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The baryon axial vector current is computed at one-loop order in large-N, baryon chiral perturbation
theory, where N, is the number of colors. Loop graphs with octet and decuplet intermediate states are
systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and
SU(3) flavor symmetry breaking are accounted for. As expected, large-N,. cancellations between different
one-loop graphs are observed as a consequence of the large-N, spin-flavor symmetry of QCD baryons.
Fitting our analytical formulas against experimental data on baryon semileptonic decays and the strong
decays of decuplet baryons, a detailed numerical analysis regarding the determination of the basic
parameters of large-N, baryon chiral perturbation theory as well as the extraction of the baryon axial
vector couplings is performed. The large-N,_ baryon chiral perturbation theory predictions are in very good

agreement both with the expectations from the 1/N,. expansion and with the experimental data.
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L. INTRODUCTION

From the theoretical point of view, the analysis of
baryon semileptonic decays, B; — Bje” v,, is rather
involved due to the participation of both vector and axial
vector currents. In the past, the understanding of the con-
sequences of the weak hadronic currents relied on the
Cabibbo model [1], i.e., on an exact flavor SU(3) symme-
try. However, with the advent of high-statistics experi-
ments [2], the departure from the limit of exact
symmetry has now become more evident and one is
prompted to compute the effects of SU(3) symmetry break-
ing in the form factors.

The leading vector form factors in baryon semileptonic
decays are protected by the Ademollo-Gatto theorem [3]
against SU(3) breaking corrections to lowest order in € =
m, — m. For this reason, the theoretical framework to
compute them is under reasonable control within the limits
of experimental precision. However, in the case of the axial
vector form factors one faces larger theoretical uncertain-
ties because of the appearance of first-order SU(3) break-
ing effects.

Although one can assert that in recent years lattice QCD
calculations have demonstrated remarkable progress in
computing hadron properties from first principles with
high accuracy, analytical calculations of these properties
are not possible because QCD is strongly coupled at low
energies. Thus, a number of different methods have been
developed to understand the low-energy QCD hadron dy-
namics. In particular, SU(3) breaking corrections to baryon
semileptonic decay form factors have been analyzed within
quark and soliton models [4—11], lattice QCD [12-17],
the 1/N, expansion [18-21], (heavy) baryon chiral
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perturbation theory [22-34], as well as within the com-
bined framework of large-N_. baryon chiral perturbation
theory [35-37].

Large-N. QCD is the generalization of QCD from three
colors N, =3 to N,> 3. The baryon sector in the
large-N, limit of QCD exhibits an exact SU(2N,) con-
tracted spin-flavor symmetry, where N is the number of
light quark flavors. In the large-N, limit, decuplet and
octet baryon states become degenerate, the difference A
between the SU(3) invariant masses of the decuplet and
octet baryons given by A = M, — My « 1/N,. The spin-
flavor symmetry allows one to classify large-N, baryon
states and matrix elements and to compute static properties
of large-N, baryons in a systematic expansion in 1/N,
[18,19]. This formalism has been applied to a variety of
physical quantities, including the baryon axial vector cur-
rent [18-21,38,39].

Another systematic and model-independent method is
chiral perturbation theory, which is based on the sponta-
neously broken chiral symmetry SU(3); X SU(3)y of the
QCD Lagrangian. It is the low-energy effective field theory
of QCD, formulating the dynamics in terms of the pseu-
doscalar octet of Goldstone bosons. Physical observables
can be expanded systematically, order by order, in powers
of p>/A, and mf; /A, where p is the meson momentum,
myy is the Goldstone boson mass, and A is the scale of
chiral symmetry breaking [40-42]. The inclusion of heavy
particles such as the proton or the neutron, whose masses
do not vanish in the chiral limit m, — 0, can be performed
within the framework of (Lorentz invariant) baryon chiral
perturbation theory [43—46] or heavy baryon chiral pertur-
bation theory [47,48]. In this work we will use the latter
approach, which involves velocity-dependent baryon fields
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and where the expansion of the baryon chiral Lagrangian in
powers of m, and 1 /Mg (where My is the baryon mass) is
manifest.

In particular, chiral logarithmic corrections due to me-
son loops were considered in Refs. [47-53]. A crucial
observation was that while these corrections are large
when only octet baryon intermediate states are kept, the
inclusion of decuplet baryon intermediate states yields
sizable cancellations between one-loop corrections. This
observation, as we will illustrate in the present work,
can be rigorously explained in the context of the 1/N,
expansion.

A very powerful method—the one we will use in the
present work—is constituted by the combined use of the
1/N, expansion and chiral perturbation theory [54]. It
describes the interactions between the spin—% baryon octet
and the spin-% baryon decuplet with the pseudoscalar
Goldstone boson octet augmented by the 1’. Observables
that have been calculated within this combined framework
include baryon masses [54—57], baryon magnetic moments
[58-62], and the baryon axial vector current [35-39,57].
When computing the renormalization of the baryon axial
vector current at one-loop order, large-N, cancellations
between various Feynman diagrams occur, provided that
both octet and decuplet intermediate states are considered.
While the general structure of these cancellations was
analyzed in Ref. [39], the explicit evaluation of the corre-
sponding operator expressions, which involve complicated
structures of commutators and/or anticommutators of the
SU(6) spin-flavor operators, was discussed in Ref. [35].

In the present work we go beyond the analysis of
Ref. [35] in various ways. As we will discuss in detail in
Sec. III, we extend the operator analysis by including all
effects that are suppressed by 1/N? relative to the tree-
level value, which includes taking into account the non-
vanishing decuplet-octet mass difference A. Moreover,
effects related to SU(3) flavor symmetry breaking are
included as follows: On the one hand, at tree level, we
include all relevant operators that explicitly break SU(3) at
leading order. On the other hand, in the one-loop correc-
tions, SU(3) symmetry breaking is accounted for implic-
itly, since the loop integrals depend on the pion, kaon, and
7 masses. As an application of our formalism, given the
precision of our analytic expressions, we are then able to
perform various fits in order to determine the basic pa-
rameters of large-N,. baryon chiral perturbation theory as
well as to extract baryon axial vector couplings from
baryon semileptonic decays and from the pion decays of
decuplet baryons.

The rest of the paper is organized as follows. In Sec. II
we provide an outline of the basic ingredients of large-N,
baryon chiral perturbation theory needed in the present
work. In Sec. III, the renormalization of the baryon axial
vector current is presented and the large-N, cancellations
are illustrated. The incorporation of SU(3) symmetry
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breaking effects into the operator analysis is performed
in Sec. IV, while Sec. V contains a detailed numerical
analysis regarding the determination of the basic parame-
ters of large-N, baryon chiral perturbation theory and the
extraction of g, from baryon semileptonic decays and the
strong decays of decuplet baryons. Our conclusions are
presented in Sec. VI. Finally, technical details regarding
loop integrals, commutator/anticommutator operator struc-
tures, flavor 8 and 27 contributions to the baryon axial
vector couplings, as well as matrix elements of baryon
operators, are relegated to four different appendices.

II. OVERVIEW OF LARGE-N, CHIRAL
PERTURBATION THEORY

In order to introduce our notation and conventions, in
this section we provide an overview of the chiral
Lagrangian for baryons in the 1/N, expansion introduced
first in Ref. [54]. This Lagrangian, which incorporates
nonet symmetry and the contracted spin-flavor symmetry
for baryons in the large-N, limit, can be written as

£baryon =iD" - Mhyperﬁne + Tr (ﬂk)‘c)Akc
1 21
+ —Tr ﬂlk—>Ak+---, 1
N, ( NG (1)

with
DO = 91 + Tr (VOAO)Te. )

The ellipses in Eq. (1) denote higher partial wave pion
couplings that occur at subleading orders in the 1/N,
expansions for N, > 3. In the large N. limit, all of these
higher partial waves vanish, and the pion coupling to
baryons is purely p wave. Therefore, the only terms rele-
vant for our analysis are those displayed in Eq. (1).

Meson fields enter the Lagrangian (1) through the vector
and axial vector combinations

VO = J(E0Et + £1308),
Ak = S(EVE - £19%) ®
£ = expliT (/)

where I1(x) represents the nonet of Goldstone boson fields
and f = 93 MeV/c? is the pion decay constant.

Each of the different terms in the Lagrangian (1) con-
tains a baryon operator. While the baryon kinetic energy
term involves the spin-flavor identity, My perfine TEpresents
the hyperfine baryon mass operator that incorporates the
spin splittings of the tower of baryon states with spins
1/2,..., N./2 in the flavor representations. The quantities
A and A*¢ stand for the flavor singlet and flavor octet
baryon axial vector currents, respectively. All these baryon
operators can be written as polynomials in the SU(6) spin-
flavor generators [19]
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TABLE I. SU(2N,) commutation relations.
[J,T*] =0,
[Ji’ Jf] = iEiijk, [T“, Tb] = ifabCTC,
[Ji, G/“] = iekGHe, [T¢, G*] = ifebeGie,

[Gia’ Gjb] — i'sijfabcTc + ﬁ5abfijk‘]k + %eijkdachkc’

k c k/\c

—q Gk=4t 4
>4 955 C))

LA

JE=qt
)

Here ¢t and ¢ are SU(6) operators that create and annihi-
late states in the fundamental representation of SU(6), and
oF and A€ are the Pauli spin and Gell-Mann flavor matri-
ces, respectively. The SU(6) spin-flavor generators satisfy
the commutation relations listed in Table 1.

The 1/N, expansions of the baryon flavor singlet and
octet axial vector currents were derived in Ref. [19].
Taking into account that A is a spin-1 object and a singlet
under SU(3), its 1/N, expansion amounts to

nzl3 N ¢
where Dt = Jk and D%, ={J% DL _,} for m= 1.
The superscript on the operator coefficients of A¥ denotes
that they refer to the baryon singlet current. At the physical
value N. = 3, Eq. (5) reduces to
1
A% = pPl gk + byt W{J2, J. ©6)
The flavor octet current A, on the other hand, is a spin-

1 object, an octet under SU(3) and odd under time reversal.
Its 1/N, expansion reads [18,19]

N,

: 1
ke — k
A =q,G*+ Y b,—
n=273 c

1
— Dk + Z c Nn_l(oi,;a (7)

n=3,5 c

where the unknown coefficients a;, b,, and c, have expan-
sions in powers of 1/N_ and are order unity at leading order
in the 1/N,. expansion. The first few operators in expansion
(7) are

Dé‘c — JkTC’ (8)
Dl = (I, {77, G™}), ©)
Ok = {2, Gi} — %{J’% {r, G, (10)

while higher order terms can be obtained as Dk =
{J2, Dke )} and Ok = {J2, Ok ,} for n = 4. Notice that
Dke are diagonal operators w1th nonzero matrix elements
only between states with the same spin, and the O*¢ are
purely off-diagonal operators with nonzero matrix ele-
ments only between states with different spin. At N, = 3
the series (7) can be truncated as
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1
AkC = aleC + bz—DIZCC + b3

ZD +C3—Okc
N, N? N2

(11
Let us stress the fact that at the physical value N. = 3, the
1/N, expansion only extends up to 3-body operators, such
that there are only four terms in the expansion for the baryon
octet axial vector current Eq. (11) in the flavor SU(3) limit.
Note again that the unknown coefficients a,, b,, b3, and c;
are all of order unity for large N, (see Ref. [20]).

The matrix elements of the space components of A*¢
between SU(6) symmetric states yield the values of the
axial vector couplings. For the octet baryons, the axial
vector couplings are g4, as defined in experiments in
baryon semileptonic decays, normalized in such a way
that g4 = 1.27 for neutron B decay. For decuplet baryons,
the axial vector couplings are g, which are extracted from
the widths of the strong decays of the decuplet baryons into
octet baryons and pions.

Finally, the 1/N, expansion of the baryon mass operator
M takes the form [18,19]

N.—1

M—mONﬂ+Zm

n=24

N (12)

where m,, are unknown coefficients. The first term on the
right-hand side is the overall spin-independent mass of
the baryon multiplet and is removed from the chiral
Lagrangian by the heavy baryon field redefinition [47]. The
other terms are spin-dependent and represent My perfine
introduced in the chiral Lagrangian (1). For N, = 3 the
hyperfine mass expansion reduces to a single operator

m

M hyperfine — ijz (13)
Again we emphasize that at the physical value N, = 3, the
1/N, expansion for the baryon mass operator M only
extends up to 3-body operators, such that there are only
two terms in Eq. (12).

While the above expression for the flavor octet axial
current A% refers to the SU(3) symmetry limit, we also
want to include effects into the operator analysis that result
from explicit SU(3) flavor symmetry breaking. Indeed, as
we discuss in detail in Sec. IV, the flavor octet axial current
Ak will receive additional terms that account for SU(3)
breaking.

III. RENORMALIZATION OF THE BARYON
AXTAL VECTOR CURRENT

The 1/N, baryon chiral Lagrangian displayed in Eq. (1)
has been applied to the calculation of nonanalytic meson-
loop corrections to various static properties of baryons.
Among them, the chiral corrections to the axial vector
coupling g, have been tackled in Refs. [35,39].

