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Jet charge has played an important role in experimentally testing the parton model and the Standard

Model, and has many potential LHC applications. The energy-weighted charge of a jet is not an infrared-

safe quantity, so hadronization must be taken into account. Here we develop the formalism to calculate it,

cleanly separating the nonperturbative from the perturbative physics, which we compute at one-loop order.

We first study the average and width of the jet charge distribution, for which the nonperturbative input is

related to (dihadron) fragmentation functions. In an alternative and novel approach, we consider the full

nonperturbative jet charge distribution and calculate its evolution and jet algorithm corrections, which

have a natural Monte Carlo-style implementation. Our numerical results are compared to PYTHIA and

show reasonable agreement. This calculation can directly be extended to similar track-based observables,

such as the total track momentum generated by an energetic parton.
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I. INTRODUCTION

Jet charge has played an important role in studying and
testing aspects of the parton model and of the Standard
Model. Itwas first proposed as awayofmeasuring the charge
of a quark [1]. To reduce the sensitivity to experimental noise,
a weighted definition of jet charge was proposed in Ref. [2],

Qi
� ¼ X

h2jet

z�hQh; (1)

where the parton i initiates the jet, and zh ¼ Eh=E is the
fraction of the jet energy carried by the hadron hwith charge
Qh. Various choices for � between 0.2 and 1 have been
considered at experiments, and we will comment on the
optimal choice in this paper. Reference [2] also presented a
calculation of the jet charge in a recursive, probabilistic
model.

A first experimental application of jet charge was in
deeply inelastic scattering experiments [3–5], finding evi-
dence for quarks in the nucleon. Jet charge also played a
role in the measurement of the forward-backward asym-
metry in eþe� collisions [6,7], which tests the electroweak
sector of the Standard Model. Here jet charge was used
(roughly speaking) to distinguish the quark and antiquark
jet. Other applications of jet charge include distinguishing
b from �b in neutral B meson oscillation measurements [8],
assigning jets to the hadronically decaying WþW� in a
measurement of the triple-gauge-boson couplings [9], and
excluding an exotic top quark model at the Tevatron [10].

We anticipate that jet charge will play a role at the
LHC, since it is almost the only handle we have to separate
quark from antiquark jets or (more ambitiously) distin-
guish quark flavors [11]. Since jet charge is a track-based
observable it is relatively clean from e.g., pile-up contami-
nation. Calculations of jet charge have so far relied
on Monte Carlo (MC) programs such as PYTHIA [12,13].
Here we calculate the jet charge using and extending the

framework for fragmentation in jets [14–19] in soft-
collinear effective theory (SCET) [20–23]. A brief over-
view of some of our main results was presented in
Ref. [11]. An advantage of our approach is a clean sepa-
ration of the perturbative physics, described by simple
analytic formulas, and the nonperturbative physics, which
needs to be modeled or extracted from data. In addition, it
provides an estimate of the uncertainty and is systemati-
cally improvable by calculating higher orders in perturba-
tion theory or including power corrections.
We want to point out that jet charge is not infrared

(IR) safe, as the following example illustrates. A jet
consisting of a single quark has jet charge Qq

� ¼ Qq. If

it radiates a gluon with energy fraction z, it has jet charge
Qq

� ¼ ð1� zÞ�Qq. However, in the collinear limit these

two configurations are indistinguishable. Since Qq �

ð1� zÞ�Qq, this is not IR safe (unless � ¼ 0). Jet charge

must therefore be defined at the level of hadrons, and
hadronization effects are crucial. This is also observed in
PYTHIA, where the hadronization corrections to jet charge

are large, as shown in Fig. 1.
In this paper we follow two approaches. First we calcu-

late the average and width of the jet charge distribution.
These are the two most important quantities that determine
the power with which jet charge can be used experimen-
tally to separate quarks from antiquarks and distinguish
quark flavors. Figure 1 illustrates the challenge: the aver-
age jet charge is small compared to the width. We find that
the average charge of a quark jet is given by a perturbative
coefficient, which contains the dependence on the jet al-
gorithm, multiplied by a nonperturbative number, which
can be related to fragmentation functions (FFs) [24,25].
The situation is similar, but more complicated, for the
width of the jet charge distribution. The width of quark
and gluon jets mix and dihadron fragmentation functions
now also contribute to the nonperturbative input.
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To go beyond the average and width of the jet charge,
we pursue a second approach where we start with a non-
perturbative charge distribution. We determine the evolu-
tion and the jet algorithm corrections to this distribution at
one-loop order. On taking the appropriate moments, this
reduces to our first approach. A novel feature of this second
approach is that the equations can be naturally solved
through a parton shower plus hadronization model.

We will show numerical results for the average and
width of the jet charge, and compare with PYTHIA. This
comparison will be both at the nonperturbative level, where
we take FFs as input, and the perturbative level, where we
take PYTHIA as input and compare the calculable depen-
dence on the jet energy E and size R. The uncertainties on
charge-separated FFs are fairly large, so the former com-
parison is not particularly constraining. We find reasonable
agreement, suggesting that PYTHIA suffices for initial stud-
ies of jet charge. Of course this may change as the precision
of FFs or the knowledge of jet charge progresses.

There are other track-based observables to which our
framework can be applied, such as the number of charged
hadrons (tracks) in a jet. Here one could again impose a z�

weighting as in Eq. (1), or alternatively a cut on z, to
remove soft radiation and obtain an experimentally viable
quantity. For � ¼ 1 this corresponds to the total track
momentum generated by an energetic parton.

In Sec. II, we calculate the average and width of the jet
charge distribution, and discuss the relationship with (diha-
dron) FFs. We also introduce dihadron fragmenting jet
functions here, and discuss some of their properties. The
approach involving a nonperturbative jet charge distribu-
tion is presented in Sec. III, and its Monte Carlo implemen-
tation is described in Sec. IV. Numerical results and a
comparison with PYTHIA are contained in Sec. V. Here we
also discuss the optimal choice for �. In Appendix A and B,
we give the perturbative and nonperturbative coefficients
that are relevant for our calculation.

II. AVERAGE AND WIDTH OF THE JET
CHARGE DISTRIBUTION

A. Average jet charge

We start out by calculating the average charge for a
quark jet. (A gluon jet always has average charge zero.)
The average of the jet charge in Eq. (1) is

hQq
�i ¼ 1

�q-jet

Z
d�q-jetQ�ð�q-jetÞ

¼
Z 1

0
dzz�

X
h

Qh

1

�q-jet

d�h2q-jet

dz
;

(2)

where �q-jet is the cross section for producing a quark jet,

and �h2q-jet is the cross section for producing the jet in

which a hadron h is observed.
We calculate these cross sections in the framework

for jet production of Refs. [26–28]. For simplicity we
only consider eþe� collisions and use the eþe� version
of kT-type algorithms, with jet size R. (For narrow jets,
R � 1, the extension to pp collisions simply amounts to
replacing the jet energy E by the jet transverse momentum
pT , as discussed in Appendix A 2.) A jet energy veto � is
imposed, to restrict the radiation in the region between jets.
The framework is valid for sufficiently narrow, well-
separated, energetic jets

tan2ðR=2Þ; tan2ðR=2Þ
tan2ðc =2Þ ;

