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The critical end point (CEP) and the critical behavior in its vicinity have been explored in the two-flavor

effective chiral models with and without the presence of an effective Polyakov loop potential. The

tricritical point (TCP) in the massless chiral limit has been located on the phase diagram in the � and T

plane for the Polyakov loop-extended quark-meson model (PQM) and the pure quark-meson model,

which become effective quantum chromodynamics (QCD)-like models due to the proper accounting of

fermionic vacuum loop contributions in the effective potential. The proximity of the TCP to the QCD

critical end point (CEP) has been quantified in the phase diagram. The critical region around the CEP has

been obtained in both the presence and absence of fermionic vacuum-loop contributions in the effective

potentials of the PQM and quark-meson models. The contours of appropriately normalized constant quark

number susceptibility and scalar susceptibility have been plotted around the CEP in different model

scenarios. These contours determine the shape of the critical region and facilitate comparisons between

different models such that the influence of the fermionic vacuum term and the Polyakov loop potential on

the critical behavior around the CEP can be ascertained in qualitative as well as quantitative terms. Critical

exponents resulting from the divergence of quark number susceptibility at the CEP have been calculated

and compared with those in different model scenarios. The possible influence of the TCP on the critical

behavior around the CEP has also been discussed. The temperature variation of � and � meson masses at

� ¼ 0, � ¼ �CEP, and �>�CEP has been shown and compared with that seen in different model

scenarios and the emerging mass degeneration trend in the � and � meson mass variations has been

inferred as the chiral-symmetry restoration takes place at higher temperatures.
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I. INTRODUCTION

Under the extreme conditions of high temperature and/
or density, normal hadronic matter undergoes a phase
transition, where the individual hadrons dissolve into their
quark and gluon constituents and produce a collective form
of matter known as the quark-gluon plasma (QGP) [1–4].
The study of the different aspects of this phase transition is
a challenging task because quantum chromodynamics
(QCD)—the theory of strong interactions—becomes non-
perturbative in the low-energy limit. However, the QCD
vacuum reveals itself through the process of spontaneous
chiral symmetry breaking and the phenomenon of color
confinement.

The QCD Lagrangian is known to have global
SULþRðNfÞ � SUL�RðNfÞ symmetry for Nf flavors of

massless quarks. The formation of a chiral condensate in
the low-energy hadronic vacuum of QCD leads to the
spontaneous breaking of the axial (A ¼ R� L) part of
this symmetry, known as the chiral symmetry, and one
gets (N2

f � 1) massless Goldstone bosons according to

Goldstone’s theorem. Since quarks are not actually mass-
less, the chiral symmetry of the QCD Lagrangian is explic-
itly broken and massless modes become pseudo-Goldstone
bosons after acquiring mass. Nevertheless, the observed
lightness of pions in nature suggests that we have an

approximate chiral symmetry for QCD with two flavors of
light u and d quarks. In the opposite limit of infinitely heavy
quarks, QCD becomes a pure SUðNcÞ gauge theory which
remains invariant under the global ZðNcÞ center symmetry
of the color gauge group. The center symmetry—a symmetry
of the hadronic vacuum—is spontaneously broken in the
high temperature/density regime of the QGP. The
expectation value of the Wilson line (Polyakov loop) is
related to the free energy of a static color charge. It
vanishes in the confining phase (as the quark has infinite
free energy) and becomes finite in the deconfined phase.
Hence the Polyakov loop serves as the order parameter of
the confinement-deconfinement phase transition [5]. Even
though the center symmetry is always broken with the
inclusion of dynamical quarks in the system, one can
regard the Polyakov loop as an approximate order parame-
ter because it is a good indicator of a rapid crossover in the
confinement-deconfinement transition [6,7].
Lattice QCD simulations (see, e.g., Refs. [8–18]) give us

important information and insights regarding various
aspects of the QGP transition, such as the restoration of
chiral symmetry in QCD, the order of the confinement-
deconfinement phase transition, the richness of the QCD
phase structure, and phase diagram mapping. Since lattice
calculations are technically involved and various issues are
not conclusively settled within the lattice community, one
resorts to the calculations within the ambit of phenomeno-
logical models developed in terms of effective degrees of*vivekkrt@gmail.com
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freedom. These models serve to complement the lattice
simulations and give much needed insight about the
regions of the phase diagram that are inaccessible to lattice
simulations.

The construction and mapping of the phase diagram in
the quark chemical potential and temperature plane is the
primary challenge presented to the experimental and theo-
retical QGP community. On the temperature axis, the
chiral transition at zero quark chemical potential with
almost physical quark masses has been shown to be a
crossover in recent lattice QCD simulations [13,19].
Effective chiral model studies [20] predict a first-order
phase transition at lower temperatures on the chemical
potential axis. Thus the existence of a critical end point
(CEP) has been suggested in the phase diagram based on
model studies [21–23] together with the inputs from lattice
simulations [10–12]. The first-order transition line starting
from the lowest temperature on the chemical potential axis
terminates at the CEP, which is a genuine singularity of the
QCD free energy. Here the phase transition turns second-
order and its criticality belongs to the three-dimensional
Ising universality class [24–27]. The precise location of the
CEP is highly sensitive to the value of the strange quark
mass. Lattice QCD predictions at nonzero chemical poten-
tial are much more difficult due to the QCD action becom-
ing complex on account of the fermion sign problem [9].
There is evidence for a CEP at finite � [10,11] from a
Taylor expansion of the QCD pressure around � ¼ 0. In
another lattice study, finite chemical potential extrapola-
tions provide some limitations and can rule out the exis-
tence of a CEP for small �=T ratios [28]; however, even
this exotic scenario can be turned around if the critical
surface in the mass-chemical potential plane suffers a
backbending at finite �, as shown in Refs. [29,30]. In the
chiral limit of zero up and down quark masses, the chiral
phase transition is of second order at zero � and the static
critical behavior is expected to fall in the universality class
of the O(4) spin model in three dimensions [20]. Thus the
existence of a CEP for the actual two-quark-flavor QCD
implies that two-flavor massless QCD has a tricritical point
(TCP) at which the second-order O(4) line of critical points
ends.

Experimental signatures encoding the singular behavior
of thermodynamic quantities in the vicinity of the critical
point have already been suggested [31]. These are related
to chemical potential and temperature fluctuations in
event-by-event fluctuations of various particle multiplic-
ities [32]. In the center-of-mass energy scans, an increase
and then a decrease in the number of fluctuations of pions
and protons should be observed as one crosses the critical
point. If the signals are not washed out due to the expansion
of the colliding system, the critical point might be located
in the phase diagram by the observation of nonmonotonic
behavior of number fluctuations in its vicinity [33].
Recently, the beam energy scan program dedicated to the

search for critical points has begun at the Relativistic
Heavy Ion Collider [34]. The Compressed Baryonic
Matter experiment (GSI-Darmstadt) at the Facility for
Antiproton and Ion Research and the Nuclotron-based
Ion Collider Facility at the Joint Institute for Nuclear
Research will also be looking for the signatures of a critical
end point. Characteristic signatures of the conjectured CEP
for experiments have been discussed in Refs. [35–37].
Recently, effective chiral models, such as the linear

sigma models [38–44], the quark-meson (QM) models
(see, e.g., Refs. [29,30,45–53]), and Nambu-Jona-Lasinio
(NJL)-type models [45,54–57] were extended to combine
the features of a confinement-deconfinement transition
together with that of a chiral symmetry breaking-restoring
phase transition. The chiral order parameter and Polyakov
loop order parameter were simultaneously coupled to the
quark degrees of freedom in these models. Thus Polyakov
loop-augmented NJL (PNJL) models [58–76], Polyakov
loop-augmented linear sigma models, and Polyakov loop-
extended quark-meson (PQM) models [77–85] have facili-
tated the investigation of the full QCD thermodynamics
and phase structure at zero and finite quark chemical
potential, and it has been shown that the bulk thermody-
namics of the effective models agrees well with the lattice
QCD data. The issue of the location of the CEP in the phase
diagram together with the extent of criticality around it is
also being actively pursued in a variety of effective model
studies [24,25,86–93]. The critical region around the CEP
is not point-like, but rather has a much richer structure. The
estimation of the size of the critical region is especially
important for future experimental searches for the CEP in
heavy ion collision experiments.
In the no-sea mean-field approximations, an ultra-

