. The results for the �c masses are also given in [2].
They differ slightly from these in some cases because of fitting simultaneously with J=c correlators. The Z factors are taken from
moment 4 of the nonperturbative (on the lattice) current-current correlator method described in Appendix B 1.

Set Ncfg � Nt mca 	 aM�c
aMJ=c a�Mhyp afJ=c =Z Zcc

1 2099� 8 0.622 �0:221 1.79118(4) 1.85934(8) 0.06817(6) 0.2810(2) 0.979(12)

2 2259� 4 0.63 �0:226 1.80851(5) 1.87797(10) 0.06946(8) 0.2855(2) 0.979(12)

2 2259� 8 0.66 �0:244 1.86667(4) 1.93430(9) 0.06763(7) 0.2925(2) 0.974(12)

3 323� 8 0.617 �0:218 1.78212(12) 1.85081(23) 0.06869(17) 0.2804(5) 0.979(12)

4 566� 4 0.413 �0:107 1.28052(7) 1.32901(12) 0.04849(10) 0.1829(2) 0.983(12)

5 200� 2 0.273 �0:0487 0.89948(8) 0.93369(13) 0.03421(11) 0.1244(3) 0.986(12)

6 208� 1 0.193 �0:0247 0.66649(6) 0.69217(11) 0.02568(10) 0.0925(3) 0.990(12)

1This point has frequently been overlooked in lattice QCD
calculations.
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splitting. The third affects the �c more than the J=c ,
which has negligible width. A perturbative estimate of
the shift of the �c mass resulting from its annihilation to
two gluons [11] related this to the total �c width and
obtained a shift downwards of the �c mass of 2.4 MeV.2

Using this, we have since applied a shift of 2.4(1.2) MeV
for this effect to determine the�c mass to which to tune our
c quark mass, as in Sec. II. For this purpose the impact of
the shift is completely negligible, amounting to less than
0.1% of the �c mass. For the hyperfine splitting, however,
this shift could be a relatively large effect. Nonperturbative
calculations of the contribution of ‘‘disconnected dia-
grams’’ to the �c mass have agreed on a small value of a
fewMeV for the shift from�c annihilation but obtained the
opposite sign [17]. The argument is that the perturbative
result may be modified significantly by the gg intermediate
state forming a resonance such as a glueball which is
lighter in mass than the �c, or a lighter hadron state. To
allow for this possibility and be consistent with the non-
perturbative calculations we do not apply a shift to the
hyperfine splitting obtained from our fit above, but instead
take an additional systematic error of 2.4 MeV, correspond-
ing to our original shift, to allow for the effect.

Our final result for the hyperfine splitting is then

�Mhyp ¼ 116:5ð2:1Þð2:4Þ MeV; (5)

where the errors are in turn from statistics or fitting and
�c annihilation. The uncertainty from �c annihilation

dominates the error. A complete error budget is given in
Table III.
This is to be compared to the difference of the experi-

mental averages of the two masses of 115.9(1.1) MeV [7].
Quite a spread of results make up the average. Recent
values tend to be at the lower end of the hyperfine splitting
range. For example, the 2011 Belle result for the �c mass
gives a hyperfine splitting of 111:5ðþ2:5

�1:6Þ MeV [18], and a

recent result from BESIII gives 112.6(0.9) MeV [19].

B. � ðJ=c ! eþe�Þ and Reþe�

The amplitude a0 from the fit in Eq. (1) to our J=c
correlators is directly related to the matrix element for the
local vector operator to create or destroy the ground-state
vector meson from the vacuum. The vector meson decay
constant fv for meson v is defined by

h0j �c�ic jvi ¼ fvmv	
i; (6)

where 	i is the meson polarization. fv for the J=c is then
determined from our lattice QCD correlators, in terms of
the ground-state parameters from our fit [Eq. (1)] by

fv
Z

¼ a0

ffiffiffiffiffiffiffi
2

M0

s
; (7)

where Z is the renormalization constant required to match
the local vector current in lattice QCD used here to that of
continuum QCD at each value of the lattice spacing.
fv is clearly a measure of the internal structure of a

meson and in turn is related to the experimentally measur-
able leptonic branching fraction:

�ðvh ! eþe�Þ ¼ 4�

3
�2
QEDe

2
h

f2v
mv

; (8)

where eh is the electric charge of the heavy quark in units of
e (2=3 for c). The experimental average �ðJ=c !eþe�Þ¼
5:55ð14Þ keV [7] gives fJ=c ¼ 407ð5Þ MeV, remembering

that the electromagnetic coupling constant runs with scale
and using 1=�QEDðmcÞ ¼ 134 [20]. This can then provide a
test of QCD at the 1% level. Electromagnetic corrections are
small since the J=c must decay to an odd number of
photons [21].
Our results for fJ=c =Z are given in Table II. The final

column of that table gives the values of Z determined from
current-current correlators as described in Appendix B.
This method uses continuum perturbation theory through
Oð�3

sÞ to normalize the lattice QCD correlators at small
times. Z then results from a combination of nonperturba-
tive lattice QCD calculations with continuum perturbation
theory in a similar approach to that of the regularization
independent momentum scheme3 used to renormalize the
currents for the same calculation using twisted mass quarks

0.0 0.1 0.2 0.3 0.4 0.5

(amc)2

0.110

0.115

0.120

M
J

ψ
−

M
η c

(G
eV

)

FIG. 2 (color online). Results for the charmonium hyperfine
splitting plotted as a function of lattice spacing. For the x axis we
use ðmcaÞ2 to allow the a dependence of our fit function [Eq. (3)]
(blue dashed line with gray error band) to be displayed simply.
The data points have been corrected for c quark mass mistuning
and sea quark mass effects, but the corrections are smaller than the
error bars. We do not include on the plot the deliberately mistuned
c mass but it is included in the fit to constrain the c mass
dependence. The errors shown include (and are dominated by)
uncertainties from the determination of the lattice spacing a (from
the physical value of the parameter r1) that are correlated between
the points. The experimental average is plotted as the black point
at the origin, offset slightly from the y axis for clarity.

2This would now amount to 2.9 MeV given that the average
experimental width of the �c has increased to 30 MeV [7].

3This method is often called ‘‘nonperturbative’’ in the lattice
QCD literature.
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in [10]. The current-current correlator method has the
advantage that we can use the same correlators from which
we also extract, at large times, the nonperturbative infor-
mation on the ground-state mass and decay constant.
Indeed this allows some cancellation of discretization
errors apparent in the unrenormalized decay constant.

Multiplying fJ=c =Z by Z and then by a�1 in GeV gives

the physical results for the decay constant plotted in Fig. 3.
We fit these to the same function of lattice spacing and sea
quark mass used for the hyperfine splitting, Eq. (3). The
only differences are that the prior on f0 is taken as 0.5(5) in
this case and the priors on the slope of the variation of fJ=c
withM�c

are taken as: d0, 0.065(5) and d1, 0.00(25). These

are informed by the variation we see for the deliberately
mistuned cmass on set 2 and also by our extensive study of
the behavior of f�c

withM�c
in [2]. There we find a strong

a dependence in the slope of the decay constant with mass
and so we allow for that here.

The physical result that we obtain in the continuum
limit is

fJ=c ¼ 405ð6Þð2Þ MeV: (9)

The first error is from the fit and is dominated by the error
from the Z factor. The second error is an estimate of
systematic effects from missing electromagnetism in our
lattice QCD calculation [2]. The effect of missing c-in-the-
sea is negligible in this case. A complete error budget is
given in Table III.

The leptonic width is determined by the amplitude of the
ground state that dominates the correlator at large times.
We can also determine the charm contribution to Reþe�

through the time moments of the J=c correlator which
depend on the behavior at short times. The moments are
defined by

GV
n ¼ Z2CV

n ¼ Z2
X
~t

~tn �CJ=c ð~tÞ; (10)

where ~t is lattice time symmetrized around the center of the

lattice (see Appendix B). Results for ðGV
n =Z

2Þ1=ðn�2Þ in
lattice units on each of our ensembles are given in
Table IV for n ¼ 4, 6, 8 and 10. The power 1=ðn� 2Þ is
taken to reduce all the moments to the same dimension. We
take the Z factor for the vector current to be the same one
used for the leptonic width above, determined in
Appendix B. Figure 4 then shows the physical results for
the moments as a function of lattice spacing. The gray
bands show our fits which use the same function of lattice
spacing and sea quark masses as given in Eq. (3). We
reduce the prior width on the lattice spacing dependent
terms by a factor of 4 because the moments are not as
sensitive to short distances as the leptonic width or hyper-
fine splitting.
The physical results that we obtain for each moment in

the continuum limit are given by

TABLE III. Complete error budget for hyperfine splitting,
leptonic width and vector form factor as a percentage of the
final answer.