The one-loop diagrams that renormalize the baryon axial
vector current A are displayed in Fig. 1. Previous
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(a) b)

()

FIG. 1.

analyses [18-20,35,39] have shown that these loop graphs
have a calculable dependence on the ratio my/A, where
my denotes the meson mass and A = M; — My is the
decuplet-octet mass difference. However, in order for the
theory to be valid, the conditions m;; < A, and A < A,
must be met, while the ratio m /A is not constrained and
can take any value. Also, the meson-baryon vertex is
proportional to g4/f. In the large-N, limit, g, < N, and
f « /N, so the pion-baryon vertex is of order O(/N,).
The meson and baryon propagators are independent of N,
and so are the loop integrals because in the MS scheme
they are given by the pole structure of the propagators.

The loop graphs of Fig. 1 possess a rather different N,
dependence. Because of the fact that Figs. 1(a)-1(c) can be
combined into a single structure [35,39], we first deal with
the correction arising from these diagrams and postpone
the discussion of diagram 1(d). The contribution from
Figs. 1(a)-1(c) contains the full dependence on the ratio
A/mp and can be written as [39]

Lo
BAK = S [A, [AT, ARG,

1. . )
- E{Ajd, [Akc’ [j\/l’ Ajb]]}nzlzb)

o G ARGV

_ %[[M, Aja], [[M, Ajb]’ Akc]])l‘[zl’jb) 4oee

(14)

Here A*¢ is the baryon axial vector current operator given
in Eq. (11), M is the baryon mass operator given in
Eq. (12), and H% represents a symmetric tensor that
contains meson loop integrals with the exchange of a single
meson: A meson of flavor a is emitted and a meson of
flavor b is reabsorbed. This tensor decomposes into flavor
singlet, flavor 8, and flavor 27 representations as [54]

ab — () sab (n) jab8
II =F"6 + Fg'd

(n)
1 3
+ F(ZI;)I:‘SuS 5!78 _ g 5uh _ gdub8di§88 :I, (15)

One-loop corrections to the baryon axial vector current.

where

o 1
Y = S BF"ny, 0, ) + 4F" mg. 0, 1)

+ F"(m,, 0, )] (16)
n 233
R =5 [ 00 = g, 0.
1
_ QF(")(’”W 0. M)], (a7
n _ 1 4
Fi = 3 F(m, 0, 1) = S F(my, 0, )
+ F(")(m,,, 0, w). (18)

Equations (16)—(18) are linear combinations of
F"(m,,0, u), F"(myg, 0, w), and F™(m,, 0, u), which
account for the loop integrals. Indeed, F" (my, 0, u) rep-
resents the degeneracy limit A/mpg — 0 of the general
function F™(mp, A, ), defined as

d"F(my, A, p)

A" ’
where u is the scale parameter of dimensional regulariza-
tion. The function F(my, A, ) along with its derivatives

are given explicitly in Appendix A. In the degeneracy limit
one finds

FP(my, A, ) = (19)

2 2

— my my
F(l)(ml_[) 0) /-L) - 167T2f2 ln?! (203)

1
FO(n 0 ) = — o 20b
(mm, 0, ) 87/ mig (20b)
(3) — mpy

F (mH, 0, M) = W ln? (ZOC)

Notice that in Eq. (20) we have kept nonanalytic terms in
the quark mass explicitly. Analytic terms are scheme de-
pendent and have the same form as higher dimension terms
in the chiral Lagrangian so they have been omitted. It is
important to note that the one-loop correction to the axial
current Eq. (14) takes into account SU(3) flavor symmetry
breaking. These leading nonanalytic corrections to the
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SU(3) symmetry limit are contained in the loop integrals
that depend on the meson masses and thus break SU(3)
symmetry implicitly through the terms m? ln";—%;, mii,
and lnr:i—%}.

The computation of the group theoretic structure
involved in the loop graphs of Fig. 1 is quite subtle.
Here we are interested in computing corrections of
relative order O(1/N?2) to AX¢, which is order O(N,). In
other words, we need to retain terms up to order O(1/N?)
in 8AK in Eq. (14). To facilitate the computation, we
keep in mind two things. First, we can make use of the
1/N, power-counting scheme introduced in previous
works [35,39], which states that, for baryons with spins
of order one,

T¢ ~ N, G“ ~N,, Ji~1. (21
This is equivalent to state that factors of J//N, are 1/N,
suppressed relative to factors of T¢/N, and G“/N,... We
can safely implement this N, counting rule provided that
we restrict ourselves to the lowest-lying baryon states,
namely, those that constitute the 56 dimensional repre-
sentation of SU(6).

Second, we should also take into account that an odd or
an even number of insertions of the baryon mass operator
in Eq. (14) yields structures with a rather different order in
N,.. This N, dependence was determined in Ref. [39]
throughout a detailed analysis. The basic idea is quite
simple: one needs to count powers of J because of the
1/N, suppression the factor J/N, introduces. For instance,
in A¥ and M the spin operator J appears a minimum of 0
and 2 times, respectively. Let 7 be the number of J’s from
A% and M beyond these minimum values in a given
structure. Thus, contributions with no mass insertion in
Eq. (14) are order O(N?) for r = 0, 1 and O(N?"") for
r = 2. For one mass insertion, they are order O(N?) for
r=20,1and O(N!~") for r = 2. For two mass insertions,
they are order O(N_ ") [39]. Let us remark that this power
counting already includes a 1/N, suppression due to the
overall factor 1/f? that comes along with the loop integral.

Let us analyze the implications this power counting
scheme has on the different summands in Eq. (14). The
first one is

1

5 [Aja: [Ajb) AkC]]H ?lb) (22)

It corresponds to the degeneracy limit A/mp — 0 and has
been analyzed in Ref. [35]. Naively, one would expect the
double commutator alone in (22) to be O(N?3): one factor of
N, from each Akc. However, there are large-N,. cancella-
tions between the Feynman diagrams of Figs. 1(a)-1(c),
provided that all baryon states in a complete multiplet of
the large-N, SU(6) spin-flavor symmetry are included in
the sum over intermediate states and that the axial coupling
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ratios predicted by this spin-flavor symmetry are used [39].
By explicit computation, it has been shown that this double
commutator is of order O(N,) at most [35]. Therefore,
expression (22) yields an overall correction of order
O(1/N,) to the tree-level value if one takes into account
that f is of order O(/N,). By using the counting rules
discussed above, the terms with » = 0, 1, 2 in the product
AAA, namely, GGG, GGD,, GD,D,, GGD;,and GGO,
are found to contribute to the same order to the double
commutator, namely, order O(N,). Thus, these terms,
along with the factor 1/f? from the loop integral, make up
the corrections of order O(1/N,) to the tree-level value—
which is order O(N,)—discussed above. At next sublead-
ing order, the terms with » = 3, i.e., D,D,D,, GD,D;,
and G'D, 05 will make up corrections of order O(1/N?) to
the tree-level value, including again the factor 1/f2.

The second summand in Eq. (14), with one mass
insertion, is

1, . , .
EDAGAE [A%e, [ M, APPITITE,

(23)
This is one of the corrections we are concerned with in the
present work. Although the baryon mass operator M
enters explicitly in the above expression, one is left with
the hyperfine mass splitting operator My, e sine instead,
because the spin-independent term in M in Eq. (12) is
proportional to the identity operator and hence drops out of
the commutator. According to the N,. power counting rules,
for r =0, 1 the terms in the product AAAM, namely,
GGGJ? and GGD,J?, produce corrections of order
O(1/N.) to the tree-level value, whereas at next subleading
order, for r = 2, the contributions GD,D,J?, GGD5J?,
and GG0,J? yield corrections of order O(1/N?) relative
to the tree-level value.
Finally, for two mass insertions the expression reads

(e e

~ SITM, AL [T, A%) Akf]])nab (24)

(©)

By using the N, power counting rules, we infer that in the
product AAAM M terms with » = 0, i.e., GGGJ?J?, and
r=1, ie., GGD,J?J?, will yield corrections of orders
O(1/N,) and O(1/N?) to the tree-level value, respectively.
Also, an interesting piece of information we can extract is
that the dominant 1/N, corrections from the baryon mass
splittings are due to multiple insertions of the J? operator
rather than contributions of powers of J 2. For instance, two
insertions of J>—like in GGGJ?J>*—are larger (by one
power of N,) than one insertion of J*—like in GGGJ*.
Now that we have identified the various contributions
required to the order of approximation implemented in the
present study, we proceed to evaluate them along the lines
discussed in Ref. [35]. The structures involved contain
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n-body operators [63] with n > N, which are complicated
commutators and/or anticommutators of the one-body op-
erators JX, T¢, and G*¢. All of these complicated operator
structures should be reduced and rewritten as linear
combinations of the operator basis, with n = N.. The
reduction, although lengthy and tedious in view of the
considerable amount of group theory involved, is never-
theless doable because the operator basis is complete and
independent [18,19]. All the necessary reductions are listed
in Appendix B for the sake of completeness.

Without further ado, the one-loop correction to Ak to
relative order O(1/N?) can be written as

PHYSICAL REVIEW D 86, 094041 (2012)

7
SAk = s;8k,

(26)
i=1
30
SAE = 0,0%, (27
i=1
and
61
SAk = 1Tk (28)

i=1

The subscript in each summand in Eq. (25) denotes the

SAk = §Ake + 6A’§" + 5Ak, (25) i
SU(3) flavor representation it comes from.
where For the singlet contribution the operator basis is
|
Sllcc — ch’ Slzcc — Dlzcc’ Sl3cc — Déc’ SﬁL — @écy Slscc — Dﬁc’ Skc DISC(’ Sl7<c — (lecc) (29)
and the various coefficients that enter Eq. (26) read
23 N, +3 N2+ 6N, — 54 N2+ 6N, +2 N2+ 6N, —3 6(N. +3) I
e [ﬁ“? B e T T e T B L B T B R v alb2b3]F(‘ |
1 N, +3 N2 +6N.+6 A o 1 A% s
101 2(N, +3) NZ+6N.—18 , 3(N,+3) N, +3 N2+ 6N, +2
527 [241\70 aiby t = s 3= oz ks T aies a3 “babs
3(N2 + 6N, — 24) 1 N2+ 6N, —29 5(N, +3)
- i alb2c3:|F(ll) + [— Z(NC +3)ad - w a’b, — T ab, (31)
3(N, + 3) A 11 3(N? + 6N, — 16) A% s
BT a§c3]ﬁCF1 )+ [— 53 We +3)a] = . a§b2] y2hi ) (32)
11 - 51 2 L, 17(N,. + 3) 9(N, + 3) 0
§3 = [8—]\]?611[92 8N2 b3 N301C3 +67]Vg(11b2b3 _4—1\/2(11b2C3]F1
1 N, +3 2N2 + 12N, — 53 9 A 1 19(N,. + 3) A% 4
i [Za? TRt 4N? @by + Nz a2c3]Nc Y [ia% T, a%bz]ﬁF; "
(33)
3 7 2 167 5(N, + 3) N, +3 1)
S4 = [4N2 Cllb + — 6N2 b3 + 24N% ajcs 3Ng albzbg 3—]\73611b2C3]F1
[ 2 1 2 2N2 + 12N, — 37 ) A
+|:§a1 2N2611b N2 b3 4N? alc3]ﬁCF1
2 N.+3 A?
+|Zad — = _"ddp ]717(3) 34
[3 YR I (34)
5 11 19 M 4 1 N.+3 N.+3 A o
S5 = [4_]\7319% 6N3 a1b2b3 2N3 Cllb2C3 ]F [Ed%bz - —2Ng a%b3 - 2N2 a%C3]FGF1
49 2 A? G)
1by— F} 35
12N 2 N2 (35)
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3 1 A
Se = [ZNE Cllb’; 2N2 a%c;] N, Fi ), (36)
5 A
1= 537 ddey FF(Z) (37)

The 8 and 27 contributions can be found in Appendix C for
the sake of completeness.

Equations (30)—(37) and their analogues for the 8 and 27
contributions listed in Appendix C have been rearranged to
display leading and subleading terms in 1/N, explicitly.
Although the resultant expressions are rather breathtaking,
they are indeed illustrative. It is now evident that large-N,.
cancellations occur in the evaluation of the structures
appearing in Eq. (14), both for A = 0 and A # 0, such
that A% is at most of order O(1), or equivalently,
O(1/N,) times the tree-level value. This is consistent
with being a quantum correction. Also, in the definitions
of the coefficients s;, 0;, and #; we have set m, = A,
which is a consequence of the one-to-one correspondence
between the parameters of the octet and decuplet chiral
Lagrangian and the coefficients of the 1/N, chiral
Lagrangian for N, = 3 [54], namely,

1 5
MB=3mO+Zm2, MT:3m0+Zm2: (38)

so A is trivially given in terms of m, for N. = 3.

Finally, as far as the one-loop graph of Fig. 1(d) is
concerned, it does not depend on the ratio A/my. Its
analysis has been discussed in full in Ref. [35] and will
not be repeated here. At any rate, this contribution is taken
into account in the present analysis.