�

Emin

� 1; (3)

where c is the minimum angular separation between jets
and Emin the minimum jet energy. It is worth emphasizing
that the assumptions in Eq. (3), which are used to derive
Eq. (4), are more restrictive than is really necessary. For
example, our results will still hold when two jets become
close,1 as long as these are not the jets whose charge we
want to determine.
Using factorization in SCET, the cross sections at lead-

ing power are (schematically) given by2

�q-jet ¼
Z

d�N tr½HNSN�
�YN�1

‘¼1

J‘

�
JiðE; R;�Þ; (4)

d�h2q-jet

dz
¼

Z
d�N tr½HNSN�

�YN�1

‘¼1

J‘

�
Gh

i ðE; R; z;�Þ:

The massless N-body phase space for the jets is denoted by
d�N . The hard functionHN describes the hard process, and
the soft function SN the soft radiation. Both HN and SN are
matrices in color space, and the trace is over color. For each

�1 �0.5 0 0.5 1
0

1

2

3

4

5

6

Q1
u

ev
en

t
fr

ac
ti

on
u quark, anti�kT , E�100 GeV, R�0.5, Κ�1

hadronic
partonic

FIG. 1 (color online). The jet charge distribution in PYTHIA at
the hadronic and partonic level, for a u-quark jet with E ¼
100 GeV, using the eþe� anti-kT algorithm with R ¼ 0:5.

1The modifications of Eq. (4) for this case can be obtained
from Ref. [29], and do not affect our results.

2This involves the factorization of the phase space constraints
from the jet algorithm into separate restrictions on the soft and
collinear radiation, as discussed in e.g., Refs. [27,30].
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of the jets there is a jet function J‘ describing the collinear
radiation in the jet. To simplify the discussion, we have
singled out a jet of flavor i with energy E.

When a hadron is observed in this jet, Ji is replaced by a
fragmenting jet function (FJF) Gh

i [14,15,18]. We will
neglect the contribution from soft radiation to the jet
charge, which is suppressed by Oð�2�Þ, where the size of
the SCET power counting parameter � is set by Eq. (3).
Since soft gluons do not produce an average charge, this
additional approximation is absent for the average jet
charge. We briefly remind the reader of the most important
properties of the FJF: Gh

i has the same renormalization as
the jet function Ji, and can be matched onto fragmentation
functions Dh

j ,

Gh
i ðE; R; z;�Þ ¼ X

i

Z 1

z

dz0

z0
JijðE; R; z0; �ÞDh

j

�
z

z0
; �

�

�
�
1þO

� �2
QCD

4E2tan2ðR=2Þ
��

: (5)

The perturbative J ij contain the jet algorithm dependence.

The nonperturbative FF Dh
j describes the fragmentation of

an energetic hadron h from a parton j in inclusive pro-
cesses (i.e., without a jet restriction) [24,25]. The FJFs also
satisfy certain sum rules [15,18].

Inserting Eq. (4) in Eq. (2), we find that most pieces
cancel in the ratio of cross sections, yielding [11]

hQq
�i ¼

Z 1

0
dzz�

X
h

Qh

Gh
qðE; R; z; �Þ

2ð2�Þ3JqðE; R;�Þ

¼
~JqqðE;R; �;�Þ

2ð2�Þ3JqðE; R;�Þ
X
h

Qh
~Dh
qð�;�Þ:

(6)

Thus jet charge is independent of the process, up to the
power corrections in Eq. (3). This also implies that jet
charge is not sensitive to nonglobal logarithms [31,32] in
the soft function [33–35]. Because the FJF and jet function
have the same anomalous dimension, we see that the
�-dependence cancels in Eq. (6), as should be the case.

The last line was obtained using the matching in Eq. (5) for
the �th moment, with

~JijðE;R; �;�Þ ¼
Z 1

0
dzz�JijðE;R; z; �Þ;

~Dh
j ð�;�Þ ¼

Z 1

0
dzz�Dh

qðz; �Þ:
(7)

As Eq. (6) shows, the average jet charge depends on one
nonperturbative number (for each quark flavor and �)

DQ
q ð�;�Þ ¼ X

h

Qh
~Dh
qð�;�Þ (8)

related to FFs. Values for DQ
q at � ¼ 1 GeV are given in

Appendix B for several FF sets.
The matching coefficients Jij and jet functions Ji that

enter in Eq. (6) are given at next-to-leading order (NLO) in
Appendix A for kT-type algorithms. (Results for cone
algorithms can be found in Ref. [18].) Since there is no
distinction between the various kT-like jet algorithms at
this order, we study the difference between the average and
width of the jet charge distribution in the eþe� version of
kT [36], Cambridge-Aachen (C-A) [37,38], and anti-kT
[39] in PYTHIA. The results are shown in Fig. 2. As these
jet algorithms only differ in how they cluster soft radiation,
it is not surprising that the difference is only a few percent
and grows for small R. The dependence on � is counter-
intuitive: one would expect better agreement for larger
values of �, since that suppresses the soft radiation. Of
course this effect is rather small.
The matching coefficients Jij and the jet functions Ji

contain logarithms of 2E tanðR=2Þ=�, so one should take
�� 2E tanðR=2Þ � ER to avoid large logarithms. That
this combination of E and R appears can be seen by
boosting the jet along the jet axis. This boost invariance
is of course spoiled by soft radiation from other jets, which
is accounted for by the power corrections in Eq. (3). We
have investigated to what extent PYTHIA shows the same
invariance in Fig. 3, which provides an estimate of these
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FIG. 2 (color online). The jet algorithm dependence of the average and width of the jet charge distribution, as function of � and R.
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power corrections. As you can see, the invariance holds at
the percent level.3

To evolve ~DQ
q ð�;�Þ to �� 2E tanðR=2Þ, we need its

renormalization group equation

�
d

d�
~DQ
q ð�;�Þ ¼ �sð�Þ

�
~Pqqð�Þ ~DQ

q ð�;�Þ; (9)

which follows directly from that of the FF. Explicit expres-
sions for the one-loop splitting functions are given in
Appendix A. Note that the mixing with gluon FFs vanishes
to all orders, since a fragmenting gluon produces no net
charge. At leading order (LO), the perturbative coefficient in
Eq. (6) is 1 and the E and R dependence of the jet is simply
governed by Eq. (9). This shows that the average jet charge
reduces (dilutes) for larger values of E and R. Of course the
relevant question is how this changes relative to the width of
the jet charge distribution, which is what we turn to next.

B. Width of the jet charge distribution

The width of the jet charge distribution is given by

ð�i
�Þ2 ¼ hðQi

�Þ2i � hQi
�i2: (10)

It is the same for quarks and antiquarks and does not vanish
for gluon jets. In the previous section we calculated hQi

�i,
so now we will determine

hðQi
�Þ2i ¼

X
n

X
h1;...;hn

Sh1;...;hn

Z
dz1 � � � dzn

� ðQ1z
�
1 þ � � � þQnz

�
nÞ2 1

�i-jet

dn�h1���hn2i-jet

dz1 � � � dzn ;

(11)

where Sh1;...;hn is the appropriate symmetry factor. After

integrating over most of the zi this simplifies to

hðQi
�Þ2i ¼

Z 1

0
dzz2�

X
h

Q2
h

1

�i-jet

d�h2i-jet

dz

þ
Z 1

0
dz1

Z 1

0
dz2z

�
1z

�
2

X
h1;h2

Qh1Qh2

� 1

�i-jet

d�h1;h22i-jet

dz1dz2
: (12)