violet divergent part of the fermionic vacuum loop
contribution to the grand potential were until recently
frequently neglected in the QM/PQM model calculations
[29,45,46,51,56]. Because of this, the phase transition on
the temperature axis at� ¼ 0 for the two-flavor QMmodel
becomes first-order in the chiral limit of massless quarks,
and one does not find a TCP on the phase diagram.
Recently, Skokov et al. in Ref. [84] addressed this issue
by incorporating appropriately renormalized fermionic
vacuum fluctuations in the thermodynamic potential of
the QM model at zero chemical potential, which becomes
an effective QCD-like model as it is then able to reproduce
the expected second-order chiral phase transition at � ¼ 0
from the universality arguments [20] for the two massless
flavors of QCD. The fermionic vacuum correction and
its influence has also been investigated in earlier works
[94–97]. In a recent work [98], we generalized the proper
accounting of renormalized fermionic vacuum fluctuations
in the two-flavor PQM model to the nonzero chemical
potentials and found that the position of the CEP shifts to
a significantly higher chemical potential in the � and T
plane of the phase diagram due to the influence of a
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fermionic vacuum term in our calculations using a PQM
model with a vacuum term (PQMVT). Very recently,
Schaefer et al. [99] worked out the size of the critical
region around the CEP in a three-flavor (2þ 1) PQM
model where the cutoff-independent renormalization of
fermionic vacuum fluctuations has been considered.
They calculated critical exponents and higher-order non-
Gaussian moments to identify the fluctuations in particle
multiplicities. The effect of fermionic vacuum fluctuations
was also investigated in another recent 2þ 1-quark-flavor
study [100]. Since the criticality around the CEP is influ-
enced by the presence of the strange quark, it is important
to have a two-flavor calculation in the same model in order
to facilitate the comparison with the corresponding size of
the critical region and the nature of the criticality obtained
in 2þ 1-flavor QM/PQM model studies.

In this paper, we will calculate the phase diagram in the
massless chiral limit and locate the tricritical point (TCP)
in the � and T plane for the PQMVT model and the QM
model with a vacuum term (QMVT) which have become
QCD-like in the presence of a fermionic vacuum term and
which yield the second-order transition at � ¼ 0 on the
temperature axis. Further, we will be investigating the size
and extent of the critical region around the CEP in the
phase diagram calculated in the two-flavor QM/PQMmod-
els with and without the effect of fermionic vacuum fluc-
tuations in the grand potential. We will be plotting the
contours of appropriately normalized constant quark num-
ber susceptibility and scalar susceptibility around the CEP
in different model scenarios. In order to investigate the
qualitative and quantitative effect of a fermionic vacuum
term and the Polyakov loop potential on the critical behav-
ior around the CEP, we will compare the shape of these
contours as obtained in different model calculations.
Further, we compute and compare the critical exponents
resulting from the divergence of quark number suscepti-
bility at the CEP in different model scenarios. The possible
influence of the TCP on the critical behavior around the
CEP will also be discussed. Finally, we will plot the
temperature variation of � and � meson masses at
� ¼ 0, � ¼ �CEP, and �>�CEP in different model sce-
narios and compare the emerging mass degeneration trend
in the � and � meson mass variations as the chiral sym-
metry is restored at higher temperatures.

In the presentation of this paper, we recapitulate the
formulation of the two-quark flavor PQM model in
Sec. II. The thermodynamic grand potential and the choice
of the Polyakov loop potential is discussed in Sec. II A. In
Sec. II B we give a brief description of the appropriate
renormalization of fermionic vacuum loop contributions
and explain how the new model parameters are obtained in
vacuum when a renormalized vacuum term is added to the
effective potential. Section III explores the proximity of
the QCD tricritical point to the critical end point and the
detailed structure of the phase diagram for the QMVT and

PQMVT models where the effect of fermionic vacuum
terms has been taken care of in the QM and PQM models.
The structure of the phase diagram for the QM and PQM
models and the location of the critical end point will also
be presented to facilitate the comparison. Section III A
investigates the extent of criticality around the CEP where
contours of constant baryon number susceptibility ratios
and constant scalar susceptibility ratios are presented in the
� and T plane, and a comparison of all four models (QM,
PQM, QMVT, and PQMVT) is made. The critical expo-
nents for the criticality around the CEP in all four models
is discussed in the Sec. III B. Section III C presents the
temperature variation of � and � meson masses at � ¼ 0,
� ¼ �CEP, and �>�CEP. Here we also present a detailed
comparison of the emerging mass degeneration trends in
the � and � meson mass variations in different model
scenarios as the chiral-symmetry restoration takes place
at higher temperatures. Finally, Sec. IV presents a sum-
mary together with the conclusion. The first and second
partial derivatives ofUlog and�

T
q�q with respect to tempera-

ture and chemical potential are evaluated in Appendix A of
Ref. [98].

II. MODEL FORMULATION

Wewill be working in the two-flavor quark-meson linear
sigma model, which has been combined with the Polyakov
loop potential [77]. In this model, quarks coming in two
flavors are coupled to the SULð2Þ � SURð2Þ-symmetric
four mesonic fields � and ~� together with the spatially
constant temporal gauge field represented by the Polyakov
loop potential. The Polyakov loop field �ð ~xÞ is defined as
the thermal expectation value of the color trace of the
Wilson loop in the temporal direction:

� ¼ 1

Nc

TrcL; �� ¼ 1

Nc

TrcL
y; (1)

where LðxÞ is a matrix in the fundamental representation of
the SUcð3Þ color gauge group,

Lð ~xÞ ¼ P exp

�
i
Z �

0
d�A0ð ~x; �Þ

�
: (2)

Here P is the path ordering, A0 is the temporal component
of the Euclidean vector field, and � ¼ T�1 [5].
The model Lagrangian is written in terms of quarks,

mesons, couplings, and the Polyakov loop potential
Uð�;��; TÞ:

L PQM ¼ LQM �Uð�;��; TÞ; (3)

where the Lagrangian in the quark-meson linear sigma
model is

L QM ¼ �qf½i��D� � gð�þ i�5 ~� � ~�Þ�qf þLm: (4)

The coupling of quarks with the uniform temporal
background gauge field is affected by the following
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replacement:D� ¼ @� � iA� and A� ¼ ��0A0 (Polyakov

gauge), where A� ¼ gsA
a
��

a=2, gs is the SUcð3Þ gauge
coupling, �a are Gell-Mann matrices in the color space
(a runs from 1 . . . 8), qf ¼ ðu; dÞT denotes the quarks

coming in two flavors and three colors, g is the flavor-blind
Yukawa coupling that couples the two flavors of quarks
with the four mesons [one scalar (�, JP ¼ 0þ) and three
pseudoscalars ( ~�, JP ¼ 0�)].

The quarks have no intrinsic mass but become massive
after spontaneous chiral symmetry breaking because of the
nonvanishing vacuum expectation value of the chiral con-
densate. The mesonic part of the Lagrangian has the fol-
lowing form:

L m ¼ 1

2
ð@��Þ2 þ 1

2
ð@� ~�Þ2 �Uð�; ~�Þ: (5)

The pure mesonic potential is given by the expression

Uð�; ~�Þ ¼ �

4
ð�2 þ ~�2 � v2Þ2 � h�: (6)

Here � is the quartic coupling of the mesonic fields, v is the
vacuum expectation value of the scalar field when chiral
symmetry is explicitly broken, and h ¼ f�m

2
�.

A. The Polyakov loop potential and the thermodynamic
grand potential

The effective potential Uð�;��; TÞ is constructed such
that it reproduces the thermodynamics of pure glue theory
on the lattice for temperatures up to about twice the
deconfinement phase transition temperature. In this work,
we are using a logarithmic form of Polyakov loop effective
potential [60]. The results produced by this potential are
known to be fitted well to the lattice results. This potential
is given by the following expression:

Ulogð�;��; TÞ
T4

¼ �aðTÞ
2

���þ bðTÞ ln½1� 6���

þ 4ð��3 þ�3Þ � 3ð���Þ2�; (7)

where the temperature dependent coefficients are

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

The parameters of Eq. (7) are

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:

The critical temperature for the deconfinement phase
transition T0 ¼ 270 MeV is fixed for a pure gauge Yang
Mills theory. In the presence of dynamical quarks T0 is
directly linked to the mass scale �QCD, the parameter

which has a flavor and chemical potential dependence in
full dynamical QCD, and T0 ! T0ðNf;�Þ [77,85]. For our
numerical calculations in this paper, we have taken a fixed
T0 ¼ 208 MeV for two flavors of quarks.