IV. THE AXTAL VECTOR CURRENT WITH
PERTURBATIVE SU(3) BREAKING

One important piece of information that should be
accounted for in the present analysis is the issue of pertur-
bative SU(3) symmetry breaking for the baryon axial vec-
tor current operator A%, Let us recall that A is a spin-1
object and transforms as a flavor octet under SU(3). Flavor
symmetry breaking also transforms as an octet under
SUQ3).

If we neglect isospin breaking and include first-order
SU(3) symmetry breaking, then A* has pieces transform-
ing according to all SU(3) representations contained in
the tensor product (1,8®8) = (1,1) @ (1,85) ® (1,8,) @
(1,10 + 10) & (1, 27), namely,
sl =

SAK | + BALG ¢ + BAK

SB,10+10 + 5Al§% 27 (39)

In principle, 5AL, is of order O(eN,) and can not be
neglected compared to the terms retained in A%, Eq. (11).

PHYSICAL REVIEW D 86, 094041 (2012)

We follow the lines of Refs. [19,20,62] in order to construct
the operators that occur in (39) to relative order 1/N2.

A.(1,1)
The 1/N, expansion for the (1, 1) operator, to relative
order 1/N?Z, contains two terms, namely,
1
SAL, | = oIk + ﬁ S TN, (40)

c

where the superscripts attached to the coefficients c}’l

indicate the representation. Higher order terms can be
obtained by anticommuting the operators retained with
J?/N?%. The above contribution is only relevant to the
baryon magnetic moment operator [59,62].

B. (1, 8)

The 1/N, expansion for the (1, 8) operator has a similar
structure as A% in Eq. (11). Thus, the (1,8) breaking
correction reads

1
o dceS Dlzce

c

ke — 1.8 jce8 ke 1,8
8ASB,8 = c,°d“°°G* + b,

1 1
+b%8ﬁdcegﬂk6+ ;Sﬁdceii@ke (41)

Time reversal rules out a similar series with the d symbol
replaced by the f symbol. There is another series for the
(1, 8) operator; it starts with the term

1 R
és ﬁfcegeljk{Jl’ G/e}’ (42)

and higher order terms can be constructed by anticommut-
ing the leading operator with J?/N2. Let us notice that

fce8€ijk{Ji’ Gje} - [JZ, [TS, GkC]]. (43)

The right-hand side of Eq. (43) shows that the operator
only contributes to processes where both spin and strange-
ness are changed. These processes have not been observed,
so the series (42) will be excluded.

C. (1,10 + 10)

To relative order 1/N?2, the series for the (1,10 + 10)
operator contains a two- and a three-body operator,
namely,

{ch, TS} _ {GkS’ TC},
{ch, {Jr’ GrS}} _ {GkS’ {Jr’ Grc}},

(44a)
(44b)

which require subtractions of the flavor-octet operators
[19]. The series for the (1,10 + 10) symmetry breaking
term can thus be written as
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ke 1,10+10

=c
SB,10+10 2 .

+ 1,10+10

PHYSICAL REVIEW D 86, 094041 (2012)

¥ ({ch TS} {GkS Tc} _ lfceSfegh({Gkg’ Th} _ {Gkh, Tg}))

6‘3 N ({ch {Jr GrS}} {GkS {Jr Grc}} fceSfegh({Gkg, {J”, Grh}} _ {Gkh, {J", Grg}})) (45)

c

Further reductions imply that
2
PG T~ (G4 T = S [T 6L
(46)
and

%fceSfegh({Gkg, {Jr’ Grh}} _ {Gkh, {J’, Grg}})

— SN+ NI G4]) @)

so the subtracted terms in (45) are irrelevant as they
correspond to processes where both spin and strangeness
are changed.

SAL, ;= o — ({ch T8} + {G*8, T} —

5C8{Gk€ Te}

f
D. (1,27)
Finally, to relative order 1/N?Z, the series for the (1, 27)

operator contains three terms: one two-body operator and
two three-body operators, which read

{ch, TS} + {GkS’ Tc}’ (488.)
{J5 {1, T8}}, (48b)
{ch’ {J’, GrS}} + {GkS’ {Jr, Grc}}_ (480)

These operators require subtractions of the flavor-singlet
and flavor-octet pieces [19]. The (1, 27) symmetry break-
ing series thus reads

2N
Yy dceSdegh{Gkg Th}) 1 27 m ({Jk {Tc TS}}

f f
= OMAT TN = o deeSaes AT, Th}}) s ({G’“ {7, G +{G*, {07, G}
N7 - 7 - NZ
2 2N
_ N2 508{er {]’ Gre}} f4dce8degh{Gkg {Jr Grh}}) (49)
f f

Again, further reductions yield

2(N. + Ny)

2(N. + Ny)

2N
6C8{Gk€ Te} + f dceSdegh{Gkg Th} cheer + 3CSJk cheDke’ (50)
N7 - N7 - Ny +2 N¢(N; + 1) Ny +2
1
668 Jk’ Te, TeW + ) dceSdegh Jk Tg Th
W T TR e T T
N.(N. + 2N;)(N, — 2(N, + NJ)(N, — 2N 2
— ( 2.f)( f )SCSJ]( + ( 2f)( f )dCSeDke + -7 f dc8e Dke + = — 508{]2 Jk} (51)
Ny(N7 —1) Ny —4 N;—4 Ny
and
8§k 2Nf 8 Jeghf(k l
6(‘ {G e {Jr Gre}} + desdes {G g {Jr Gm}}
Nf f —4
2N N.+2)(N,+2N,—2 NN, + N,
_ v dLSeer ( < )( ; S ) 508Jk + f( 2“ f) dc‘Se fDlge (52)
SN +2 2(N2 - 1) N -4
N, N
+ dc8e Dke + che (nge + f 5CS{J2 Jk}
N2 Ny +2 Ny(N7 — )

094041-8



RENORMALIZATION OF THE BARYON AXIAL VECTOR ...

As expected, the subtraction of flavor-singlet and flavor-
octet pieces in the 1/N,. expansion (49) contains operators
already defined in the series (40) and (41), such that in the
1/N, expansion (49) we only have to keep the terms
displayed in Eq. (48).

E. Total correction to the baryon axial vector current

The baryon axial vector current A%, Eq. (11), gets
corrections due to one-loop and perturbative SU(3) sym-
metry breaking contributions alike. The one-loop correc-
tion, ‘SA/fi’ arises from Figs. 1(a)-1(c), Eq. (25), and
Fig. 1(d), discussed in Ref. [35]. The perturbative SU(3)
breaking corrections come from Eq. (39). The overall
correction to the baryon axial vector current thus
amounts to

Ake + §Ake = Ake 4 §Ake 4 sAke (53)

The matrix elements of the space components of A +
dAke between SU(6) symmetric states yield the values of
the axial vector couplings. Again, for the octet baryons,
the axial vector couplings are g,, as defined in baryon
semileptonic decays, normalized such that g, = 1.27 for
neutron B decay. For decuplet baryons, the axial vector
couplings correspond to the quantities g, which are
extracted from the widths of the strong decays of decuplet
baryons into octet baryons and pions. In the next section
we provide various numerical analyses in order to compare
our expressions with the experimental measurements.

V. FITTING THE DATA

In this section we perform a detailed comparison of the
cumbersome expression (53) with the available experimen-
tal data through some least-squares fits, in order to get
information about the free parameters of the theory. The
numerical analysis can be performed in several ways. We
first choose to study the effects of the one-loop corrections
only by comparing the theoretical expressions with the
available data on baryon semileptonic decays. Then we
proceed to incorporate the effects of both one-loop and
perturbative SU(3) breaking corrections into the analysis,

TABLE II.
10° s~! for the others.

PHYSICAL REVIEW D 86, 094041 (2012)

using the experimental data on baryon semileptonic decays
and the strong decays of the decuplet baryons.

A. Fits to the data on baryon semileptonic decays:
Effects of one-loop corrections

The available experimental data on baryon semileptonic
decays is listed in Table II in the form of the total decay
rate R, angular correlation coefficients «,,, and spin-
asymmetry coefficients «,, «,, ap, A, and B, along with
the measured g, /gy ratios. A word of caution is in order
here. Most data on angular correlation and asymmetry
coefficients are rather old, dating back from the 1980s.
We have borrowed the world averages reported in Ref. [64]
for hyperon semileptonic decays. The decay rates and
g4/ gy ratios, on the other hand, are found in Ref. [2],
except for the ratio g, /gy of the £~ — X0 process, which
is also given in Ref. [64]. For the n — p process, however,
from present experimental results [2] for the order-zero
angular coefficients B, A, and a, we have obtained the
corresponding angular coefficients «,, «,,, and «, listed
in Table II.

The theoretical expressions for the integrated observ-
ables in baryon semileptonic decays can be found in
Refs. [36,64,65]. These expressions require several inputs.
First, the hadronic matrix element is written in terms of
f1(¢?) and g,(g?), the vector and axial vector form factors,
f2(g%) and g,(g?), the weak magnetism and electricity
form factors, and f5(¢%) and gs(g?), the induced scalar
and pseudoscalar form factors, respectively, where ¢ is the
momentum transfer squared. Time reversal invariance
requires the form factors to be real. In the limit of
zero momentum transfer, f(0) and g;(0) reduce to the
vector and axial vector coupling constants gy and g,
respectively.

In the limit of exact SU(3) flavor symmetry, the hadron
weak vector and axial vector currents belong to SU(3)
octets, so the form factors of different baryon semileptonic
decays are related by SU(3) flavor symmetry and given in
terms of some reduced forms factors and Clebsch-Gordan
coefficients. The weak currents and the electromagnetic
current are members of the same SU(3) octet, so all the
vector form factors for baryon semileptonic decays are
related at g> = 0 to the electric charges and the anomalous

Experimental data on eight observed baryon semileptonic decays. The units of R are 1073 s™! for neutron decay and

n— pe v, 3T —>Aefrv, 37— Ae 7, A — pe v, ST —ne v, E —Ae v, E —3Xep, E'—3Itep,
R 1.1362 £0.0014  0.249 £0.062  0.387 = 0.018 3.161 = 0.058 6.876 + 0.235 3.44 £ 0.19 0.53 =0.10 0.872 £ 0.039
@,, —0.0788 = 0.0008 —0.35*0.15 —0.404 =0.044 -0.019 = 0.013 0.347 = 0.024 0.53 =0.10
a, —0.0871 = 0.0010 0.125 £ 0.066 —0.519 = 0.104
a, 0.9875 = 0.0044 0.821 = 0.060 —0.230 = 0.061
ag —0.508 = 0.065 0.509 = 0.102
A 0.07 = 0.07 0.62 = 0.10
B 0.85 = 0.07
ga/8v 1.2701 £ 0.0025 0.718 £ 0.015 —0.340 = 0.017 0.25 = 0.05 1.287 = 0.158 1.21 £ 0.05
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magnetic moments of the nucleons. Furthermore, f5(g?)
vanishes in the SU(3) symmetry limit. In turn, the leading
axial vector form factor is given in terms of two reduced
form factors F and D. Also, in the SU(3) symmetry limit
g» = 0. Finally, g5(¢?), for electron or positron emission,
has a negligible contribution to the decay rate due to the
smallness of the factor (m,/Mpy)? that comes along with it.

Thus, only three form factors are relevant in the descrip-
tion of baryon semileptonic decays, namely, f,(¢?), f»(¢?),
and g,(¢%). As for the ¢> dependence of the form
factors, for f,(¢%) and g,(g*) a linear expansion in ¢ is
enough because higher powers amount to negligible con-
tributions to the decay rate, less than a fraction of a percent,
ie.. fi(g?) = £10) + (/M| and g1(g>) = £ (0)+
(q*/M3)A%, where the slope parameters A] and A% are
both of order unity [64]. In contrast, the g*> dependence
of f, can be ignored because it already contributes to order
g to the transition amplitude.

Second, we also should take into account in the analysis
the issue of radiative corrections to the integrated observ-
ables. For practical purposes, we will include these correc-
tions following the lines of Refs. [64,65].

Finally, we also implement the magnitudes of the
Cabibbo-Kobayashi-Maskawa matrix elements V,; and V
as recommended in Ref. [2] and for definiteness we set A =
0.231 GeV/c?, f =93 MeV/c?, and u = 1 GeV/c?.

Before we proceed with the numerical analysis, we
should recall that among the available experimental data
we can construct two different sets of observables. The first
one is constituted by the decay rates and the g, /gy ratios;
the second one is constructed with the decay rates and the
angular correlation and spin-asymmetry coefficients.
Unless noted otherwise, we do not include simultaneously
in the analysis the g, /gy ratios and the angular and asym-
metry coefficients, because the ratios are determined
from the latter ones, i.e., these measurements are not
independent.

The simplest possible fit we can perform is an SU(3)
symmetric fit that involves only two parameters, namely,
a; and b,; this is equivalent to a fit using only F' and D
because at this level they are related as

1 1 1
D=§a1, F=—a1+—b2.