Here we used Shh ¼ 1=2 and accounted for the factor of 2
for h1 � h2 by including both orderings. The calculation of
the first term is completely analogous to that of hQi

�i in
Sec. II A. For the second term we get a dihadron FJF Gh1h2

i

instead of a single-hadron FJF. The relevant properties of
the dihadron FJF (discussed in the next section) are that it
also has the same renormalization as the jet function Ji, and
that it can be matched onto (dihadron) fragmentation func-
tions according to Eq. (18). Using this, we find

hðQi
�Þ2i ¼

X
j

~JijðE; R; 2�;�Þ
2ð2�Þ3JiðE;R;�Þ

X
h

Q2
h
~Dh
j ð2�;�Þ þ

Z 1

0
dz1

Z 1

0
dz2z

�
1z

�
2

X
h1;h2

Qh1Qh2

Gh1h2
i ðE;R; z1; z2; �Þ
2ð2�Þ3JiðE; R;�Þ

¼ X
j

� ~JijðE; R; 2�;�Þ
2ð2�Þ3JiðE;R;�Þ

~DQ2

j ð2�;�Þ þ
~J ijðE; R; 2�;�Þ
2ð2�Þ3JiðE;R;�Þ

X
h1;h2

Qh1Qh2
~Dh1h2
j ð�; �;�Þ

þ ĴijðE; R; �;�Þ
2ð2�Þ3JiðE; R;�Þ

X
h1;h2

Qh1
~Dh1
j ð�;�ÞQh2

~Dh2
aðijÞð�;�Þ

�

¼ X
j

~JijðE; R; 2�;�Þ
2ð2�Þ3JiðE;R;�Þ

�
~DQ2

j ð2�;�Þ þ ~DQQ
j ð�;�Þ

�
� �i;g

ĴgqðE; R; �;�Þ
ð2�Þ3JgðE; R;�Þ

X
q

½ ~DQ
q ð�;�Þ�2; (13)

as reported in Ref. [11] (except for the last term that only
contributes for gluon jets). Here

ĴijðE;R; �;�Þ ¼
Z 1

0
dzz�ð1� zÞ�JijðE;R; z; �Þ; (14)

and the flavor index aðijÞ, used in an intermediate step, is
given by

aðijÞ ¼

8>><
>>:
q qg; g �q;

�q if ij ¼ �qg; gq;

g gg; qq; �q �q;

(15)
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FIG. 3 (color online). The variation of the average and width
of the jet charge distribution, keeping 2E tanðR=2Þ ¼ 100 GeV
fixed.

3This is process dependent and is expected to be larger for
hadronic collisions or when more jets are present. We have also
taken a quite strong cut � on radiation outside the jets here.
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where the q’s and �q’s are of the same flavor.4 The second
term on the last line in Eq. (13) only contributes for i ¼ g,
and leads to nonlinearities. These are not important due to
the smallness of Ĵgq (see Table V), except at very small
values of � or �.

Equation (13) involves two new nonperturbative
numbers,

~DQ2

j ð2�;�Þ ¼ X
h

Q2
h
~Dh
j ð2�;�Þ;

~DQQ
j ð�;�Þ ¼ X

h1;h2

Qh1Qh2
~Dh1h2
j ð�; �;�Þ;

(16)

where the latter depends on dihadron FFs. To evolve these
to the appropriate scale �� 2E tanðR=2Þ, we use
�

d

d�
~DQQ
i ð�;�Þ ¼X

j

�sð�Þ
�

~Pjið2�Þ ~DQQ
j ð�;�Þ

þX
j

�sð�Þ
�

P̂jið�Þ ~DQ
j ð�;�Þ ~DQ

aðijÞð�;�Þ

¼X
j

�sð�Þ
�

~Pjið2�Þ ~DQQ
j ð�;�Þ

��i;g

�sð�Þ
�

P̂qgð�Þ
X
q

½ ~DQ
q ð�;�Þ�2;

(17)

which can be obtained by taking moments of the dihadron

FF evolution in Eq. (23). The combination ~DQ2

i ð2�;�Þ þ
~DQQ
i ð�;�Þ, which appears in Eq. (13), satisfies this same

RG equation. The last line of Eq. (17) only contributes for
i ¼ g, as in Eq. (13). This nonlinear contribution to the
evolution is again negligible, unless � or � is very small.
However, the mixing between quarks and gluons is quite
sizable, as we will see in e.g., Fig. 8.

C. Dihadron fragmenting jet functions

ThedihadronFJFsGh1h2
i ðE; R; z1; z2; �Þ are a direct exten-

sion of the single-hadron FJFs of Refs. [14,15,18], where
an additional hadron is observed in the jet. This modification
of the (IR) state does not affect the (UV) renormalization,
which is therefore the same as the jet function Ji.

The dihadron FJFs can be matched onto (dihadron)
FFs [11]

Gh1h2
i ðE;R;z1;z2;�Þ

¼X
j

Z du

u2
JijðE;R;u;�ÞDh1h2

j

�
z1
u
;
z2
u
;�

�

þX
j;k

Z du

u

dv

v
JijkðE;R;u;v;�ÞDh1

j

�
z1
u
;�

�
Dh2

k

�
z2
v
;�

�
:

(18)

In the first term the hadrons fragment from the same parton
j, and the coefficients Jij are the same as in Eq. (5). The

nonperturbative dihadron FF Dh1h2
j describes the fragmen-

tation of energetic hadrons h1 and h2 from a parton j in
inclusive processes (without a jet restriction) [40–42]. In
the second term of Eq. (18) the hadrons fragment from
different partons j and k, which is described by matching

onto two FFs, and does not contribute at tree-level, J ð0Þ
ijk ¼

0. Performing the matching by replacing the hadrons by
partons, we find at one-loop order that

J ð1Þ
ijkðE; R; u; v;�Þ ¼ J ð1Þ

ij ðE;R; u;�Þ
� �ð1� u� vÞ�k;aðijÞ: (19)

The �k;aðijÞ indicates that at one-loop order the flavor k is

completely fixed by ij, as described by aðijÞ in Eq. (15).
The dihadron FJFs satisfy the sum rule

X
h2

Z
dz2z2G

h1h2
i ðE; R; z1; z2; �Þ

¼ ð1� z1ÞGh1
i ðE;R; z1; z2; �Þ; (20)

which follows from momentum conservation.
We now perform some basic checks. First we note that

by using Eq. (20) and the corresponding sum rule for
dihadron FFs [40,42],

X
h2

Z
dz2z2D

h1h2
j ðz1; z2; �Þ ¼ ð1� z1ÞDh1

j ðz1; �Þ; (21)

Eq. (18) reduces to the matching for the single-hadron FJF
in Eq. (5). Second, we verify explicitly at one loop that the

anomalous dimension of Gh1h2
i is equal to that of the jet

function Ji, by using Eqs. (18) and (19). This is a straight-
forward calculation that also requires the one-loop anoma-
lous dimension [18]

�
d

d�

J ð1Þ
ij ðE;R; u;�Þ
2ð2�Þ3 ¼ �ð1Þ

Ji
ðE; R;�Þ�ð1� uÞ

� �sð�Þ
�

PjiðuÞ; (22)

where �J is the jet function anomalous dimension, as well
as the RG equation of dihadron FFs [40,41,43]

�
d

d�
Dh1h2

i ðz1;z2;�Þ

¼X
j

Z du

u2
�sð�Þ
�

PjiðuÞDh1h2
j

�
z1
u
;
z2
u
;�

�

þX
j

Z du

uð1�uÞ
�sð�Þ
�

PjiðuÞDh1
j

�
z1
u
;�

�
Dh2

aðijÞ

�
z2

1�u
;�

�
:

(23)
4This is true at one loop and requires modification at two-loop

order where new flavor combinations are possible.
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III. A FULL NONPERTURBATIVE JET CHARGE
DISTRIBUTION

In this section we will take a different approach.
Our starting point will be a nonperturbative distribution
DiðQ;�;�Þ for the charge Q of a parton of flavor i for a
given �. (This is not to be confused with the fragmentation
function Dh

i , and can be distinguished by its arguments.)
We assume that these distributions are normalized,

Z
dQDiðQ;�;�Þ ¼ 1: (24)

In analogy to Sec. II, we will calculate the RG evolution of
DiðQ;�;�Þ and the corrections from the jet algorithm,
which we described by a GiðE; R;Q; �;�Þ.

