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Within a nuclear model where the deuteron has NN and �NN components, we derive a convolution

formula for investigating the Drell-Yan process in proton-deuteron (pd) reactions. The contribution from

the �NN component is expressed in terms of a pion momentum distribution that depends sensitively on

the �NN form factor. With a �NN form factor determined by fitting the �N scattering data up to invariant

mass W ¼ 1:3 GeV, we find that the pion-exchange and nucleon Fermi-motion effects can change

significantly the ratios between the proton-deuteron and proton-proton Drell-Yan cross sections, Rpd=pp ¼
�pd=ð2�ppÞ, in the region where the partons emitted from the target deuteron are in the Bjorken x2 * 0:4

region. The calculated ratios Rpd=pp at 800 GeVagree with the available data. Predictions at 120 GeV for

analyzing the forthcoming data from Fermilab are presented.
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I. INTRODUCTION

Since the asymmetry between the anti-up ( �u) and anti-
down ( �d) quark distributions in the proton was revealed by
the New Muon Collaboration [1] (NMC), a series of
experiments [2–5] on the dimuons (�þ��) production
from the Drell-Yan [6] (DY) processes in pp and pd
collisions has been performed at Fermi National
Accelerator Laboratory (Fermilab). The objective was to
extract the �d= �u ratio of the parton distribution functions
(PDFs) in the proton. The information from these experi-
ments and the measurements [1,7,8] of deep inelastic
scattering (DIS) of leptons from the nucleon have con-
firmed the NMC’s finding, �d= �u > 1, only in the region of
low Bjorken x & 0:35.

The ratio �d= �u > 1 signals the nonperturbative nature of
the sea of the proton. Its dynamical origins have been
investigated [9–23] rather extensively. Precise experimen-
tal determination of �d= �u for higher x > 0:35 is needed to
distinguish more decisively these models and to develop a
deeper understanding of the sea of the proton. This infor-
mation will soon become available from a forthcoming
experiment [24] at Fermilab.

In analyzing the DY data on the deuteron [2–5] and
nuclei [25–28], it is common to neglect the nuclear effects
that are known to be important in analyzing the DIS data. It
is well established that the nuclear effect due to the nucleon
Fermi motion (FM) can influence significantly the DIS
cross sections, in particular in the large x region. It is
also known that the contributions from the virtual pions
in nuclei must be considered for a quantitative understand-
ing of the parton distributions in nuclear medium. Thus, it
is interesting and also important to develop an approach to
investigate these two nuclear effects on the pd DY process.
This is the main purpose of this work. We will apply our
formula to analyze the available data at 800 GeV [5] and
make predictions for the forthcoming experiment [24].

It is instructive to describe here how the DY data were
analyzed, as described in, for example, Ref. [5]. The
leading-order DY cross sections from pN collision with
N ¼ p (proton), n (neutron) is written as

d�pN

dx1dx2
¼ 4��2

9M2

X
q

ê2q½fqpðx1Þf �q
Nðx2Þ þ f �q

pðx1ÞfqNðx2Þ�;

(1)

where the sum is over all quark flavors, êq is the quark

charge, fqNðxÞ is the parton distribution of parton q in
hadron N, and M is the virtual photon or dilepton mass.
Here, x1 and x2 are the Bjorken x of partons from the beam
(p) and target (N), respectively (see Sec. VA for explicit
definitions of x1 and x2). The DY cross section for pd is
taken to be

d�pd

dx1dx2
¼ d�pp

dx1dx2
þ d�pn

dx1dx2
: (2)

Obviously, Eq. (2) does not account for the nucleon Fermi-
motion and pion-exchange effects. To make progress, it is
necessary to investigate under what assumptions Eqs. (1)
and (2) can be derived from a formulation within which
these two nuclear effects are properly accounted for.
We start with a nuclear model within which the deuteron

wave function has NN and �NN components. Such a
model was developed in the study of the �NN system
[29]. We will derive a convolution formula to express the
DY cross section in terms of the momentum distributions

�ð ~pÞ calculated from the NN component and �ð ~k�Þ from
the �NN component. Since the �NN component is much
weaker, it is a good approximation to use the NN compo-
nent generated from the available realistic NN potentials
[30]. In the same leading-order approximation, the result-

ing �ð ~k�Þ depend sensitively on the �NN form factor. An
essential feature of our approach is to determine this form
factor from fitting the �N scattering data. This provides an

PHYSICAL REVIEW D 86, 094037 (2012)

1550-7998=2012=86(9)=094037(16) 094037-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.094037


empirical constraint on our predictions of the pion effects
on the proton-deuteron DY cross sections in the unexplored
large x region.

To see clearly the content of our approach, we will give a
rather elementary derivation of our formula with all
approximations specified explicitly. In Sec. II, we start
with the general covariant form of the DY cross section
and indicate the procedures needed to obtain the well
known q �q ! �þ�� cross section �q �q. The same proce-
dures are then used to derive a formula for calculating the
pp and pn DY cross sections from �q �q and properly
defined PDFs fqN of the nucleon.

In Sec. III, we use the impulse approximation to derive
the formula for calculating pdDY cross sections from�q �q,
fqN , and the momentum distributions �NðpÞ for nucleon
and ��ðkÞ for pions in the deuteron. The calculations of
these two momentum distributions within the considered
�NN model are explained in Sec. IV.

In Sec. V, we develop the procedures for applying the
developed formula to perform numerical calculations of
pp and pd DY cross sections using the available PDFs
[31–35] and realistic deuteron wave functions [30]. In
Sec. VI, we present results to compare with the available
data at 800 GeV [5] and make predictions for analyzing the
forthcoming experiment [24]. A summary is given in
Sec. VII.

II. FORMULA FOR DY CROSS SECTIONS

The formulas presented in this section are derived from
using the Bjorken-Drell [36] conventions for the Dirac
matrices and the field operators for leptons, nucleons,
pions, and photons. We choose the normalization that the

plane-wave state j ~ki is normalized as h ~kj ~k0i ¼ �ð ~k� ~k0Þ
and the bound states j��i of composite particles, nucleons
or nuclei, are normalized as h��j��i ¼ ��;�. To simplify

the presentation, spin indices are suppressed; i.e., j ~kai
represents j ~ka; �ai for a particle a with helicity �a. Thus,
the formulas presented here are only for the spin averaged
cross sections which are our focus in this paper.

We consider the dimuons’ production from the DY
processes of hadron (h)-hadron (T) collisions:

hðphÞþTðpTÞ!�þðkþÞþ��ðk�ÞþXhðpXh
ÞþXTðpXT

Þ;
(3)

where Xh and XT are the undetected fragments, and the
four-momentum of each particle is given within the paren-
thesis. In terms of the partonic q �q ! 	 ! �þ�� mecha-
nism, illustrated in Fig. 1, the covariant form of the
dimuons’ production cross section can be written as

d� ¼ ð2�Þ4
4½ðph � pTÞ2 �m2

hm
2
T�1=2

1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞF�
ðph; pT; qÞ; (4)

where mh and mT are the masses for h and T, respectively;

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2� þm2

�

q
are the energies of muons ��; and q ¼

kþ þ k� is the momentum of the virtual photon. The
leptonic tensor is defined by

f�
ðkþ; k�Þ ¼ ð2�Þ6ð2EþÞð2E�Þh ~kþ ~k�jj�ð0Þj0i
� h0jj
ð0Þj ~kþ ~k�i: (5)

Here, taking summation of lepton spins is implied. The
leptonic current is

j�ðxÞ ¼ e �c �ðxÞ	�c �ðxÞ; (6)

where c �ðxÞ is the field operator for muons, and e ¼ffiffiffiffiffiffiffiffiffiffi
4��

p
with � ¼ 1=137. By using the definitions Eqs. (5)

and (6), it is straightforward to get the following analytic
form of the lepton tensor:

f�
ðkþ;k�Þ¼�4e2½k�þk
�þk
þk��g�
ðkþ �k�þm2
�Þ�:
(7)