3 3 (54)

By using the decay rates and the g,/gy ratios, the best-fit
values are a; = 1.61 £ 0.01 and b, = —0.40 = 0.06, or
equivalently, F = 0.47 = 0.01 and D = 0.81 = 0.01, with
a x> = 53.85 for 12 degrees of freedom. Before drawing
any conclusions about this rather high value of x?, let us
proceed to evaluate the effects of chiral loop corrections.
The next fit we can perform consists in neglecting the
baryon mass splitting A, which is equivalent to consider
the degeneracy limit A/mp — 0. Actually, a fit under
these assumptions was already performed in Ref. [35].
The primary goal of that analysis was not to be definitive

PHYSICAL REVIEW D 86, 094041 (2012)

about the determination of g4, but rather to test the work-
ing assumptions. In the present analysis we are interested
in quantifying the effects of a nonvanishing A on g4. Thus,
by using the decay rates and the g,/gy ratios listed in
Table II, we find a; = 0.28 * 0.07, b, = —0.67 = 0.04,
by = 4.02 + 0.26, and ¢; = —13.95 = 2.92, with a y? =
39.33 for 10 degrees of freedom. Hereafter, the quoted
errors of the best-fit parameters will be from the 2 fit
only and will not include any theoretical uncertainties,
unless stated otherwise. A close inspection of the output
of the fit reveals that, except for c3, the values of the
parameters obtained are as expected from the 1/N, expan-
sion, namely, they are roughly of order 1. For c; the
situation is radically different because it falls far away
from any coherent expectation. Surprisingly, the effects
of the loop corrections shift noticeably the values of a;
and b, with respect to the SU(3) symmetric case previously
discussed. This should not be a cause of concern. Actually,
when loop corrections with both octet and decuplet bary-
ons are taken into account, there appear two more coef-
ficients b3 and c3, which are directly related to the
couplings C and H . For N, = 3 the relations are [54]

1 1 1 1 1
D=—a,+-b;, F=ca +_by+=b,
2 6 3 6 9
1 3 3 5 (55)
C=_01_§C3, 3‘[=—§a1—§b2—§b3.

With the above values of the best-fit parameters, we get
F=043+0.01,D=0.81 =0.01,C=6.70 = 1.10, and
H = —9.47 + 0.50. Loop corrections thus introduce
small shifts in F and D compared to the SU(3) symmetric
fit, but the values of C and JH are considerably different
from expectations: |C| = 1.6 and H = —1.9 + 0.7, as
found in Ref. [49].

As we can observe in Table II1, the different SU(3) flavor
contributions to g4 follow the pattern dictated by the 1/N.,
expansion. The singlet corrections—the most significant
ones—are roughly speaking 1/N,. suppressed with respect
to the tree-level value. Subsequent suppressions of the
octet and 27 contributions are also noticeable. Hence, in
spite of the high value of x?, the fit in the degenerate case
yields predictions of g, that are in accordance with expec-
tations. However, the price we need to pay relies in the
rather high values of the parameters of the theory, which is
not completely satisfactory.

As mentioned before, an analogous fit was performed in
Ref. [35]. Our analysis here differs from the former one in
two crucial aspects. First, in Ref. [35] we used the experi-
mental information accessible at that time [66]. The values
of V,, and V,,, however, have been updated along with the
experimental information on the processes n — p and
2% — 37 [2]. These improvements introduce perceptible
differences in our current analysis. Second, in Ref. [35] we
performed a constrained fit in order to get c; from the
baryon-meson coupling |C| = 1.6. Now we obtain c¢; from
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TABLE III.

PHYSICAL REVIEW D 86, 094041 (2012)

Predicted values of g4 of some observed baryon semileptonic decays for vanishing A. Contributions from the different

SU(3) representations are listed. The decay rates and g,/gy ratios are used in the fit.

Figures 1(a)-1(c)

Figure 1(d)

Process Total Tree 1 8 27 1 8 27

np 1.275 1.238 —0.403 0.208 0.006 0.334 —-0.111 0.002
SEA 0.623 0.661 —-0.219 0.066 —0.005 0.179 —0.059 0.001
Ap —0.899 —0.855 0.274 —0.058 0.005 —0.231 —0.038 0.005
37n 0.345 0.381 —-0.134 —0.024 0.004 0.103 0.017 —0.002
E-A 0.225 0.194 —0.055 0.033 —0.008 0.053 0.009 —0.001
230 0.795 0.875 —0.285 —0.073 0.007 0.236 0.039 —0.005
203+ 1.124 1.238 —0.403 —0.104 0.009 0.334 0.056 —0.007

the data only, on the same footing as the other parameters
a,, by, and b3. Hence we may say that our present numeri-
cal results supersede the ones of Ref. [35].

We now proceed with the evaluation of the effects of
a nonvanishing decuplet-octet mass difference A. As in
the previous fit, we use the experimental information on the
decay rates and the g,/gy ratios in order to determine the
parameters a;, b,, bs, and c3. The best-fit values obtained
are this time a; = —0.35 = 0.02, b, = —2.40 = 0.16,
by = 6.53 +0.16, and c; =5.86 +0.29, with y?>=
17.80 for 10 degrees of freedom. Although the values of
b; and c; are slightly higher than expected, we can say
that there is a noticeable improvement of the best-fit pa-
rameters in this case with respect to the previous one.
Besides, X2 reduces its value considerably to 1.78/dof,
which indicates a much better fit. Also, F = 0.21 £ 0.02,
D =091 +0.02,C=—-258*0.14,and H = —12.2
0.16. There are some rearrangements in the values of the
parameters with respect to the previous case but still the
output is not entirely satisfactory.

Let us now turn to the baryon axial vector couplings.
The predicted values for g, are listed in Table IV. We
observe that there is an overall agreement in these predic-
tions. The 1/N,. suppressions, dictated by the 1/N, expan-
sion, are evident in all the flavor contributions to g,. While
the singlet piece is the most significant one, the octet and
27 pieces exhibit suppressions relative to the tree-level

value as expected. Still, we need to point out that the
entries of process 2~ — A show worrisome deviations
from the expected values. This behavior has been system-
atically observed in other analyses [21,35,65].

Next, we provide in Table V the observables obtained
with the best-fit parameters in order to compare them with
the experimental values displayed in Table II. The most
important deviations between theory and experiment arise
from the decay rates of the processes 2~ — A, A — p and
2% — 3 whose contributions to the total y*> amount to
X3y =531 x3, =237, and xZ.. = 1.78, respec-
tively, and the g,/gy ratio of n — p, which contributes
with )(%p = 3.87 to x°.

Now we can redo the analysis by using the other set of
experimental information discussed above, namely, the one
constituted by the decay rates and the angular correlation
and spin-asymmetry coefficients. At this stage we have at
our disposal 8 decay rates and 17 coefficients. We have two
more pieces of information available, the g4/gy ratios of
the processes =~ — X0 and E° — X *; we will use them
because their coefficients have not been measured yet.

As in the previous case, we proceed to perform the
comparison between theory and experiment in the limit
of vanishing A. The fit produces a; = 0.30 = 0.06, b, =
—0.65 £ 0.03, b3 =3.92+0.24, and c3 = —13.79 £
2.17, with a y? = 62.62 for 23 degrees of freedom. We
observe that the values of the best-fit parameters do not

TABLE IV. Predicted values of g, of some observed baryon semileptonic decays for nonvanishing A. Contributions from the
different SU(3) representations are listed. The decay rates and g,/gy ratios are used in the fit.

Figures 1(a)-1(c), O(A®) Figures 1(a)-1(c), O(A) Figures 1(a)-1(c), O(A?) Figure 1(d)

Process Total Tree 1 8 27 1 8 27 1 8 27 1 8 27

np 1.275 1.121 —0.550 0.372 0.003 0361 —0.170 —0.002 —0.041 —0.022 0.000 0303 —0.101 0.002
SEA 0.629 0.745 —0.364 0.142 —0.002 0.038 —0.040 0.001 —0.021 —0.007 0.000 0.201 —0.067 0.001
Ap —-0.879 —0.628 0.310 —0.121 0003 —0.404 0.120 —0.002 0.030 0.008 0.000 —0.170 —0.028 0.004
3°n 0340 0.704 —0.341 —0.015 0.007 —0.268 0.044 —0.001 —0.010 0.002 0.000 0.190 0.032 —0.004
E-A 0.361 —0.117 0.054 0.159 —-0.014 0366 —0.041 0.003 —0.009 —0.005 0.001 —0.032 —0.005 0.001
230 0820 0793 —0.389 —0.132 0.012 0255 0.060 —0.002 —0.029 0.008 —0.001 0214 0.036 —0.005
203+ 1.160 1.121 —0.550 —0.186 0.017 0361 0.085 —0.003 —0.041 0011 —0.001 0303 0.050 —0.007
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TABLE V. Values of predicted observables for eight observed baryon semileptonic decays. The units of R are 1073 s™! for neutron
decay and 10° s~! for the others. The decay rates and g, /gy ratios are used in the fit.

n—pe v, 3t—Aetv, 3 —oAe b, A—pe v, X —ne v, E —Ae b, E -3 5, E'-3Itep,
R 1.135 0.257 0.428 3.250 6.741 3.309 0.454 0.820
a,, —0.080 —0.406 —0.414 —0.026 0.340 0.500
a, —0.089 0.018 —0.630
a, 0.987 0.977 —0.352
ap —0.590 0.665
A 0.046 0.641
B 0.388
eJey 1271 0.717 —0.340 0.293 1.162 1.162

change substantially with respect to their analogues when
the decay rates and g, /gy ratios are used. Still, the differ-
ences, although small, are perceptible. The predicted g,
are listed in Table VI for the sake of completeness. The
different flavor contributions behave in the same way as in
Table III.

When a nonvanishing A is considered, the fit yields a; =
—0.36x£0.02, b, = —2.50 = 0.15, b3=6.64£0.15, and
c3 = 5.81 £0.25, with a y*> = 36.10 for 23 degrees of
freedom. The predicted g, are given in Table VII. There
are small but perceptible differences between the entries of
this Table VII and those of Table IV.

We conclude this stage of the comparison by providing in
Table VIII the observables obtained with the best-fit pa-
rameters in this last case in order to compare them with the
experimental values given in Table II. The highest devia-
tions between theory and experiment come from R from
37> A (x3-, =571, a, from A— p (x;,=6.68)
and %~ —n (,\/Zz,n =4.11), and from «, in the processes
n—p (Xzp =2.10) and A — p (x3, = 2.54), which
together amount to half the total y2.

In summary, although the inclusion of one-loop correc-
tions, both for vanishing and nonvanishing decuplet-octet
mass difference, in the numerical analysis displays some
interesting trends, the output of the fits, particularly trans-
lated into the determination of the axial vector couplings
D, F,C, and H are not entirely satisfactory. We then learn
that perturbative SU(3) symmetry breaking should play an

TABLE VL

important role in the numerical analysis, as we discuss in
the next section.

B. Fits to the data on the S decay of the octet
baryons and the strong decays of the decuplet
baryons: Inclusion of both chiral and
perturbative breaking corrections

The off-diagonal matrix elements of A*¢ + §A*¢ involv-
ing decuplet and octet baryons can be obtained through the
strong transitions of decuplet baryons to octet baryons and
pions. The available experimental information on the kine-
matically allowed strong decays A — N7, X" — A,
>* — X7, E* — Ex can be found in Ref. [2] in the
form of widths.

The formalism to obtain the widths of the strong decays
of the baryon decuplet within chiral perturbation theory
was originally introduced by Peccei [67] and further imple-
mented in the analysis of Ref. [20]. In this formalism, the
width of a decuplet baryon B’ decaying into an octet
baryon B and a pion is given by

§’C(B, B'*(Ep + Mp)lq]®

F /=
B 247 My

, (56)

where g is the axial vector coupling for this decay, C(B, B’)
is a Clebsch-Gordan coefficient that is equal to
{1,1/v2,1//3,1/32} for {A— Nm, 3" — Am, 3* —

S, BE* — B}, My, My are the masses of the decuplet

Predicted values of g, of some observed baryon semileptonic decays for vanishing A. Contributions from the different

SU(3) representations are listed. The decay rates and angular correlation and spin-asymmetry coefficients are used in the fit.

Figures 1(a)-1(c)

Figure 1(d)

Process Total Tree 1 8 27 1 8 27

np 1.275 1.236 —0.404 0.211 0.007 0.334 —0.111 0.002
SEA 0.625 0.659 —0.221 0.072 —0.005 0.178 —0.059 0.001
Ap —0.897 —0.855 0.274 —0.057 0.005 —0.231 —0.038 0.005
3°n 0.335 0.378 —-0.137 —0.028 0.004 0.102 0.017 —0.002
E-A 0.233 0.196 —0.053 0.038 —0.009 0.053 0.009 —0.001
E-30 0.791 0.874 —0.286 —0.075 0.007 0.236 0.039 —0.005
=AM 1.119 1.236 —0.404 —0.106 0.010 0.334 0.056 —0.007
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TABLE VII. Predicted values of g, of some observed baryon semileptonic decays for nonvanishing A. Contributions from the
different SU(3) representations are listed. The decay rates and angular correlation and spin-asymmetry coefficients are used in the fit.