We start by observing that the one-loop RG evolution
consists of splittings i ! jaðijÞ, withaðijÞ given inEq. (15).
The charge is the sum of the charge of the branches,

Q ¼ z�Q1 þ ð1� zÞ�Q2; (25)

where the rescalings z� and ð1� zÞ� are necessary because
momentum fractions in the branches are taken with respect
to their initiating parton. This suggests the following struc-
ture for the renormalization,

Dbare
i ðQ;�;�Þ ¼ 1

2

X
j

Z
dQ1dQ2dzZ

D
ijðz;�Þ

�DjðQ1; �;�ÞDaðijÞðQ2; �;�Þ
� �½Q� z�Q1 � ð1� zÞ�Q2�: (26)

From the partonic one-loop calculation, we find

ZD
ijðz;�Þ ¼ 2�ij�ð1� zÞ þ �sð�Þ

2�

1

	
PjiðzÞ (27)

Eq. (26) requires regulating the splitting functions for
z ! 0, which may be obtained from the familiar z ! 1
regularizations, using PggðzÞ ¼ Pggð1� zÞ and PgqðzÞ ¼
Pqqð1� zÞ. Taking the � derivative of Eq. (26), we find the

following one-loop RG evolution of the charge distribution

�
d

d�
DiðQ;�;�Þ ¼ 1

2

X
j

Z
dQ1dQ2dz�

D
ijðz;�Þ

�DjðQ1; �;�ÞDaðijÞðQ2; �;�Þ
� �½Q� z�Q1 � ð1� zÞ�Q2�; (28)

with anomalous dimension

�D
ijðz;�Þ ¼ �sð�Þ

�
PjiðzÞ: (29)

A nontrivial property of Eq. (28) is that it preserves
the normalization in Eq. (24). Taking the appropriate
moments, Eq. (28) reduces to the evolution for the average
and width of the charge distribution in Eqs. (9) and (17). One
advantage of the approach in this section is that it does not
require multihadron FFs for higher integer moments. It also

allows us to describe noninteger moments of the jet charge
distribution, for which there is no description in terms of
multihadron FFs.
The generalization of Eq. (28) to n loops is expected to

be given by

�
d

d�
DiðQ;�;�Þ ¼ 1

n!

X
fjkg

Z �Ynþ1

m¼1

dQmdzmDjmðQm; �;�Þ
�

� �

�
1� Xnþ1

m¼1

zm

�
�

�
Q� Xnþ1

m¼1

z�mQm

�

� �D
ij1...jnþ1

ðz1; . . . ; zn; �Þ: (30)

This becomes increasing nonlinear, but the nonlinearities
are of course loop suppressed.
In analogy to the fragmenting jet function, we introduce

GiðE;R;Q; �;�Þ. This is the jet charge distribution, which
takes the jet restriction into account. Similar to the renor-
malization in Eq. (28), we find that the one-loop matching
is given by

GiðE; R;Q; �;�Þ ¼ 1

2

X
j

Z
dQ1dQ2dzJijðE; R; z;�Þ

�DjðQ1; �;�ÞDaðijÞðQ2; �;�Þ
� �½Q� z�Q1 � ð1� zÞ�Q2�: (31)

The matching coefficients Jij are the same as for the

FJF, but now also need to be regulated for z ! 0.
This regularization may be obtained from the z ! 1 regu-
larizations, using JggðE; R; z;�Þ ¼ JggðE; R; 1� z;�Þ
and JqgðE; R; z; �Þ ¼ JqqðE;R; 1� z;�Þ. To ‘‘cancel’’

the factor of 1=2 in Eq. (31) at tree level, we modify the
tree-level matching coefficients at z ¼ 0:

J ð0Þ
qqðE;R; z; �Þ ¼ �ð1� zÞ;

J ð0Þ
qgðE;R; z; �Þ ¼ �ðzÞ;

J ð0Þ
ggðE;R; z; �Þ ¼ �ðzÞ þ �ð1� zÞ;

J ð0Þ
gqðE;R; z; �Þ ¼ 0:

(32)

We have checked that Eq. (31) preserves the normalization
in Eq. (24),

Z
dQGiðE; R;Q; �;�Þ ¼ 1: (33)

Taking moments of Eq. (31),

hQi
�i ¼

Z
dQQGiðE;R;Q; �;�Þ;

hðQi
�Þ2i ¼

Z
dQQ2GiðE; R;Q; �;�Þ;

(34)

results in equations that are consistent with the expressions
for the average jet charge and the width of the jet charge
distribution in Eqs. (6) and (13).
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IV. MONTE CARLO IMPLEMENTATION

An interesting feature of the approach in Sec. III
is that it can be exactly recast in terms of a MC.
Specifically, the solution to the nonlinear differential equa-
tion in Eq. (28) is naturally obtained using a parton shower.
References [44–46] worked on (improving) parton showers
in the context of SCET, by studying the matching and RG
evolution of the hard function, which describes the short
distance physics. Our approach is orthogonal to this: we
are only attempting to describe jet charge (and similar
observables) but at higher precision. Our MC consists of
a (possible) perturbative splitting at the jet scale ��
2E tanðR=2Þ, a parton shower connecting the jet scale and
the hadronization scale �0 � 1 GeV, and a hadronization
step at �0. We will only keep track of the parton type and
momentum fractions in the shower, which are the variables
relevant for jet charge, and thus do not attempt to give a
fully differential description of the final state.

Starting with a quark or gluon with energy E, the first
step in generating the jet consists of (the possibility of) a
perturbative splitting at the jet scale, corresponding to
Eq. (31). The splittings are described by the following
probability densities,

P½q! qðzÞgð1� zÞ�¼ JqqðE;R;z;�Þ
2ð2�Þ3JqðE;R;�Þ 0� z� 1��;

P½g! gðzÞgð1� zÞ�¼ JggðE;R;z;�Þ
4ð2�Þ3JgðE;R;�Þ �� z� 1��;

P½g! qðzÞ �qð1� zÞ�¼ JgqðE;R;z;�Þ
2ð2�Þ3JgðE;R;�Þ 0� z� 1;

(35)

where �� 2E tanðR=2Þ to avoid large logarithms. These
weights are negative, as is common at NLO, so the phrase
‘‘probability’’ is not meant in the classical sense. The
additional factor of 1/2 for g ! gg is due to identical
particles. Because of the singularities in the J ij (regulated

by plus distributions) we introduced a cutoff �. This can be
thought of as a resolution parameter, and defines the
no-splitting probability,

P½q ! q� ¼
Z 1

1��
dz

JqqðE; R; z; �Þ
2ð2�Þ3JqðE; R;�Þ ;

P½g ! g� ¼
Z 1

1��
dz

JggðE; R; z; �Þ
2ð2�Þ3JgðE; R;�Þ :

(36)

For sufficiently small values of � the result becomes
independent of �, but smaller values also increase the
computation time.