Within the parton model, the hadronic tensor in Eq. (4) is
determined by the current J�ðxÞ carried by partons q or �q:

F�
ðph; pT; qÞ
¼ X

Xh;XT

ð2�Þ6ð2EhÞð2ETÞ
Z

d ~pXh
d ~pXT

� �4ðph þ pT � pXh
� pXT

� qÞ
� hphpTjJ�ð0Þj ~pXh

d ~pXT
ih ~pXT

~pXh
jJ
ð0ÞjphpTi: (8)

Here, it is noted that, throughout this paper, we shall take
the summation (average) for the spins of final (initial)
particles appearing in hadronic tensors. The explicit form
of the current J�ðxÞ is given by

J�ðxÞ ¼
X
q

êqe �c qðxÞ	�c qðxÞ; (9)

where c qðxÞ is the field operator for a quark q with charge

êqe; i.e., êu ¼ 2=3 and êd ¼ �1=3 for up and down

quarks, respectively.
The above covariant expressions are convenient for

deriving the formula that can express the hadron-hadron
DY cross sections in terms of the elementary partonic
q �q ! �þ�� cross sections. To get such a formula, we
first show how the elementary q �q ! �þ�� cross section
can be derived from Eq. (4) with h ¼ q and T ¼ �q. We

p

T

Xp

XT

γ

µ+

µ−

FIG. 1. DY process.
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then derive the formula for calculating proton-nucleon DY
cross sections.

A. q �q ! �þ�� cross section

Explicitly, Eq. (4) for the qðpqÞ þ �qðp �qÞ ! �þðkþÞ þ
��ðk�Þ process is

d�q �q ¼ ð2�Þ4
4½ðpq � p �qÞ2 �m4

q�1=2
�

1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞFq �q

�
ðpq; p �q; qÞ
�
: (10)

The next step is to replace the intermediate states j ~pXh
~pXT

i
with the the vacuum state j0i in evaluating the hadronic
tensor Eq. (8). We thus have

Fq �q
�
ðpq; p �q; qÞ ¼ ð2�Þ6ð2EqÞð2E �qÞhp �qpqjJ�ð0Þj0i

� h0jJ
ð0Þjpq; p �qi�4ðpq þ p �q � qÞ:
(11)

Substituting parton current (9) into Eq. (11), the hadronic

tensor Fq �q
�
 then has a form that is the same as the leptonic

tensor f�
 defined by Eqs. (5) and (6), except that the
momentum variables and charges are different. By appro-
priately changing the momentum variables in Eq. (7), we
obtain

Fq �q
�
ðpq; p �q; qÞ ¼ �ðêqeÞ2½p�

q p

�q þ p


qp
�
�q

� g�
ðpq � p �q þm2
qÞ��4ðpq þ p �q � qÞ:

(12)

Here, compared with the lepton tensor case [Eq. (7)], the
difference of factor 4 is because the average of quark and
antiquark spins is taken for this case. By using Eqs. (7),
(12), and (10) for the cross sections of qðpqÞ þ �qðp �qÞ !
�þðkþÞ þ��ðk�Þ can then be written as

d�q �qðpq;p �qÞ¼ ð2�Þ4
4½ðpq �p �qÞ2�m4

q�1=2
1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
�4ðpqþp �q�qÞ8ê2qe4

�
kþ �pqk� �p �q

þk� �pqkþ �p �qþm2
q

ðkþþk�Þ2
2

þm2
�

ðpqþp �qÞ2
2

�
: (13)

It is convenient to express the q �q DY cross section
in terms of the invariant function q2 ¼ ðpq þ p �qÞ2 ¼
ðkþ þ k�Þ2. After some derivations and accounting for
the color degrees of freedom of quarks, we arrive at

d�q �qðpq;p �qÞ
dq2

¼4��2

q2
ê2q

1

3Nc

½q2�4m2
��1=2

½q2�4m2
q�1=2

�
1þ2m2

�

q2

�

�
�
1þ2m2

q

q2

�
�ðq2�ðpqþp �qÞ2Þ; (14)

where Nc is the number of colors. Taking Nc ¼ 3 and
considering q2 � m2

� and q2 � m2
q, we then obtain the

familiar form

d�q �qðpq; p �qÞ
dq2

¼ 4��2

9q2
ê2q�ðq2 � ðpq þ p �qÞ2Þ: (15)

The above expression is identical to the commonly used
expression, as given, for example, by the CETEQ
group [35].
In Sec. II B, we will derive a formula expressing the pN

cross sections in terms of d�q �qðpq; p �qÞ=dq2 given in

Eq. (15).

B. pN DY cross sections

To simplify the presentation, we only present formulas
for q in the projectile p and �q in the target N. The term
from the interchange q $ �q will be included only in the
final expressions for calculations.
Equation (4) for the pðppÞ þ NðpNÞ ! �þðkþÞ þ

��ðk�Þ þ XpðpXp
Þ þ XNðpXN

Þ process is

d�pN ¼ ð2�Þ4
4½ðpp � pNÞ2 �m2

pm
2
N�1=2

�
1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞFpN

�
ðpp; pN; qÞ
�
; (16)

where the hadronic tensor, defined by Eq. (8), is

FpN
�
ðpp;pN;qÞ
¼ð2�Þ6ð2EpÞð2ENÞ

X
Xp;XN

Z
d ~pXp

d ~pXN

��4ðppþpN�pXp
�pXN

�qÞ
�h ~pN ~ppjJ�ð0Þj ~pXp

~pXN
ih ~pXN

~pXp
jJ
ð0Þj ~pp ~pNi: (17)

Within the parton model, the DY cross sections are calcu-
lated from the matrix element hq �qjJ�ð0Þj0ih0jJ
ð0Þjq �qi
which is due to the annihilation of a q ( �q) from the
projectile p and a �q (q) from the target N into a photon.
To identify such matrix elements, we insert a complete set
of q �q states (omitting spin indices),

1 ¼
Z

d ~pqd ~p �qj ~pq ~p �qih ~p �q ~pqj;

into Eq. (17). We then have
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FpN
�
 ðpp; pN; qÞ ¼ ð2�Þ6ð2EpÞð2ENÞ

X
Xp;XN

Z
d ~pXp

d ~pXN
�4ðpp þ pN � pXp

� pXN
� qÞ

�
Z

d ~pqd ~p �q

Z
d ~p0

qd ~p
0
�qh ~ppj ~pq ~pXp

ih ~pNj ~p �q ~pXN
ih ~pXp

~p0
qj ~ppih ~pXN

~p0
�qj ~pNih ~p �q ~pqjJ�ð0Þj0ih0jJ
ð0Þj ~p0

q ~p
0
�qi:
(18)

By momentum conservation, the overlap functions in the above equation can be written as

h ~pq ~pXj ~ppi ¼ h ~pXjb ~pq
j ~ppi ¼ �~pp

ð ~pq; ~pXÞ�ð ~pp � ~pq � ~pXÞ; (19)

where b ~pq
is the annihilation operator of quark q.