Figures 1(a)-1(c), O(A®) Figures 1(a)-1(c), O(A) Figures 1(a)-1(c), O(A?) Figure 1(d)

Process Total  Tree 1 8 27 1 8 27 1 8 27 1 8 27

np 1.275 1.125 —0.580 0.389  0.003  0.388 —0.182 —0.003 —0.046 —0.024 0.000 0304 —0.101 0.002
3=A 0.630 0.755 —0.382  0.152 —0.002 0.041 —0.042 0.001 —0.023 —0.007 0.000 0.204 —0.068 0.001
Ap —0.874 —0.623 0.328 —0.125 0.003 —0.434 0.129 —-0.002 0033 0.009 0000 —0.168 —0.028 0.004
>n 0332 0.724 —0.355 —0.018 0.007 —0.289 0.048 —0.001 —0.011 0.003 0.000 0.196 0.033 —0.004
E A 0373 —0.132 0.053 0.168 —0.015 0.394 —0.044 0.003 —0.009 —0.006 0.001 —0.036 —0.006 0.001
E-3° 0819 0795 —0.410 —0.138  0.013 0274 0.064 —0.003 —0.032 0.009 —0.001 0215 0.036 —0.005
BEOs* 1.158 1.125 —0.580 —0.195 0.019 0388 0.091 —0.004 —0.046 0012 —0.001 0304 0.051 —0.007
TABLE VIII. Values of predicted observables for eight observed baryon semileptonic decays. The units of R are 1073 s~! for

neutron decay and 10° s~! for the others. The decay rates and angular correlation and spin-asymmetry coefficients are used in the fit.

n—pe v, 3T > Aetv, 3" —>Ae b, A—pe v, 3" —ne b, E-—Ae b, E-—3%p, BE'>3ZTep,

R 1.135 0.257 0.430 3.230
a,, —0.080 —0.406 —0.414 —0.022
a, —0.089 0.020
a, 0.987 0.976
ag —0.590
A 0.046

B 0.888

ga/gy 1.275 0.714

6.661 3.355 0.453 0.818
0.352 0.485
—0.618
—0.354
0.658
0.653
—0.332 0.304 1.158 1.158

and octet baryons, respectively, f is the pion decay con-
stant, and Ep and q are the octet baryon energy and the
pion three-momentum in the rest frame of B’, respectively.
With the help of Eq. (56), the axial vector couplings g can
be determined for each decay and are listed in Table IX.
Notice that the Clebsch-Gordan coefficients have been
chosen in such a way that the g couplings are all equal in
the limit of exact SU(3) symmetry [20].

At this stage we have four extra pieces of experimental
information at our disposal. In order to perform a com-
parison between theory and experiment in a more prag-
matic manner, we will perform a global fit by using the
experimental information on g4 and g only, this time
including both chiral and perturbative symmetry breaking
corrections into our evaluation. The fits discussed in the
previous section taught us that perturbative symmetry
breaking, being of order O(eN,), might have an important
effect in the determination of the axial vector couplings.
Practically, they are of the same order as the singlet

TABLE IX. Value of the axial vector coupling g extracted
from the widths of the strong decays of the decuplet baryons
[2] by using Eq. (56).

3 — S B* —

—1.59 £0.10 —1.46 £0.04

i

A— Nm S — Aw

—1.69 £ 0.02

Decay T

g —2.04 + 0.01

contribution in the loop corrections and should be
retained.

Perturbative flavor SU(3) symmetry breaking involves
several extra free parameters in the analysis. In order to
overcome this difficulty, we will adopt the following strat-
egy. We will incorporate perturbative symmetry breaking
corrections up to next-to-leading order, i.e., we only retain
order O(N?) corrections to A in the 1/N,. expansion (39),
otherwise we loose predictive power. We also include
SU(3) breaking in the strangeness zero sector only.
Under these assumptions, A% + 5% takes on the simpli-
fied form

1

1
AkC + 5]§]C3 :aleC ‘I’bzﬁfDéc +b3m
c C

1
D§C + C3N—g@§6

1
+ WAS[dldcgeG’“ +dyn d8eDhe
1
+dy (G, T8} —{G*, T<})

d (G TGN T 6D

c

where Wyg =1 for AS = 1 processes (¢ = 4 = i5) and
vanishes for AS = 0 processes (c = 1 = i2). Let us notice
that the d; coefficients have been redefined according to the
discussion of the previous section.
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TABLE X. Predicted axial vector couplings for vanishing A. The experimental information on g, and g are used in the fit. Note that
SU(3) flavor symmetry breaking is taken into account in two ways: explicitly through perturbative symmetry breaking (SB) and
implicitly through the integrals occurring in the one-loop corrections.

Figures 1(a)-1(c)

Figure 1(d)

Process Total Tree SB 1 8 27 1 8 27

np 1.270 0.953 0.000 0.064 0.082 —0.003 0.257 —0.086 0.002
SEA 0.309 0.407 —0.158 —0.018 0.004 —0.001 0.110 —0.037 0.001
Ap —0.903 —0.760 0.254 —0.097 —0.063 —0.003 —0.205 —0.034 0.005
37n 0.349 0.045 0.371 —0.108 0.025 0.003 0.012 0.002 0.000
E-A 0.301 0.353 —0.328 0.114 0.051 0.002 0.095 0.016 —0.002
=30 0.778 0.674 —0.122 0.046 —0.029 0.001 0.182 0.030 —0.004
203+ 1.100 0.953 —-0.172 0.064 —0.041 0.001 0.257 0.043 —0.006
AN —2.039 —1.409 0.000 —0.412 0.031 0.008 —0.381 0.127 —0.003
SFA —1.680 —1.409 0.388 —-0.412 0.012 —0.002 —0.381 0.127 —0.003
33 —1.413 —1.409 0.505 —0.412 0.159 0.000 —0.381 0.127 —0.003
=A== —1.533 —1.409 0.491 —0.412 0.067 —0.013 —0.381 0.127 —0.003

In order to perform the fit in the limit A — 0 in a
consistent fashion, we should set b3 = 0 in Eq. (57) and
remove from SAX all the terms of relative order 1/N3,
namely, those terms proportional to b%, a;bybs, and
ab,yc3, and set also b3 = 0 in there. Keeping the c; term
in Eq. (57) will avoid mixing up symmetry breaking effects
with 1/N, corrections in the symmetric couplings D, F, C,
and H [20]. As for the nonvanishing A case, we should
keep Eq. (57) the way it stands due to the next-to-next-to-
leading order contributions that come along with A.

Proceeding with the fit in the limit of vanishing A,
using the experimental data on g4 (or, alternatively,
g4/gv), the fit yields a; = 1.00 = 0.02, b, = 0.73 £
0.06, b3 = 0.0, and ¢3 = 0.82 £ 0.04, and d; = —0.67 =
0.04, d, = 6.66 = 0.41, d3 = 0.09 £ 0.03, and d,; =
—0.01 = 0.06 with y?> = 14.96 for 3 degrees of freedom.
The highest contributions to y?> come from g, of the
process E°3F (xZoy. = 4.88) and g from the processes

3*3 and E*E (x3.y =3.15 and xZ.; = 3.33). With

TABLE XI.

these best-fit parameters, the SU(3) symmetric couplings
become D = 0.50 £ 0.01, F = 0.45 = 0.01, C=—141=
0.01,and H = —2.59 = 0.07. Also, the various symmetry
breaking contributions to g, and g are listed in Table X for
the sake of completeness.

We find a fairly good agreement between the predicted
and the observed couplings g, and g. Also, the pattern
dictated by the various breaking pieces are in accordance
with expectations. Of particular interest are the values of
SU(3) symmetry breaking listed in the third column from
left to right in that Table X.

When we finally redo the fit in the limit of nonvan-
ishing A, we find a; = 0.64 = 0.22, b, = 0.21 = 25,
by = 1.35 = 0.06, and ¢c3=1.90*0.41, and d; =—0.44*
0.12, d,=6.48+0.37, d3=0.04+0.03, and d, = 0.08 =
0.07 with y?> = 2.28 for 2 degrees of freedom. The highest
contribution to x> comes from g, of the process 2~ A
( )(25, A = 1.58). Similarly, with the best-fit parameters
in this case we find D = 0.54 = 0.03, F = 0.40 = 0.03,

Predicted axial vector couplings for nonvanishing A. The experimental information on g, and g are used in the fit. Note

that SU(3) flavor symmetry breaking is taken into account in two ways: explicitly through perturbative symmetry breaking (SB) and
implicitly through the integrals occurring in the one-loop corrections.

Figures 1(a)-1(c), O(A°)

Figures 1(a)-1(c), O(A)

Figures 1(a)-1(c), O(A?) Figure 1(d)

Process Total Tree SB 1 8 27 1 8 27 1 8 27 1 8 27

np 1.270 0939 0.000 —0.115 0.110 0.001 0.330 —0.161 —0.003 —0.003 0.000 0.000 0.254 —0.084 0.002
SEA 0389 0443 —0.104 —0.043 0.010 —0.001 0.048 —0.042  0.002 —0.008 0.004  0.000 0.120 —0.040 0.001
Ap —0.881 —0.707 0.286 0.098 —0.078 0.000 —0.356 0.100 —0.002 —0.004 0.000 0.000 —0.191 —0.032 0.004
Sn 0337 0.145 0333 0.010 —0.003 0.002 —-0.212 0.038 —0.002 —0.016 —0.004 0.000 0.039  0.007 —0.001
E-A 0230 0265 —0.375 —0.055 0.028 —0.001 0.308 —0.039 0.003 0.012 0.003  0.000 0.072 0.012 —0.002
=230 0.871 0.664 —0.166 —0.081 —0.039 0.002 0.234  0.057 —0.002 -0.002 0.000  0.000 0.179  0.030 —0.004
A 1.232 0939 —0.234 —0.115 —0.055 0.003 0.330  0.081 —0.003 —0.003 0.000 0.000 0.254  0.042 —0.006
AN —2.040 —1.587 0.000 —0.226 —0.050 0.008 0.183 —0.121 —-0.011 0.042 0.013 0.000 -—0.429 0.143 —0.003
SFA —1.693 —1.587 0.255 —0.226 —0.044 —0.005 0.183 —0.036 0.006  0.042 0.008 0.000 -—0.429 0.143 —0.003
3*3 —1.530 —1.587 0.208 —0.226 0.210 0.013 0.183 —0.089  0.005 0.042 0.000 0.000 -—0.429 0.143 —0.003
E*E  —1.460 —1.587 0.296 —0.226 0.090 —0.017 0.183 0.023 0.028 0.042 —0.001 0.000 -0.429 0.143 —0.003
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C=—1.59*0.05, and H = —4.64 = 1.30. Also, the
several breaking contributions to g, and g are listed in
Table XI for the sake of completeness. Let us remark that in
Tables X and XI the total correction to the (flavor-
symmetric) tree-level value includes SU(3) flavor symme-
try breaking in two ways: explicitly through perturbative
symmetry breaking (SB) and implicitly through the inte-
grals occurring in the one-loop corrections.

All along, the fits performed in this work point in one
direction. While the values of the parameters a; and b,
appear to be quite stable, the parameters C and JH are only
fairly well determined. Still, the fits performed here, as
compared to the fits discussed in the previous subsection,
have improved substantially. We thus conclude that it was
important to also take into account perturbative SU(3)
symmetry breaking effects into our analysis.

To close this section, we would like to emphasize that in
the literature there are some analyses available to compare
with, although it is difficult to assess the success of the
many calculations of SU(3) symmetry breaking corrections
to the axial vector form factors. Predictions that vary
substantially from one another are obtained. For instance,
in the paper by Dai and collaborators [20] the issue of 1/N,
and perturbative SU(3) breaking corrections are discussed
using information on both octet and decuplet baryons.
Also, in the paper by Zhu et al. [29] chiral corrections
are discussed, including SU(3) breaking perturbatively;
they apply their results to octet baryons only. We limit
ourselves to claim that, on general grounds, there is a good
agreement between these calculations and ours.

VI. CONCLUSIONS

The present study was devoted to the evaluation of the
baryon axial vector current up to one-loop order within
large-N_. baryon chiral perturbation theory, taking into
account the mass difference between decuplet and octet
baryons as well as perturbative flavor SU(3) symmetry
breaking. In this framework, the one-loop correction to
the baryon axial vector current amounts to an infinite
series, each term representing a rather complicated struc-
ture of commutators and/or anticommutators, involving the
baryon axial vector current A* and the baryon mass opera-
tor M. We have taken into account the first three contri-
butions in this expansion, i.e., the degeneracy limit (AAA),
the leading (AAA M), and the next-to-leading (AAA M M)
order correction, respectively. We have explicitly evaluated
these expressions—individually for the flavor singlet, fla-
vor octet, and flavor 27 contributions—up to order 1/ N?
relative to the tree-level value. Large-N,. cancellations
occur between various Feynman diagrams at various levels
that are a consequence of the SU(6) spin-flavor symmetry.
We have also incorporated perturbative flavor SU(3) sym-
metry breaking at leading order in € = m, — 71 into our
analysis, which resulted in taking into account four more

PHYSICAL REVIEW D 86, 094041 (2012)

operators in the axial current, as compared to the SU(3)
symmetry limit.