We subsequently carry out the evolution in Eq. (28)
between the jet scale and the hadronization scale by solv-
ing this equation iteratively, with step-size d ln�

DiðQ;�;�ed ln�Þ

¼ DiðQ;�;�Þ þX
j

Z
dz

�sð�Þ
2�

PjiðzÞd ln�

�
Z

dQ1dQ2�½Q� z�Q1 � ð1� zÞ�Q2�
�DjðQ1; �;�ÞDaðijÞðQ2; �;�Þ: (37)

This builds up a parton shower, where for each step d ln�
the splitting probability densities are

P½q!qðzÞgð1� zÞ�¼�sð�Þ
�

PqqðzÞdln� 0� z� 1��;

P½g!gðzÞgð1� zÞ�¼�sð�Þ
2�

PggðzÞdln� �� z� 1��;

P½g!qðzÞ �qð1� zÞ�¼�sð�Þ
�

PqgðzÞdln� 0� z� 1;

(38)

and the corresponding no-splitting probabilities are

P½q ! q� ¼ 1þ
Z 1

1��
dz

�sð�Þ
�

PqqðzÞd ln�;

P½g ! g� ¼ 1þ
Z 1

1��
dz

�sð�Þ
�

PggðzÞd ln�:

(39)

Note that the resolution parameter � used here can in
principle be different from the one in Eqs. (35) and (36).
The description up to this point has been fairly generic

and does not rely on the observable. However, now we
need to use that in the shower the charge is the z�-weighted
sum of the charge of the branches, and that the charge
distribution of the branches is sampled over, as described
by the last two lines of Eq. (37). We will only sample
over the charge distributions of the partons at the end
of the shower, randomly assigning them a charge using
DiðQ;�;�0Þ as a probability distribution. This is our hadro-
nization ‘‘model.’’ It is perhaps surprising that such a simple
approach to hadronization is possible, compared to the
string fragmentation models used in Monte Carlo programs,
but this is because we restrict ourselves to a specific observ-
able. By weighting the charges of these final partons with
their momentum fractions, we obtain the jet charge for this
event. Generating a sufficient number of events (around 105

to 106 for statistical errors at the percent level) yields a
numerical calculation of the full jet charge distribution.
As proof of concept, we have turned this description

into a computer program, which we call the JETFRAG

Monte Carlo. This generates unweighted events, but has
so far only been minimally optimized. For simplicity we
restrict ourselves to � ¼ 1, and adopt a simple toy model
for the nonperturbative input. Specifically, we assume that
DgðQ;�;�0Þ is Gaussian with average 0 and width 0.6 at

the scale �0 ¼ 1 GeV. Similarly we take DqðQ;�;�0Þ ¼
D �qð�Q;�;�0Þ equal for all five5 quark flavors, and

5We here ignore the b- and c-quark thresholds.
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describe it by a Gaussian with mean 0.2 and width 0.4. In
Table I, we show results for the average and the width of
the jet charge distribution, obtained using this MC program
for various values of the parameters � and d ln�. We
compare this to the analytic results, to get an idea of how
small these parameters need to be for a reliable description.

The histogram for the corresponding jet charge distribu-
tion is shown in Fig. 4 for � ¼ d ln� ¼ 0:05. Since we
start with nonperturbative input that is Gaussian, it is not
surprising that the resulting jet charge distribution looks
very Gaussian again. As an illustration we therefore also
show the result using a step function for DgðQ;�;�0Þ and
DqðQ;�;�0Þ with the same averages and widths. From

Sec. II we know that the resulting jet charge distribution
will have the same average and width. However, the shape
of the distribution is quite different, as shown in Fig. 4. The
parton shower does turn the step function into a more
Gaussian distribution, which can presumably be understood
as a consequence of the central limit theorem. To the extent
that a Gaussian description of jet charge suffices, the analyti-
cal approach of Sec. II is of course much simpler.

The procedure described in this section can directly be
extended to observables similar to jet charge, by replacing

DiðQ;�;�0Þ with the appropriate function for that
observable. There are no obvious obstacles in extending
this approach to n-loop order, although this will involve
1 ! nþ 1 splittings [see Eq. (30)]. It will be interesting to
see if a similar approach can be employed for more general
track-based jet observables that are also sensitive to soft
radiation, such as the track mass of a jet. We leave this
question for future work.

V. NUMERICAL RESULTS

This section contains our numerical results for the aver-
age and width of the jet charge distribution. We first study
the perturbative convergence of our results, followed by a
detailed comparison with PYTHIA. We conclude by discus-
sing the optimal choice for �.

A. Perturbative convergence

We start by studying the perturbative convergence of our
calculation. In Fig. 5 we show the results for the average
charge of a kT-like quark jet with R ¼ 0:5 and � ¼ 1, as a
function of the jet energy E. The curves are normalized to 1
at E ¼ 100 GeV, which removes the dependence on the
nonperturbative parameter in Eq. (6). At LO we do not
include the NLO jet algorithm corrections; i.e., we take
~J ij ¼ 2ð2�Þ3�ij. As Fig. 5 shows, the NLO corrections

reduce the average jet charge by a non-negligible amount.
The perturbative uncertainties are estimated by varying

the renormalization scale � up and down by a factor of 2.
To keep the normalization point fixed, we simultaneously
vary the scale in the normalization. We show uncertainty
bands both with (darker) and without (lighter) this addi-
tional prescription in Fig. 5. In all the following plots we
will use this additional prescription, which keeps the nor-
malization point fixed and leads to smaller uncertainties.
However, since these uncertainty bands do not quite
overlap, they may be a bit too optimistic. In addition, the

TABLE I. The average and width of the jet charge distribution
obtained from the JETFRAG MC described in this section, for
various values of the parameters � and d ln�, compared to the
analytic calculation. We use the Gaussian toy model described in
the text for the nonperturbative input.

� d ln� hQq
�i �q

�

0.2 0.8 0.159 0.387

0.2 0.4 0.152 0.386

0.1 0.4 0.146 0.370

0.05 0.2 0.146 0.359

0.05 0.05 0.142 0.358

Analytic 0.142 0.353
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Hadronization model:
Gaussian
Step function

FIG. 4 (color online). Jet charge distribution obtained using
the JETFRAG Monte Carlo described in Sec. IV. We use the
Gaussian (orange solid) or step function (green dashed) toy
model described in the text for the nonperturbative input.
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FIG. 5 (color online). The average charge hQq
1i at LO and NLO

for a kT-like quark jet with R ¼ 0:5 and � ¼ 1. The bands
correspond to the perturbative uncertainties as explained in the
text.
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prescription causes the NLO band to be only slightly
narrower than the LO result. (Neither of these issues are
present for the lighter uncertainty bands.)