In the mean-field approximation, the thermodynamic
grand potential for the PQM model is given as [77]

�MFðT;�;�;�;��Þ ¼ UðT; �;��Þ þUð�Þ
þ�q �qðT;�;�;�;��Þ: (8)

Here, we have written the vacuum expectation values
h�i ¼ � and h ~�i ¼ 0.
The quark/antiquark contribution in the presence of the

Polyakov loop reads

�q �qðT;�;�;�;��Þ ¼ �vac
q �q þ�T

q �q

¼ �2Nf

Z d3p

ð2�Þ3 fNcEq	ð�2 � ~p2Þ
þ T½lngþq þ lng�q �g: (9)

The first term of Eq. (9) denotes the fermion vacuum
contribution, regularized by the ultraviolet cutoff �. In the
second term gþq and g�q have been defined after taking the

trace over the color space:

gþq ¼ ½1þ 3�e�Eþ
q =T þ 3��e�2Eþ

q =T þ e�3Eþ
q =T�; (10)

g�q ¼ ½1þ 3��e�E�
q =T þ 3�e�2E�

q =T þ e�3E�
q =T�: (11)

Here we use the notation E�
q ¼ Eq ��, with Eq being

the single-particle energy of the quark/antiquark,

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
; (12)

where the constituent quark massmq ¼ g� is a function of

the chiral condensate. In vacuum �ð0; 0Þ ¼ �0 ¼
f� ¼ 93:0 MeV.

B. The renormalized vacuum term and model
parameters

The fermion vacuum loop contribution can be obtained
by appropriately renormalizing the first term of Eq. (9)
using the dimensional regularization scheme, as done in
Ref. [84]. A brief description of the essential steps is given
below.
The fermion vacuum term is just the one-loop zero-

temperature effective potential at lowest order [101]:

�vac
q �q ¼ �2NfNc

Z d3p

ð2�Þ3 Eq

¼ �2NfNc

Z d4p

ð2�Þ4 lnðp2
0 þ E2

qÞ þ K: (13)

The infinite constantK is independent of the fermion mass,
and hence it is dropped.
The dimensional regularization of Eq. (13) near three

dimensions, d ¼ 3� 2
, leads to the potential up to zeroth
order in 
 as given by
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�vac
q �q ¼ NcNf

16�2
m4

q

�
1



� 1

2

�
�3þ 2�E þ 4 ln

�
mq

2
ffiffiffiffi
�

p
M

���
;

(14)

where M denotes the arbitrary renormalization scale.
The addition of a counter term �L in the Lagrangian of

the QM or PQM model,

�L¼NcNf

16�2
g4�4

�
1



�1

2
½�3þ2�E�4lnð2 ffiffiffiffi

�
p Þ�

�
; (15)

gives the renormalized fermion vacuum loop contribution
as

�
reg
q �q ¼ �NcNf

8�2
m4

q ln

�
mq

M

�
: (16)

The first term of Eq. (9), which is the vacuum contribu-
tion, will then be replaced by the appropriately renormal-
ized fermion vacuum loop contribution as given in
Eq. (16).

The relevant part of the effective potential in Eq. (8) that
will fix the value of the parameters � and v in the vacuum
at T ¼ 0 and � ¼ 0 is the purely �-dependent mesonic
potential Uð�Þ plus the renormalized vacuum term given
by Eq. (16):

�ð�Þ ¼ �reg
q �q þUð�Þ

¼ �NcNf

8�2
g4�4 ln

�
g�

M

�
� �v2

2
�2 þ �

4
�4 � h�:

(17)

The first derivative of�ð�Þ with respect to � at � ¼ f�
in the vacuum is set equal to zero:

@�MFð0; 0;�;�;��Þ
@�

¼ @�ð�Þ
@�

¼ 0: (18)

The second derivative of�ð�Þwith respect to� at� ¼ f�
in the vacuum gives the mass of �,

m2
� ¼ @2�MFð0; 0; f�;�;��Þ

@�2
¼ @2�ð�Þ

@�2
: (19)

Solving Eqs. (18) and (19), we obtain

� ¼ �s þ
NcNf

8�2
g4
�
3þ 4 ln

�
gf�
M

��
(20)

and

�v2 ¼ ð�v2Þs þ
NcNf

4�2
g4f2�; (21)

where �s and ð�v2Þs are the values of the parameters in the
pure sigma model:

�s ¼ m2
� �m2

�

2f2�
; (22)

ð�v2Þs ¼ m2
� � 3m2

�

2
: (23)

It is evident from Eqs. (20) and (21) that the value of the
parameters � and v2 have a logarithmic dependence on the
arbitrary renormalization scale M. However, when we put
the values of � and �v2 into Eq. (17), the M dependence
cancels out neatly after the rearrangement of terms.
Finally, we obtain

�ð�Þ ¼ �NcNf

8�2
g4�4 ln

�
�

f�

�
� �rv

2
r

2
�2 þ �r

4
�4 � h�:

(24)

Here, we define �r and �rv
2
r as the values of the pa-

rameters after a proper accounting of the renormalized
fermion vacuum contribution:

�r ¼ �s þ
3NcNf

8�2
g4 (25)

and

�rv
2
r ¼ ð�v2Þs þ

NcNf

4�2
g4f2�: (26)

Now the thermodynamic grand potential for the PQM
model in the presence of an appropriately renormalized
fermionic vacuum contribution (PQMVT model) will be
written as

�MFðT;�;�;�;��Þ ¼ UðT; �;��Þ þ�ð�Þ
þ�T

q �qðT;�;�;�;��Þ: (27)

Thus in the PQMVT model one can get the chiral
condensate � and the Polyakov loop expectation values
�, �� by searching the global minima of the grand poten-
tial in Eq. (27) for a given value of temperature T and
chemical potential �:

@�MF

@�
¼ @�MF

@�
¼ @�MF

@�� ¼ 0: (28)

We will take the values m� ¼ 138 MeV, m� ¼
500 MeV, and f� ¼ 93 MeV in our numerical computa-
tion. The constituent quark mass in vacuum m0

q ¼
310 MeV fixes the value of the Yukawa coupling g ¼ 3:3.

III. THE PROXIMITY OF THE TCP TO THE CEP
AND THE PHASE STRUCTURE

In the phase diagram of two quark flavor massless QCD
[20], the second-order line of O(4) critical points starts
from the temperature axis at � ¼ 0 in the � and T plane
and terminates at the tricritical point. Here it happens to
meet the first-order transition line coming from the lowest
temperature on the � axis. For broken-chiral-symmetry
QCD with two light quarks, the TCP disappears from the
phase diagram because the transition on the temperature
axis at � ¼ 0 becomes a crossover. Further, the line of
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crossover transition points joins the first-order transition
line in the phase diagram at the critical end point where the
phase transition turns second-order. The two-flavor QMVT
and PQMVT models have become QCD-like effective
models due to the proper accounting of the fermionic
vacuum fluctuation. Hence one must find a TCP in the �
and T plane of the phase diagram computed in the chiral
limit of zero pion mass. In the present work, we compute
the phase diagram for m� ¼ 138 MeV and locate the CEP
in the � and T plane of all four models: QMVT, PQMVT,
QM, and PQM. Next, we locate the TCP in our calculation
and quantify its proximity to the CEP. The presence of the
TCP in a model and its distance from the CEP in the phase
diagram influences the nature of criticality around the CEP.

