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Boer-Mulders function of the pion in the MIT bag model
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We apply the MIT bag model to study the Boer-Mulders function of the pion, a 7T-odd function that
describes the transverse polarization distribution of the quark inside the pion. We simulate the effect of
the gauge link through the “‘one-gluon-exchange’ approximation. We consider both the quark helicity
nonflip and double-flip contributions. The result in the MIT bag model is compared with those in the

spectator models.

DOI: 10.1103/PhysRevD.86.094023

One of the main tasks in QCD and hadron physics is to
understand the transverse partonic structure of hadrons,
especially the nucleon and the pion. The inclusion of the
parton transverse motion introduces new types of parton
structure, the so-called transverse momentum dependent
(TMD) distributions, or alternatively the three-dimensional
parton distribution functions in momentum space. They
extend the concept of traditional Feynman distribution
functions and encode a wealth of new information
on the nucleon structures [1-7] that cannot be described
merely by the leading-twist collinear picture. Of particular
interests are the leading twist 7-odd TMD distribution
functions, such as the Sivers function [1,2] and the Boer-
Mulders function [8]. They arise from the correlation
between the nucleon/quark transverse spin and the quark
transverse momentum, and they can account for the polar-
ized and unpolarized spin asymmetries in the semi-
inclusive deeply inelastic scattering (SIDIS) [9-14] and
the Drell-Yan [15-17] processes.

As a spin-0 hadron, the pion has a simpler partonic
structure than that of the nucleon, i.e., in leading twist
there are two TMDs of the pion, the unpolarized TMD
fi(x,k2) and the Boer-Mulders function i (x, k2).
However, the pion TMDs are less known from experiments
than those of the proton since they cannot be probed in the
SIDIS. Theoretically, the Boer-Mulders function of the
pion has been studied by lattice calculation [18] and model
calculations [19-24]. In the latter case, different treatments
on the gauge link have been used, namely, the one-gluon
exchange approximation [19-21,24] and the nonperturba-
tive eikonal methods [22,23], which take into account
higher order gluonic contributions, respectively. In this
paper, we study the Boer-Mulders function of the pion
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using an alternative model, the MIT bag model [25]. This
model has been applied to study the TMDs of the proton,
including the T-even distributions [26], the Sivers func-
tions [27-29], and the Boer-Mulders functions [27,30].
The calculation of the T-odd TMDs by the MIT bag model
has produced their main features, for instance, the sign and
the Burkardt sum rule [31] for the Sivers function [29], and
the sign for the Boer-Mulders function [32]. Therefore,
it is worthwhile to use the same model to study the Boer-
Mulders function of the pion.

Unlike the Boer-Mulders function of the proton, which
can be probed in both the SIDIS process and the Drell-Yan
process, the Boer-Mulders function of the pion may only
be detected in the Drell-Yan process. Fortunately, the new
7N Drell-Yan program will be conducted by COMPASS
[33] at CERN very soon; also there is a 7N Drell-Yan plan
proposed by SPASCHARM [34]. The upcoming Drell-Yan
experiments can achieve unpolarized and polarized scat-
tering, so they will provide the opportunities [35,36] to
access the chiral-odd TMDs of the pion as well as the
nucleon.

The quark-quark correlation function for the pion has
the form

b, 5kr) = [ dfziﬁff@mj(mz(o, WP o
(D
where kt = xP™, and
L0, &) = Pe~e Jydmitn @)

is the gauge link (Wilson line) connecting the two
different space-time points O and ¢ by all possible ordered
paths followed by the gluon field A running along a
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process-dependent path. In this work we calculate the
Boer-Mulders function in the SIDIS process.