MJ=c �M�c
fJ=c VJ=c!�c�ð0Þ

ðamcÞ2 extrapolation 0.45 0.45 3.5

Statistics 0.50 0.41 0.74

Lattice spacing 1.6 0.42 0.0

Sea quark extrapolation 0.29 0.26 1.3

M�c
tuning 0.11 0.09 0.0

Z � � � 1.23 0.14

M�c
annihilation 2.1 0.0 0.0

Electromagnetism 0.0 0.5 0.5

Total (%) 2.7 1.5 3.8
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0.50

f J
ψ
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eV

)

FIG. 3 (color online). Results for the charmonium vector de-
cay constant plotted as a function of lattice spacing. For the x
axis we use ðmcaÞ2 to allow the a dependence of our fit function
[Eq. (3)] (blue dashed line with gray error band) to be displayed
simply. The data points have been corrected for c quark mass
mistuning and sea quark mass effects, but the corrections are
smaller than the error bars. We do not include on the plot the
deliberately mistuned c mass but it is included in the fit to
constrain the c mass dependence. The errors shown include
(and are dominated by) uncertainties from the determination of
the current renormalization factor Z that are correlated between
the points. The experimental average is plotted as the black point
at the origin, offset slightly from the y axis for clarity.

TABLE IV. Results in lattice units for time moments of the
J=c correlator as defined in Eq. (10). We give results for n ¼ 4,
6, 8 and 10.

Set mca ð GV
4

Z2a2
Þ1=2 ð GV

6

Z2a4
Þ1=4 ð GV

8

Z2a6
Þ1=6 ð GV

10

Z2a8
Þ1=8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)

2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)

2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)

3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)

4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)

5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)

6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)
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ðGV
4 Þ1=2 ¼ 0:3152ð41Þð9Þ GeV�1;

ðGV
6 Þ1=4 ¼ 0:6695ð57Þð13Þ GeV�1;

ðGV
8 Þ1=6 ¼ 0:9967ð65Þð10Þ GeV�1;

ðGV
10Þ1=8 ¼ 1:3050ð65Þð6Þ GeV�1:

(11)

The first error comes from the fit and the second allows for
electromagnetism (e.g. photons in the final state) missing
from our calculation but present in experiment. The error is
estimated by substituting �QED for �s in the perturbative

QCD analysis of the moments [22]. A complete error
budget for our results is given in Table V.

The results agree well with the values extracted for the
q2 derivative moments, Mk (n ¼ 2kþ 2), of the charm
quark vacuum polarization using experimental values for
Reþe� ¼ �ðeþe� ! hadronsÞ=�pt [22,23]. The values,

extracted from experiment by [22] and appropriately nor-
malized for the comparison to ours, are

ðMexp
1 4!=ð12�2e2cÞÞ1=2 ¼ 0:3142ð22Þ GeV�1;

ðMexp
2 6!=ð12�2e2cÞÞ1=4 ¼ 0:6727ð30Þ GeV�1;

ðMexp
3 8!=ð12�2e2cÞÞ1=6 ¼ 1:0008ð34Þ GeV�1;

ðMexp
4 10!=ð12�2e2cÞÞ1=8 ¼ 1:3088ð35Þ GeV�1:

(12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. �ðJ=c ! ��cÞ
The radiative decay of the J=c meson to the �c requires

the emission of a photon from either the charm quark or
antiquark and a spin-flip, so it is an M1 transition. Because
it is sensitive to relativistic corrections this rate is hard to
predict in nonrelativistic effective theories and potential
models (see, for example, [24,25]). Here we use a fully
relativistic method in lattice QCD with a nonperturbatively
determined current renormalization and so none of these
issues apply. In addition, of course, the lattice QCD result
is free from model dependence.
The quantity that parameterizes the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor Vðq2Þ, where q2 is
the square of the 4-momentum transfer from J=c to �c.
The form factor is related to the matrix element of the
vector current between the two mesons by

h�cðp0Þj �c�
cjJ=c ðpÞi¼ 2Vðq2Þ
ðMJ=c þM�c

Þ"

���p0

�p�	J=c ;�:

(13)

Note that the right-hand side vanishes unless all the vectors
are in different directions. Here we use a normalization for
Vðq2Þ appropriate to a lattice QCD calculation in which the
vector current is inserted in one c quark line only and the
quark electric charge (2e=3) is taken as a separate factor.
The decay rate is then given by [8]

�ðJ=c ! �c�Þ ¼ �QED

64j ~qj3
27ðM�c

þMJ=c Þ2
jVð0Þj2; (14)

where it is the form factor at q2 ¼ 0 that contributes
because the real photon is massless. j ~qj is the correspond-
ing momentum of the �c in the J=c rest frame.
The most recent experimental result from CLEO-c [26]

of 1.98(31)% for the branching fraction, combined with the
total width of the J=c of 92.9(2.8) keV [7], gives
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FIG. 4 (color online). Results for the 4th, 6th, 8th and 10th time
moments of the charmonium vector correlator shown as blue
points and plotted as a function of lattice spacing. The errors
shown (the same size or smaller than the points) include (and are
dominated by) uncertainties from the determination of the current
renormalization factor Z that are correlated between the points.
The data points have been corrected for c quark mass mistuning
and sea quark mass effects, but the corrections are smaller than
the error bars (the value for the deliberately mistuned c mass on
set 2 is not shown). The blue dashed line with gray error band
displays our continuum and chiral fit. Experimental results de-
termined from Reþe� [Eq. (12)] are plotted as the black points at
the origin offset slightly from the y axis for clarity.

TABLE V. Complete error budget for the time moments of the
J=c correlator as a percentage of the final answer.

ðGV
4 Þ1=2 ðGV

6 Þ1=4 ðGV
8 Þ1=6 ðGV

10Þ1=8
ðamcÞ2 extrapolation 0.18 0.18 0.16 0.16

Statistics 0.05 0.04 0.03 0.03

Lattice spacing 0.32 0.51 0.43 0.30

Sea quark extrapolation 0.14 0.13 0.12 0.12

M�c
tuning 0.15 0.18 0.17 0.16

Z 1.23 0.61 0.41 0.31

Electromagnetism 0.3 0.2 0.1 0.05

Total (%) 1.3 0.9 0.7 0.5
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Vð0Þexpt ¼ 1:63ð14Þ; (15)

where we have used �QED¼1=137 and j ~qj¼ ðMJ=c �
M�c

ÞðMJ=c þM�c
Þ=ð2MJ=c Þ. The value of j ~qj from experi-

ment is 0.1137(11) GeV where the error comes from the
uncertainty in the �c mass. Vð0Þ is then the quantity that
can be calculated in lattice QCD and compared to
experiment.

The radiative decay of the J=c to �c meson needs the
calculation of a ‘‘3-point’’ function in lattice QCD. The 3
points (in lattice time) correspond to: the position of the �c

operator, which we take as the origin; the position of the
J=c operator which we denote T and the position of the
insertion of a vector operator, V ¼ �c�
c, which couples

to the photon at time t. t varies from 0 to T. Sums over
spatial points are implied at each time. The ‘‘connected’’
correlator that we calculate is illustrated in Fig. 5.
Disconnected correlators are expected to be negligible
here based on perturbative and phenomenological argu-
ments [8] and we do not include them.

The 3-point function is calculated in lattice QCD by
combining 3 quark propagators together with appropriate
spin projection matrices. As discussed in Sec. II for stag-
gered quarks these � matrices become �1 phases. Tastes
must be combined in a staggered quark correlator so that
the overall correlation function is ‘‘tasteless.’’ What this
means for a 3-point function is that only certain taste
combinations of J=c , �c and V operators are allowed.
To optimize statistical errors we need to keep to a mini-
mum the amount of point splitting in the operators. It is
also convenient, for renormalization purposes, to have a
vector current V , which corresponds to a local operator
(and this is also what we used for the decay constant in
Sec. III B).

We therefore choose the �c operator to be the local �5

operator (so that the �c is the Goldstone pseudoscalar with
spin taste �5 � �5) and the J=c operator to be a 1-link
separated �0�i operator in which the polarization of the

J=c and the 1-link separation are both in an orthogonal
spatial direction to the polarization of the vector current,V¼
�c�kc (this J=c has spin-taste structure �0�i��0�i�j).