In Fig. 6 we study the convergence of hðQi
�Þ2i for i ¼ q, g,

which enters in the width in Eq. (10). We can no longer
completely remove the nonperturbative input by norma-
lizing, because of the mixing between quarks and gluons.
We therefore make an assumption for


 ¼ hðQg
�Þ2i

hðQq
�Þ2i at �0 ¼ 1 GeV; (40)

which we for simplicity take equal for all five light quark
flavors. The solid curves and uncertainty bands correspond to

 ¼ 1 and the dotted curves in Fig. 6 correspond to

 ¼ 2. We find again that the convergence is reasonable.
The mixing causes the width to reduce more slowly as a
function ofE. (For quarks the effect of the mixing is stronger
if 
 is larger, whereas for gluons it is the opposite way
around.)

B. Comparison with PYTHIA

1. Setup

In this section we compare our calculation for the aver-
age and width of the jet charge distribution with PYTHIA

[12,13]. PYTHIA results for quark jets are obtained from the
process eþe� ! �=Z ! q �q, where

ffiffiffi
s

p ¼ 2E leads to jets
of roughly the desired jet energy. The gluon jets are
obtained from pp ! gg by taking

ffiffiffi
s

p ¼ 2E and requiring
that the outgoing gluons have a minimum pT � E. We
cluster the jets using the eþe� version of the anti-kT
algorithm in FASTJET [47], and only keep jets that have at
least 95% of the desired energy.

2. Comparison using fragmentation functions

First we compare the average jet charge, using the input
from the HKNS [48], DSS [49,50], and AKK08 [51]
fragmentation function sets collected in Appendix B,
with the result obtained from PYTHIA at E ¼ 100 GeV
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FIG. 6 (color online). hðQi
1Þ2i at LO and NLO for kT-like quark jets (left panel) and gluon jets (right panel) with R ¼ 0:5 and � ¼ 1.

The bands correspond to the perturbative uncertainties for 
 ¼ 1.

TABLE II. Average charge of an eþe� anti-kT jet with E ¼ 100 GeV and R ¼ 0:5. We did not
include HKNS in this comparison due to its poor charge separation.

u quark d quark s quark

� PYTHIA DSS AKK08 PYTHIA DSS AKK08 PYTHIA DSS AKK08

0.5 0.271 0.237 0.221 �0:162 �0:184 �0:062 �0:196 �0:504 �0:123
1 0.144 0.122 0.134 �0:078 �0:088 �0:046 �0:108 �0:214 �0:064
2 0.055 0.046 0.064 �0:027 �0:030 �0:027 �0:043 �0:064 �0:024

TABLE III. Width of the jet charge distribution �i
� for an eþe� anti-kT jet with E ¼ 100 GeV and R ¼ 0:5. The dihadron

contribution is calculated assuming no correlations, using Eq. (42).

u quark d quark s quark Gluon

� PYTHIA HKNS DSS AKK08 PYTHIA HKNS DSS AKK08 PYTHIA HKNS DSS AKK08 PYTHIA HKNS DSS AKK08

0.5 0.341 0.862 0.734 � � � 0.338 0.785 0.707 � � � 0.336 0.549 0.674 � � � 0.356 0.813 0.773 � � �
1 0.242 0.383 0.333 0.373 0.236 0.339 0.313 0.340 0.237 0.225 0.314 0.298 0.199 0.314 0.300 0.381

2 0.136 0.155 0.143 0.157 0.127 0.134 0.131 0.129 0.132 0.093 0.139 0.130 0.073 0.117 0.109 0.127
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and R ¼ 0:5. As Table II shows, PYTHIA is in reasonably
good agreement with the FF results, given the large uncer-
tainties from the FFs, for which we take the spread between
the FF sets as an estimate. The main reason for this spread
is poor charge separation, as discussed in Appendix B.

Since the knowledge of dihadron FFs is very limited, we
need either input from data or further assumptions to make
predictions for the width. For example, recently dihadron
FFs have been calculated in the NJL model [52]. Here we
will assume that the two hadrons are uncorrelated. Since
the evolution in Eq. (17) and the matching in Eq. (13)
generate correlations, we need to be more specific: we
assume that the dihadron FFs are uncorrelated at the low
scale �0 ¼ 1 GeV,

Dh1;h2
j ðz1; z2; �0Þ ¼ Dh1

j ðz1; �0ÞDh2
j ðz2; �0Þ; (41)

which leads to

~DQQ
j ð�; �;�0Þ ¼ ½ ~DQ

j ð�;�0Þ�2: (42)

From the tables with nonperturbative parameters in
Appendix B, we then see that the dihadron contribution
~DQQ
j is typically (much) smaller than the single-hadron

contribution ~DQ2

j . In Table III we show the width of the jet

charge in PYTHIA, as well as the width obtained using
Eq. (42). For � ¼ 0:5 and 1 the width obtained from
PYTHIA is consistently smaller than that obtained from

FFs. Of course this could indicate significant dihadron
correlation effects and not necessarily a problem with
PYTHIA. As the knowledge of (dihadron) FFs progresses,

the above analysis could start putting constraints on pa-
rameters (or tunes) of PYTHIA.

3. Perturbative comparison

Next we compare the dependence on E and R in PYTHIA

with our calculation, for which we take PYTHIA’s values at
E ¼ 100 GeV and R ¼ 0:5 as input. In the left panel of
Fig. 7, we compare the average jet charge as a function of
the jet energy E for u- and d-quark jets and � ¼ 0:5, 1, 2.
Since our calculation predicts the same shape for u- and
d-quark jets, we normalize the plot. This also removes the
dependence on the nonperturbative input describing the
hadronization.6 The PYTHIA result has the same features as
our result and agrees fairly well for � ¼ 0:5 and 1. For larger
values of �, PYTHIA starts to yield a distinctly lower average
jet charge. In the right panel of Fig. 7, we compare different
values of R for � ¼ 1. PYTHIA predicts a slightly lower
average jet charge but the agreement is quite reasonable.
We have investigated the size of the nonlinearities and

mixing in the evolution and fixed-order corrections to the
width of the jet charge in Eqs. (13) and (17). The effect of
the nonlinearities is less than 1% until you get down to
energies of only a few GeV, so they are irrelevant.
However, the mixing effect is quite significant. In Fig. 8
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FIG. 7 (color online). The average charge for an anti-kT quark jet is shown as function of the jet energy E for various values of � and
R. The PYTHIA results for d (u) quarks are shown as squares (circles). The plots are normalized to 1 at E ¼ 100 GeV and R ¼ 0:5,
which removes the dependence on the nonperturbative input and thus the quark flavor.
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FIG. 8 (color online). The size of the quark/gluon mixing in
the width of the jet charge distribution.

6We observe this in PYTHIA as well: the average jet charge
before and after hadronization is the same up to an overall factor.
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we show the (normalized) widths of the jet charge
for quark and gluon jets, with and without the mixing
contribution.

In Fig. 9, we study the width of the quark jet charge
distribution as a function of the jet energy. We again show
normalized results, since these are almost the same for the
different quark flavors. In the left panel we compare our
calculation to PYTHIA for several values of �. The rise in
our prediction for � ¼ 0:5 is due to the large mixing
contribution from gluons (which was not included in
Ref. [11]). PYTHIA’s decrease for � ¼ 0:5 involves a can-
cellation between the parton shower and the hadronization
model, since before hadronization PYTHIA also predicts a
(relative) increase. At the same time theOð�2�Þ corrections
due to soft radiation are the largest for small values of �.
(Since soft radiation does not affect the average jet charge,
this would not be in contradiction with the agreement seen
in Fig. 7.) At this point it is not clear if the discrepancy

indicates a problem with PYTHIA or our calculation. For
� ¼ 1, 2 the difference between our calculation and
PYTHIA is smaller, though PYTHIA still predicts a distinctly

lower width. In the right panel we perform the comparison
for different values of R with � ¼ 1. The dependence on R
is very similar, but PYTHIA is again slightly lower.
In Fig. 10 we study the width of the gluon jet charge.