The leading-twist TMDs of the pion can be obtained
from the correlator ®(x, k7) by the following traces:

1
filx k%) = 5 T O(x, kr)y*] 3)

€kr,
M

The TMD distribution f,(x, k%) can be calculated
straightforward in the MIT bag model, in which the quark
fields are expressed in the following general form:

VEn= S Nba(km)i(E 0
n>0,k=*1,m==1/2
+ dl(nKm)Lllfnfkjm(i’ t)}’ (5)
where i is the wavefunction in the position space. After

performing the Fourier transformation, one obtains the
momentum space wavefunction of the quark [25],

tO(k)){m )
(U Etl (k)Xm ’
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@, (k) = i\/Eng( (6)

and the wavefunction of the antiquark,
ket (k
b)) = i\/47TNR8( o -kt (k)xm ) (7)

tO(k))(m
k

where k = % is a unit vector with k = |k|, @ =~ 2.04 for the
lowest mode, R the bag radius, y,, the Pauli spinor, o the

Pauli matrix, and N the normalization factor with the form

N= (2R3(w = 1)jg<w))%' ®)

The functions ¢;(k) are calculated from

(k) = ]0 L 2duj (ukRo) j(uw), ©)

where j; are the spherical Bessel functions.

Using the isospin symmetry and charge-conjugation
operation, the unpolarized TMDs of the charged pion can
be connected by

T = =T =T = f 0

The function f, can be calculated by inserting the quark
field in the MIT bag model into the correlator (1) in the
absence of the gauge link

47N?E RS

fia(x, ky) = W (r3(k) + 2kAztO(k)tl(k) + (k)

k

(1)
where k, = 7. and k, = xM, — & with € = w/R,. The

distribution for the neutral pion is a half of f.
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The MIT bag model has also been extended to calculate
T-odd TMDs [27,29,30], such as the Sivers function and
the Boer-Mulders function of the nucleon. As in the origi-
nal MIT bag model there is no explicit gluon degree of
freedom, which is crucial for nonzero T-odd TMDs; in
these calculations the effect of the gauge link is incorpo-
rated by introducing “‘one-gluon-exchange™ [27,29,30] or
invoking instanton effects [28]. In our calculation of the
pion Boer-Mulders function, we follow the former
approach to expand the gauge link to order O(g) to obtain
the expression

M E, (d*q; 1
hJ_ ,k2 = -2 2 g 77[ r
R kD) = 2T e g

x ¥ T?jTZI(PWIbL"]b{;,zd,tlﬁdﬁ,,4|Pw>
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X @by (k= gr) Y’y Y2 ys @, (k)

&Pk
X [(277)33 ¢I13(k3)'}’0')’+ G (ks —qr), (12)

where we have used the covariant gauge. We also point out
that the calculated distribution is for the semi-inclusive
DIS process. The corresponding diagram is shown in
Fig. 1. In Eq. (12) we use T and T¢ (the conjugate
representation) to denote the Gell-Mann matrices associ-
ated with the quark and the antiquark, respectively. They
are related by

T¢ = —(T%)* = —(T*)". (13)
Defining
Conmpmam = TET4P b bl dlid!, P, (14)

we obtain the following nonzero spin coefficients:

2
Ciy-—=C__ 4= _§,

(15)
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These coefficients have already included the contribution
from the color factor

k,mso k—q,m

FIG. 1. One gluon exchange -contribution to the pion
Boer-Mulders function. The graph has been drawn using
JAXODRAW [41].
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4
Za,ké,l(T,,Tk,) =3 (16)
l/kl

calculated from the color(-singlet) structure of the pion and
the Gell-Mann matrices.

Inserting the bag wavefunctions (6) and (7), and the spin
coefficients (15) into (12), we arrive at the final expression
of the pion Boer-Mulders function

dzé]r
Lk = e[S [d ky(Ry (R,
+I..I +R+,R’+, +1..1I, ), 17
where
2 47NZRS
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NNCXOE (1%)

In Eq. (17) the real functions R, > Ly m,> Riyym,» and

I},m, are defined as

i .
oYY VY5 @n, = 7—4wN2R6(lem2 + il ), (19)

1
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There are totally 16 functions, among which 8 are
independent and have the following forms:

Ry = kyto(KN)t, (k) — Keto(k)t, (K))
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- kAg)'tO(kS)tl(kg): (28)
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lk — g7, k' = k,‘”,andk’ = |k; — g7, k5 =

qT . The functions listed in Egs. (21)—(28) agree with the

functlons 15, Fy5, H,, and J| , listed in the appendix of
Ref. [30]. The first two terms on the right-hand side of (17)
are the quark helicity nonflip contributions, while the last
two terms are the contributions received from the helicity
double-flip of quarks. An important observation in the bag
model calculation of the proton Sivers function [29] and
Boer-Mulders function [30] is that, apart from the helicity
nonflip contributions, the double-flip terms (especially the
R, _R', _ term) is significant and should not be ignored. In
the light of this finding, in this work we consider both the
helicity nonflip and double-flip contributions to the pion
Boer-Mulders function.