To implement this configuration is simple. The spectator
quark propagator (number 1 in Fig. 5) is generated from the
default random wall at time 0. Active propagator 2 is then
generated from a source which is made from a symmetric
point splitting of propagator 1 at time T patterned by a
phase. For a J=c with polarization x we take a point
splitting in the y direction and phase ð�1Þxþz. Active
propagator 3 is made from the same default random wall
as 1. Finally 2 and 3 are combined together at t by sum-
ming over space with a patterning of ð�1Þz to implement a
local vector current in the z direction.
To achieve the configuration corresponding to q2 ¼ 0

we keep the J=c at rest in the frame of the lattice and give
the �c an appropriate spatial momentum. The �c momen-
tum is implemented by calculating propagator 3 with a
‘‘twisted boundary condition’’ [27,28]. If propagator 3 is
calculated with boundary condition

�ðxþ êjLÞ ¼ e2�i�j�ðxÞ; (16)

then the momentum of the �c meson made by combining
propagators 1 and 3 with our random wall sources and
summing over spatial sites at the sink is

pj ¼ 2�

Ls

�j: (17)

The boundary condition in Eq. (16) is actually imple-
mented by multiplying the gluon links in the j direction
by phase expð2�i�j=LsÞ. We take j to be the y direction

here so that the momentum is in an orthogonal direction to
the polarization of both the J=c and V .
The 3-point function is then given by

C3ptð0;t;TÞ¼
X
sT ;st

1

4
ð�1ÞxTþzT ð�1Þzt�Trfgðt;TÞ½gðTþ1y;0Þ

þgðT�1y;0Þ�gy� ðt;0Þg; (18)

where g represent staggered c quark propagators, with g�
computed with a phase on the gluon field, the trace is over
color and sums are done over spatial sites st and sT at t and
T. The 1=4 is the taste factor for the normalization of a
staggered quark loop. The corresponding 2-point function
for the �c meson is

C�c;2ptð0; tÞ ¼
X
st

1

4
� Tr½gðt; 0Þgy� ðt; 0Þ�: (19)

The 2-point function for the J=c is given by

FIG. 5 (color online). A schematic diagram of the connected
3-point function in lattice QCD for J=c to �c radiative decay.
The lines all represent c quark propagators in this case. The
propagator labeled 1 is the spectator quark; 2 and 3 are the initial
and final active quarks, respectively. 0 and T label the position in
time of the �c and J=c operators. The vector current is inserted
at time t which takes all values between 0 and T.
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CJ=c ;2 ptð0; tÞ ¼
X
st

1

4
ð�1Þy0þt0ð�1Þytþtt

�Tr½gðt;0Þðgyðtþ 1y;1yÞ þ gyðt� 1y;1yÞ
þ f1$�1gÞ�: (20)

As an alternative configuration we can take the �c

operator to be the local �0�5 operator (so that the �c is
the local non-Goldstone meson with spin-taste structure
�0�5 � �0�5) and the J=c operator to be a 1-link sepa-
rated �i operator in which the polarization of the J=c and
the 1-link separation are both in an orthogonal spatial
direction to the polarization of the vector current V (this
has spin-taste structure �i � �i�j). The 3-point function is

then given by

C3ptð0; t; TÞ ¼
X
sT ;st

1

4
ð�1Þx0þy0þz0ð�1ÞyT ð�1Þzt

� Tr½gðt; TÞðgðT þ 1y; 0Þ
þ gðT � 1y; 0ÞÞgy� ðt; 0Þ�; (21)

and the corresponding 2-point functions are

C�c;2ptð0; tÞ ¼
X
st

1

4
ð�1Þx0þy0þz0ð�1Þxtþytþzt

� Tr½gðt; 0Þgy� ðt; 0Þ� (22)

and

CJ=c ;2ptð0; tÞ ¼
X
st

1

4
ð�1Þx0þz0þt0ð�1Þxtþztþtt

� Tr½gðt;0Þðgyðtþ 1y; 1yÞ þ gyðt� 1y;1yÞ
þ f1$ �1gÞ�: (23)

We call this configuration the ‘‘etacgamma0’’ configura-
tion and the original configuration of Eq. (19) the ‘‘jpsi-
gamma0’’ configuration. In fact, as we shall see, the
jpsigamma0 configuration is to be preferred on the basis
of statistical errors but the results agree between the two.

The 3-point function in both cases is calculated along
with the 2-point functions for the �c and J=c mesons that
appear in it. We use multiple time sources for point 0 on
each configuration and also multiple values for T. Figure 6
shows results for the 3-point function on fine set 4, normal-
izing it to the product of the relevant 2-point functions. The
two plots compare results for the jpsigamma0 method and
the etacgamma0 method. The two differ in the amount of
oscillation that is seen at the two ends of the plot. Not
surprisingly the jpsigamma0 method shows more oscilla-
tion on the J=c end (t near T) since the �c in this case
would not oscillate at rest. The etacgamma0 method has
relatively large oscillations for the �c side but smaller
oscillations on the J=c side. In both cases statistical errors
are very small enabling us to fit both normal and oscillating

terms. The figure also shows how having multiple T values
improves our determination of the ground-state transition
amplitude.
We fit the 3-point function and 2-point functions simul-

taneously to a multiexponential form that determines the
ground-state amplitudes accurately because it includes ex-
cited state contributions. The fit form for the 2-point func-
tions was already given in Eq. (1). Here both the J=c and
�c correlators have oscillating contributions and, in the �c

case, the exponent gives the energy of the meson at momen-
tum pj [Eq. (17)] rather than the mass. The fit form for the

3-point function is then
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FIG. 6 (color online). A plot of the ratio C3ptðt; TÞ=
ðC2pt;�c

ðtÞC2pt;J=c ðT � tÞÞ for the three values of T on the fine

ensemble, set 4 and for our two different methods. Lines join the
points (which have statistical errors on them) for clarity. We only
include points in the central region of t, i.e. t � 5 or t 	 T � 5.
The pink shaded band shows the ratio of fit parameters Vnn

00 =a0b0
which is the ground-state contribution to this ratio. These come
from a fit that included 6 normal exponentials and 5 oscillating
ones (which produce the oscillations evident in the figure). The
top plot shows the results for the case where �0 is included in the
J=c operator ( jpsigamma0 method) and the lower plot shows
the results for the case where �0 is included in the �c operator
(etacgamma0 method).
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C3ptðt; TÞ ¼
X
in;jn

ainfnðEa;in ; tÞVnn
in;jn

bjnfnðEb;jn ; T � tÞ

� X
in;jo

ainfnðEa;in ; tÞVno
in;jo

~bjofoð ~Eb;jo ; T � tÞ

� X
io;jn

~aiofoð ~Ea;io ; tÞVon
io;jn

bjnfnðEb;jn ; T � tÞ

þ X
io;jo

~aiofoð ~Ea;io ; tÞVoo
io;jo

~bjofoð ~Eb;jo ; T � tÞ;

(24)

and, again,

fnðE; tÞ ¼ e�Et þ e�EðLt�tÞ;

foðE; tÞ ¼ ð�1Þt=afnðE; tÞ (25)

with Lt again the time extent of the lattice. Here n denotes
the normal contributions and o the contributions from oscil-
lating states. The ground-state energies and masses that we
need are E�c;0 and EJ=c ;0 ¼ MJ=c and the matrix element

between them that is proportional to Vnn
0;0. By matching to a

continuum correlator with a relativistic normalization of
states and allowing for a renormalization of the lattice vector
current we see that

h�cjVjJ=c i ¼ 2Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MJ=cE�c

q
Vnn
0;0: (26)

The vector form factor that we need, Vð0Þ, is then, from
Eq. (13), given by

Vð0Þ
Z

¼ MJ=c þM�c

2MJ=cpj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MJ=cE�c

q
Vnn
0;0; (27)

with pj from Eq. (17). The determination of Z will be

discussed below.
To perform the joint fit to the 3-point correlators using

Eq. (24) and the 2-point correlators using Eq. (1) we use
the same approach as outlined in Sec. III A. For both the �c

and J=c , the prior for the ground-state mass comes from
the effective mass of the correlator. We use priors of
600 MeV with a width of 300 MeV for the difference in
mass between the ground state and the lowest oscillating
mass and between all radial excitations, both normal and
oscillating. The 2-point amplitudes ai and bi have prior
widths of 0.5 and the 3-point amplitudes Vij have widths of