By using the definition (19), Eq. (18) can be written as

FpN
�
 ðpp;pN;qÞ¼ ð2�Þ6ð2EpÞð2ENÞ

X
XP;XN

Z
d ~pXp

d ~pXN
�4ðppþpN�pXp

�pXN
�qÞ

Z
d ~pqj�~pp

ð ~pq; ~pXp
Þj2�ð ~pp� ~pq� ~pXp

Þ

�
Z
d ~p �qj�~pN

ð ~p �q; ~pXN
Þj2�ð ~pN� ~p �q� ~pXN

Þh ~p �q ~pqjJ�ð0Þj0ih0jJ
ð0Þj ~pq ~p �qi: (20)

The evaluation of Eq. (20) needs rather detailed informa-
tion about the undetected fragments Xp and XN because of
the dependence of �4ðpp þ pN � pXp

� pXN
� qÞ on their

energies p0
Xp

and p0
XN
. To simplify the calculation, we

follow the common practice to neglect the explicit depen-
dence of the energy p0

Xp
and p0

XN
of the undetected frag-

ments. This amounts to using the approximation p0
Xp

� �1
and p0

XN
� �2, where �1 and �2 are some constant energies,

to write

�4ðpp þ pN � pXp
� pXN

� qÞ
� �ð ~pp þ ~pN � ~pXp

� ~pXN
� ~qÞ

� �ðp0
p þ p0

N � �1 � �2 � q0Þ: (21)

We now define

fq~pp
ð ~pqÞ ¼

X
Xp

Z
d ~pXp

j�~pp
ð ~pq; ~pXp

Þj2�ð ~pp � ~pq � ~pXp
Þ

(22)

for the projectile p and

f �q
~pN
ð ~p �qÞ ¼

X
XN

Z
d ~pXN

j�~pN
ð ~p �q; ~pXN

Þj2�ð ~pN � ~p �q � ~pXN
Þ

(23)

for the target N. These two definitions and the approxima-
tion (21) allow us to cast Eq. (20) in the following form:

FpN
�
 ðpp;pN;qÞ
¼ ð2�Þ6ð2EpÞð2ENÞ

X
q

Z
d ~pqd ~p �qf

q
~pp
ð ~pqÞf �q

~pN
ð ~p �qÞ

�h ~p �q ~pqjJ�ð0Þj0ih0jJ
ð0Þj ~pq ~p �qi
��ð ~pqþ ~p �q� ~qÞ�ðp0

pþp0
N��1��2�q0Þ: (24)

We next make a reasonable approximation that �1 (�2) in
Eq. (24) is the difference between the energy of the pro-
jectile p (target N) and the removed parton q ( �q); namely,
we assume

�ðp0
p þ p0

N � �1 � �2 � q0Þ
¼ �ððp0

p � �1Þ þ ðp0
N � �2Þ � q0Þ � �ðp0

q þ p0
�q � q0Þ:

(25)

Then Eq. (24) can be written as

FpN
�
ðpp; pN; qÞ ¼

X
q

Z
d ~pqd ~p �qf

q
~pp
ð ~pqÞf �q

~pN
ð ~p �qÞ

EpEN

EqE �q

�fð2�Þ6ð2EqÞð2E �qÞh ~p �q ~pqjJ�ð0Þj0i
� h0jJ
ð0Þj ~pq ~p �qi�4ðpq þ p �q � qÞg:

(26)

The quantity within the brackets f. . .g in the above equation
is just the hadronic tensor Fq �q

�
ðpq; p �qÞ, defined in Eq. (11)

for the q �q system. We thus have

FpN
�
ðpp; pN; qÞ
¼ X

q

Z
d ~pqd ~p �qf

q
~pp
ð ~pqÞf �q

~pN
ð ~p �qÞ

EpEN

EqE �q

Fq �q
�
ðpq; p �qÞ:

(27)

Substituting Eq. (27) into Eq. (16), we then have

d�pN ¼ X
q

Z
d ~pqd ~p �q½fq~pp

ð ~pqÞf �q
~pN
ð ~p �qÞ�

EpEN

EqE �q

� ð2�Þ4
4½ðpp � pNÞ2 �m2

pm
2
N�1=2

�
1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞFq �q

�
ðpq; p �qÞ
�
: (28)
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The quantity in the brackets f. . .g of the above equation is
precisely what is in the brackets f. . .g of Eq. (10) for the
q �q ! �þ�� process. Accounting for the difference in
flux factors and extending Eq. (28) to include the q $ �q
interchange term, the full expression of the pN DY
process is

d�pNðpp; pNÞ
dq2

¼ X
q

Z
d ~pqd ~p �q½fq~pp

ð ~pqÞf �q
~pN
ð ~p �qÞ þ fq~pN

ð ~pqÞf �q
~pp
ð ~p �qÞ�

� ½ðpq � p �qÞ2 �m4
q�1=2

½ðpp � pNÞ2 �m2
pm

2
NÞ�1=2

EpEN

EqE �q

d�q �qðpq; p �qÞ
dq2

;

(29)

where d�q �qðpq; p �qÞ=dq2 is the q �q DY cross section, as

defined by Eq. (15).
We now examine the physical meaning of the functions

fq~pp
ð ~pqÞ and f �q

~pN
ð ~p �qÞ in Eq. (29). By using the definitions

(19) for �~pp
ð ~p �q; ~pXp

Þ and Eq. (22) for fq~pp
ð ~pqÞ, it is

straightforward to show that

fq~pp
ð ~pqÞ ¼

h ~ppjby~pq
b ~pq

j ~ppi
h ~ppj ~ppi : (30)

Thus, fq~pp
ð ~pqÞ is just the probability of finding a quark q

with momentum ~pq in a nucleon state j ~ppi. Note that this
simple interpretation of fq~pp

ð ~pqÞ is due to the use of the

approximations Eqs. (21) and (25). If we depart from these
two simplifications, we then need the spectral function of
the nucleon in terms of parton degrees of freedom to make
calculation for DY cross sections. Such information is not
available at the present time.

III. PROTON-DEUTERON DY CROSS SECTION

In this section, we derive formulas to express the proton-
deuteron (pd) DY cross sections in terms of
d�q �qðpq; p �qÞ=dq2 of Eq. (15) for the elementary qþ �q !
�þ þ�� process. To simplify the presentation, we only
explain the derivation of the formula for a quark q emitted
from the projectile p and an antiquark �q from the target d.
The terms from the interchange q $ �q will be included
only in the final expression of the cross section.

For the pðppÞ þ dðpdÞ ! �þðkþÞ þ��ðk�Þ þ Xp þ
Xd DY precess, Eq. (4) gives

d�pd ¼ ð2�Þ4
4½ðpp � pdÞ2 �m2

pm
2
d�1=2

1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞFpd

�
ðpp; pd; qÞ: (31)

To proceed, we need to define a model for generating the
deuteron wave function. Here, we follow the �NN studies

[29,37] to consider a nuclear model within which the
deuteron wave function has two components:

j�di ¼ j�di þ j��NNi; (32)

where �d is the NN component. In the following two
subsections, we derive formulas for calculating the contri-
bution from each component of the deuteron wave function
�d to the pd DY cross sections.