We present the QMVT and PQMVT model phase dia-
grams in Fig. 1(a), computed with m� ¼ 138 MeV and
m� ¼ 0 MeV. Figure 1(b) describes the QM and PQM
model phase diagrams for m� ¼ 138 MeV. Solid lines
denoting the first-order chiral phase transition in Fig. 1
merge with the small dashed (green) lines representing the
chiral crossover at the CEP (shown by filled circles) for
m� ¼ 138 MeV computations. The�5 MeV error bars (in
a range � ¼ 100 to � ¼ 160 MeV) on the small dashed
line in the upper half of Fig. 1(a) signify the ambiguity of
pseudocritical temperature determination for the chiral
crossover in the PQMVT model calculations (see
Ref. [98] for details). The solid lines (magenta in color)
around the CEP are the contours of constant ratio (Rq ¼ 2)

of quark number susceptibility obtained in a model and the
quark number susceptibility value for a free quark gas.
Since quark number susceptibility diverges at the CEP
such contours signify the extent of critical fluctuations

around the CEP. The CEP in the QMVT model at �CEP ¼
299:35 MeV and TCEP ¼ 32:24 MeV in the lower half of
Fig. 1(a) shifts to the higher value on the temperature
axis at TCEP ¼ 83:0 MeV and �CEP ¼ 295:217 MeV
in the PQMVT model. Similarly, the QM model CEP at
TCEP ¼ 102:09 MeV and �CEP ¼ 151:7 MeV shifts
towards the temperature axis at TCEP ¼ 166:88 MeV and
�CEP ¼ 81:02 MeV in the upper half of Fig. 1(b) due to
the influence of the Polyakov loop potential. Comparing
the CEP position in the QM and PQM models in Fig. 1(b),
respectively, to the location of the CEP in the QMVT and
PQMVT models in Fig. 1(a) we find a considerably sig-
nificant shift of the CEP to larger chemical potential and
smaller temperature values for the QMVT and PQMVT
models due to the very robust influence of the fermionic
vacuum term in the effective potential. The first-order
phase transition becomes stronger in the influence of
Ployakov loop potential. However, its strength becomes
so weak due to the strong effect of the fermionic vacuum
correction that the length of the first-order line decreases
significantly and we find a strong shrinkage of the phase
coexistence region in the PQMVT model phase diagram.
These results extend our recently reported work [98] and
facilitate the details of model comparison for the two-
quark-flavor case. Further, these results are also in quali-
tative agreement with the recent results of Schaefer et al.
[99] for the 2þ 1-flavor case.
The temperature for the chiral crossover transition at

� ¼ 0 is highest in the PQMVT model phase diagram in
Fig. 1(a) due to the combined effect of the Polyakov loop
potential and the fermionic vacuum correction. The effect
of only the fermionic vacuum correction is seen in the
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FIG. 1 (color online). (a) For calculations with an experimental pion mass, solid lines representing the first-order (FO) chiral phase
transition merge with the small dashed lines (green in color) for the chiral crossover at the CEP, which is denoted by the filled circle.
The solid lines (magenta in color) around the CEP are the contours of constant normalized quark number susceptibility Rq ¼ 2. For

calculations with zero pion mass, dash dot lines represent the first-order phase transition in the chiral limit of the QMVT and PQMVT
models, while the dash double dot lines denote the second-order (SO) transition, and the filled triangle is the location of the TCP where
these two lines merge into each other. The lower part of the figure shows the QMVT model results while the upper part shows the
PQMVT results. (b) The lower half of the figure shows the QM model results while the upper half shows the PQM results. The line
types represent the same data as in Fig. 1(a) for calculations with experimental pion mass.
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higher value of the temperature for the � ¼ 0 chiral cross-
over in the QMVT model if we compare the lower halves
of Figs. 1(a) and 1(b) for the respective phase diagrams of
the QMVT and QM models. It will be interesting to com-
pare our QMVT/PQMVT model findings with the NJL/
PNJL model results because these calculations explicitly
include the fermion vacuum loop contribution up to an
ultraviolet cutoff �. Scavenius et al. [45] compared the
two-flavor sigma model and the NJL model calculations
and concluded that the energy difference (effective bag
constant) between the global minimum and the local maxi-
mum of the effective potential in vacuum is responsible for
the difference in the temperatures corresponding to the
crossover transition at � ¼ 0, which is about 140 MeV
in the sigma model and about 180–190 MeV in the NJL
model. This difference is largely due to the absence of a
logarithmic fermionic vacuum correction in the sigma
model. The � ¼ 0 crossover transition temperature is
about 225 (280) MeV in the NJL (PNJL) model computa-
tion by Costa et al. [92]. This temperature is reduced in a
recent nonlocal PNJL model computation by Contrera
et al. [93]; still, it is found in a range of 209–215 MeV for
different sets of parametrizations. In a very recent beyond-
mean-field nonlocal PNJL model computation [75], there
was an indication of a further decrease in the temperature
of the crossover transition at � ¼ 0. Here, with the proper
accounting of the logarithmic correction in our extended �
model computations, the crossover at � ¼ 0 occurs at a
temperature of about 187 (158) MeV in the PQMVT
(QMVT) model, registering an increase of about 15–
28 MeV over the corresponding crossover temperature of
about 172 (130) MeV in the PQM (QM) model. We notice
that different values of the crossover temperature at
� ¼ 0 give rise to the different locations of the CEP.
The PNJL (NJL) model computation in Ref. [92] locates
the CEP at TCEP ¼ 169:11ð79:92Þ MeV and �CEP ¼
321:32ð331:72Þ MeV, while it is found at a significantly
smaller temperature of TCEP ¼ 83ð32:24Þ MeV and
�CEP ¼ 295:22ð299:35Þ MeV in our PQMVT (QMVT)
model computation.

We recall that, contrary to the sigma model, the NJL
model is a nonrenormalizable theory which is usually regu-
larized by a noncovariant ultraviolet cutoff �. One should
take the quantitative predictions of the NJL/PNJL model
with care because in order to generate phase diagrams
similar to the linear sigma model one requires very high
values of G, which in turn generates high effective quark
masses at zero� and T. Even when the value of the effective
quark mass generated by those parameters becomes larger
than �, the values of relevant observables—such as the
quark condensate and the pion decay constant—remain
well within reasonable values [30]. In the extended sigma
model computations as well the value of the � ¼ 0 cross-
over temperature, the structure of the phase diagram, and the
position of the CEP (and of the TCP in the chiral limit) are

quite sensitive to different parametrizations and approxima-
tions. Larger value ofm� in general pushes the CEP towards
the � axis, and for m� ¼ 600 MeV in the PQMVT model
computation [98,99] the CEP disappears from the phase
diagram.
Here it is relevant to point out that the mesonic sector

contributes only at the tree level in our present work, and
the bosonic thermal and vacuum fluctuations are not
included. A recent investigation of the chiral dynamics of
two-flavor QCD by Andersen et al. [47] reports that the
properties of the phase transition—the order and the criti-
cal temperature—depend crucially on the approximations
made, i.e., whether or not one includes the bosonic and
fermionic vacuum fluctuations in the effective potential.
They included all contributions (vacuum as well as ther-
mal) from both fermions and bosons in their full one-loop
calculation in an optimized perturbation theory framework
and found that the CEP disappears from the phase diagram
for a physical pion mass, and the transition becomes a
crossover in the entire � and T plane. It has also been
reported that for small values of the vacuum pion mass
(50MeV) the phase diagram of the linear sigma model [29]
has two distinct first-order lines terminating in two critical
points. This behavior is caused by the thermal fluctuations
of the mesonic fields, which are incorporated by adopting a
self-consistent method [49]. Very recently, Ferroni and
Koch [30] found the appearance of multiple critical points
in their extensive thermodynamical analysis considering
beyond-mean-field thermal fluctuations.
In the chiral limit of the QMVT and PQMVT model

computations with zero pion mass, the dash dot lines
denoting a first-order phase transition in Fig. 1(a) merge
with the dash double dot lines representing the second-
order transition at the TCP (shown by the filled triangle).
Again, due to the influence of the Polyakov loop potential,
the QMVT model TCP at Tt ¼ 69:06 MeV and �t ¼
263:0 MeV in the lower half of Fig. 1(a) shifts to its upper
half at Tt ¼ 133:5 MeV and �t ¼ 245:34 MeV for the
PQMVT model. We quantified the proximity of the TCP
to the CEP in the phase diagram by plotting the constant
normalized quark number susceptibility (Rq ¼ 2) contour

around the CEP. This contour is quite large in both direc-
tions; the chemical potential as well as the temperature.
The TCP position is well inside this contour on the phase
diagram. It means that the shape of the critical region and
the nature of criticality around the CEP becomes signifi-
cantly influenced by the presence of the TCP in the corre-
sponding chiral limit. This is also corroborated by our
calculation of critical exponents that we present in the
next section. The TCP does not exist in the phase diagram
of the QM and PQMmodels because the phase transition at
� ¼ 0 on the temperature axis is of first order in the chiral
limit of zero pion mass. Costa et al. [92] also located the
TCP in the chiral limit of the NJL/PNJL model calculation
and found that the TCP lies just on the periphery of the
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Rq ¼ 2 contour around the CEP. They further found that

the TCP does not have a qualitative effect on the criticality
around the CEP and critical exponents calculated from the
divergence of the quark number susceptibility near the
CEP are mostly found to have a mean-field value of
:66� :01: the critical exponent becomes :69� :02 in the
PNJL model when �CEP is approached from the higher �
side at constant T ¼ TCEP. The TCP was also located in a
nonlocal PNJL model computation in Ref. [93] where it
was concluded that the position of the TCP does not
influence the critical behavior around the CEP.