0.25. We omit t values below a certain tmin to reduce the
effect of excited states. tmin ¼ 4 ð5Þ for the coarse (fine)
lattices for the etacgamma0 method and 6 for the jpsi-
gamma0 method.
Table VI gives our results from fits that include 6 normal

exponentials and 5 oscillating. We work on ensembles 1, 2
and 4 of Table I but using more configurations than in
Sec. III A to reduce statistical errors. Table VI gives the
number of configurations and time sources as well as the
values of T used in the 3-point functions. It is important to
use both even and odd values of T to separate clearly the
normal and oscillating contributions. Having determined
the mass of the local non-Goldstone �c and 1-link vector
from separate 2-point function fits we then determine the
value of � needed to achieve q2 ¼ 0. The final fits are done
as a simultaneous fit to the 3-point function and 2-point
functions for zero momentum and finite momentum�c and
zero momentum J=c .
The key parameters to be determined from the fit, as

discussed above, are the ground-state masses of the �c and

TABLE VI. Results from simultaneous fits for 3-point and 2-point correlators for J=c ! ��c decay. The upper table gives results
from our preferred jpsigamma0 method; the lower table from etacgamma0. See the text for a definition of the two methods. Column 2
gives the number of configurations and time sources for 0 on each configuration. Column 3 gives the different values of the end point of
the 3-point function, T, included in the fit. The lattice c quark mass and 	 parameter are the same as those used in Sec. III A (the lower
table includes the deliberately mistuned mass on set 2 for comparison). aMJ=c and aM�c

are the zero-momentum meson masses for

the tastes of J=c and �c mesons used here. 2�� indicates the value of the phase at the boundary used to achieve the kinematics of
q2 ¼ 0 in the J=c ! �c decay. The a

2q2 values actually obtained with those kinematics are given in the final column (rows 2 and 3 of
the upper table compare two different values of a2q2 close to zero). aE�c

gives the energy of the �c at the value of the spatial

momentum corresponding to �. V00
nn from the 3-point fit of Eq. (24) is given in column 9 and this is converted to a value of Vð0Þ=Z in

column 10 using Eq. (27). Column 11 gives the values of the renormalization parameter, Z, obtained from the vector form factor
method of Appendix B 2.

aMJ=c aM�c

Set Ncfg � Nt T values mca �0�i � �0�i�j �5 � �5 2�� aE�
�c

Vnn
00 Vð0Þ=Z Zff a2q2

1 2088� 4 15,18,21 0.622 1.86084(10) 1.79116(4) 1.6410 1.79243(4) 0.0362(2) 1.900(11) 0.9896(11) 1ð4Þ � 10�5

2 2259� 4 15,18,21 0.63 1.87972(12) 1.80842(7) 1.4007 1.81023(5) 0.0368(2) 1.897(12) 0.9894(8) �7ð1Þ � 10�5

15,18,21 0.63 1.87962(14) 1.80839(8) 1.3880 1.81019(4) 0.0362(4) 1.883(20) 0.9894(8) 1ð5Þ � 10�5

4 1911� 4 20,23,26,29 0.413 1.32905(9) 1.28046(3) 1.3327 1.28133(3) 0.0348(2) 1.876(8) 1.0049(10) 6ð4Þ � 10�5

�i � �i�j �0�5 � �0�5

1 2088� 4 15,18,21 0.622 1.86035(15) 1.79621(4) 1.5120 1.79725(4) 0.0338(6) 1.925(35) 0.9896(11) 3ð5Þ � 10�5

2 2259� 4 15,18,21 0.63 1.87887(13) 1.81369(6) 1.2814 1.81480(5) 0.0334(8) 1.896(45) 0.9894(8) 0ð4Þ � 10�5

15,18,21 0.66 1.93604(15) 1.87254(6) 1.2490 1.87355(6) 0.0322(8) 1.934(42) 0.9863(17) 1ð5Þ � 10�5

4 1911� 4 19,20,23,26 0.413 1.32904(11) 1.28160(4) 1.3116 1.28243(4) 0.0342(4) 1.872(21) 1.0049(10) �2ð1Þ � 10�5
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J=c , the ground-state energy at nonzero momentum of
the �c and the ground-state to ground-state amplitude of
the 3-point function. Our fit returns excited-state to
ground-state and oscillating to ground-state amplitudes
also. Most of these do not have a significant signal.
Indeed the excited-state to ground-state amplitudes are
very small, as expected since they correspond to a hindered
M1 transition. A nonzero result is seen for the transition
between the oscillating partner of the �c (in the etac-
gamma0 method) and the J=c . This corresponds to the
E1 �c0 to J=c decay, but not at the correct kinematics for
that decay. Likewise a signal is seen for E1 hc ! �c decay
in the jpsigamma0 method. We will discuss these transi-
tions further elsewhere.

From Eq. (27) we can determine Vð0Þ given a value
for Vnn

00 and a renormalization factor Z. For Z we use the

fully nonperturbative vector form factor method described
in Appendix B 2 which normalizes the local charm-charm
vector current that we are using here by demanding that
its form factor is 1 between identical mesons at q2 ¼ 0.
This requires a nonstaggered spectator quark and we use
nonrelativistic QCD (NRQCD) for this. The determination
of Zff then needs the calculation of the form factor of the

temporal component of the vector current between two
Bc-like mesons (themesons do not have to be realBc mesons)
at rest. Zff can be determined with a statistical uncertainty of

0.1% this way. Details are given in Appendix B 2.
The values for Z are given in Table IX of Appendix B 2

and the values we use here are reproduced in Table VI
along with our results for Vnn

00 , Vð0Þ=Z and the �c and J=c
masses and energies. The table is divided into two with the
upper results from the jpsigamma0 method and the lower
results from the etacgamma0 method. The two methods
give results for Vð0Þ=Z in good agreement, but the jpsi-
gamma0 results are statistically more accurate. This is then
our preferred method and the one that we will use for our
final result. The agreement between the two methods to
within the 2% statistical errors is a strong test of the control
of discretization errors in the HISQ formalism.

Table IX also gives results that allow us to test to what
extent Vð0Þ depends on mc and the precise tuning of q2 to
zero. On set 2 we have deliberately mistuned the c quark
mass by 5% and see that it makes no significant difference
to Vð0Þ within our 2% statistical errors. q2 is tuned to zero
typically within our statistical errors of ð10 MeVÞ2. On set 2
comparison between two different values of q2 shows no
effect within our 1% statistical errors. We use the value
closest to q2 ¼ 0 in our fits below. These are both good tests
of the robustness of our results to the tuning of parameters.

Figure 7 shows our results for Vð0Þ plotted as a function
of the lattice spacing. To determine the physical value we
use a fit similar to that for the hyperfine splitting and
leptonic decay constant given in Eq. (3). We simplify the
fit slightly in dropping the tuning for the physical c mass
since our results in Table VI show negligible dependence

on the c quark mass. We take the prior on the physical
value to be 2.0(0.5) and allow for terms in ðmcaÞ2i up to
i ¼ 5. We take the prior on the leading ðmcaÞ2 term to be
0.0(3) since tree-level a2 errors are removed in the HISQ
action. We take linear and quadratic terms in 2�xl þ �xs
and allow a2 dependence multiplying the linear term.
The physical value for Vð0Þ from the fit is 1.90(7) from

the jpsigamma0 method. The etacgamma0 method gives a
result in good agreement with a very similar error. The
error is dominated by that from the extrapolation in the
lattice spacing. In fact there is no visible lattice spacing
dependence in our results and it could be argued that, in a
transition from J=c to �c that probes relatively low mo-
menta, the relevant scale for discretization errors is well
below mc. However, to be conservative, we allow discre-
tization errors to depend on ðmcaÞ2 and allow for multiple
powers to appear.
We have also tested extrapolations of Vð0Þ to the physi-

cal point using alternative definitions of the renormaliza-
tion of the current. We get the same answer using Zff

values taken from Bc ! Bc form factors with a heavier b
quark mass, as given in Appendix B 2. We also get a result
in good agreement if we use values for Z from Zcc given in
Appendix B 1.
Our physical result for Vð0Þ is for a world that does not

include electromagnetism, c-in-the-sea or allow for �c

annihilation. The effect of missing electromagnetism is
similar to that for the decay constant and so we allow the

V
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FIG. 7 (color online). Results for the vector form factor at
q2 ¼ 0 for J=c ! �c decay plotted as a function of lattice
spacing. The filled blue circles are from our preferred jpsi-
gamma0 method; the open blue circles are from the etacgamma0
method. For the x axis we use ðmcaÞ2 to allow the a dependence
of our fit function to be displayed simply (blue dashed line and
gray band). The fit is to results from the jpsigamma0 method.
The errors shown include statistical errors and errors from the Z
factor. The experimental result extracted from the branching
fraction for J=c ! ��c is plotted as the black point offset
slightly from the origin for clarity.
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same additional systematic error of 0.5%. We expect
c-in-the-sea effects to be negligible, as for the decay
constant. �c annihilation affects the mass difference
between the J=c and �c (as discussed in Sec. III A) and
therefore affects the momentum of the �c that corresponds
to q2 ¼ 0 for this decay. Equivalently it means that the real
q2 ¼ 0 point corresponds to a nonzero q2 in our calcula-
tion. Since we allow an uncertainty in the �c mass of
2.4 MeV (Table III) this corresponds to an uncertainty
around q2 ¼ 0 of 6� 10�6 GeV2, keeping the spatial
momentum fixed. From Table VI we see that this would
produce a negligible change in Vð0Þ, not visible beneath
our statistical errors. In addition we can use information
from [8] which used results at different q2 values to ex-
trapolate to q2 ¼ 0 albeit in the quenched approximation.
The q2 dependence gave a change in Vðq2Þ from Vð0Þ
of 20% when q2 was 1 GeV2. From this it is clear that
effects from a slight mistuning because of �c annihilation
effects should be completely negligible. We take as our
final result then

Vð0Þ ¼ 1:90ð7Þð1Þ: (28)

The complete error budget is given in Table III.