There is reasonable agreement for � ¼ 1 and 2. For � ¼
0:5, we find that the gluon width barely changes due to the
mixing with quarks, whereas PYTHIA yields a distinctly
smaller width. As the right panel shows, the R dependence
in PYTHIA exhibits the same general features as our result,
but the effect is smaller. These points also suggest that the
gluon jets in PYTHIA do not depend on E and R solely
through the combination 2E tanðR=2Þ [as predicted by our
calculation and observed for quark jets in Fig. 3].
Based on these comparisons it seems reasonable to use

PYTHIA for first jet charge studies. Precision studies will
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FIG. 9 (color online). The width of the anti-kT quark jet charge distribution as a function of the jet energy E for various values of �
and R. The PYTHIA results for d (u) quarks are shown as squares (circles). The plots are normalized to 1 at E ¼ 100 GeV and R ¼ 0:5,
since they are almost independent of the quark flavor.
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presumably lead to discrepancies with PYTHIA, though
this can of course be alleviated by retuning. By contrast,
our higher-order calculation can be systematically
improved to match the experimental precision.

C. Optimal choice for �

Theoretically, the optimal choice �� is the value for �
where the peak of the jet charge distribution is best sepa-
rated from zero. More precisely, �� is where

�ð�Þ ¼ hQq
�i2

hðQq
�Þ2i (43)

attains its maximum. Experimental considerations will of
course affect this choice, since e.g., smaller values of �
increase the (unwanted) sensitivity to soft radiation from
the initial state or other jets [11]. Though the maximization
of � is a nonperturbative question, we can study how ��
depends on �� 2E tanðR=2Þ. Neglecting NLO jet algo-
rithm corrections and mixing with gluons,

d�

d ln�
¼ �sð�Þ

�
½2Pqqð�Þ � Pqqð2�Þ��: (44)

This leads to

d��
d ln�

¼ �2
�sð�Þ
�

�ð��Þ
�00ð��Þ ½P

0
qqð��Þ � P0

qqð2��Þ�; (45)

so as we increase E and R, �� is reduced. The factor
containing the splitting functions is plotted in Fig. 11
and, interestingly,7 has a minimum around �� 0:55.
Once �� is below this value, its scale dependence will be
reduced. In addition, �sð�Þ reduces as � increases. In
Table IV we show some results for �� obtained from
PYTHIA. Since the values of �� are all well below 0.55, it

is not surprising that there is little dependence on the jet
energy. It should also be noted that � is fairly flat in the
vicinity of ��, so a somewhat different value of �� may
work almost as well.

VI. CONCLUSIONS

We have presented in detail the calculation of the jet
charge distribution. This takes a particularly simple form
for the average and width of the jet charge distribution,
which are the experimentally most relevant parameters.
The nonperturbative coefficients that enter in the average
and the width are related to moments of (dihadron) frag-
mentation functions. Since these currently still have large
uncertainties the agreement with PYTHIA is reasonably
good. PYTHIA tends to predict a width that is smaller than
those obtained from fragmentation functions when diha-
dron correlations are neglected, but this could of course be
due to such correlations. We also compared our perturba-
tive calculation with the showering in PYTHIA, which agree
reasonably, suggesting that PYTHIA suffices for initial stud-
ies of jet charge. The results in this paper can be system-
atically improved by including higher-order corrections,
power corrections, or updated (dihadron) FFs.
There are various choices that enter in the jet charge,

such as the jet algorithm, R, and the weighting-power �.
Jets with a smaller R retain a better jet charge signal, but
also have an increased dependence on the jet algorithm.We
studied the optimal choice �� of � for quark jets and found
that it reduces as the jet energy increases. However, this
energy dependence slows down for �� below 0.55, indicat-
ing that observables like jet charge can remain useful at
high energies.
We have also shown that our general calculation of jet

charge can naturally be performed using a Monte Carlo—
style approach. It is interesting that this is possible, given
that standard Monte Carlo parton showers are limited to
leading logarithmic order. We leave it to future work to
investigate whether this can be extended to more general
track-based jet observables that are also sensitive to soft
radiation.
In Ref. [11] several potential applications of jet charge at

the LHC were discussed. Here we confirmed through a
detailed calculation that jet charge is theoretically under
control. We therefore recommend a study of jet charge with
LHC data as the natural next step.
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FIG. 11 (color online). Factor that controls the speed with
which �� reduces as �� 2E tanðR=2Þ increases. Below
�� 0:55 the reduction slows down.

TABLE IV. Theoretical optimal choice �� obtained from
PYTHIA, for eþe� anti-kT jets with R ¼ 0:5 and the indicated

flavor and jet energy E.

E (GeV) u d s

25 0.29 0.29 0.32

100 0.28 0.25 0.31

400 0.26 0.25 0.29

7By contrast, P0
ggð�Þ � P0

ggð2�Þ � �1=�2, suggesting that any
z-weighted property of gluon jets is quite diluted at high
energies.
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APPENDIX A: PERTURBATIVE COEFFICIENTS

1. One-loop splitting functions

The one-loop splitting functions are [53]

PqqðzÞ ¼ CF

�
1þ z2

1� z

�
þ
¼ CF

�
1þ z2

ð1� zÞ þ
3

2
�ð1� zÞ

�
;

PgqðzÞ ¼ CF

1þ ð1� zÞ2
z

;

PggðzÞ ¼ 2CA

�
z

ð1� zÞ þ
1� z

z
þ zð1� zÞ

�

þ 1

2
�0�ð1� zÞ;

PqgðzÞ ¼ TF½z2 þ ð1� zÞ2�; (A1)

where �0 ¼ ð11CA � 4nfTFÞ=3 is the lowest-order coef-

ficient of the QCD � function. In moment space [54]

~Pqqð�Þ ¼ CF

�
�2Hð�þ 2Þ þ 1

�þ 1
þ 1

�þ 2
þ 3

2

�
;

~Pgqð�Þ ¼ CF

�2 þ 3�þ 4

�3 þ 3�2 þ 2�
;

~Pggð�Þ ¼ CA

�
�2Hð�þ 3Þ þ 4�2 þ 6�þ 4

�3 þ 3�2 þ 2�

�
þ 1

2
�0;

~Pqgð�Þ ¼ TF

�2 þ 3�þ 4

�3 þ 6�2 þ 11�þ 6
;

P̂qgð�Þ ¼ TF

2�ð�þ 1Þ�ð�þ 3Þ
�ð2�þ 4Þ ; (A2)

where H is the harmonic number function. The nonlinear

contribution P̂qg decreases exponentially for large �,

P̂qgð�Þ ¼ TF

ffiffiffiffi
�

p
e�ð2 ln2Þ�

4
ffiffiffiffi
�

p
�
1þO

�
1

�

��
: (A3)