A. Susceptibility contours and criticality

We require the quantification of criticality around the
CEP for the experimental finding of the CEP in relativistic
heavy ion collisions. The crossover transition is marked by
a peak in the quark number susceptibility which becomes
sharper and higher as one approaches the CEP in the phase
diagram from the crossover side, and finally the peak
diverges at the CEP. Hence the quark number susceptibil-
ities and scalar susceptibilities will be significantly
enhanced in a region around the CEP in the � and T plane
in comparison to their respective values for the free quark
gas. Thus the contour regions of properly normalized
constant quark number susceptibilities and scalar suscep-
tibilities can be taken as the measure of criticality around
the CEP. The ratio of the quark number susceptibility �q

normalized to the free susceptibility �free
q is written as

Rq ¼
�q

�free
q

: (29)

The expression of the quark number susceptibility is
obtained as

�q ¼ �@2�MF

@�2
; (30)

lim
mq!0

�qðT;�Þ ¼ �q

6

�
T2 þ 3�2

�2

�
� �free

q ; (31)

�q ¼ 2NcNf ¼ 12: (32)

The first and second partial derivatives of the �, �, and
�� fields with respect to chemical potential contribute in
the double derivatives of�ð�Þ,Ulog, and�

T
q�q with respect

to the chemical potential as given in Appendix A of
Ref. [98].
In Fig. 2 we have plotted contours for three constant

ratios Rq ¼ 2, 3, and 5 in the � and T plane relative to the

CEP. If we compare the contours depicting the PQMmodel
results in Fig. 2(a) to the contours showing the pure QM
model results in Fig. 2(b), we conclude that the presence of
the Polyakov loop potential compresses the critical region,
particularly in the T direction, similar to the findings of
Schaefer et al. [99] in their 2þ 1-quark-flavor calculation.
The compression of the critical region in the T direction is
much more pronounced in our two-quark-flavor calcula-
tion, as can be seen in the spread of the Rq ¼ 2 contour on

the temperature axis in only a small range of �2:5 MeV
near TCEP. The modification in the � direction is moderate
compared to the effect in the T direction. Since the chiral
crossover transition becomes faster and sharper due to the
Polyakov loop contribution in the effective potential, the
critical region in the T direction becomes significantly
compressed.
The contours in Fig. 3 are the signatures of a signifi-

cantly robust influence of the fermionic vacuum fluctua-
tions on the size and shape of the critical region. The size of
the critical region is increased in a direction perpendicular
to the crossover line due to the effect of the fermionic
vacuum fluctuations. This effect is less pronounced in
Fig. 3(a) due to the compression of the critical region width
because of the presence of the Polyakov loop potential
contribution in the PQMVT model, while the QMVT
model results of Fig. 3(b) obtained in the absence of the
Polyakov loop show a robust increase in the width of the
critical region. However, the extent and size of the critical
region in the PQMVT model in Fig. 3(a) is noticeably

-5

 0

 5

(T
-T

C
E

P)
 (

M
eV

)

(µ-µCEP) (MeV)

(a)

Rq=2
Rq=3
Rq=5
CEP

-20

-10

 0

 10

 20

(T
-T

C
E

P)
 (

M
eV

)

( µ-µCEP) (MeV)

(b)

Rq=2
Rq=3
Rq=5
CEP

-30 -20 -10  0  10  20  30 -60 -40 -20  0  20  40
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plotted in the QM model computations.
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larger in both the � and T directions when compared with
the QMVT model’s region of criticality in Fig. 3(b).
Fermionic vacuum fluctuations push the CEP to larger
chemical potentials in both the QMVT and PQMVT mod-
els. Since the quark determinant gets modified mostly at
moderate chemical potentials by the Polyakov loop poten-
tial and the PQMVT model CEP shifts to a higher critical
temperature [cf. also Fig. 1] and lower chemical potential
when compared to the CEP in the QMVTmodel, we obtain
an enhancement of the critical region in the PQMVT
model. Further, the chiral crossover transition becomes
much smoother because the phase transitions in general
get washed out by the influence of fluctuations. This leads
to a critical region which is broader in the direction per-
pendicular to the extended first-order transition line. The
size of the critical region for ð�-�CEPÞ> 0 is comparable
in both the QMVT and PQMVT models because the influ-
ence of the Polyakov loop potential becomes insignificant
for smaller temperatures and larger chemical potentials. In
Fig. 3, filled circles show the position of the CEP and the
filled triangles show the location of the TCP. We observe
that the TCP is located outside the Rq ¼ 3 contour but well

inside the Rq ¼ 2 contour for both the QMVTand PQMVT

models.
If we compare our two-quark-flavor results with the

2þ 1-flavor calculations in the renormalized PQM/QM
models in Ref. [99], we notice that in the absence of
strange quarks the effect of the fermionic vacuum term
leads to an enhanced critical region in both the T and �
directions, and that the size of the contours is larger in our
two-flavor calculation. We point out that the 2þ 1-flavor
calculation in Ref. [99] was donewithm� ¼ 400 MeV and
T0 ¼ 270 MeV, while in our two-flavor calculation m� ¼
500 MeV and T0 ¼ 208 MeV. In general, a higher value of
m� pushes the CEP to a higher chemical potential. In our
two quark flavor calculation, the CEP is at ðTCEP; �CEPÞ ¼
ð83:0; 295:217Þ MeV and (32.24, 299.35) MeV, respec-
tively, in the PQMVT and QMVT model computations,
while the CEP in the corresponding 2þ 1-flavor

model computation of Ref. [99] is at ðTCEP; �CEPÞ ¼
ð90:0; 283:0Þ MeV and (32, 286) MeV.
The zero-momentum projection of the scalar propagator

encodes all fluctuations of the order parameter, and it
corresponds to the scalar susceptibility ��. The relation
of the scalar susceptibility to the order parameter is
obtained as [24,25,51,91]

�� ¼ � @2�MF

@h2
: (33)

The most rapid change of the chiral order parameter
should be coincident with the maximum in the temperature
or quark chemical potential variation of ��. The relation of
the scalar susceptibility to the sigma mass via �� 	m�2

�

can be easily verified. The normalized scalar susceptibility
is written as [51]

RsðT;�Þ ¼ ��ðT;�Þ
��ð0; 0Þ : (34)

In Fig. 4 we plot the contours for three values of fixed
ratios Rs around the CEP in the PQM and QMmodels. The
Rs ¼ 10 contour in Fig. 4(a) is compressed in the T direc-
tion, and its extension in the � direction is also reduced in
comparison to the pure QM model contours in Fig. 4(b).
This is due to the quite rapid temperature or chemical
potential variation of the � meson mass m� on account
of the faster and sharper change of the order parameter for
the chiral crossover in the presence of the Polyakov loop
potential. We do not find a contour for Rs ¼ 25 in Fig. 4(a)
because the minimum value of the � meson mass does not
fall below 100 MeV, though the value of m� falls very
rapidly from 500 MeV to 128 MeV, giving rise to a very
thin and small contour region even for Rs ¼ 15. In the QM
model computations, we get all of the contour regions for
Rs ¼ 10, 15, and 25 with well-defined sizes because the
m� variation is smoother and slower in comparison to the
corresponding PQM model results, and further the mini-
mum in the m� variation at the CEP approaches a value of
almost zero. The chiral crossover transition on the tem-
perature axis at� ¼ 0 MeV in the QM and PQMmodels is
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FIG. 3 (color online). (a) The contours of three different values for the constant ratios Rq ¼ 2, 3, and 5 of quark number
susceptibility to the quark susceptibility for the free quark gas are plotted in the PQMVT model calculations. (b) Similar contours
are plotted in the QMVT model calculations.
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quite sharp and fast because it emerges from the back-
ground of a first-order chiral transition at � ¼ 0 MeV
in the corresponding chiral limit of zero pion mass, and
we do not find the existence of a TCP in the QM and PQM
models. As a consequence, we do not find the closure of the
Rs ¼ 10 contour on the temperature axis at � ¼ 0 MeV.