The order of the calculation envisaged in the present work
allowed us to perform various fits. More precisely, fitting our
analytical expressions against experimental data on baryon
semileptonic decays, we are able to extract the basic pa-
rameters a;, b,, bz, and c3 of the 1/N, baryon chiral
Lagrangian as well as the axial vector couplings g, for octet
baryons. In a first approach we have neglected the mass
difference A = M; — My between decuplet and octet bary-
ons. This analysis thus follows the lines of the fit carried out
in Ref. [35]. In a more refined approach, we then incorporate
the effects of a nonvanishing mass difference.

In the first part of the analysis referring to the degener-
acy limit A — 0, the comparison between the experimental
data and the theoretical expressions through a least-squares
fit yields a rather poor y?/dof = 3.95/dof. In the second
part, where the A effects are taken into account, the fit
yields x> = 1.78/dof, which can be considered a better fit.
Although in both cases the predicted observables, i.e., the
decay rates as well as angular correlation and spin-
asymmetry coefficients in baryon semileptonic decays,
are in good agreement with their experimental counter-
parts, the latter fit is preferred over the former one. This is
because the best-fit parameters a;, b,, b3, and c3, intro-
duced in the definition of the axial vector current Eq. (11),
are in accordance with the pattern to be expected from the
1/N, expansion, i.e., they are roughly of order 1.

While the above fits have been obtained by using the
decay rates and the g,/gy ratios, to corroborate our
analysis we have performed the analogous fits but this
time using as an input the other set of experimental data
available, i.e., the decay rates and the angular correlation
and spin-asymmetry coefficients. The results are perfectly
consistent with those obtained with the first set of experi-
mental data, both in the degeneracy limit and in the case
of a nonvanishing decuplet-octet mass difference. Still,
although the fits improve when a nonvanishing A is con-
sidered, they are not completely satisfactory.

We thus perform yet another set of fits, which apart from
baryon semileptonic decays also involves the four kine-
matically allowed strong decays of decuplet baryons. Now
the fits improve substantially, and we find a fairly good
agreement between the predicted and observed axial cou-
plings and the parameters D, F, C, and H of the chiral
Lagrangian.

In conclusion, it was essential to systematically consider
the mass difference between decuplet and octet baryons as
well as perturbative flavor SU(3) symmetry breaking in our
analysis and in our subsequent fits. It allowed us to estab-
lish that the large-N,. baryon chiral perturbation theory
predictions regarding the renormalization of the baryon
axial vector current are in very good agreement both with
the expectations from the 1/N, expansion and with the
experimental results.
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APPENDIX A: LOOP INTEGRALS

The loop graphs involved in Figs. 1(a)-1(c) can be expressed in terms of a single loop integral, namely,

. i d*k (k')(—k/)
OYF(m, A, u) = — ) Al
(. & 1) 2 em* (B —m?)(k-v— A +ie) (Al)
where u is the scale parameter of dimensional regularization. The solution of this integral takes the form [39,68]
3 8 7 2(m? — A2)3/2[g - arctan( mZA—AZ)]’ m=|A|,
24772f2F(m, A, M):A[Az_imz]]nj_gA?’ _EAmz"_ (A2)
g (@ )] i+ n(3EEE) | m<al
The derivatives of F(m, A, u) required here read
| 2 T’ 6AvVm? — A*| T~ arctan( mzA*Az)iI’ m=|A|
2472 2 FWD(m, A, u) = 3[A2 —sz]ln—z— 6A2 —7m2 — - (A3)
M 2_ 2| _n; A—VAZ—m?
3AVAT = ~2im+ 1n(A+J_VA2_mZ)], m<|Al
2 67(";%)[’—27 - arctan( mZA—AZ)]’ m = |A|,
24722 FD(m, A, p) = 6A[1n—2 — 1] - (A4)
and
AGBm2 =202 | #
v e |tEERrwa(pig)] =l
247 f2FO(m, A, p) = 61n— — T (AS)
m- — 2 —2A2 . e

APPENDIX B: REDUCTION OF BARYON OPERATORS

The evaluation of the commutator-anticommutator structure

{Aju’ [Akc’ [*M) Alb]]}:

which represents the leading contribution to the renormalized baryon axial vector current for finite decuplet-octet mass
difference, yields the following terms:
(1) Flavor singlet contribution

A . 1 1 1
{Ge, [G*, [J%, G“]]} = — E(Nf — 2)G*e + E(NL. + N;) Dk — > Dhe — Ok, (B1)

(G, [ Dk, [J2 G“1} + {Dig, [G*, [J2, G“]]} = 2(N, + N)G* + %[NC(NC +2N;) — 9N, — 2]Dk¢
1

{Di, [ D5, [J2 G“1l} = (N; +2) 0¥, (B3)
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(G, [ Dk, [J2, G“1I} + {Dig, [G*, [J2, G*]]} = 2[N.(N, + 2N;) + 2N/]G* + 10(N,. + N;)Dk°
+ %[ZNL.(NC +2N;) — 1IN, — 21Dk
= 2(N; = 2)0% + (N, + N;)Dke — 3Dk, (B4)

{Gia’ [@kc’ [JZ, Gta]]} + {Gia’ [ch’ [J2, @éa]]} + {@éa, [ch’ []2, Gia]]}

3 1

(2) Flavor octet contribution

NN, +2Ny) = 2N; + 4
4N,

) . 1 1
dabS{Gza’ [ch’ [‘]2’ sz]]} —_ _ Z (Nf _ 4)dC8€er + 808Jk + Z (Nc + Nf)dCSe Dée

+ — (N + Nf)[JZ [TS ch]] che Dke _ %dCSe @Ige _ %{ch, {J” GrS}}
+ F{Gks’ {]” Grc}} + g{]k’ {TC, TS}} _{Jk {Grc GrS}} 8(.‘8{]2 ]k} (B6)
[

dabS({Gia’ [Dlzcc, [JZ’ Glb]]} + {@éa, [ch’ []2, sz]]})

2
TN, +

+4 N
cheDke +{GkL TS} f{TL GkS} [J2 [TS GkL]] + = (N +N )dLSeDke
f

— (Nc + Nf)dCSeer —

NZfN (N. + NGB I, G} +— (N + N {IEATS, TS}}+N (N +NHIEAG™, G}
_EdCSeDlie N f {ch {Jr GrS}}+ {DkS {Jr Grc}}_ {JZ {GkS TL}} (B7)
dabS{Déa, [D/Q(c, [_]2, th]]} — N ~ f[]2 [TS ch]] + Nf2 dCSe@ke + {ch {]’ GrS}} {GkS {Jr Grc}}
f

J2 {G*8 T, BS
2N, 2N, 74 1 (B8)

dabS({Gia’ [ch’ [J2’ Glb]]} + {@f‘a’ [ch’ [JZ’ sz]]})
5N,(N, + 2N;)

= 2N;d*G* +
Ny

88Jk + 5(N, + Np)d®Dk + 2(N,. + Np{G*, T8}
2(Ns +2 N? —2N; + 4
( ]7;, )dc'Se @éce _f f {ch, {Jr’ GrS}}

5
— (N + Np[JA [T?, G*]] - ZNfdcge Dke + ~
f f

3N%2— 2N, — 4 5
- G G + SUR T T - 20N, + 3R (G, G
f
N.(N, + 2N;) — 10N 1
Z o ) ONF sesge, iy + 5 (Ne + Np)dS Dl +2(N, + N{DE, {77, G}
S
1 2N, —2) 1 ‘ 2
_dC8€ Dl;e _ f {J2’ {GkS’ {Jr, Grc}}} + _{J2’ {Jk, {T‘, TS}}} _ _{J2’ {Jk’ {Grc’ GrS}}}
2 N, 4 N,
3N, +2 1
— 2fT{Jk’ {{]” Grc}’ {Jm’ GmS}}} _ N_ 508{]2, {JZ’ Jk}}’ (B9)
f f
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dabS({Gia, [(913(0, [J2’ Glb]]} + {Gia’ [ch, [‘]2, @éb]]} + {@éa’ [ch’ [JZ, th]]})
3NN, +2N))
2N,

TN, — 4 3 3 3
— f4 che@ge _ sz{ch’ {J", GrS}} + ENf{Gkg’ {]r’ Grc}} + Z{Jk’ {TC, TS}}

(BN, + 4 (N, — 2)

che Dke
4N 3

3 3
S8JF + SN+ Ny)ddDke + 7N + N2 [TE, G*]] —

N, +4
_ N {Jk’ {Grc’ GrS}} +
Ny

2N}

1
82, I + S (N + Ny)dse Die

- (Nc + Nf){Dl2<8’ {Jr’ Grc}} + (Nc + Nf){‘lz’ {ch’ TS}} + %(Nc + Nf){'lz’ [JZ’ [TSJ ch]]}

1 3 7 Ne+ 1 1
— Eche Dlsce _ EdCSe @Isce _ E{Jz’ {ch’ {]r’ GrS}}} + J;V {]2’ {GkS, {_]”’ Grc}}} + Z{Jz’ {Jk, {TC, TS}}}
f

3N, +2
4N,

— 2R R G G + A7, GP L, Gy — - 582, 2, 14y (B10)
Ny Ny

(3) Flavor 27 contribution

) . 1 1 1 1 ,. .
{Glg’ [ch’ [JZ’ GlS]]} — _ N_568 @IS<8 + Eche{Jk’ {Gre’ Gr8}} _ EdCSe{GkS’ {Jr’ Gre}} _ Zektmf‘L‘Se{Te’ {Jl’ GmS}}’ (Bl 1)
f

G [DY. [, Gl +{G™, [GY [, DEIL +{DE. [G* [, G* ]}
—- _ IZSchefSeg D/;g + éche[er’ {]” GrS}] _ iche[GkS, {Jr’ Gre}] _ %chefSeg Dﬁg + {Dléc’ {Gr8’ GrS}}

DI G G = 7 G AGH, T = {07 G AGH, T + 3 U [, B G, B12)

. . 1 | 1 . .
{DIZS’ [@lzcc, [_]2’ GlS]]} — _ chSefSeg D/;A + 5chefBeg(9/:?9’ + E eklmeSe{Tey {Jl’ GmS}}

_ le.kimeSe{TS’ {]i’ Gme}} + %{Déc’ {TS, {]” GrS}}} _ %{J% {GkS’ {TC, TS}}}, (B13)

[\

{G®, [ Dy, [2, GBI} + {DE, [G*, [J2 G*]1}
— 3fc8€f8€gGkg _ ldeedSEgGkg _ LdCSSJk — D <8e g8es Dkg + i SIS _ i 588 Dke _ jc8e g8eg @kg
2 N, RS 7 7 :

f

;2 o 2 , _ . :
+ fc'SefSeg (913% + N_f 8c8(913<8 _ N_f 888(91§c + 4{ch’ {GrS’ GrS}} _ 4{Gk8, {G”, GrS}} + 6dL8€{Jk’ {Gre’ GrS}}

1
_ 2d889{Jk’ {Grc’ Gre}} + EdCSe{er’ {Jr’ GrS}} + 2dCSe{Gk8’ {Jr’ Gre}} _ d88e{ch’ {Jr’ Gre}}
4 . . o
—_ d8Se{er’ {Jr’ Grc}} _ N_dCSS{JZ’ Jk} + eklmeSE{Te’ {Jl’ GmS}} _ 2{{]” Grc}’ {GkS’ {J’, GtS}}}
f

+ Z{Jk, {{]i, Gic}, {GrS, GrS}}} _ %dc‘Se{DgS’ {J’, Gre}} + che{JZ’ {Jk, {Gre’ GrS}}}’ (B14)
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(G104 172, Gy + {G™, [G¥ [ 72, 0P} +{O%. [G¥ [, G}
1 8e j8eg (kg U s g 8e 78 kg _ 1 ks 3 k 7 1
— _ _ gc8e j8e — 88k — geBe g egD&__dCSedSeg@s__ c8e Seg@g__508@k8 888(9kc
2 deed G 2Nf d 3 2 3 Zf f 3 3 f
7
+ ZdCSe{Jk, {Gre’ GrS}} + Edcge{er’ {J” GrS}} 3d68e{Gk8 {Jr Gre}} _ d88e{GkC {Jr Gre}}
1 2 . . o
+ EdSSe{er’ {Jr’ Grc}} _ N_dCSS{‘]z’ Jk} _ Ektmche{Te’ {Jl’ GmS}} _ N_ 5(‘8 @IScS _ {ch’ {{]l’ Glg}, {J’, GrS}}}
f f
o o 1
+ {07, G LG T, G} = A U GLAGT, G 1) + 2{0% {GH, {G™8, G811} + chge{DkS» {7, G}

+ che{JQ {]k {Gre GrS}}} che{JZ {Gk8 {Jr Gre}}} _ - kimche{JZ’ {Te, {Ji, GmS}}} (BlS)

The next-to-leading order contribution to the renormalized baryon axial vector current for finite decuplet-octet mass
difference involves the two operator structures

[AJe, [[M, [M, AP]], A*]] and [[M, A/] [[M, AP], Ake]]

with two mass insertions. The explicit evaluation of the various contributions reads
(1) Flavor singlet contribution

(G (L2 12, GIL GT) = = S (N, + N)Di + L (N, + Dk + N, 0%, (B16)