A. Contribution from nucleons

We assume that the pd DY process takes place on each
of the nucleons in the deuteron, as illustrated in Fig. 2. In
this impulse approximation, the hadronic tensor for a
deuteron target can be obtained by simply extending
Eq. (17) for the pN to include a spectator nucleon state
jpsi in the sum over the final hadronic states. We thus have

Fpd
�
ðpp;pd;qÞ
¼ð2�Þ6ð2EpÞð2EdÞ

X
Xp;XN

Z
d ~psd ~pXp

d ~pXN

��4ðppþpd�pXp
�pXN

�ps�qÞ
�h�pd

~ppjJ�ð0Þj ~pXp
~pXN

~psi
�h ~ps ~pXN

~pXp
jJ
ð0Þj ~pp�pd

i; (33)

where j�pd
i is the NN component of a deuteron moving

with a momentum pd. We expand j�pd
i in terms of NN

plane-wave states

j�pd
i ¼

Z
d ~pNd ~p2�pd

ð ~pNÞ�ð ~pd � ~pN � ~p2Þj ~pN ~p2i:
(34)

Keeping only the contributions due to a parton in j ~pNi of
the above expansion of �pd

and a parton from projectile

state j ~ppi, the current matrix element in Eq. (33) becomes

h�pd
~ppjJ�ð0Þj ~pXp

~pXN
~psi

¼
Z
d ~pN�

�
pd
ð ~pNÞ�ð ~pd� ~pN� ~psÞ

�h ~pN ~ppjJ�ð0Þj ~pXp
~pXN

i: (35)

By using Eq. (35), Eq. (33) can then be written as

p

d

Xp

N

γ

µ+

µ−

X N

FIG. 2. Impulse approximation of pd DY process.
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Fpd
�
ðpp;pd;qÞ ¼

Z
d ~pNj�pd

ðpNÞj2
ð2EpÞð2EdÞ
ð2EpÞð2ENÞ

�
ð2�Þ6ð2EpÞð2ENÞ

� X
Xp;XN

Z
d ~pXp

d ~pXN
�4ðpp þpN �pXp

�pXN
�qÞh ~pN ~ppjJ�ð0Þj ~pXp

~pXN
ih ~pXN

~pXp
jJ
ð0Þj ~pp ~pNi

�
: (36)

We see that the quantity within the brackets f. . .g in the
above equation is identical to FpN

�
ðpp; pN; qÞ of Eq. (17).
We then have

Fpd
�
ðpp; pd; qÞ ¼

Z
d ~pN�pd

ð ~pNÞ
EpEd

EpEN

FpN
�
ðpp; pN; qÞ;

(37)

where

�pd
ð ~pNÞ ¼ j�pd

ð ~pNÞj2: (38)

By using Eq. (34), one can show that

�pd
ð ~pNÞ ¼ h�pd

jby~pN
b ~pN

j�pd
i; (39)

where by~pN
is the creation operator for a nucleon with

momentum ~pN . Thus, �pd
ð ~pNÞ is the nucleon momentum

distribution in a moving deuteron with momentum pd. We
will present a formula for calculating �pd

ð ~pNÞ in Sec. IV.
By using Eq. (37), Eq. (31) becomes

d�pd ¼ ð2�Þ4
4½ðpp � pdÞ2 �m2

pm
2
d�1=2

� X
N¼p;n

Z
d ~pN�pd

ð ~pNÞ
EpEd

EpEN

�
1

ð2�Þ6
d ~kþ
2Eþ

d ~k�
2E�

� 1

q4
f�
ðkþ; k�ÞFpN

�
ðpp; pN; qÞ
�
: (40)

The quantity within the brackets f. . .g of the above equation
is exactly what is in the brackets f. . .g of Eq. (16).
Accounting for the difference in flux factor, we obviously
can write

d�pdðpp; pdÞ
dq2

¼ X
N¼p;n

Z
d ~pN�pd

ð ~pNÞ

� ½ðpp � pNÞ2 �m2
pm

2
N�1=2

½ðpp � pdÞ2 �m2
pm

2
d�1=2

EpEd

EpEN

� d�pNðpp; pNÞ
dq2

; (41)

where d�pNðpp; pNÞ=dq2 are given in Eq. (29).

Substituting Eq. (29) into Eq. (41), we have

d�pdðpp;pdÞ
dq2

¼ X
N¼p;n

Z
d ~pN�pd

ð ~pNÞ

�X
q

Z
d ~pqd ~p �q

½ðpq �p �qÞ2 �m4
q�1=2

½ðpp �pdÞ2 �m2
pm

2
d�1=2

EpEd

EqE �q

�½fq~pp
ð ~pqÞf �q

~pN
ð ~p �qÞþ fq~pN

ð ~pqÞf �q
~pp
ð ~p �qÞ�

d�q �qðpq;p �qÞ
dq2

:

(42)

B. Contribution from pions

In the impulse approximation, the contribution from the
�NN component of Eq. (32) to the pd DY cross sections
can be derived by using the similar procedures detailed in
the previous subsection. We find that the resulting formula
can be obtained from Eq. (42) by changing the momentum
distribution and parton distributions for the nucleon to
those for the pion. Explicitly, we have

d�pd
� ðpp;pdÞ
dq2

¼
Z
d ~k��pd

ð ~k�Þ
X
q

Z
d ~pqd ~p �q

½ðpq �p �qÞ2�m4
q�1=2

½ðpp �pdÞ2�m2
pm

2
dÞ�1=2

�EpEd

EqE �q

½fq~pp
ð ~pqÞf �q

~k�
ð ~p �qÞþfq~k�

ð ~pqÞf �q
~pp
ð ~p �qÞ�

�d�q �qðpq;p �qÞ
dq2

; (43)

where fq~k�
and f �q

~k�
are the PDFs for the pion, and the pion

momentum distribution in a moving deuteron with mo-
mentum pd is defined by

�pd
ð ~k�Þ ¼ h��NN;pd

jay~k�a ~k�
j��NN;pd

i; (44)

where ay~k�
is the creation operator for a pion with momen-

tum ~k�. The calculation of �pd
ð ~k�Þ from a�NN model will

be given in the next section.
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IV. CALCULATIONS OF NUCLEON AND PION
MOMENTUM DISTRIBUTIONS

We first describe a nuclear model within which the
procedure for calculating the nucleon and pion momentum
distributions in the rest frame of the deuteron is described.
We then explain how these distributions can be used to
calculate the momentum distributions in a fast moving
deuteron, which are the input to our calculations of
Eqs. (42) and (43).

A. �NN model

We follow the�NN studies [29,37] to consider a nuclear
model defined by the following Hamiltonian:

H ¼ H0 þ VNN þ ½H�NN þHy
�NN�; (45)

where H0 is the sum of free energy operators for N and �,
VNN is a nucleon-nucleon potential, and H�NN defines the
virtual N ! �N transition

H�NN ¼ X
i¼1;2

h�NNðiÞ; (46)

where i denotes the ith nucleon. Starting with the standard
pseudovector coupling, the vertex interaction takes the
following familiar form (omitting the spin-isospin indices):

h�NNðiÞ ¼
Z

d ~kd ~pid ~p
0
i�ð ~pi þ ~k� ~p0

iÞ

� ½j ~pi
~kiF�NNð ~pi; ~kÞh ~p0

ij�; (47)

where j ~pii and j ~ki are the plane-wave states of the ith
nucleon and pion, respectively, and

F�NNð ~p; ~kÞ
¼� i

ð2�Þ3=2
f�NN

m�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�ð ~kÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mN

ENð ~pÞ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mN

ENð ~pþ ~kÞ

s
�u ~p 6k	5u ~pþ ~kFð��NN; ~kÞ: (48)

Here, Fð��NN; kÞ is a form factor that satisfies

Fð��NN; kÞ ¼ 1 at k ¼ i with  ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

�=ð4m2
NÞ

q
being the pion momentum at the nucleon pole of the �N
amplitude, and its cutoff parameter ��NN can be deter-
mined in the fit to the �N scattering data.