IV. DISCUSSION

Figure 8 compares our result for the charmonium hy-
perfine splitting to experiment and to that from other lattice
QCD calculations. We only show results that have been

obtained including sea quark effects and making use of
multiple lattice spacing values to derive a physical contin-
uum result. Values are also given for different forms of the
clover action in [29–32] but either at only one value of the
lattice spacing or without giving a value from continuum
extrapolation. Some of these latter calculations obtain
values well below experiment because of the large discre-
tization errors, particularly for the hyperfine interaction, in
the clover formalism.
Our result agrees well with experiment and is more

accurate than earlier values, especially since earlier values
do not generally include any error for missing �c annihi-
lation effects.
Figure 9 similarly compares our result for fJ=c to that

from twisted mass quarks including only u and d quarks in
the sea [10] and to experiment [from Eq. (8)]. Both lattice
results agree well with experiment at the 2% level of
accuracy achieved. Our value for fJ=c gives a value for

�ðJ=c ! eþe�Þ of 5.48(16) keV using Eq. (8).
Figure 10 shows the same comparison for the vector

form factor at q2 ¼ 0, Vð0Þ, for J=c ! �c� decay. Our
result here using HISQ quarks and including u, d and s
quarks in the sea agrees well, at the 4% level of accuracy
achieved, with the result using twisted mass quarks and
including only u and d sea quarks.
The value of Vð0Þ extracted from the experimental

branching fraction [26] is 1:7� lower than the lattice
numbers where � is dominated by the 8% uncertainty
from experiment. This situation is an improvement over
that before the CLEO measurement [8]. However, it is
clear that a more stringent test of QCD would be possible
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Fermilab clover
0912.2701

Twisted mass
1206.1445

Particle Data Group
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u, d, s sea

u, d sea

experiment

FIG. 8 (color online). A comparison of results for the charmo-
nium hyperfine splitting from lattice QCD with experiment. We
show only results that include sea quarks and make use of
multiple lattice spacings to derive a continuum value. The
experimental average [7] is given at the top, followed by the
result for HISQ quarks from this paper. The Fermilab clover [55]
and twisted mass [10] results follow. Neither of these lower two
results include an error for missing �c annihilation effects. This
error is the dominant error for our calculation. Here we show our
error bar excluding this effect as a solid line and the total error
including this effect as a dotted line.
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FIG. 9 (color online). A comparison of results for the decay
constant of the J=c from lattice QCD with experiment. We
include only results that include sea quarks and make use of
multiple lattice spacings to derive a continuum value. The
experimental average [7] is given at the top, followed by the
result for HISQ quarks from this paper. The twisted mass [10]
results follow.
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with a smaller experimental error for the J=c ! �c�
branching fraction and this may become possible with
BESIII although it is a challenging mode [33,34].

Our value for Vð0Þ corresponds to a width for J=c !
��c of 2.49(18)(7) keV using Eq. (14). The first error is
from our result and the second from the experimental error
in j ~qj. Note that in using Eq. (14) we put in the experi-
mental masses for the J=c and �c. This is appropriate
because these factors are kinematic ones and therefore
should be taken to match the experiment. What we calcu-
late in lattice QCD is Vð0Þ. In fact, as discussed above, we
have good agreement between our results and experiment
for MJ=c �M�c

and so the kinematic factors would also

be correct from lattice QCD. However, extra uncertainty
would be introduced by using the lattice QCD results and
that is not necessary or appropriate. Our result for the
decay width corresponds to a branching fraction for
J=c ! �c of 2.68(19)(11)%, where the first error is
from our calculation and the second from experiment,
including the experimental width of the J=c .

Figures 2, 3, and 7, which show our results as a function
of lattice spacing, confirm that discretization errors are
small (although visible) for the HISQ formalism and that
the approach to the continuum limit is well-controlled.
This is discussed further in Appendix C where we compare
the dependence on lattice spacing to that for twisted mass
quarks [10].

V. CONCLUSIONS

We have given results for 3 key quantities associated
with the J=c meson from lattice QCD, for the first time

including the effect of all three u, d and s quarks in the sea.
The quantities are the mass difference with its pseudoscalar
partner, the �c meson, the decay constant and the vector
form factor at q2 ¼ 0 for J=c ! �c decay.
Our first key result is for the J=c decay constant. We

obtain

fJ=c ¼ 405ð6Þ MeV; (29)

leading to �ðJ=c ! eþe�Þ ¼ 5:48ð16Þ keV. This is to be
compared to the experimental result of �ðJ=c ! eþe�Þ ¼
5:55ð14Þ keV [7]. We have therefore achieved a 4% test of
lattice QCD from an electromagnetic decay rate (a 2% test
from the decay constant), that does not suffer from CKM
uncertainties. This is itself a stringent test of QCD and one
for which lattice QCD is absolutely necessary; fJ=c could

not be calculated this accurately with any other method. At
the same time we are able to verify that the time moments
of the J=c correlator agree as they should with results for
the charm contribution to �ðeþe� ! hadronsÞ extracted
from experiment. This is a test of QCD to better than 1.5%.
Our fJ=c result is a critically important test for our

calculations that determine the decay constants of the Ds

[2,35] and the D [35,36] to a similar level of precision. In
particular, it tests the HISQ formalism for c quarks [11]
even more stringently than in the D and Ds cases because
the J=c contains two c quarks and is a smaller meson,
more sensitive to discretization effects on the lattice.
Combined with our earlier work on using the HISQ formal-
ism for light quarks in f� and fK [13,35,37], our result for
fJ=c provides compelling evidence that we have the sys-

tematic errors in fDs
and fD under control.

We can improve our result for fJ=c further in future by

using the vector form factor method of renormalization
rather than the current-current correlator method. This will
only be useful if improved experimental results become
available. This is expected from BESIII [34].
A further test of QCD and lattice QCD comes from the

J=c mass. We find

MJ=c �M�c
¼ 116:5� 3:2 MeV; (30)

giving MJ=c ¼ 3:0975ð32Þð11Þ GeV, where the second

error comes from the experimental average for M�c
[7].

Experiment gives MJ=c ¼ 3:0969 GeV. This is another

strong test of lattice QCD, and indeed QCD, against ex-
periment to be compared to that of the determination of
MDs

[2] and MD [3]. The hyperfine splitting is a relatively

small relativistic correction in the broader context of char-
moniummeson masses and the fact that we can do this well
(with no free parameters) is because the HISQ formalism is
such a highly improved relativistic formalism. This is
underlined by a study of the meson dispersion relation
(and associated ‘‘speed of light’’) in Appendix C. In fact
our error on MJ=c is dominated by uncertainties from the
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FIG. 10 (color online). A comparison of results for the vector
form factor Vð0Þ for J=c ! �c� from lattice QCD with experi-
ment.We includeonly results that include seaquarks andmakeuseof
multiple lattice spacings to derive a continuum value. The experi-
mental result [26] is given at the top, followed by the result for HISQ
quarks from this paper. The twisted mass [10] results follow.
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effect of annihilation of the �c meson to gluons, and it is
important to pin these down more accurately.

Our third result for the J=c is that for its M1 radiative
decay mode to the �c. We find

�ðJ=c ! ��cÞ ¼ 2:49� 0:19 keV (31)

to be compared to the current experimental value of 1.84
(30) keV [26]. The agreement is reasonably good, but the
experimental error is large and the lattice QCD result
would allow a much stronger test of QCD if this were
reduced. This should be possible at BESIII [33]. Since
the error in our lattice QCD result is dominated by the
continuum extrapolation it will be improved in calculations
on superfine and ultrafine lattices as we have done for the
decay constant, and 2% errors should also be achievable
here. Again, this is only possible in lattice QCD.