(G, [ [, GI), D) + (D, [[/% [, 6]}, G

3 7
- E[NC(NC + 2Ny) — 6N 1Dk — 3 (N, + Np)Dk — 2(N, + N;) Ok + (3N, + 8) D, (B17)

[([J2 G ] [[J% G™], G*]] = —[N.(N, + 2N;) — N;]G* + %(NC + Ny) Dk — ;( + )Di — (N, — 1)O%,  (BIB)

[[J?, G], [[J?, Ge], Dk = E[NL.(NL. + 2N;) — 4N, Dk + §(NL. + N;)Dke — 3(N; + 2)Dke. (B19)
2 2 f f 2 2 f 3 f

(2) Flavor octet contribution

3N.(N, + 2N,)

. . 3 1
dahS[Gm’ [[J2’ [J2, th]], ch]] I 6(‘8]]( _ Z (NL + Nf)dc'Se Dlée _ Z (Nc + Nf)[.lz, [TS, ch]]

4N,
N2+ N, —4 N2 2 Ny
S f c8e Mke c8e (ke k c T8 k re r8
+ ————dD5 + ——d°O05 — I AT, T + —{{G", G
W N, ST+ MR 6 0y
1 1 2N2 +Ny—4
+—{GR {7, G — — (G, {7, Grep + L L sesgp gk B20
b (GG = G G S 820
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d8([G™ [[% [V% G*]], D51 + [ Dy, [, V7 G*]], G

_ g N,dese Dl + % (N, — D215, GT] - (N + Nz\(iNf +4)

_ et 1\;];3,(fo. “D g grepy 4 Me T A;flzl (fo —2

(N + Np)(Ny —2) (N, + Np)(Np—2)

(N, + Np)(N; +2)

che Dl3<e _ N
f

c8e (ke

(G947, G = S e + NUA (T, )

1
{5 4G™, G + I I + 3 (N + Ty D

Ny N3
N} +7N; +4 5 N2+2N, —4
LT ke (7, G — 2D, (I, GrYy — (G T + L (2 (GRS T
2N, 2 2N;
N+ 2
+ L2 {2, [, [T8, G*T1,, (B21)
2N,

5N.(N, + 2N;)

5
aN, S8JF + 7Nt Np)d® D — (N, + N{G*, T}

) . N
d“bg[[JZ, Gm], [[‘]2’ Glb]’ ch]] — deCSEer +

1 1 N

+ 5 (Ne + NI, 7%, GHT] = (N + 1)dS* D — devgfco’ge +{G* {17, 6"}
Ny k8 Sk > T8 1 k 8

+ S AGRATL G+ U AT T — S (N + 35 AG™, G

2N, +1

88{J2, J*), B22
o, S (B22)

a2, G [, ) D] = —3N,d D+ 2 (N, + NS Dl + (N, + N~ {77, T}

2N, +7

— SN, + S)dete D (DA, G+ D Gl (B2))

(3) Flavor 27 contribution
. . 1 1 , 1 . 2
[Glg’ [[JZ, [JZ’ GlS]]’ ch]] — Edc‘SedSeg @l;g + EchefSeg (9/;& + deSedSeg(glgé + N_f 5c8(91§8 _ che{Jk’ {Gre, GrS}}
1 1 1
_ deSe{er’ {J’, GrS}} + EdCSe{GkS, {Jr’ Gre}} + N_d088{12’ ]k}’ (B24)
f

(G L%, 1% G¥L DA + (D, 17, [, G116

15 i . 2 2
— 7f'cSef8eg Dlzfg + EfCSE[GkSv {Jr’ Gre}] + 4fc8ef8eg Dﬁ& + N_ 508 Di{S + N_ 588 @ﬁc _ 2{D12<c, {GrS’ GrS}}
f f
1 1 1
— 2{@158’ {Grc’ Gr8}} + Edc8e{J2’ {er, TS}} + 5d88€{]2’ {er, Tc}} + EdCSE{DIES’ {J”, Gre}}
1 1 1
+ §d88€{D12€C’ {Jr’ Gre}} + E{{Jr’ Grc}’ {GkS’ TS}} _ 5{{]") GrS}’ {ch, TS}} _ l‘che{{Jr, Gre}’ [JZ’ GkS]}

+ éche{{]r’ Gr8}’ [12, er]} _ 3l'f086{]k’ [{Ji’ Gie}, {Jr’ GrS}]}’ (B25)
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) . 3 1 1 1 1
_]2’ GZS , JZ’ Gl8 I ch — = rc8e 8egGkg _ _dc8ed83g Dkg + 568 DkS _ _ fc8e rBeg @kg _ _dCSedSeg@kg
(L2 GRYIL G G = ¥ . R R TR :

2 3
— N_568 (913{8 _ {ch’ {GrS’ Gr8}} _ {Gk8, {Grc’ GrS}} + EdCSe{Jk’ {Gre’ GrS}}
[

1

2d886{Jk {Grc Gre}} + che{er {Jr GrS}} che{GkS {Jr Gre}}

1

2 dSSe{er {Jr G’ }} dL88{J2 Jk} klnlf(8€{T€ {J’ GmS}} (B26)

[[]2’ GiS]’ [[12’ GiS]’ ﬂlzcc]] — _6f08€f86g Dkg _ ZfCSefSeg @kg 588 Dke + 2{@1{0 {GrS GrS}}
dSSe{ch {Jr Gre}} + lche{J2 [er {Jr GrS}]} _ f{,SE{JZ [GkS {Jr Gre}]}

_ l'che{{Jr, Gre}’ [‘]2, GkS]} + l'che{{Jr’ GrS}y []2’ er]} + 5 iche{Jk’ [{Ji’ Gie}’ {Jr’ Gr8}]}

(B27)
APPENDIX C: FLAVOR 8 AND 27 CONTRIBUTIONS TO g4
The octet contributions to §A¢, Eq. (25), can be written as
SAk = Zo ok, (C1)
where the operators O that occur at this order are
Ollcc — dc8eer’ Oéc — 508]1{’ 013{0 — che @Ige,
Oﬁc — {ch’ TS}, OISCL — {GkS’ Tc}’ 0]6“ — dc8€ Dlge’
0/7<c — che (nge’ Oléc — {ch’ {Jr, GrS}}’ 0/(;0 — {GkS’ {J", Grc}}’
oke = {Jk {T°, T8}, ok = {Jk {G, G™8Y), Ok = 58{J2, J4),
OIIC% — dCSe Di{e, Ollcz — {ch’ {Jr’ GrS}}’ OIlcg — {DIZCS’ {Jr’ Grc}}’ (C2)
0k; = {12.{G*, T} 0l = {12 {G*, T} 0% = 112,[G*, {17, 6™},
Ofs = W [GM 47", G}, Ok = {1 G147, G Ok = {17 G*L4" G,
0]26(2 — {Jk, [{Jm, Gmc}’ {Jr’ GrS}]}’ Olzc% — che Dlsce’ 0]262 — dcge@lsce’
0% = 2 (G* 77, G, Ok = L2, (G* 47, G}, Ok = L2, A (T, T,
012<§ — {12’ {Jk’ {Grc’ GrS}}}’ Olzcg — {]k, {{]” Grc}’ {Jm’ GmS}}}’ 013(6 — 56‘8{]2’ {JZ’ Jk}}’
and the corresponding coefficients read
11 . N,+3 9 5 3 3(N, + 3)
o, = [4—8 Cl? - 3N Cl%bz 4N2 a1b2 2N2 2b3 4N2 a2C3 Tﬂ1b2b3]F§1)
1 . N,+3 3 Ao 1 A 5
5 ; N +3 3N? + 18N, — 8 N.+6
_ 4+ e 2p — c c 2p., — Llc 2 ] F(l)
22 [36 AT g, 12 282 73T T4,
N2+ 6N, —2 5N, + 30 N, +6 A o 1IN.(N, + 6) gl
" [_ T T LT ”%63]E 8 144 @ WF ©9
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23 3(N, + 3) N, +3 3 3 9 W [ Net3
3 = [16NC a% 2 441\73 a% 3 8N§ G%C:; - mb% - 2—]\73a1b2b3 N3 a1b2C3]F [_ —8 a?
25 5(N. +3) 3(N. +3) A 11(N, +3) A2 3
v, 0T e T a%%]Vch " [_ e +Ea%b2]WF8 ’ ©
1 N, +3 N, +3 N, +3 3
Oy [_ 3NC a%bz - 12N2 alb% - Wﬂ%b3 - 2N2 6126'3 N3 a1b2b3]F(1)
1 N.+3 A o) N.+3 A
+ [_ 2NC a%bz - Ng a%b3i|N—cF8 + 2 a?N—CZ‘FS , (C6)
11 N, +3 4 | A,
05 - [T]\]Ca%bz + 6—1\76216111?% + N_2a1b2b3]F(8) + 4NC a%szFé ), (C7)
9 65 1 3(N, + 3) 23(N, + 3) 0
o= [rgna @03+ qgnpetts * gz dies + s ababs = i e [
1, N.+3 15 13 Aoy [T 3 S3WN+3) A2
* [§ ai - 8N, aiby + g2’ ihs + 24N? 6’263]1\7 Fy [36 i 144N, 2b2]N2 By (©8)
1 3 71 N, +3 N.+3 "
07 = [8NLZ a]b% 4N2 %b:; 48N2 Cl%Cg T]\]ga]bzb:; - ?’]v?aleC:i]Fs
1 5 5 17 A o [23 5 5(N.+3) A2 )
+ I:Za? - 4—1\]%(11b% 3N2 2b3 SNE CI%C::,]FCFS + I:ﬁcﬁ 736]\7 zbz]Nz FS y (Cg)
1 5 N, +3 [ 1 7 9 A o
0g = [4N2a1b2 6N2 2b3 2N2a2c3 +— 3N a1b2b3]F [Za? 2N2a1b2 6N2 2b3 4N2a2c3]NcF8
1, N.+3 , A2 4
1 7 5 N.+3 | 1 N, +3 1
09 [4N2a]b2 3N2 2b3 4N62‘a%c3 t—— 3N3 aleb";]F() [_ga? + 12N %bz +2—]\/galb%
17 9 Ao 13 , N +3 A2 )
+6—]\7ga%b3 4N20%C3]NCF8 + [—ﬁa? + 36Nc a%b ]NZFS B (Cll)
1 N, +3 3 1 N, +3 3(N, + 3) .
0= [Tt~ S 2~ g eits ~ pgpeies + Sy wbabs = gyt |7
1, N.+3 5 3 A o 11, 3(N,+3) A2 )
+ [_ 1—60? - SNC a%b2 - r]\]gd%b:; - 8—]\Iga%C3i|FCF8 + [ 96 3 716]\, 2b2]N2 Fs y (ClZ)

2 1 N.+3 1 N.+3 6 7 A
0] = [—a%b3 — —a%c3 — alszg]F(]) [ a? - a%bz a1b3 a%c{l ng)

N? 3N? 3N} 6 12N, N? 6N? N,
4 , N, +3 A2
+ |:§a§ — 1SN, a%b :INZFS , (C13)
7 13 N, +3 1 N2 + 6N, — 30 3N + 18N, — 40
O1p = [Wa%b:; + —36N2 a%c3 + 9N3 a1b2C3]F( ) [12(1:1; - —12N2 Cl% 3 36N2 0%63]
A 2) 55 3 Nc +3 2 A (3)
XEFS + [mal + 54NC albz]Nst , (C14)
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3 3 3 1 N.+3 N.+3 A o
013 = |:8N3 bz 41\73 a1b2b3 +N_Ca1b263]F§) [4N b2 T]Vga%bz. _4—]\73(1%C3]FCF§)
7, A
taw i (C15)
! 10 2 N.+3 A 107 A2
b3 bybs + b ]F ) + [ 2 —_¢ bz] F(z) + 2b _F(3) Cl16
o [2N3 27 N3N TRNE s [T T Ry 42 T TN P |y 7o, b2 fs (C10)
2 23 N +3 No+3 5, 1A o 5, A
o1s [ 341623 12N2a1b2€3]F8) * [_4NL aiby = = aibs + = a?Cs]NcFé) A %sz—gFgl
(C17)
W _Net3 A o 1 A% 5
016 [6N§alb2b3 3N3 a1b203:|F IN? % 3N—CF8 N %ng—ng , (C18)
> = w [_1 Ne+3 A, 1 A2 )
o7 = [3N3 aybybsy + 12N3 d1b2€3:|F3 [IZN atb, + 12N2 lb%]ﬁch + 36N, a%bsz (C19)
15 w [__1 3 9N, — 91 42N, — 65 A o
o [_ 1oz 12~ 64N*a1bzc3]F [ N, 10 Tt g bt WQ%Q]VCFS
1 1 A
oo i ] F C20
[2304“‘ 2an, 72| 2 e 0
! 15 m [ ! 3 9N, — 91 42N, — 65 A o
o0 = [zt + gt |3+ [ it e~ S et~ S i 5
1 . A2
-+ — zb] FY, o1
[ 2304 "1 " 24N, 172 |28 (C21)
! 15 1 3 9N, — 91 42N, — 65 A
- byb bycs |Fy) + [ 2p, — B4t 2y 4 e ]_F<2>
720 [ T6N2 417273 T Nz 2C3] 328, 172 T 3Nz T Taganz 1T 3oz T N,
I 1 A2
i P b ]_F(3)’ 22
[2304“‘ 24N, 172 N2 78 (C22)