2. NLO corrections for kT-type jets

The NLO matching coefficients J ij for the eþe� ver-

sion of kT-like jet algorithms are given below, and we will
also discuss the straightforward extension to pp collisions.
At one loop, where you have at most two partons, there is
no distinction between the various eþe� kT-like jet algo-
rithms. The jet restriction is simply 
 � R, where 
 is the
angle between the two partons. This translates into

s � 4zð1� zÞE2tan2ðR=2Þ; (A4)

where s is the invariant mass of the jet. For kT-like algo-
rithms for pp collisions the corresponding jet restriction isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p � R, where �� and �� are the differ-
ence in (pseudo)rapidity and azimuthal angle between the
two partons. This is a more complicated restriction, as it is
not rotationally symmetric around the jet axis. However,
for narrow jets (R � 1) it simplifies to [55]

s � 4zð1� zÞp2
T tan

2ðR=2Þ: (A5)

Our eþe� results can thus directly be extended to pp
collisions by simply replacing the jet energy E by the
transverse momentum pT of the jet.
Using the bare results in Ref. [15], we readily obtain, in

the MS scheme,

JqqðE;R; z; �Þ
2ð2�Þ3 ¼ �ð1� zÞ þ �sð�Þ

�

�
CFL

2�ð1� zÞ þ
�
PqqðzÞ � 3

2
CF�ð1� zÞ

�
Lþ CFJ fin

qqðzÞ
�
;

JqgðE;R; z; �Þ
2ð2�Þ3 ¼ �sð�Þ

�
½PgqðzÞLþ CFJ fin

qgðzÞ�;
JggðE;R; z; �Þ

2ð2�Þ3 ¼ �ð1� zÞ þ �sð�Þ
�

�
CAL

2�ð1� zÞ þ
�
PggðzÞ � 1

2
�0�ð1� zÞ

�
Lþ CAJ fin

ggðzÞ
�
;

JgqðE;R; z; �Þ
2ð2�Þ3 ¼ �sð�Þ

�
½PqgðzÞLþ TFJ fin

gqðzÞ�:

(A6)

Here L ¼ ln½2E tanðR=2Þ=�� and

TABLE V. Numerical results for the moments of the one-loop
J fin

ij (does not include the overall �s=� and color factor).

� ~J qq
~J qg

~J gg
~J gq Ĵ gq

0.5 1.07 �8:49 �6:83 �0:81 �0:39
1 2.10 �2:56 0.02 �0:64 �0:14
2 3.65 �1:01 3.01 �0:50 �0:023
3 4.85 �0:67 4.51 �0:43 �0:0045
4 5.86 �0:53 5.64 �0:38 �0:00094
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J fin
qqðzÞ ¼ 2z

�
lnð1� zÞ
1� z

�
þ
þ ð1� zÞ lnð1� zÞ þ 1þ z2

1� z
lnzþ 1

2
ð1� zÞ � �2

24
�ð1� zÞ;

J fin
qgðzÞ ¼ 1þ ð1� zÞ2

z
ln½zð1� zÞ� þ z

2
;

J fin
ggðzÞ ¼ 2z

�
lnð1� zÞ
1� z

�
þ
þ 2ð1þ z2Þð1� zÞ

z
lnð1� zÞ þ 2ð1� zþ z2Þ2

zð1� zÞ lnz� �2

24
�ð1� zÞ;

J fin
gqðzÞ ¼ ½z2 þ ð1� zÞ2� ln½zð1� zÞ� þ zð1� zÞ:

(A7)

Antiquarks have the same coefficients as quarks, and J q �q and J qq0 only start at two-loop order. We have checked these
results using the sum rules in Ref. [18]. Since we evaluate the matching coefficients at�� 2E tanðR=2Þ, where L� 0, the
one-loop contribution essentially comes from J fin

ij . We give numerical values for its moments in Table V. Note that the
nonlinear contribution Ĵ gq becomes negligibly small for large �.

The jet functions for kT-like jets are [27]

JqðE; R;�Þ ¼ 1þ �sð�ÞCF

�

�
L2 � 3

2
Lþ 13

4
� 3�2

8

�
;

JgðE; R;�Þ ¼ 1þ �sð�Þ
�

�
CAL

2 � �0

2
Lþ CA

�
5

24
� 3�2

8

�
þ 23

24
�0

�
:

(A8)

APPENDIX B: NONPERTURBATIVE COEFFICIENTS FROM FRAGMENTATION FUNCTIONS

In Table VI we show the nonperturbative parameters ~DQ
q ð�;� ¼ 1 GeVÞ for the average charge of a quark jet, using

the HKNS [48], DSS [49,50], and AKK08 [51] fragmentation function sets at NLO. The large differences between the
various FF sets are mainly due to poor charge separation. This is because we need the charge-separated combination

Dh
q �D

�h
q ¼ Dh

q �Dh
�q, whereas a lot of the data are e

þe� ! hX which only gives access toDh
q þDh

�q. In particular, HKNS

only uses eþe� data in their analysis, so their quark/antiquark separation relies crucially on assumptions. The large
difference for the s quark in DSS compared to the other FF sets is due to semi-inclusive deeply inelastic scattering data that
only they include [49].

TABLE VI. Nonperturbative parameters ~DQ
q (�, � ¼ 1 GeV) for the average charge of a quark

jet.

HKNS NLO DSS NLO AKK08

� ~DQ
u ~DQ

d
~DQ
s ~DQ

u ~DQ
d

~DQ
s ~DQ

u ~DQ
d

~DQ
s

0.5 1.207 �0:807 �0:073 0.302 �0:235 �0:642 0.279 �0:079 �0:156
1 0.420 �0:279 �0:062 0.184 �0:132 �0:323 0.199 �0:068 �0:095
2 0.135 �0:089 �0:039 0.087 �0:057 �0:121 0.120 �0:051 �0:045

TABLE VII. Nonperturbative parameters ~DQ2

i ð�;�Þ that contribute to the width of jet charge distributions. For i ¼ u, d, s, g the
scale � ¼ 1 GeV and for i ¼ c, b it is � ¼ mc;b. For AKK08 most of the � ¼ 1 moments are divergent, as denoted by ‘‘� � �’’.

HKNS NLO DSS NLO AKK08

� ~DQ2

u ~DQ2

d
~DQ2

s ~DQ2

g ~DQ2

u ~DQ2

d
~DQ2

s ~DQ2

g ~DQ2

u ~DQ2

d
~DQ2

s ~DQ2

g

1 0.676 0.540 0.113 0.680 0.498 0.442 0.347 0.620 � � � � � � � � � � � �
2 0.206 0.161 0.051 0.291 0.165 0.143 0.130 0.260 0.188 0.150 0.099 0.447

4 0.050 0.038 0.016 0.108 0.045 0.038 0.040 0.090 0.050 0.034 0.035 0.120

HKNS NLO DSS NLO AKK08

� ~DQ2

c ~DQ2

b
~DQ2

c ~DQ2

b
~DQ2

c ~DQ2

b

1 0.510 0.607 0.618 0.639 � � � 0.459

2 0.108 0.071 0.145 0.081 0.086 0.060

4 0.013 0.004 0.022 0.008 0.011 0.004
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The results for ~DQ2

i , which is the contribution from single-
hadron FFs to the width of the jet charge distribution, are
shown in Table VII. Several of the � ¼ 1 moments for
AKK08 are divergent (at z ¼ 0) and denoted by a ‘‘� � �’’.
Since ~DQ2

q essentially depends on the combination Dh
q þ

Dh
�q, the agreement between the different sets is much

better. The gluon FFs are not as well known as the quark
FFs, as is clear from the differences between the FF sets.
We have also included the heavy quark flavors because
they contribute through RG mixing.
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