The J=c ! ��c decay rate is another test of QCD,
along with our leptonic decay constant, that is free of
CKM uncertainties. It provides a validation of semilep-
tonic decay rate calculations forD andDs mesons [38–42],
that also use HISQ quarks as well as a test of our tech-
niques for nonperturbative current renormalization that we
are using for a range of semileptonic and radiative decays
[40–42].
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APPENDIX A: TASTE EFFECTS IN
STAGGERED MESONS

Each staggered meson comes in 16 different tastes, most
easily seen in terms of naive quark operators made with
different point splittings:

JðsÞn ¼ �c ðxÞ�nc ðxþ sÞ: (A1)

Here s is a four-dimensional vector with 0 or 1 in each

component. The different JðsÞn operators are orthogonal to

each other. To work out the corresponding staggered quark
correlators we need the staggering matrix �ðxÞ. In our
convention this is

�ðxÞ ¼ Y4

¼1

ð�
Þx
; (A2)

with �4 
 �0. Then the connection between naive quark
propagators, which carry a spin index, and staggered quark
propagators, which do not, is

SFðx; yÞ 
 hc ðxÞ �c ðyÞic ¼ gðx; yÞ�ðxÞ�yðyÞ: (A3)

To work out the phases that appear in the correlator of a
particular taste we then simply have to calculate spin traces
over products of � and �n factors; see, for example, [11].
Here we use two different tastes for the �c and three for

the J=c and they all have slightly different masses. The
mass differences between the different tastes of a given
meson, however, vanish as �2

sa
2. For the �c we use the

Goldstone meson (in spin-taste notation this is the �5 � �5

meson) and the local non-Goldstone meson (the �0�5 �
�0�5 meson), which are the first two mesons on the ladder
of pseudoscalar tastes. We show the mass difference
between them in Fig. 11 for coarse and fine lattices. The
mass difference amounts on the coarse lattices to a little
less than 10 MeV (for a 3 GeV particle) and clearly falls
with a2 as expected. For the J=c we use the local vector
(�i � �i) and two 1-link operators which have a point
splitting in an orthogonal direction to the polarization
(�i � �i�j and �0�i � �i�j). Note that these are not
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FIG. 11 (color online). Difference in mass in MeV for different
meson tastes for the �c and J=c used here, plotted against the
square of the lattice spacing. Red open circles show the mass
difference between the local non-Goldstone and Goldstone �c

mesons. For the vector we have the mass difference between the
local J=c meson and the 1-link �i � �i�j vector (blue crosses)

and the 1-link �0�i � �0�i�j vector (blue open triangles). The

local J=c meson is the lighter in both cases. Results are for sets
1, 2 and 4 from Tables II and VI. Errors are statistical.
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taste-singlet vectors. The mass difference between tastes
for mesons of other JPC is typically much smaller than for
pseudoscalars and that is clear here. Figure 11 shows that
the mass difference for the vectors is 1–2 MeV on the
coarse lattices and not resolvable on the fine lattices.

In Sec. III C we showed results for J=c ! ��c using
different tastes of J=c and �c at the two ends of the 3-
point function. No difference was seen in the vector form
factor at q2 ¼ 0 in the two cases, either on the coarse or
fine lattices (within our statistical errors of 2%). This is
another demonstration that taste effects are very small with
HISQ quarks.

APPENDIX B: DETERMINING
NONPERTURBATIVE Z FACTORS FOR

LOCALVECTOR CURRENTS

1. The current-current renormalization method

Time moments of lattice QCD correlators for zero-
momentum heavyonium mesons can be compared very
accurately [43] to continuum QCD perturbation theory
[44–48] developed for the analysis of the eþe� annihila-
tion cross section. This has been used with pseudoscalar
meson correlators made with HISQ quarks to extract c and
b masses and �s to better than 1% [49]. These results used
the Goldstone pseudoscalar correlator, which is absolutely
normalized because of the HISQ partially conserved axial
current relation. Here we apply the same techniques to
vector meson correlators but use it to determine the renor-
malization factor Z required for the lattice vector current to
match the continuum current.

The time moments of our lattice QCD correlators are
defined as

CV
n ¼ X

~t

~tn �CJ=c ð~tÞ (B1)

and

CP
n ¼ X

~t

~tnðamcÞ2 �C�c
ð~tÞ; (B2)

where ~t is a symmetrized version of t around the center of
the lattice, i.e. going forward in time, ~t runs from 0 to Lt=2
and then from �Lt=2þ 1 to �1. The extra factor of
ðamcÞ2 in the pseudoscalar case is to make a correlator
moment which is finite as a ! 0. For both correlators we
expect the small nmoments to behave perturbatively, since
they probe small times. Then our match to continuum
perturbation theory is

CP
n ¼ gPn ð�MSð
Þ; 
=mcÞ

ðamcð
ÞÞn�4
þOððamcÞmÞ; (B3)

where gn is the continuum QCD perturbation theory series

in the MS scheme [44–48]. For the vector correlator a Z
factor is needed to multiply the lattice current and so

CV
n ¼ 1

Z2

gVn ð�MSð
Þ; 
=mcÞ
ðamcð
ÞÞn�2

þOððamcÞmÞ: (B4)

Z is then a function of the bare lattice strong coupling
constant at each lattice spacing and so this match must be
performed separately on each ensemble. By taking the ratio
of pseudoscalar and vector moments we can cancel the
factors of the quark mass. In fact we also divide each
moment by its tree-level value (calculated with the gluon
fields set to 1) to reduce discretization errors; i.e. instead of
Cn we use Rn, where

Rn ¼ Cn

Cð0Þ
n

(B5)

and also take the same ratio, calling it rn, in the continuum
perturbation theory. Finally Z is given by

ZðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RP
nþ2=R

V
n

rPnþ2=r
V
n

s
: (B6)

Table VII gives the perturbative coefficients for the
series in �MSðmÞ for rPnþ2=r

V
n . This is known to 4-loops

(�3
s) and we include the possibility of unknown higher

order terms (to 20th order) with prior values for the coef-
ficients of 0� 0:5. We take 
 ¼ m but including the
possibility of higher order corrections means that the
results are almost completely insensitive to 
. We also
allow for gluon condensate contributions taking
�sG

2=� ¼ 0� 0:012 GeV4. This increases the errors on
the determination of the Z values as n increases.
Table VIII gives the results for Z on each ensemble and

for moments 4, 6 and 8. The differences between the Z
values on a given ensemble arise from discretization errors.
We take our final result for use in Sec. III B from moment 4
(and so these numbers are reproduced in Table II) since,
even though discretization errors fall as the moment num-
ber increases, the errors from the gluon condensate rise
more steeply. The error in Zð4Þ is around 1%. It is domi-
nated by the uncertainty in higher orders in perturbation
theory and so strongly correlated from one lattice spacing
to the next. We have checked that we obtain the same final
result for fc using Zð6Þ (but with an error of 1.6% rather

than 1.4%).

TABLE VII. The perturbative series [44–48] for the ratio
rPnþ2=r

V
n for different moments n in continuum QCD perturba-

tion theory. cðiÞn is the coefficient of �i
MS

ð
 ¼ mÞ; cð0Þn is 1.0 for

all cases, by definition. cðiÞn for i > 3 were included in the
determination of Z, allowing for a coefficient of 0:0� 0:5.

cð0Þn cð1Þn cð2Þn cð3Þn cð4Þn . . .

n ¼ 4 1.0 0.235 0.354 �0:187 0.0(5). . .
n ¼ 6 1.0 0.246 0.460 0.198 0.0(5). . .
n ¼ 8 1.0 0.253 0.563 0.511 0.0(5). . .
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2. The vector form factor method

Vector currents can be normalized completely nonper-
turbatively by requiring that the vector form factor at
q2 ¼ 0 between two identical mesons be 1 since this would
be true for a conserved vector current. We use this to
normalize the staggered taste-singlet 1-link vector current
between two mesons made of staggered quarks in [40].
Here, however, we want to normalize the taste-nonsinglet
local staggered vector current, and we cannot do this using
a 3-point function made entirely of staggered quarks. We
have to include a nonstaggered (and nondoubling) specta-
tor quark in order to remove the requirement for overall
taste cancellation in the 3-point function [50]. The Fermilab
Lattice/MILC Collaboration use this method [51] with a
clover spectator quark to normalize a light staggered vector
current for the nonperturbative part of their mixed pertur-
bative and nonperturbative approach to normalizing the
clover-staggered operators for heavy-light meson decay
constants. Here we use an NRQCD spectator quark to
normalize the local charm staggered vector current. In
fact we can use any NRQCD-like action for the spectator
since it does not need to correspond to a physical quark.
However, for simplicity we do use the NRQCD action
developed for our NRQCD-light spectrum calculations [3].