1 15 | 3 9N, — 91 42N, — 65 A o
o = [rggarbabs + et [+ [ pyavs + g = e aies - S e [ Y

N,
1 | A2

+| - d) 2b] Fy), C23
[ 230471 " 24N, 172 N2 (€23)

1 15 w [ 3 9N, — 91 42N, — 65

o2 = [16N3a1b2b3 64N3alb2c3]F8 [32N aiby + o pabs — e aibs — g %C*]
A o 1 1 A2
X —F@ + ——3+—2b:|—F() C24
N8 [ 23041 " 24N, 172 [ \2 €24
1 1 A,

023 = [41\/20%[73 + 4]\]6261%6’3]]\[6[7{(; )’ (C25)
Oy = r]\@a%CSEFS , (C26)
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055 4LNgalc3I$ FY, (C27)

026 [311\73641 Tl c3] léc FY,  (C28)
027 [ 8]1\72 b3 8]1\72(116%]13 F§2)’ (C29)
02 = [3]1\72 alby + 3 ]lv zalcg]lé FY,  (C30)

T{cc — chefSegGkg
Ticc — chSJk

T§C — chedSegGkg’
ke — frc8e £8eg kg
TSL — fc f 5@2 ,

Tke = §88Dke, Tke = gese{Gke, T8}, Tke = g88e{Gke, T<},
Tl = if (G {7, G™)) T = if ¥[GS4, G Tl = fese free DY,
T{c;‘ — JeBe8es ngg’ T{‘j‘ = 58 D’;g, T{cg' = 588 Dlgc’
ng _ che fSeg @]3‘8, T{(;‘ — c8e dSeg@/;g’ T{<§ = 58 (913{8’
Tts = 8%0%, TS5 = {G* {18, T*}}, Tk = {G",{1°, T%}},
T = {G* {G"S, G"*}), Ti = {G*{G", 6™} Tl = d*{J% (G, G},
Ti¢ = a®{J* {G™, G™}}, T4 = d8{G* {J", G"*}}, T%S = d¥{G*8, {Jr, G™}},
T§§ _ dSSe{ch’ {Jr’ Gre}}’ Tg _ dSSe{er’ {Jr, Grc}}’ T§5 — dc88{J2’ Jk}’
T§1c — kim che{Te’ { Ji GmS}}’ Té(é‘ — kim che {TS’ { Ji Gme}}’ T§§ — che fSeg Dﬁg’
TY = 68D, Tk = %D, Tk = {Dke {18, T8}},
Tk = {Dke, {G"3, G™8Y}, Tk = (DI, {G™, G™8Y}, Tk = dese{J2, {Gke, TS},
Ty = d™42 (G, T}, Tii = d*{DF AT, G, Tis = d™{Dy I, G},
T = {7, G} {GH, T8}, T = {0, 678 {Gx, T, T = {0, 678 {GH, T3,
Th = if S 2[R G Tl = iR ICR A G T = iU UL G 6
Tk = ifesef{Jr, Gr}, [J%, G}, Tk = jfesef(yr, G}, [J2, G*eT}, Tk = 58088,
T = (G UL G GRYL Tl = (DTS, G T = {17, G 1 AGH. (U, GM,
T = UL UL GG G, Th = (R G Te T, T = (2GR (6", G,
TE = d8<{'Di8 {J", G"}}, Tk = d8{J2, {J {G™, G"®}}}, Tk = d8{J2, {G*8 {J", G"*}}},
Tke = ekimpese 2 (Te {Ji GmS}}},
and the corresponding coefficients are

t = I:%af —]\%alb% 4]3:]261 by + 832a c3:|F;17) 2]3\/3a%b3160Fg27) —% %]%,;Fg),

= % Yy + [4]{]2 aibs + 4;,2“% 3]]6 Fg,
ty = 6 a3 F;17)
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1,

11
029 = [12N2 aibs —

24N?

A
G%C:;]FFg),
c

r o, 1 A
030 = [W‘h% 6N2 a1C3]N
c

Finally, for the 27 representation we obtain

FY.

61

gy =3

i=1

¢, Tk

itio

where the operator basis is

T§C — 8(‘8Gk8
Tgc — BCSDIES,
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T 1 1 A o
t4 = Ea1F§7) + [12N2 a%b3 + — 12N2 02C3:|N F(27),
c c

(C38)

7 1 9
t5 = [8—41%192 - —b3 a1b2c3]F(217)

N, 2N372 T 2N3
15 A 7 A2
*EN 2b2—F(2> + Wa%z N Fg,  (C39)

to = 3]1\70 a2b,FY), (C40)

t7 = ——albyFy), (C41)

ty = ——albyFyY), (C42)

ty = 4zlvc albyFLY), (C43)

=" = a\bybsFy) — 411\/ aiby - A Ff;, (C44)
= [211\, a2b, + N%albzb3] F + % szNALW

+ %Nca%bz f{—;Fg), (C45)

3 3 b A,
t12 = [Walb% + Wa%b{ng; + Walb%FF;;,
(C406)
L (1) L,
t13 == Walb3 4N2a C3 F27 + malb:;
1 A o 1 LA
+ Syt 3]N F + g4 WF;), (C47)
_[1 (1) A
e [6—1\'361%1) 6N? ]F” a2 10y, F
1 AZ (3)
- %a? WFZJ’ (C48)
A
— (1) a2 (2)
5 = 3N2 b3 3N2 bg—F27, (C49)
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1 1
— (1)
t16 == [4N§ a1b2 8N2 ]F27 + [ 4 261 %
1 3 A 1 A
Tt T e a2c3:|N EAS T
(C50)

1 1
2 M 4 2
i [2N2 b3+ oz ]F” [2N2 13

A ) 1 A (3)
4N2 a%c{IN.F27 +§ WF”’ (C51)
5 y Tl 1 7
t18 6 2a C3F(27) I:ga? - 3N2 2b3 6N2 a203]
Ao 1 A% G
Xy Fo tga WFZW (C52)

1 . 1 1 A o
ly = 3N 261 C3F§7) [ 2b3 261203] F;7):

3N2 6N N,
(C53)
[20 = 4N2 alsz%), (C54)
1 2 (D)
hy = 2N2 alb F27, (CSS)
1 1 b2 A,
l22:[_ma%b3 2]\]2016'3]17;7)_]vC zb’;—F()
1A
+ 34 IWF;}, (C56)
I = [Nz atbs — 2N2“1 3]F27 N2 2b3—F27
1A
3 1 1
t24 = [_Tj\ﬂa%bs - era%c{IF(zl; + I:—Zaf
3 1 A o T A2
_N_ga%% N?a%c*{lﬁ ;7) ﬁ“?zv_g ;7)’
(C58)
1 a 1 A o
t25 - [Wa%b:; - 4N2 2C3]F27) + N—ga%b:;ﬁcFl-l)
1A
5341 mF§7>, (C59)
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2 1 1
— 2 QORI 2
t26 = [N2 Cllb3 2N2Cl C3]F27 [ 4NL2 Cllb3

7 A 1 A

1 3 o ! 1
t27 = [_ —2N2 a%b3 + — 4N2 al 3]F27 [Z Cl:f - _N2 Cl%b:},
c c

A 1 A
(2) (3)
o aie ]N FE gl (C61)
C
m [ 1 1 Ao
8 =3 2“ 1c3Fy [2N2 aibs + 4N2alc3:|NCF27’
(C62)
1 1 (l)
t29 = [2—]\75261%193 - 4NL20 C’;]F27 [2N2 2b3
! A 1 LA
- 4N2 a%c{l FF§7) - ﬁa FF;;, (C63)
C C
1 1 2
. [6N2. aibs * Gz “%63]17;7) i [3N2, aib3
! A o 1 A2
IN2 at 3]ﬁ 7+ Ea%WF;;’ (Co4)
C c

8 4N? 2N? N2
A 2 1 3
X EFQ} + 54 N?Fg;’ (C65)
1 A
= bZ—F;%, (C66)
1 9 1 A
t33 = I:Wb% + — 4N3 aleCg]F(z;) + W 2b2N 527)
23 5 AT
+ TN, bszn, (C67)
2 b1 A2
=33 abycyFSY + on alby — N2 FY (C68)
1 w1 A?
5 = 338 arbycyFSY + v ZbZWF(n), (C69)
3 (1)
36 = 4 N3 b3Fy, (C70)
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1 A

1 ) @)
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v b N2 F, (C75)
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RENORMALIZATION OF THE BARYON AXIAL VECTOR ...

PHYSICAL REVIEW D 86, 094041 (2012)

TABLE XII. Matrix elements of baryon operators: Tree-level and singlet contributions.
BB, np 3EA Ap >"n EA B30 =A% AN 3FA 33 E*E
(Gke) 2 NG -1\ i NG = 2 -1 -1 -1 -1
R ot A I : 0
o) 3 e 0
(OF) 0 0 0 0 0 0 0 -2 -2 -2 -2
1 1 1 A 1 A
— (1) _ 2 2 2 (2)
tig = [N_3a1b2b3 N_galbzc3:|F27 gy, Gy P s = e sy Far (C85)
5 A2 (3)
——a1b2—2F27, (C82) 1 A
2
8N, 172 N2 =5 a%cWFg;, (C86)
1 1 (1) 1 A 2
tyo = | = —5a1byb3 + ——=arbyc; |F 1 —a\h}—F), C87
49 [ N3 @1P2ba t opsaib: 3] 27 53 4N§a1 oy fo (C87)
1 A?
2 3)
——a1b2—2F27, (C83) 1 1 A
12N NG ts4 [ salby — ——a’ 3]—F§27), (C88)
N; 2N; N.
ts() = _LalszgF;;), (C84) tsq = [ a% 3 + : a%C';iIAF;%), (C89)
N3 1726 : N2 N2 N
TABLE XIII. Matrix elements of baryon operators: Octet contribution.
BB, np 3EA Ap 3"n E-A 530 =AD AN 3*A pASH E'H
(Ok) 5 1 1 _ _ 1 __s 5 _ 1 _ 1 _ 1 _1
! 63 32 42 123 122 126 12J3 Ng Ng Ve NG
ke 1 1 1 _ 1 _ _ 1
05) 35 0 e NG e G A 0 0 0 0
ke 5 _ 3 1 _ 1 __5 __5 _
0Ky 550 W s W W w0 0 V3
0k) = 0 o -4 - - - 0 0 -2 -3
<0kc> 5 1 3 _ 1 _ 1 __5 __5 0 0 0 0
6 23 V2 4 4“3 N} 46 4“3
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oFy FH 0 5 S~ S~ T~ e S S S
<0kc> 5 0 3 \/_3 __5 __5 __5 0 \/_3 _M -3
9 W N 8 32 86 83 2 2
ok 3 0 e s T T 0 0 0 0
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on F W NG N e NG 0 0 0 0
o F 0 A SRS MRS 0 0 0
O T T ~ At - A S 0 0 0
(Ok¢ 0 _3 —2 SV 3 2_5\/5 253 93 93 _9f3 — 93
18 22 162 16 1642 162 16 2 4 4 4
(0% 0 0 0 0 0 0 0 —9f 3 —35 63
(Ok 0 0 0 0 0 0 0 0 33 -uB 33
ke _23 _2 _\3 3 25 f3 25\3
(0% 0 N NGl % w3 24 = 0 0 0 0
I e e . 0
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TABLE XIV. Matrix elements of baryon operators: 27 contribution.
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ts = 4—11\73“‘%% 2 (C90)

ts; = —;za%c%éc 2) (C91)

tsg = [# a’by — Sij\jgafc3]NACF;27>, (C92)
tso = [ 2;]3 a’by e a%c3]£cF§‘;), (C93)
teo gizg a§c3NAF;27>, (C94)

to1 8;3_ a%cﬁFé? (C95)

Notice that in Eq. (C33) the singlet and octet pieces must
be subtracted off in order to have a truly 27 contribution.
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APPENDIX D: MATRIX ELEMENTS
OF BARYON OPERATORS

In this appendix we list the values of the matrix elements
of baryon operators between SU(6) symmetric states that
make up the axial vector couplings g, and g. In Ref. [35] a
somewhat different operator basis was used; in the present
analysis there appear some other operators whose matrix
elements have not been evaluated yet. We thus consider it
convenient to provide all the matrix elements required
here once and for all. Of course, only nontrivial matrix
elements are given: matrix elements that either vanish or
do not contribute to any observed processes concerned
here are not listed. Examples of the first and second case
are (B,|8%J%|B,) and (B, |[J?, [T®, G*]]|B,), respectively.
Besides, matrix elements of higher-order operators
obtained by anticommuting with J? are also trivial and
will be omitted hereafter.

For the tree-level and singlet contributions, we identify
the operators listed in Table XII.

For the octet contribution the matrix elements are listed
in Table XIII.

Finally, for the 27 contribution we provide Table XIV.
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