We obtain quite well-defined and closed contour regions
for Rs ¼ 10, 15, and 25 in Fig. 5, which again become
broader in the direction perpendicular to the crossover line
due to the effect of the fermionic vacuum fluctuations in
the QMVT and PQMVT model calculations. In addition,
the critical region for the scalar susceptibility is elongated
in the phase diagram and �� is enhanced in the direction
parallel to the first-order transition line. Here also the
presence of the Polyakov loop potential in the PQMVT
model leads to the compression in the width of the critical
region around the CEP, as shown in Fig. 5(a). The fermi-
onic vacuum fluctuations make the chiral crossover tran-
sition very smooth, while the Polyakov loop potential
makes it sharper and faster, and these opposite effects
give a typical shape to the quark number susceptibility

contours in Fig. 3(a) in the PQMVT model. Similar effects
are seen in the scalar susceptibility contours in Fig. 5(a).
The �� contours in Fig. 5(b) for the QMVT model are
broader and rounded due only to the effect of the fermionic
vacuum fluctuations.
To obtain a detailed understanding and analysis of the

criticality around the CEP we will be studying the critical
exponents of the susceptibilities at the critical point in the
next section.

B. Critical exponents

The quark number susceptibility peak signifying the
crossover transition diverges at the CEP when it is
approached from the crossover side of the phase diagram.
This divergence is governed by a power law within the
critical region. The corresponding critical exponents
depend on the route through which the singularity (CEP)
is approached in the � and T plane [102]. This path
dependence decides the shape of the critical region.
In the mean-field approximation, the quark number sus-
ceptibility scales with an exponent �q ¼ 1 for a path
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asymptotically parallel to the first-order transition line, and
for any other path which is not parallel to the first-order
line the divergence scales with the exponent 
 ¼ 2=3. This
larger critical exponent (�q > 
) is an important reason for

the elongation of the critical region in a direction parallel to
the first-order line, as already pointed out in Refs. [24,51].

In order to further investigate the nature of criticality in
two quark flavor computations, we have numerically eval-
uated the critical exponents of the quark number suscepti-
bility �q in the QM, PQM, QMVT, and PQMVT models.

In these investigations, the critical �CEP at a fixed critical
temperature TCEP is approached from the lower- as well as
higher-� sides in a path parallel to the � axis in the ðT;�Þ
plane. The calculation of the critical exponents has been
done with the following linear logarithmic fit formula:

log�q ¼ �m logj�-�CEPj þ c: (35)

The slope m gives the critical exponent 
 and the y axis
intercept c is independent of �. Figure 6 shows the loga-
rithm of �q as a function of the logarithm of (�-�CEP)

close to the CEP in the QM model. Scaling is observed
over several orders of magnitude. In Fig. 6(a) the �CEP

is approached from the lower-� side and we obtain a
critical exponent 
 ¼ m ¼ 0:6379� 0:0002, while the
critical exponent 
 ¼ m ¼ 0:6648� 0:0001 in the result
of Fig. 6(b) when the �CEP is approached from the
higher-� side. The scaling starts around around
logj�-�CEPj<�:5 in both cases. These exponents show
good agreement with the mean-field prediction 
 ¼ 2=3. In
Fig. 6(a) the data fitted in the range 1:0< logj�-�CEPj<
2:0 also shows a type of scaling linear behavior over one
order of magnitude with a larger slope n ¼ :6807� :0002,
which changes to m ¼ :6379� :0002 in the range �:5<
logj�-�CEPj< 1:0. When logj�-�CEPj 	 2:0, we are very
close to � ¼ 0 on the temperature axis. The phase tran-
sition at� ¼ 0 is of first order for the chiral limit (m� ¼ 0)
in the QMmodel, and it becomes a crossover for the actual

pion mass. In the quark mass (or the pion mass) and T
plane at� ¼ 0, the first-order transition line should change
to a crossover line through another second-order critical
end point as we increase the pion mass from zero to the
experimental value. This linear behavior in a range 1:0<
logj�-�CEPj< 2:0 with a larger slope seems to be the
consequence of another hidden CEP in the mass and tem-
perature plane at � ¼ 0 in the QM model. The critical
exponent values obtained in the PQM model computation
have been given in Table I. We can see that the presence of
the Polyakov loop potential in the QM model does not
influence the value of the critical exponents. Figure 7
shows the plot of the logarithm of �q with respect to the

logarithm of (�-�CEP) in the presence of the fermionic
vacuum fluctuations in the QMVT model. In Fig. 7(a), if
we approach the �CEP from the lower-� side, we obtain a
critical exponent 
 ¼ m ¼ 0:720� 0:00005, which is
larger than the QM model result. This larger critical expo-
nent seems to be the consequence of the modification of
criticality around the CEP due to the proximity of the TCP.
The TCP in the QMVT model computation (with m� ¼ 0)
owes its existence to the influence of the fermionic vacuum
fluctuation, and it lies quite well within the Rq ¼ 2 contour

surrounding the CEP in the phase diagram in Fig. 1(a). We
observe a scaling over several orders of magnitude, and it
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FIG. 6 (color online). (a) The plot of the logarithm of �q as a function of the logarithm of (�-�CEP) close to the CEP in the QM
model when the �CEP is approached from the lower-� side. (b) The same plot as in Fig. 6(a) in the QM model when the �CEP is
approached from the higher-� side.

TABLE I. Critical exponents of the quark number susceptibil-
ity in the QM, PQM, QMVT, and PQMVT models for two
different paths parallel to the chemical potential axis approach-
ing the �CEP from the lower �<�CEP and higher �>�CEP

side.

Model �-�CEP < 0 �-�CEP > 0

QM 0:6379� 0:0002 0:6648� 0:0001
PQM 0:6309� 0:0001 0:6668� 0:0001
QMVT 0:720� 0:00005 0:6938� 0:0002
PQMVT 0:725� 0:0002 0:6886� 0:0004
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starts earlier when logj�-�CEPj< 0:0. This higher value of
the critical exponent is close to the value calculated in
Ref. [51] where the effect of quantum fluctuations in the
QM model were incorporated in the proper-time renormal-
ization group approach. The critical exponents change in
the range �0:5< logj�-�CEPj< :5 in Ref. [51], from
.77 for the scaling regime starting after logj�-�CEPj>
:5, to .74 for another scaling regime starting before
logj�-�CEPj<�:5. Though we do not find analogous
crossing behavior of the universality classes, the data
points in our calculation show a bending trend, and when
we fit the data in a small range,�0:5< logj�-�CEPj< :5,
we find a higher slope 
 ¼ m ¼ 0:7664� 0:0002, as
shown in the Fig. 7(a). In our calculation, the critical region
of the CEP is having a noticeable overlap with the critical
region of the TCP and this seems to be the reason of the
bending trend noticed in the data. If we approach the CEP
from the higher-� side, we find a smaller critical exponent


 ¼ m ¼ 0:6938� 0:0002 in the result of Fig. 7(b). In this
case, the scaling starts around logj�-�CEPj<�:5. We
point out that these exponents computed in the presence
of the fermionic vacuum term in the QM model are differ-
ent from the mean-field prediction 
 ¼ 2=3. Similar results
are found in Fig. 8, which shows the plot of the logarithm
of �q with respect to the logarithm of (�-�CEP) in the

presence of the fermionic vacuum fluctuation in the
PQMVT model. The presence of the Polyakov loop com-
presses the width of the critical region in the PQMVT
model, but its effect on critical exponents is negligibly
small, as can be seen in Figs. 8(a) and 8(b). Here we
mention that the recent 2þ 1-flavor model calculation
in Ref. [99] does not report any modification of the
mean-field critical exponents due to the influence of the
fermionic vacuum term. It is well-known that the chiral
transition on the temperature axis at � ¼ 0 for the two
flavors of massless quarks changes from the second to the
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approached from the higher-� side.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

lo
g(

χ q/
[f

m
-2

])

log(| µ-µCEP |/[MeV])

m = -0.725015

(a)

n = -0.779117

Fitted Xrange-.5to.5
actual data

Fitted Xrange0.to-3.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

lo
g(

χ q/
[f

m
-2

])

log(| µ-µCEP |/[MeV])

m = -0.688589

(b)

actual data
Fitted Xrange-.5to-3.
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first order in the presence of a third massless quark, i.e., the
s quark [20]. Further, the precise location of the CEP in the
2þ 1-flavor calculation is also quite sensitive to the mass
of the s quark [92]. Even though the fermionic vacuum
fluctuation makes the chiral transition smoother and
weaker, its effect on the power-law divergence of �q in

the vicinity of the CEP seems to be offset by the presence
of the physical s quark in the 2þ 1-flavor calculation in
Ref. [99]. The critical exponents calculated in all the
models are summarized and tabulated in Table I.