To give a numerical estimate of the pion Boer-Mulders
function in the MIT bag model, we need to fix the parame-
ters in the model, especially the bag radius R, of the pion.
In the calculation of the proton TMDs [27,29,30,37] the
bag radius is determined by the relation [38]

where kK =

4 nw
Ro=331 (29)
where n is the quark (antiquark) number in the bag. Here
we use the same ansatz for the bag radius of the meson. For
the strong coupling a,, we follow the choice a,/(47) =
0.13 in Ref. [30], where the same model has been used to
calculate the proton Boer-Mulders function. To get the
appropriate tendency of the distribution at the region
x — 1, we use the constraint §(1 — x — x3) when perform-
ing the integration in (12), where x; = ki /P*.
The left panel of Fig. 2 shows the first k% moment of the
Boer-Mulders function hl(l)(x), which is defined as

k2
hlﬁi“(x) = [ dsz<2—A;2)hli7(x, k2). (30)

The solid and the dashed curves represent the total result and
the result contributed by the quark helicity nonflip terms. The
comparison of these two curves indicates that the helicity
nonflip and double-flip contributions are equally important to
the pion Boer-Mulders function. Our results show that h;_is
negative, in agreement with spectator model and lattice
calculations. The sign of the pion Boer-Mulders function is
also consistent [32] with the sign of the Boer-Mulders func-
tions of the nucleon in the MIT bag model.

In the right panel of Fig. 2 we compare xhl(l)(x) in the
MIT bag model (shown by the solid line) with that in the
spectator model (shown by the dashed line) [19], where
the one-gluon exchange approximation is also used. When
obtaining the two curves in the right panel of Fig. 2 we use
the same strong coupling a,/(47) = 0.13 for comparison.
The size of xh;-\"(x) in the MIT bag model is smaller than
that in the spectator model, while the x dependence of the
distribution are similar in both models; that is, they peak at
the region x ~ 0.5.
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FIG. 2 (color online).
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Left panel: The first k% moment of the pion Boer-Mulders function in the MIT bag model. The solid line

corresponds to the full result including both the helicity nonflip and double-flip contributions. The dashed line corresponds to the result
with only the helicity nonflip contribution. Right panel: Comparison of xh f;l)(x) in the MIT bag model (solid line) and the spectator

model (dashed line).

We also point out that the size of xhi"(x) in our

calculation is comparable with the spectator model calcu-
lation that employs the nonperturbative eikonal methods

[22,23]. The x dependence of xhll;l)(x) in these two differ-
ent calculations differ from each other since in Refs. [22,23]
the distribution peaks at x ~ 0.2.

Similar to the MIT bag model calculations for the proton
TMDs, our calculations are performed at the low energy
bag scale, and we have not considered the evolution effect
during the entire calculation. Recently substantial progress
[39,40] on the evolution of the proton TMDs has been
achieved. A potential issue for future study is to investigate
if the same approach can be applied to the pion TMDs,
especially the Boer-Mulders function, where the MIT bag
model calculations could be the initial inputs at the low
energy scale. Only with full knowledge of the initial inputs
and the evolution of the pion TMDs, we can get more
precise predictions of the experiments.

In summary, we have applied the MIT bag model to study
the TMDs of the pion. Particularly, we calculated the pion
Boer-Mulders function, which is a 7-odd chiral-odd distri-
bution. To obtain a nonzero result, the effect of the gauge
link is simulated by introducing the ‘“‘one-gluon-exchange”
effect. We consider both the helicity nonflip and double-flip
contributions to the pion Boer-Mulders function. We esti-
mated the pion Boer-Mulders function numerically, showing
that it is negative in the MIT bag model. We compare our
result with the available spectator model calculations. Our
study provides further knowledge on the transverse parton
structure of the pion.
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