It follows from Eqs. (45)–(47) that the bound state j�di
in the deuteron rest frame ( ~pd ¼ 0) is defined by

Hj�di ¼ Edj�di; (49)

where the deuteron wave function is normalized to
h�dj�di ¼ 1 and has two components

j�di ¼ 1

Z1=2
½j�NNi þ aj��NNi�: (50)

Here, Z is a normalization factor and each component of
the wave function is normalized to 1: h�NNj�NNi ¼ 1 and
h��NNj��NNi ¼ 1. By using the orthogonality condition
h�NNj��NNi ¼ 0, Eqs. (49) and (50) lead to

ah��NNjðH0þVNNÞj��NNiþh��NNjH�NNj�NNi¼aEd;

(51)

h�NNjðH0 þ VNNÞj�NNi þ ah�NNjHy
�NNj��NNi ¼ Ed:

(52)

From Eq. (51), we have

a ¼ h��NNjH�NNj�NNi
Ed � h��NNjðH0 þ VNNÞj��NNi : (53)

It is a difficult three-body problem to solve Eqs. (51) and
(52) exactly and find a model of VNN to fit the NN
scattering data and the deuteron bound state properties.
Here we are simply guided by the results from the previous
�NN studies [29,37]. It was found that in the low energy
region, the �NN component is much weaker than the NN
component, and it is a good approximation to neglect the
matrix element of h��NNjVNNj��NNi in Eq. (53). We then
have from Eq. (52)

h�NNjðH0þVNNÞj�NNi

þh�NNjHy
�NNj��NNih��NNjH�NNj�NNi
Ed�h��NNjH0j��NNi ¼Ed; (54)

and the coefficient a of the total wave function (50) is

a ¼ h��NNjH�NNj�NNi
Ed � h��NNjH0j��NNi : (55)

If we further assume that the pion loop (the pion is emitted
and absorbed by the same nucleon) in the second term of
Eq. (54) can be absorbed in the physical nucleon mass,
Eq. (54) is equivalent to the following Schrödinger
equation:

½H0 þ VNN þ Vopep
NN ðEdÞ�j�NNi ¼ Edj�NNi; (56)

with the one-pion-exchange potential defined by

Vopep
NN ðEdÞ ¼

X
i�j

hy�NNðiÞ
j��NNih��NNj

Ed � h��NNjH0j��NNih�NNðjÞ:

(57)

By using Eq. (46) for H�NN , Eq. (55) leads to

jaj2 ¼ h�NNj½�loop
� ðEdÞ þ �exc

� ðEdÞ�j�NNi; (58)

where

�exc
� ðEdÞ¼

X
i�j

hy�NNðiÞ
j��NNih��NNj

ðEd�h��NNjH0j��NNiÞ2
h�NNðjÞ;

(59)
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�
loop
� ðEdÞ ¼

X
i

hy�NNðiÞ

� j��NNih��NNj
ðEd � h��NNjH0j��NNiÞ2

h�NNðiÞ: (60)

From Eqs. (57) and (59), we then have the following
interesting relation:

�exc
� ðEdÞ ¼ � d

dEd

Vopep
NN ðEdÞ: (61)

Note that the relation Eq. (61) is identical to that used in
Ref. [38] to calculate the so-called pion excess, except that
a nonrelativistic form of Vopep

NN is used in their calculations.

To see the physical meaning of �
loop
� ðEdÞ and �exc

� ðEdÞ,
we define the pion numberN� in the deuteron rest frame as

N� ¼
Z

d ~k��ð ~kÞ; (62)

with

��ð ~kÞ ¼ h�djay~k a ~kj�di: (63)

From Eq. (50), we then get

N� ¼ 1

Z
jaj2: (64)

By using Eqs. (58) and (64), we can define

N� ¼ N0
� þ Nexc

� ; (65)

where

N0
� ¼ 1

Z
h�NNj�loop

� ðEdÞj�NNi ¼
Z

d ~k�0
�ð ~kÞ; (66)

Nexc
� ¼ 1

Z
h�NNj�exc

� ðEdÞj�NNi ¼
Z

d ~k�exc
� ð ~kÞ: (67)

In the DY and DIS calculations, the contributions from

�0
�ð ~kÞ are included in the meson cloud contributions to the

nucleon parton distributions. Only �exc
� ð ~kÞ is needed in our

calculation of pion contribution to the proton-deuteron DY
process. This assumption is similar to that used in the
calculation of pion-excess contribution [38] to DIS cross
sections [39].

To calculate �exc
� ð ~kÞ, we use Eq. (61) by first calculating

the matrix element of one-pion-exchange potential (57) in
the rest frame of the deuteron. From the kinematics shown
in Fig. 3, we have

h�NNjVopep
NN ðEdÞj�NNi ¼

Z
d ~kh�NNjVopep

NN ð ~k; EdÞj�NNi;
(68)

where the contribution from the pion with momentum ~k is

h�NNjVopep
NN ð ~k; EdÞj�NNi ¼

Z
d ~p��

NNð ~pþ ~kÞF�
�NNð ~p; ~kÞ

1

Ed � ENð ~pÞ � ENð ~pþ ~kÞ � E�ð ~kÞ
F�NNð� ~p� ~k; ~kÞ�NNð ~pÞ:

By using Eqs. (61) and (48) and including spin-isospin indices, we readily get

�exc
� ð ~kÞ ¼ 1

Z

�
� d

dEd

h�NNjVopep
NN ð ~k; EdÞj�NNi

�

¼ 2

Z

Z
d ~p

1

ð2�Þ3
�
f�NN

m�

�
2 1

2E�ð ~kÞ
mN

ENð ~pÞ
mN

ENð ~pþ ~kÞ
�

1

Ed � ENð ~pÞ � ENð ~pþ ~kÞ � E�ð ~kÞ
�
2

� X
ms1

ms2
ms0

1
ms0

2

�
JdMJd

�
NN ð ~pþ ~k; ms1 ; ms2Þ �u ~pþ ~k;ms1

6k	5u ~p;ms0
1

�u� ~p� ~k;ms2

6k	5u� ~p;ms0
2

� ½Fð��NN; ~kÞ�2�JdMJd

NN ð ~p;ms0
1
; ms0

2
ÞhTdMdjIð�1; �2ÞjTdMdi; (69)

where the overall factor 2 comes from summing up two possible pion-exchange diagrams. The isospin matrix element is

hTdMdjIð�1; �2ÞjTdMdi ¼
X

�¼�1;0;þ1

X
T0M0

T

hTdMdj��ð1Þj½��N1N2�T0M0
T
ih½��N1N2�T0M0

T
j���ð2ÞjTdMdið�1Þ�;

with

p

−p

k

−p−k

p+k

FIG. 3. One-pion-exchange interaction in the center of mass
frame of NN.
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jTMTi ¼
X

m1;m2

�
1

2

1

2
m1m2jTMT

	
jm1; m2i; (70)

j½��N1N2�T0M0
T
i

¼ X
t

j½��½N1N2�t�T0M0
T
i

¼ X
t

X
m1;m2

�
1

2

1

2
m1m2jtmt

	
ht1mtm�jT0M0

Tijm1; m2i;

(71)

where hj1j2m1m2jjmi is the Clebsch-Gordon coefficient.
For deuteron T ¼ MT ¼ 0 and only T0 ¼ M0

T ¼ 0
for �NN should be kept; we then get
hTdMdjIð�1; �2ÞjTdMdi ¼ �1=3. The spin-orbital part of
the deuteron wave function in Eq. (69) can be expanded as

�
JdMJd

NN ð ~p;ms1 ;ms2Þ ¼
X
LML

hLSMLmsjJdMJdi

�
�
1

2

1

2
ms1ms2









SmS

	
uLðpÞYLML

ðp̂Þ;
(72)

where the radial wave functions are normalized as

Z 1

0
p2dp½u20ðpÞ þ u22ðpÞ� ¼ 1: (73)

Because the �NN component is much smaller, the nor-
malization factor is Z� 1. We will use Z ¼ 1 for calculat-

ing �exc
� ð ~kÞ of Eq. (69). In the same approximation, we will

use the deuteron radial wave functions u0ðpÞ and u2ðpÞ
generated from the available realistic NN potentials such
as ANL-V18 [30].