C. In medium meson masses

The critical fluctuations are also encoded in the variation
of meson masses m�ðT;�Þ and m�ðT;�Þ as one passes
through the chiral-symmetry-restoring phase transition.
We will investigate and compare the ‘‘in-medium’’ meson
mass variations in the QM, QMVT, PQM, and PQMVT
models in order to see the influence of the fermionic
vacuum fluctuations. The sigma and pion masses are cal-
culated by determining the curvature of the grand potential
at the global minimum:

m2
�;iðT;�Þ ¼ @2�ðT;�Þ

@�i@�i

��������min
; (36)

m2
�ðT;�Þ ¼ @2�ðT;�Þ

@�@�

��������min
: (37)

The left panel of Fig. 9 shows the temperature variations of
meson masses for� ¼ 0,� ¼ �CEP, and�>�CEP in the
QM model, while the right panel shows the corresponding
variations in the QMVT model. In the chiral-symmetry-
broken mesonic phase, the sigma mass always decreases
with temperature. The sigma mass increases again at high
temperatures, signaling chiral-symmetry restoration, and it

becomes degenerate with increasing pion mass, which does
not vary much below the transition temperature. The
degenerate meson masses increase linearly with T after
the chiral-symmetry restoration transition [51] has taken
place. The temperature variations of them� andm� masses
at � ¼ 0 in Fig. 9(b) are significantly modified due to the
presence of fermionic vacuum fluctuations in the QMVT
model. If we compare these variations with the correspond-
ing QM model temperature variations of masses in
Fig. 9(a), we find that the mass degeneration in m� and
m� at� ¼ 0 in Fig. 9(b) becomes very smooth, and it takes
place at a higher temperature. Since the chiral crossover on
the temperature axis at � ¼ 0 is quite sharp and fast in the
QM model, the mass degeneration trend in the m� and m�

is also quite sharp and fast in Fig. 9(a). Fermionic vacuum
fluctuations make the chiral crossover at � ¼ 0 very
smooth in the QMVT model, and this is also reflected in
the setting up of a very smooth mass degeneration trend at
� ¼ 0 in Fig. 9(b). Long-wavelength fluctuations of the
order parameter characterize the second-order phase tran-
sitions. Since the chiral phase transition turns second-order
at the CEP, the sigma meson mass must vanish at the CEP
because the effective potential completely flattens in the
radial direction. Thus the sigma meson mass drops below
the pion mass near the CEP and it becomes almost zero at
�CEP ¼ 299:35 MeV in the QMVT model, as shown in
Fig. 9(b). The sigma mass goes to zero only at �CEP ¼
151:7 MeV in Fig. 9(a) in the QM model. The disconti-
nuities in mass evolutions, respectively, in Figs. 9(a) and 9
(b), signal a first-order phase transition at small tempera-
tures when �>�CEP ¼ 305 MeV in both the QM and
QMVT models.
Here it is worthwhile to mention that the calculation of

the sigma and pion masses in the NJL model is not as
straightforward as in the linear sigma model because the �
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FIG. 9 (color online). (a) Temperature variations of meson masses in the QM model. The dotted line and the dash dot line in the
rightmost part of the figure represent the temperature variations of m� and m�, respectively, at � ¼ 0, the dashed line with two dots in
the middle part represents m�, and the line with the small dash represents the m� temperature variation at �CEP ¼ 151:7 MeV; the
solid line in the leftmost part of the figure represents m� while the line with the thinner dash denotes the m� temperature variation at
� ¼ 305 MeV. (b) Temperature variations of m� and m� under the influence of fermionic vacuum fluctuations for the QMVT model
computations. Lines represent the same mass variations as in the left panel of the figure. In the QMVT model, �CEP ¼ 299:35 MeV.
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and � degrees of freedom are not the dynamical fields and
are described as collective q �q excitations in the model. The
poles of the quark-antiquark scattering amplitude give the
� and � masses, which can be computed, for example, in
the random phase approximation [73]. It is known that the
� mass becomes zero at the critical end point in the sigma
model, whereas in the NJL model it always remains a
massive mode [25,45].

Finally, we investigate the effect of the fermionic vac-
uum correction on the emergence of the mass degeneration
trend in m� and m� as the chiral-symmetry restoration
takes place in the presence of the Polyakov loop potential.
Figure 10(a) presents temperature variations of the meson
masses at � ¼ 0, � ¼ �CEP, and �>�CEP in the PQM
model calculations, while Fig. 10(b) shows the correspond-
ing mass variations in the PQMVT model. Since the tem-
perature axis chiral crossover at� ¼ 0 becomes very sharp
and rapid in the PQM model due to the effect of the
Polyakov loop potential, the m� and m� temperature var-
iations also show a very sharp and fast mass degeneration
at � ¼ 0 in Fig. 10(a). The mass degeneration for the m�

and m� temperature variations at � ¼ 0 in Fig. 10(b)
becomes very smooth due to the effect of fermionic vac-
uum fluctuations in the PQMVT model, and the tempera-
ture for this mass degeneration is highest when we
compare it with the values obtained in other models. This
is the consequence of the combined effect of the Polyakov
loop potential and the fermionic vacuum correction. We
point out that the sigma meson mass does not vanish
completely at the CEP, as shown in Figs. 10(a) and 10(b),
respectively, for the PQM and PQMVT model temperature
variations. The temperature variation of m� in Fig. 10(a)
represented by the dash double dot line,reaches the mini-
mum of about 128 MeV in the PQM model, while the
minimum in the temperature variation of m� occurs at

76.0 MeV in the PQMVT model computation, as is evident
from the dash double dot line in Fig. 10(b). This means that
the effective potential of the PQM and PQMVT models do
not completely flatten in the radial direction at the CEP.
The possible explanation for this might be the coupling/
mixing of the chiral order parameter with the Polyakov
loop order parameter, which implicitly affects the shape of
the effective potential at its minimum. The double deriva-
tive of the effective potential (which givesm�) with respect
to the chiral � field is also affected in turn. Being the other
scalar field in the problem, the Polyakov loop expectation
value seems to hamper the complete flattening of the PQM
model effective potential when it is plotted only with
respect to the � field in the radial direction at the CEP.
In the PQMVT model, this effect seems to be considerably
remedied by the presence of the fermionic vacuum term
and the minimum value of m� becomes 76.0 MeV in its
temperature variation. We have also shown the first-order
discontinuities in mass evolutions in Figs. 10(a) and 10(b),
respectively, for the PQM and PQMVT model computa-
tions when �>�CEP ¼ 305 MeV.