To combine an NRQCD (or other nonstaggered) quark
with a staggered quark we convert it to a naive quark [50],
reinstating the spin degree of freedom as in Eq. (A3).
A pseudoscalar meson correlator which, with two identical
quarks, would simply be the sum over spins and colors of
the squared modulus of the propagator, becomes in this case

CQqðtÞ ¼
X
~x; ~y

TrfGðx; yÞ�ðyÞgyðx; yÞ�yðxÞg: (B7)

The trace is over spin and color but separates since the
staggered propagator gðx; yÞ has no spin and � no color.
Then

CQqðtÞ ¼
X
~x; ~y

TrcfTrs½�yðxÞGðx; yÞ�ðyÞ�gyðx; yÞg: (B8)

This makes clear that we can transfer the� matrices to the
nonstaggered quark propagator Gðx; yÞ, and this allows us,
as shown in [14], to combine staggered and nonstaggered
quarks from random wall sources. We simply make the
source of the nonstaggered quark the product of �ðyÞ
(where y runs over a time slice at the source) with the
random number at each y value in the random wall, con-
voluted with smearing functions if required. At the sink we
multiply by �y before tracing over spins to combine with
the spinless staggered quark propagator. Here we develop
this method further for 3-point functions.
For the matrix element of the temporal charm-charm

vector current between identical charmed pseudoscalar
mesons, at rest, we have

hPcjVtjPci ¼ 2mPc
fþð0Þ (B9)

and we can demand that fþð0Þ ¼ 1; i.e. we can multiply
the left-hand side by Z to make this true. The temporal
component of the vector current is the easiest to use for this
purpose although the spatial component of the vector
current is the one that we use for J=c ! �c decay. For a
relativistic action such as HISQ the renormalization of the
spatial and temporal components will be the same up to
discretization errors.
For the 3-point function needed to evaluate the matrix

element above we use an NRQCD heavy quark propagat-
ing from 0 to T and HISQ charm quarks from 0 to t and T to
t (see Fig. 5). The local staggered temporal vector current
(�0 � �0 in spin-taste notation) is inserted at t and the
restriction for staggered 3-point functions of an overall
tasteless correlator is avoided by the spin content of the
NRQCD propagator.
The 3-point function is given by

C3 ptð0; t; TÞ
¼ X

sT ;st

ð�1ÞxTþyTþzTþtT ð�1ÞttTrcfgðt; TÞ

� Trs½�0�
yðTÞGðT; 0Þ�ð0Þ�gyðt; 0Þg: (B10)

The g are HISQ c propagators and G is an NRQCD heavy
quark propagator. The �0 factor comes from the local
temporal vector current. The 3-point function is therefore
calculated in a very similar way to the 2-point function.
�ðxÞ multiplied by the random wall at the source time
slice, 0, is used as the source for the NRQCD propagator.
At time T this is multiplied by�y and �0, source and sink
spins are set equal and summed over. This is then the
source for the HISQ propagator from T to twhich is finally
combined with the HISQ propagator generated from the
random wall at time slice 0.
We calculate the 2-point and 3-point functions described

above for several different NRQCD masses, mha, and c
quark masses,mca, on the configuration sets 1, 2 and 4. We
also use several different values of T so that our fit benefits

TABLE VIII. Renormalization constants determined from the
current-current correlator method on each configuration set used
for the determination of fJ=c . The Z value we use is that from

moment 4. The errors include an estimate of effects from a gluon
condensate contribution, and unknown fourth order and higher
terms in continuum perturbation theory. The errors are highly
correlated between configuration sets (to better than 1% of the
error). For set 2 we include both the tuned value of amc (0.63)
and the heavier, detuned, value (0.66). Very little difference is
seen between them.

Set mca Zð4Þ ¼ Zcc Zð6Þ Zð8Þ
1 0.622 0.979(12) 0.945(14) 0.927(17)

2 0.63 0.979(12) 0.945(14) 0.926(17)

2 0.66 0.974(12) 0.941(14) 0.921(17)

4 0.413 0.983(12) 0.953(14) 0.953(17)

5 0.273 0.986(12) 0.970(14) 0.975(18)

6 0.193 0.990(12) 0.982(14) 0.986(18)
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from both T and t dependence to improve the extraction of
the ground-state masses, amplitudes and matrix elements.
The 3-point and 2-point correlators are fit simultaneously
to the forms given in Eqs. (1) and (25). We use the same
priors as in Sec. III C. Note that for the 3-point fit we can
now impose symmetry under interchange of the mesons at
0 and T since they are the same. This means that the
amplitudes Vnn and Voo are square symmetric matrices
and Vno ¼ Von.

The key quantity that we extract from the fit is the
ground-state matrix element Vnn

00 . This is proportional to

the vector matrix element on the left-hand side of Eq. (B9).
We can work out the constant of proportionality by match-
ing our fit equations, Eqs. (1) and (25), to the form
expected by inserting a complete set of states in a contin-
uum 3-point function. In this case factors of the mass of the
meson4 cancel and we find Vnn

00 ¼ fþð0Þ. Then the renor-

malization factor we need is given by

Z ¼ 1

Vnn
00

: (B11)

The results for Z are taken from fits with 5 normal and 4
oscillating exponentials and given in Table IX. We obtain
very precise results for Z, with errors of 0.1%, without even
using the full statistics available for each ensemble. The
values are much more precise, for example, than for the
implementation given in [51] (although their values are for
light quarks rather than charm).

Figure 12 shows the quality of our results through plots
of the ratio of the 3-point to the 2-point function. Note that
we fit the 3-point and 2-point functions simultaneously and
not just the ratio. It is convenient to plot the ratio, however,
because the ground-state contribution to this is simply Vnn

00 .

Our fit allows us to include the effect of excited states, both
normal states and oscillating states. The presence of oscil-
lating states is evident in the plots. The upper plot of

Fig. 12 compares results at different T values. All are
included in the simultaneous fit. The lower plot shows
results at different values of mha for a given mca.
The vector form factor method for determining Z is

completely nonperturbative. It will therefore be subject to
errors coming from lattice QCD in the form of discretiza-
tion errors. These mean, for example, that the Z factor at a
particular value of the lattice spacing is not completely
independent of the mass of the NRQCD spectator quark.
From our results in Table IX we see that changing mha
from 2.8 to 1.5 on coarse set 2 (corresponding to change of
almost a factor of 2) causes a 2% change in Z. On fine set 4
the sensitivity is reduced to a change of 0.2%, not signifi-
cant within our statistical errors, when mha is changed
from 2.0 to 1.5, a change in mass of 30%. Since the change
in lattice spacing between the coarse and fine sets is a
factor of 1.4, pairs of amh values on coarse and fine lattices
that correspond to approximately the same physical mass
are (2.8, 2.0) and (2.0, 1.5). We will take our central result
for Zff from the Z values corresponding to using (2.0, 1.5)

and use (2.8, 2.0) to check systematic errors coming from
Z. We see in Sec. III C that we get the same answer from
both sets of Z values.
Table IX also shows results for the deliberately mistuned

c quark mass of 0.66 on set 2 with which we test the c quark
mass dependence of our J=c ! �c form factor. A barely
significant change in Z is seen between this value and that
for the tuned mass of 0.63. We also see no significant
difference in Z as we change the sea light quark masses
between set 1 and set 2.
Discretization errors also mean that our results for Zff

here do not have to agree exactly with our earlier results for
Zcc. Zcc has a much larger error coming from unknown
higher order terms in continuum perturbation theory. As a
result of this, Zff and Zcc do agree at the level of 1�. They

also agree within errors with the lattice QCD perturbation
theory for this renormalization, which has a small negative
contribution at Oð�sÞ [52].
The Z values calculated here form part of a program to

normalize nonperturbatively a range of staggered currents

TABLE IX. The Z factors (column 9) obtained from the vector form factor method on different configurations sets (column 1) and
for different NRQCD quark masses, mha (column 4), and c quark masses, mca (column 5) with 	 factor (column 6). The mca values
are those used in our calculation of J=c ! �c� described in Sec. III C; the mha values are arbitrary since they correspond to the
spectator quark. Z is given by the inverse of the fit parameter Vnn

00 given in column 8. Column 2 gives the number of configurations used

in the calculation and the number of time sources for the origin, 0. The T values used are given in column 3. Column 7 gives the energy
of the NRQCD-c meson obtained from the fit. This is not equal to the mass because there is an energy offset in NRQCD.