Neglecting the small contribution from the �NN com-
ponent, the nucleon momentum distribution in the rest
frame of the deuteron can be written as

�Nð ~pÞ ¼ h�djby~pb ~pj�di � 1

Z
h�NNjby~pb ~pj�NNi: (74)

By using Eq. (72) and setting Z� 1, we obtain

�Nð ~pÞ � 1

4�
½u20ðpÞ þ u22ðpÞ�: (75)

B. Momentum distributions in a moving deuteron

In the calculation of proton-deuteron DY cross sections,
the momentum distributions �pd

ð ~pNÞ in Eq. (42) and

�pd
ð ~k�Þ in Eq. (43) are defined in a fast moving deuteron

with a momentum pd. To calculate such momentum dis-
tributions, we first note that the particle number in a system
is independent of the frame. We thus have the following
frame independent normalization condition:

Na ¼
Z

d ~p0�pd
ð ~p0Þ ¼

Z
d ~p�p	

d
ð ~pÞ; (76)

where Na is the number of the considered particle a ¼ N
or � in the deuteron, and the deuteron momenta (set ~pd in
the z direction) in the moving frame and the rest frame are,
respectively,

pd ¼ ðEdð ~pdÞ; 0; 0; pz
dÞ; (77)

p	
d ¼ ðmd; 0; 0; 0Þ: (78)

The nucleon momenta in Eq. (76) are related by the

Lorentz transformation defined by the velocity � ¼
Pz=Edð ~PdÞ of the moving frame. Explicitly, we have

pz ¼ Edð ~pdÞ
md

�
p0
z � pz

d

Edð ~pdÞENð ~p0Þ
�
; (79)

ENðpÞ ¼ Edð ~pdÞ
md

�
ENð ~p0Þ � pz

d

Edð ~pdÞp
0
z

�
; (80)

~p? ¼ ~p0
?: (81)

The above equations lead to the following Lorentz invari-
ant relation:

d ~p0

ENð ~p0Þ ¼ d ~p

ENð ~pÞ : (82)

By using Eqs. (76) and (82), we thus have

�pd
ð ~p0Þ ¼ ENð ~pÞ

ENð ~p0Þ�p	
d
ð ~pÞ: (83)

With Eqs. (79)–(81), we can use Eq. (83) to get �pd
ð ~p0Þ

from the momentum distribution �p	
d
ð ~pÞ in the rest frame

of the deuteron; �p	
d
ð ~pÞ can be calculated from the mo-

mentum distributions in the deuteron rest frame: �exc
� ð ~kÞ of

Eq. (69) for pions and �Nð ~pÞ of Eq. (75) for nucleons.
Here, wemention that the relation (83) for a two-nucleon

system can be explicitly derived from the definition (39)
within the relativistic quantum mechanics developed by
Dirac, as reviewed in Ref. [40].

V. CALCULATION PROCEDURES

In this section, we develop procedures to apply the
formulas presented in previous sections to investigate the
Fermi-motion and pion-exchange effects on the ratio
Rpd=pp ¼ �pd=ð2�ppÞ between the pd and and pp DY

cross sections. Our first task is to relate our momentum
variables pp, pT , and q to the variables used in the analysis

[5] of the available data. This will be given in Sec. VA. The
procedures for calculating DY cross sections are given for
pp in Sec. VB and for pd in Sec. VC.
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A. Kinematical variables for DY cross sections

It is common [5] to use the collinear approximation to
define the parton momentum:

pqp ¼ x1pp; (84)

pqT ¼ x2pT; (85)

where pqp ðpqT Þ is the momentum of a parton in the

projectile (target), and x1 and x2 are scalar numbers. The
momentum q of the virtual photon in the q �q ! 	 !
�þ��, as seen in Fig. 1. is

q ¼ pqp þ pqT ¼ x1pp þ x2pT: (86)

In the considered very high energy region Ep > 100 GeV,

the masses of projectile (p2
p ¼ m2

p) and target (p2
T ¼ m2

T)

can be neglected and hence s ¼ ðpp þ pTÞ2 � 2pp � pT ,

pT � q� x1pp � pT , and pp � q� x2pp � pT . We thus have

the following relations:

x1 � 2q � pT

s
; (87)

x2 �
2q � pp

s
: (88)

It is most convenient to perform calculations in terms of
x1 and x2 in the center of mass system in which the
projectile is in the z direction and the target in the �z
direction:

pp ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

q
; 0; 0; p

�
� ðp; 0; 0; pÞ; (89)

pT ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
T

q
; 0; 0;�p

�
� ðp; 0; 0;�pÞ: (90)

With the choices (89) and (90), we have

s ¼ ðpp þ pTÞ2 � 4p2;

M2 ¼ q2 ¼ ðx1pp þ x2pTÞ2 � 4x1x2p
2:

The above two equations lead to the simple relation

x1x2 �M2

s
: (91)

By using Eqs. (87)–(90), we can define a useful variable xF

xF ¼ x1 � x2 �
2ðpT � ppÞ � q

s
� 2

ffiffiffi
s

p
ẑ � ~q
s

¼ 2
ffiffiffi
s

p
p̂p � ~q
s

:

(92)

In the notation of Ref. [5], we write

xF � p	
kffiffiffi
s

p
=2

; (93)

where p	
k ¼ p̂p � ~q is clearly the longitudinal component

of the intermediate photon momentum with respect to the
projectile in the center of mass frame. Experimentally, s,
M, xF, and d�=ðdMdxFÞ are measured. With the relation
(91), we certainly can determine the corresponding x1, x2,
and d�=ðdx1dx2Þ. We thus will only give the expression of
d�=ðdx1dx2Þ in the following subsections.

B. Calculation of pp DY cross sections d�pp=dx1dx2

We now note that with the simplifications used in defin-
ing the variables x1 and x2, as described above, the flux
factor associated with Eq. (29) becomes 1. Substituting
Eq. (15) into Eq. (29), the DY cross section for pðppÞ þ
NðpNÞ ! �þ þ�� þ Xp þ XN with N ¼ p, n is then

calculated from

d�pNðpp; pNÞ
dq2

¼ X
q

Z
d ~pqd ~p �q½fqpp

ðpqÞf �q
pN
ðp �qÞ þ fqpN

ðpqÞf �q
pp
ðp �qÞ�

� 4��2

9q2
ê2q�ðq2 � ðpq þ p �qÞ2Þ: (94)

In the chosen center of mass frame, defined by Eqs. (89)
and (90), let us consider �q in the target nucleon moving
with a momentum pN ¼ ðpz

N; 0; 0; p
z
NÞ. In the precise col-

linear approximation, only the z component of the �q mo-
mentum is defined by pz

N . As defined by Eq. (88), we thus
write ~p �q ¼ ð ~p �q?; pz

�qÞ, where
pz

�q ¼ x2p
z
N; (95)

and ~p �q? can be arbitrary. The integration over the �q

momentum distribution in the target N can then be
written as Z

d ~p �qf
�q
~pN
ð ~p �qÞ ¼

Z
dx2f

�q
Nðx2Þ; (96)

with

f �q
Nðx2Þ ¼ pz

N

Z
d ~p �q?f

�q
~pN
ðx2pz

N; ~p �q?Þ: (97)

Similarly, we can define for the projectile protonZ
d ~pqf

q
~pp
ð ~pqÞ ¼

Z
dx1f

q
pðx1Þ: (98)

By using Eqs. (96) and (98), Eq. (94) can be written as

d�pNðpp;pNÞ
dq2

¼X
q

Z
dx1dx2½fqpðx1Þf �q

Nðx2Þþf �q
pðx1ÞfqNðx2Þ�

�4��2

9q2
ê2q�ðq2�ðpqþp �qÞ2Þ: (99)
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Integrating the above equation over dq2, we then obtain an
expression of the cross section in terms of x1 and x2 that are
defined by experimental kinematics

d�pNðpp; pNÞ
dx1dx2

¼ X
q

4��2

9ðpq þ p �qÞ2
ê2q½fqpðx1Þf �q

Nðx2Þ þ f �q
pðx1ÞfqNðx2Þ�;

(100)

which is the same as Eq. (1) used in the analysis of Ref. [5],
since ðpq þ p �qÞ2 ¼ q2 ¼ M2 for the partonic process

q �q ! 	. Therefore, we identify f �q
NðxÞ, defined by

Eq. (97), with PDFs of the parton model [also for fqNðxÞ].
To compare with the results of Ref. [5], we use PDFs of
CETEQ5m [35] in our calculations of Eq. (100).