IV. SUMMARYAND CONCLUSION

In the present work, we computed the phase diagram for
the two-quark-flavor models QMVT, PQMVT, QM, and
PQM, and found the CEP positions in the� and T plane for
the explicitly broken chiral symmetry with actual pion
mass. Since the PQMVT and QMVT models have become
QCD-like due to the fermionic vacuum correction and they
yield the second-order transition at � ¼ 0 on the tempera-
ture axis, we also located the TCP in these models for the
chiral limit of m� ¼ 0. We then plotted the contours of
appropriately normalized constant quark number suscepti-
bility and scalar susceptibility around the CEP in different
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FIG. 10 (color online). (a) Temperature variations of meson masses in the PQM model. The dotted line and the dash dot line in the
rightmost part of the figure represent the temperature variations of m� and m�, respectively, at � ¼ 0, the dashed line with two dots in
the middle part represents m�, and the line with the small dash represents the m� temperature variation at �CEP ¼ 81:02 MeV; the
solid line in the leftmost part of the figure represents m� while the line with thinner dash denotes the m� temperature variation at
� ¼ 305 MeV. (b) Temperature variations of m� and m� under the influence of fermionic vacuum fluctuations for the PQMVT model
computations. Lines represent the same mass variations as in the left panel of the figure. In the PQMVT model, �CEP ¼ 295:22 MeV.
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model scenarios. In order to investigate the qualitative as
well as quantitative effects of the fermionic vacuum term
and the Polyakov loop potential on the critical behavior
around the CEP, we compared the shape and size of these
contours in different model calculations. We quantified the
proximity of the TCP to the CEP for the QMVT and
PQMVT model calculations because the presence or
absence of the TCP and its distance from the CEP in the
phase diagram significantly influences the nature of criti-
cality around the CEP. Further, we computed and com-
pared the critical exponents resulting from the divergence
of the quark number susceptibility at the CEP in different
model scenarios. We discussed the possible influence of
the TCP on the critical behavior around the CEP. Finally,
we plotted the temperature variation of the � and � meson
masses at � ¼ 0, � ¼ �CEP, and �>�CEP in different
models and compared the emerging mass degeneration
trend in the � and � meson mass variations as the chiral
symmetry is restored at higher temperatures.

The QMVT model CEP (TCEP ¼ 32:24 MeV, �CEP ¼
299:35 MeV) shifts to TCEP ¼ 83:0 MeV, �CEP ¼
295:217 MeV in the PQMVT model computations, while
the QM model CEP (TCEP ¼ 102:09 MeV, �CEP ¼
151:7 MeV) shifts to TCEP ¼ 166:88 MeV, �CEP ¼
81:02 MeV in the PQM model. We thus conclude that
the CEP shifts to higher temperatures and lower chemical
potentials in the phase diagram due to the effect of the
Polyakov loop potential, and that the first-order transition
becomes stronger, giving rise to an increased length of the
first-order line and a longer region of phase coexistence.
On the other hand, the strength of the phase transition
becomes weaker due to fluctuations. We find a consider-
ably significant shift of the CEP to larger chemical poten-
tials and smaller temperatures if we compare the respective
locations of the CEP in the QMVT and PQMVT model
computations to the positions of the CEP obtained, respec-
tively, in the QM and PQM model calculations. This find-
ing leads us to the conclusion that the fermionic vacuum
fluctuation does have a very robust influence on the effec-
tive potential of QMVT and PQMVT models. It makes the
first-order transition significantly weaker and a lot
smoother. As a consequence, the first-order line decreases
significantly, giving rise to a strong shrinkage of the phase
coexistence region in the phase diagram. We find the TCP
at Tt ¼ 133:5 MeV and �t ¼ 245:34 MeV in the chiral-
limit (m� ¼ 0) computations of the PQMVT model. The
QMVT model TCP is found at Tt ¼ 69:06 MeV and �t ¼
263:0 MeV. The normalized quark number susceptibility
(Rq ¼ 2) contour plots around the CEP quantify the prox-

imity of the TCP to the CEP. We find that the TCP location
is well inside the Rq ¼ 2 contour in the phase diagram of

both the QMVT and PQMVT models.
The quark number susceptibilities and scalar suscepti-

bilities diverge at the CEP and are significantly enhanced
in its vicinity. Around the CEP in the � and T plane we

plotted contours of the normalized quark number suscep-
tibility for Rq ¼ 2, 3, and 5, as well as the normalized

scalar susceptibility for the ratios Rs ¼ 10, 15, and 25.
Since the chiral crossover becomes sharper due to the
effect of the Polyakov loop potential, the critical region
in the T direction gets significantly compressed in the PQM
model (Rq) contours when compared with the pure QM

model contours. We infer from the shapes of the QMVT
and PQMVT model contours for Rq ¼ 2, 3, and 5 that the

size of the critical region is increased in a direction per-
pendicular to the crossover line due to the influence of the
fermionic vacuum fluctuations. This effect is less pro-
nounced in the PQMVTmodel because of the compression
of the critical region width due to the presence of the
Polyakov loop potential. Further, the extent and size of
the critical region in the PQMVT model is noticeably
larger in both the � and T directions compared to that of
the QMVT model results. In the PQM model the Rs ¼ 10
contour shape is rather compressed in comparison to the
pure QM model contour. We do not find the Rs ¼ 25
contour in the PQM model, and the Rs ¼ 15 contour size
is also very thin and insignificantly small because the m�

falls very rapidly and sharply from 500 MeV to the mini-
mum value of 128 MeV. Since the m� variation in the QM
model is smoother and its minimum approaches zero, we
have found all contours with well-defined sizes for Rs ¼
10, 15, and 25. The Rs contours are also broader in the
direction perpendicular to the crossover line, and the criti-
cal region gets elongated in the phase diagram and �� is
enhanced in the direction parallel to the first-order transi-
tion line due to the fermionic vacuum fluctuation. The
influence of the fermionic vacuum fluctuation on the criti-
cality around the CEP is quite robust and it is opposite to
that of the Polyakov loop potential. This gives a typical
shape to the quark number susceptibility and the scalar
susceptibility contours in the PQMVT model. When under
the influence of only fermionic vacuum fluctuations, the
�� contours in the pure QMVT model are broader and
rounded.
We further explored the nature of criticality by comput-

ing the critical exponents for the divergence of the quark
number susceptibility �q in the QM, PQM, QMVT, and

PQMVT models. We found the critical exponent 
 ¼
0:6379� 0:0002 if we approach the �CEP from the
lower-� side in the QM model, while the critical exponent
is 
 ¼ 0:6648� 0:0001 when the �CEP is approached
from the higher-� side. The scaling starts around
logj�-�CEPj<�:5 in both cases. These exponents show
good agreement with the mean-field prediction 
 ¼ 2=3.
We find similar critical exponents for the PQM model, and
the effect of the Polyakov loop potential is negligible. If we
approach the �CEP in the QMVT model from the lower-�
side, we find a critical exponent 
 ¼ m ¼ 0:720�
0:00005, which is noticeably larger than in the QM model.
In the QMVT model phase diagram, we have found the
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TCP in the chiral limit, which is located well inside the
Rq ¼ 2 contour surrounding the CEP due to the significant

influence of the fermionic vacuum fluctuation. This larger
critical exponent is the consequence of the modification of
criticality around the CEP due to the presence of the
TCP in its proximity. The scaling starts earlier when
logj�-�CEPj< 0:0, and we observe scaling over several
orders of magnitude. We obtain a smaller critical exponent

 ¼ 0:6938� 0:0001 when the �CEP is approached from
the higher-� side in the PQMVT model. The presence of
the Polyakov loop compresses the width of the critical
region in the PQMVT model, but its effect on critical
exponents is negligible. The value of the critical exponents
in the PQMVT model are almost similar to the QMVT
model values.

Comparing the temperature variations of meson masses
in all four models, we conclude that the mass degeneration
in m� and m� at � ¼ 0 becomes very smooth in the
QMVT model, and smoother in the PQMVT model
(though less smooth than the QMVT model), and it takes
place at a higher temperature. The sharpest and fastest
mass degeneration at � ¼ 0 occurs in the PQM model
due to the effect of the Polyakov loop potential, and it is
less sharp in the QM model. It is rendered very smooth in
the QMVT model and smoother in the PQMVT model,
again due to the fact that the strength of the transition
becomes quite weak in the presence of the fermionic
vacuum term. We found that the sigma mass almost van-
ishes at � ¼ �CEP in both the QM and QMVT models, as
expected. But the sigma meson mass does not vanish

completely at � ¼ �CEP in the PQM and PQMVT model
temperature variations. In the PQM model, m� in its
temperature variation reaches the minimum value of
128.0 MeV. The Polyakov loop expectation value is an-
other scalar field which gets coupled/mixed with the chiral
� field, and this effect seems to hamper the complete
flattening of the PQM model effective potential at the
minimum in the radial direction (i.e., the direction of
only the � field at the CEP). In the PQMVT model, this
effect seems to be considerably remedied by the presence
of the fermionic vacuum term and we get a minimum in the
m� temperature variation at 76.0 MeV.We have also shown
the discontinuities in the mass evolutions, which signal a
first-order phase transition at small temperatures when
�>�CEP ¼ 305 MeV in all of the models.
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