Set Ncfg � Nt T amh amc 	 aEPc
Vnn
00 Z ¼ Zff

1 450� 4 20,21 2.0 0.622 �0:221 0.9630(2) 1.0104(12) 0.9896(11)

2 408� 4 20,21,24 2.8 0.63 �0:226 1.0239(2) 1.0220(10) 0.9784(9)

20,21,24 2.0 0.63 �0:226 0.9719(2) 1.0106(8) 0.9894(8)

20,21 1.5 0.63 �0:226 0.9311(3) 1.0026(14) 0.9974(14)

20,21 2.0 0.66 �0:244 0.9994(3) 1.0138(18) 0.9863(17)

4 322� 4 24,25,30 2.0 0.413 �0:107 0.6454(2) 0.9966(14) 1.0033(14)

24,25,30 1.5 0.413 �0:107 0.5939(2) 0.9950(10) 1.0049(10)

4For a meson containing an NRQCD quark the energy ob-
tained from the 2-point and 3-point fits is not its mass. However
that is irrelevant here since it cancels.
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for a variety of weak semileptonic and electromagnetic
radiative decay rates [41].

APPENDIX C: DISCRETIZATION ERRORS

Finally we discuss discretization errors. For relativistic
formalisms the scale of discretization errors can be set by
the quark mass when this is larger than �QCD and so they

must be monitored closely when working with c quarks.
One simple way to do this is through study of the energy

of mesons at nonzero spatial momentum. Because the
HISQ formalism is a relativistic formalism we determine
meson masses as the result of fitting zero-momentum
meson correlators as described in Sec. II. For heavy quarks
discretization errors mean that this mass, known as the
‘‘rest’’ or ‘‘static’’ mass, can differ from the mass that
controls the momentum dependence of the energy at

nonzero spatial momentum. This latter mass is known as
the ‘‘kinetic mass.’’ An equivalent statement is that the
square of the speed of light, c2, differs from 1, where [11]

c2ð ~pÞ ¼ E2ð ~pÞ �m2

~p2
: (C1)

For �c mesons we are able to determine c2 very accu-
rately with HISQ quarks when we have Oð10 000Þ corre-
lators as here. We fit zero and nonzero momentum
simultaneously to the form given in Eq. (1) (although the
zero-momentum correlators have no oscillating compo-
nent). From the fit we obtain the ground-state mass M0 in
the zero-momentum case and the ground-state energy E0 in
the nonzero-momentum case. The simultaneous fit allows
us to take correlations into account to improve the error in
c2. Results are given in Table X. c2 is within 3% of 1 but we
can distinguish it from 1 and we can see that it depends on
the spatial momentum. This is shown in the top plot of
Fig. 13 for the coarse lattices, set 2, and the fine lattices, set
4. All tree-level a2 errors are removed in HISQ but c2 can
depend linearly on a2 ~p2 throughOð�sÞ corrections. We see
that the slope of c2 with a2 ~p2 is much smaller on the fine
lattices than the coarse, asmca is reduced. This plot can be
compared with earlier results in Fig. 9 of [53], although
note that those results show a jump as the lattice momen-
tum changes from (1,1,1) to (2,0,0). This results from a
rotationally noninvariant discretization error not evident in
our results because of the use of the phased boundary
condition of Eq. (16) to fix the momentum direction and
simply change its magnitude.
From the top plot of Fig. 13 we can determine the value of

c2 at a2 ~p2 ¼ 0. The results from the coarse and fine lattices
are then shown in the lower plot to lie on a straight line as a
function of ðmcaÞ2. The small slope is compatible with the
ðmcaÞ2 dependence also being anOð�sÞ effect. The straight
line clearly goes through 1 as mca ! 0 as it must.
Another way to look at these discretization errors is to

compare the rest and kinetic masses for the �c. The kinetic
mass is given by [54]

Mkin ¼ j ~pj2 � ð�EÞ2
2�E

; (C2)
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FIG. 12 (color online). The ratio of the 3-point function for the
Bc to Bc vector form factor to the Bc 2-point function against the
source-current separation t=a. The top plot shows results for
mba ¼ 2:0 on fine lattices, set 4, for various values of T. Lines
join the points for clarity. The shaded red band gives our fit result
for the ground-state matrix element. The lower plot shows
results, also on set 4, for two different values of mba. The
shaded red and blue bands show the fit results for the ground-
state matrix elements.

TABLE X. Rest masses (aM�c
) and energies (aE�c

) at non-
zero momentum ja ~pj for the Goldstone �c meson on sets 2
(coarse) and 4 (fine). The rest masses differ slightly from those in
Table II because they come from independent fits; on set 4 we
have higher statistics here. The zero- and nonzero-momentum
correlators are fitted simultaneously and the speed of light c2

extracted using Eq. (C1).

Set mca aM�c
ja ~pj aE�c

c2

2 0.63 1.80851(4) 0.52880 1.88286(12) 0.9814(15)

0.35000 1.84123(5) 0.9748(5)

0.20000 1.81923(4) 0.9715(6)

4 0.413 1.28042(4) 0.37486 1.33352(6) 0.9878(8)

0.20000 1.29575(4) 0.9873(7)
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where �E ¼ Eð ~pÞ �Mrest. We also have c2 ¼ Mrest=Mkin

[11]. In the absence of errors, for a relativistic formalism,
we should have Mrest ¼ Mkin (i.e. c2 ¼ 1). In Fig. 14 we
compare the rest and kinetic masses for HISQ �c mesons
usingMkin ¼ Mrest=ðc2ð ~p2 ¼ 0ÞÞ determined from Fig. 13.
The rest and kinetic masses differ by 3% on the coarse
lattices and 1.3% on the fine lattices.

Figure 14 also compares results from the twisted mass
formalism, from [10]. For that formalism there is a signifi-
cantly larger difference between rest and kinetic masses for
the �c meson, amounting to 35% on the coarsest lattice
spacing. The twisted mass formalism has tree-level a2

errors, so a larger effect would be expected. The rest and
kinetic masses agree in the continuum limit, as they must.

Figure 15 compares the hyperfine splitting in charmo-
nium in units of the �c mass as a function of the square of
the lattice spacing for the HISQ and twisted mass formal-
isms. The quantity plotted is RJ=c � 1, where RJ=c is

defined in [10] as MJ=c =M�c
and results are given on

each of their ensembles. The HISQ results are taken from
Table II. We also show results from the Fermilab clover
method [55] on their two finest sets of ensembles which
correspond to the coarse and fine lattices used here.
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FIG. 13 (color online). The speed of light c2 calculated from
zero and finite momentum �c correlators using HISQ c quarks.
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open circles) and for fine lattices, set 4, where mca ¼ 0:413
(pink crosses). The lower figure shows the resulting values of c2

as ~p2a2 ! 0 as a function of ðmcaÞ2. The dashed straight line is
drawn to guide the eye.
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FIG. 15 (color online). RJ=c � 1 plotted against a2 in fm2 for
three different quark formalisms for the c quark: HISQ (this
paper, blue open circles), twisted mass ([10], red open squares)
and Fermilab clover ([55], green open triangles, showing results
on the two finest lattices only). RJ=c is MJ=c =M�c

so RJ=c �
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. For the twisted mass and Fermilab clover

results the heaviest and lightest sea quark masses are plotted at
each value of the lattice spacing. Only statistical errors are
shown. Additional errors from (twice) the lattice spacing error
amount to 2% for HISQ and Fermilab clover and 4%–7% for
twisted mass. The black cross is the experimental average [7],
offset slightly from the origin for clarity.
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All the results tend to the same continuum value which
agrees with experiment. Much larger discretization effects
are visible for the twisted mass formalism than for HISQ.
These are compatible with the tree-level a2 errors expected
in that formalism, and with a mass scale of approximately
2 GeV (i.e. mc). These tree-level errors are removed in the
HISQ formalism, but �sa

2 errors remain. These seem to be
small for this quantity. The Fermilab clover discretization
errors, although in principle �sa, are also relatively small
over this range of a.

Discretization effects in the hyperfine splitting can also
enter through tuning of the c quark mass, because the
hyperfine splitting is very sensitive to this. As discussed
earlier in this section, there can be significant differences
between rest and kinetic masses for mesons made of heavy
quarks, and either can be used to tune the quark mass. Both
relativistic formalisms, HISQ and twisted mass, use the
rest mass. The Fermilab formalism uses the kinetic mass.

For fJ=c the difference in discretization effects

between the HISQ and twisted mass formalisms is not
as large. This is shown in Fig. 16. Again, answers in
agreement are obtained in the continuum limit. For the
moments of the vector correlator our results for GV

4

(Fig. 4), which show very little dependence on the lattice
spacing, can be compared to those for the twisted mass
formalism in [56], where somewhat larger discretization
effects are visible.
Finally in Fig. 17 we compare results for the vector

form factor for J=c ! �c decay, Vð0Þ. Large discretiza-
tion effects are evident in the twisted mass results. Once
again discretization effects in the HISQ results are small.
Agreement in the continuum limit is again clear,
however.
The HISQ results shown here give a further and more

testing demonstration than that of [11,35] of how small the
discretization errors for the HISQ action are, even for a
quark as heavy as charm.
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