Equation (100) for the pp then obviously takes the
following form:

d�ppðpp; pN¼pÞ
dx1dx2

¼ 4��2

9M2

�
4

9
ðfupðx1Þf �u

pðx2Þ þ f �u
pðx1Þfupðx2ÞÞ

þ 1

9
ðfdpðx1Þf �d

pðx2Þ þ f
�d
pðx1Þfdpðx2ÞÞ

�
: (101)

C. Calculation of pd DY cross sections of
d�pd=ðdx1dx2Þ

We first consider the contributions from the nucleon
momentum distribution �pd

ð ~pNÞ to Eq. (42) for the

proton-deuteron DY cross sections. With the simplifica-
tions used in defining the variables x1 and x2, as described
in Sec. VA, the flux factor associated with Eq. (42)
becomes 1. We thus only need to consider

d�pdðpp;pdÞ
dq2

¼X
q

4��2

9q2
ê2q

Z
d ~pq

Z
d ~p �q

�
Z
d ~pN�pd

ð ~pNÞfq~pp
ð ~pqÞf �q

~pN
ð ~p �qÞ�ðq2�ðpqþp �qÞ2Þ:

(102)

The above expression is for the contribution from an
antiquark in the nucleon N of the deuteron and a quark
in the projectile proton. Other contributions have similar
expressions, except with different quark indices.

By using the definitions of the parton distributions,

Eq. (96) for f �q
NðxN2 Þ and Eq. (98) for fqpðx1Þ, Eq. (102)

can be written in terms of momentum fraction variables x1
for q in the projectile proton p and xN2 of the nucleon N in
the deuteron. We then obtain

d�pdðpp; pdÞ
dq2

¼ X
q

4��2

9q2
ê2q

Z
dx1

Z
dxN2

�
Z

d ~pN�pd
ð ~pNÞfqpðx1Þf �q

NðxN2 Þ�ðq2 � ðpq þ p �qÞ2Þ:
(103)

Similar to the pp case, the deuteron momentum is

chosen to be in the z direction: ~pd ¼ ðpz
d; ~pd? ¼ ~0Þ.

Before we proceed further, it is necessary to relate the
momentum fraction xN2 in Eq. (103) to x2, which is deter-

mined by the experimental variables M, s, and xF through
the relations x1x2 ¼ M2=s and xF ¼ x1 � x2 ¼
p	
k=ð

ffiffiffi
s

p
=2Þ. Since our derivation is based on the impulse

approximation that the parton is emitted from the nucleon
in the deuteron, it is appropriate to assume that the
momentum of the emitted parton is pz

�q ¼ x2p
z
ave, where

pz
ave is the averaged nucleon momentum in the deuteron

defined by

ðpz
aveÞ2 ¼

R
�pd

ð ~pÞðpzÞ2d ~pR
�pd

ð ~pÞd ~p : (104)

Note that �pd
ð ~pÞ in the above equation is calculated from

the nucleon momentum distribution �Nð ~pÞ [Eq. (75)] in the
deuteron rest frame by using the relation Eq. (83). In Fig. 4,
we show the dependence of the calculated �pd

ðpzÞ 
R
d ~p?�pd

ðpz; ~p?Þ on a deuteron momentum pd. As

expected, we find that pz
ave � pz

d=2 at each deuteron

momentum.
Changing the integration variable by xN2 ¼ pz

�q=p
z
N ¼

x2p
z
ave=p

z
N , we can write Eq. (103) as

6-2 0 2 4 8 10 12 14 16 18 20
p

z
 ( GeV )

0

2
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10

ρ N
 (

 p
z )

  (
1/

G
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)

p
d
= 0 

p
d
 = 10.76 GeV

p
d
 = 27.39 GeV

FIG. 4 (color online). Nucleon momentum distribution
�pd

ðpzÞ ¼
R
d ~p?�pd

ðpz; ~p?Þ in a deuteron moving with mo-

mentum pd in the z direction. The deuteron wave function of
Ref. [30] is used.
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d�pdðpp; pdÞ
dq2

¼ 4��2

9q2
ê2q

Z
dx1

Z
dx2

Z
d ~pN�pd

ð ~pNÞ

� pz
ave

pz
N

fqpðx1Þf �q
Nðx2pz

ave=p
z
NÞ�ðq2 � ðpq þ p �qÞ2Þ:

(105)

Integrating over q2 on both sides of the above equation, we
then obtain an expression of the cross section in terms of x1
and x2, which are defined by experimental kinematics

d�pdðpp; pdÞ
dx1dx2

¼ 4��2

9q2
ê2qf

q
pðx1ÞF �q

pd;N
ðx2Þ; (106)

where the �q contribution is isolated in

F �q
pd;N

ðx2Þ ¼
Z

d ~pN�pd
ð ~pNÞp

z
ave

pz
N

f �q
Nðx2pz

ave=p
z
NÞ: (107)

Within the parton model, we should only keep the contri-

bution from f �q
Nðx2pz

ave=p
z
NÞ with x2p

z
ave=p

z
N � 1. The

above equation can then be written as

F �q
pd;N

ðx2Þ ¼
Z 1

ðx2pz
aveÞ

dpz
N

pz
ave

pz
N

f �q
Nðx2pz

ave=p
z
NÞ�pd

ðpz
NÞ;
(108)

with

�pd
ðpz

NÞ ¼
Z

d ~pN?�pd
ðpz

N; ~pN?Þ: (109)

The derivation of Eq. (108) can be extended to have q in
the deuteron and �q in the projectile proton. We finally
obtain

d�pdðpp; pdÞ
dx1dx2

¼ 4��2

9q2
X
q

ê2q

�
fqpðx1Þ

X
N¼p;n

F �q
pd;N

ðx2Þ

þ f �q
pðx1Þ

X
N¼p;n

Fq
pd;N

ðx2Þ
�
: (110)

We use the charge symmetry to calculate PDFs for the

neutron from that of the proton: fdn ¼ fup, f
u
n ¼ fdp, f

�d
n ¼

f �u
p, f

�u
n ¼ f

�d
p. Furthermore, �pd

ðpz
NÞ is the same for neu-

trons and protons. Including the charges for u and d quarks
appropriately, Eq. (110) can be written as

d�pdðpp; pdÞ
dx1dx2

¼ 4��2

9q2

��
4

9
fupðx1Þ þ 1

9
fdpðx1Þ

�
½F �u

pd;pðx2Þ þ F
�d
pd;pðx2Þ�

þ
�
4

9
f �u
pðx1Þ þ 1

9
f
�d
pðx1Þ

�
½Fu

pd;pðx2Þ þ Fd
pd;pðx2Þ�

�
:

(111)

The formula for calculating the contribution from the
pion momentum distribution can be derived by a similar
procedure. We obtain

d�pd
� ðpp; pdÞ
dx1dx2

¼ 4��2

9q2

�
4

9
fupðx1ÞF �u

pd;�ðx2Þ

þ 1

9
fdpðx1ÞF �d

pd;�ðx2Þ þ
4

9
f �u
pðx1ÞFu

pd;�ðx2Þ

þ 1

9
f
�d
pðx1ÞFd

pd;�ðx2Þ
�
; (112)

where fqk�ðxÞ are PDFs for the pion taken from Ref. [28],

and the convolution function for the pion is

Fq
pd;�ðx2Þ¼

Z 1

ðx2kzaveÞ
dkz�

kzave
kz�

fq�ðx2kzave=kz�Þ�pd
ðkz�Þ; (113)

with

�pd
ðkz�Þ ¼

Z
d ~k�?�pd

ðkz�; ~k�?Þ: (114)

Here, the average pion momentum is defined by

ðkzaveÞ2 ¼
R
�pd

ð ~k�Þðkz�Þ2d ~k�R
�pd

ð ~k�Þd ~k�
: (115)

The pion momentum distribution �pd
ð ~k�Þ in the above

equations is calculated from �exc
� ð ~kÞ of Eq. (69) by using

the relation Eq. (83).

VI. NUMERICAL RESULTS

As discussed in Ref. [5], the ratio �d= �u in the proton can
be extracted from the data of the ratios between the pd and
pp DY cross sections:

Rpd=pp ¼ d�pdðp; pdÞ
dx1dx2

��
2
d�ppðp; ppÞ

dx1dx2

�
; (116)

where x1 and x2 have been defined in Sec. VA. We are
interested in the effects of pion exchange and nucleon
Fermi motion on this ratio. The pp cross section
d�ppðp; ppÞ=ðdx1dx2Þ can be calculated from Eq. (101).

The pd cross section d�pdðp; pdÞ=ðdx1dx2Þ is the sum of
the nucleon contribution calculated from Eq. (111) and the
pion contribution from Eq. (112). To compare with the
results of Ref. [5], the nucleon PDFs fqpðxÞ of CETEQ5m
[35] are used in our calculations. The PDFs fq�ðxÞ for the
pion are taken from Ref. [28].
From Eq. (111), it is clear that the nucleon Fermi motion

effects are in Fq
pd;N

ðx2Þ, defined in Eq. (108). If we set

pz
ave=p

z
N ! 1 in Eq. (108), Fq

pd;N
ðx2Þ ! fqNðx2Þ sinceR

d ~pN�pd
ð ~pNÞ ¼ 1, as defined by the normalization of

states. The calculation of Eq. (111) with Fq
pd;N

ðx2Þ !
fqNðx2Þ is then identical to that based on Eq. (2) of
Ref. [5]. The differences between this calculation and
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that from using Eqs. (111) and (108) will indicate the
importance of nucleon Fermi-motion effects on pd DY
cross sections.

To calculate the pion contribution with Eq. (112), we
need to first evaluate Fq

pd;�ðx2Þ defined by Eq. (113). The

pion momentum distribution �pd
ð ~k�Þ in Eq. (113) is calcu-

lated from using the relation Eq. (83) and �exc
� ð ~kÞ defined

by Eq. (69). We see from Eq. (69) that the pion momentum

distribution �exc
� ð ~kÞ depends on the �NN form factor

Fð��NN; ~kÞ [Eq. (48)]. Following the previous�NN studies
[29,37], this form factor must be consistent with �N scat-
tering data. In this work, we apply the�N model formulated
in Ref. [41] to determine the Fð��NN; kÞ by fitting the �N
partial wave amplitudes [42] up to invariant mass
W ¼ 1:3 GeV. The �N scattering within this model has
been given in Ref. [41] and will not be repeated here. Our
fits are shown in Fig. 5. The resulting parameters are not
relevant to this work and are therefore not presented. For our
calculation, we only need the resulting �NN form factor.

We see in Fig. 6 that the resulting �NN form factor can
be fitted by the following modified dipole form:

Fð��NN; kÞ ¼
�
�2

�NN � 2

�2
�NN þ k2

�
2½1þ að1þ k2=2Þ�

� exp½�bð1þ k2=2Þ�; (117)

where  ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½m2

�=ð4m2
NÞ�

q
, ��NN ¼ 685:7 MeV,

a ¼ 1:67� 10�3, b ¼ 2:79� 10�4. It is close to the

usual dipole form Fð��NN; kÞ ¼
�
�2

�NN�2

�2
�NNþk2


2

with

��NN ¼ 810:6 MeV.

The pion momentum distribution �exc
� ð ~kÞ calculated

from Eq. (69) with the �NN form factor given in
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FIG. 5 (color online). Results of the fit to �N scattering amplitudes [42] up to W ¼ 1:3 GeV.
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FIG. 6 (color online). Filled squares are the �NN form factor
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with ��NN ¼ 810:6 MeV.
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Eq. (117) is the dashed curve in Fig. 7. Here we also show
the nucleon momentum distribution �NðpÞ (solid curve).
Note that �exc

� ðpÞ changes sign at p� 200 MeV. This sign
change is also seen in the calculation of pion-excess in
Ref. [38], except that their magnitudes are much larger
because they use a much larger �NN cutoff ��
1400 MeV for a dipole form of a nonrelativistic NN
potential.

With the input specified above, we can calculate ratio
Rpd=pp defined by Eq. (116). We compare three results:

(1) no nucleon Fermi motion (FM) and no pion exchange
(� exc) from using Eq. (111) with Fq

pd;N
ðx2Þ ! fqNðx2Þ;

(2) with FM and no � exc from using Eq. (111); (3) with
FM and with � exc from adding the results from using
Eqs. (111) and (112).

In Fig. 8, the calculated Rpd=pp at 800 GeVare compared

with the data of Ref. [5]. Our results with no Fermi motion
and no pion exchange (dash-dotted curve) are similar to
that presented in Ref. [5]. The differences between the
dash-dotted and dashed curves are due to the Fermi motion
of the nucleon inside the deuteron. The solid curve also
includes the pion-exchange effects. All three results are
close to the data. Clearly, the nucleon Fermi-motion and
pion-exchange effects are small in the region covered by
this experiment. Our results shown in Fig. 8 suggest that
the simple formula Eq. (2) is valid to extract the �d= �u ratio
in the proton in the small x2 & 0:3 region.
To facilitate the analysis of the forthcoming data from

Fermilab, we present our prediction at 120 GeV in Fig. 9.
We see that the Fermi-motion and pion-exchange effects
are small in the x2 < 0:4. However, these two effects are
significant at larger x2. We have observed that the rapidly
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FIG. 7 (color online). The momentum distribution 4�p2�ðpÞ
of the pion (�) and the nucleon (N) in the deuteron. Note that
4�p2�NðpÞ is multiplied by a factor 1=500.
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exchange is included (not included). Note that x1 for each x2 is
determined by Eq. (93) and given in Ref. [5].
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rising effect due to pion exchange is due to the fact that the
parton distribution in the pion is much larger than that for
the nucleon at large x, as seen in Fig. 10. Clearly, it is
necessary to include the Fermi-motion and pion-exchange
effects to extract the ratio �d= �u in the proton from the data
of Rpd=pp in the large x2 region.

VII. SUMMARY

For investigating the pion-exchange and nucleon Fermi-
motion effects on the DY process in proton-deuteron (pd)
reactions, we have derived convolution formulas starting
with a nuclear model within which the deuteron has NN
and �NN components. The nucleon Fermi motion is
included by the convolution of PDFs of the nucleon over
the nucleon momentum distribution calculated from the
NN component. The contribution from the �NN compo-
nent is expressed in terms of a convolution of PDFs of the
pion over a pion momentum distribution that depends
sensitively on the �NN form factor. With a �NN form
factor determined by fitting the �N scattering data up to
invariant mass W ¼ 1:3 GeV, we find that the pion-
exchange and nucleon Fermi-motion effects can change
significantly the ratios between the proton-deuteron and

proton-proton DY cross sections Rpd=pp ¼ �pd=ð2�ppÞ in
the region where the partons emitted from the target deu-
teron are in the Bjorken x2 * 0:4 region. The calculated
ratios Rpd=pp at 800 GeVagree with the available data. For

analyzing the forthcoming data from Fermilab, we also
have made predictions at 120 GeV.
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