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Nonleptonic two-body B decays including radially excited �ð1300Þ or �ð1450Þmesons in the final state

are studied using the framework of a generalized naive factorization approach. Branching ratios and CP

asymmetries of B ! P�ð1300Þ, B ! V�ð1300Þ, B ! P�ð1450Þ and B ! V�ð1450Þ decays are calcu-

lated, where P and V stand for pseudoscalar and vector charmless mesons. Form factors for B ! �ð1300Þ
and B ! �ð1450Þ transitions are estimated in the improved version of the Isgur-Scora-Grinstein-Wise

quark model. In some processes, CP asymmetries of more than 10% and branching ratios of 10�5 order

are found, which could be reached in experiments.
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I. INTRODUCTION

Most of the research on nonleptonic two-body B decays
have concentrated in processes where the final mesons are
ground states or angular orbital excitations [1]. Radial
excitations can be produced in B decays. Decays involving
radially excited mesons could be an alternative to those
more traditionally studied, given additional and comple-
mentary information.

The physics involved in nonleptonic two-body B decays
allows us to study the interplay of QCD and electroweak
interactions, to search for CP violation, and overconstrain
Cabbibo-Kobayashi-Maskawa (CKM) parameters in a pre-
cision test of the standard model [1,2].

In the quark model, mesons are q �q0 bound states of
quark q and antiquark �q0. The q �q0 state has an orbital
angular momentum l and spin J. Pseudoscalar and vector
mesons have orbital angular momentum l ¼ 0. The an-
gular orbital excitations: scalar, axial vector and tensor
mesons have l ¼ 1. Mesons can be classified in spec-
troscopy notation by n2sþ1lJ, where s ¼ 0 or 1 for
parallel or antiparallel quarks q and �q0, respectively.
Radial excitations are denoted by the principal quantum
number n.

The radial excitations �ð1300Þ and �ð1450Þ, with prin-
cipal quantum number n ¼ 2, u and d quark content, can
be produced in nonleptonic two-body B decays. In spec-
troscopy notation,�ð1300Þ is denoted by 21S0 and �ð1450Þ
by 23S1. To simplify, we denote �ð1300Þ by �0 and
�ð1450Þ by �0.

In Ref. [3], the authors interested in factorization-
breaking effects in B decays consider B decays to final
states with small decay constants, such as �B0 ! Dþ�0�
and �B0 ! D�þ�0� decays.

Production of charmless radially excited vector mesons
in nonleptonic two-body B decays is considered in
Ref. [4]. The authors make a prediction for the ratio

BrðB ! �0�Þ=BrðB ! ��Þ. This ratio is given in terms
of the form factor A0, which is calculated in a constituent
quark model [4]. We compare our calculations with their
result and experimental data available.
In this paper, we present a study on the exclusive modes

B ! P�0, B ! V�0, B ! P�0 and B ! V�0, where P and
V are the pseudoscalar and vector mesons, �, �, �0 and K
and �, !, K� and �, respectively. We compute branching
ratios of these processes using the effective weak
Hamiltonian, with tree and penguin contributions. Matrix
elements are calculated in the generalized naive factoriza-
tion approach [5,6]. The form factors for B ! P and
B ! V transitions are calculated in the Bauer-
Stech-Wirbel (WSB) model [7] and light-cone sum rule
(LCSR) approach [8]. Form factors for B ! �0 and B!
�0 transitions are calculated in the improved version of the
Isgur-Scora-Grinstein-Wise (ISGW) quark model, called
ISGW2 model [9,10].
We also calculateCP-violating asymmetries in the frame-

work of generalized naive factorization approach [11].
CP asymmetries allow us to determine interior angles of
the unitary triangle and test the unitarity of the CKMmatrix.
Specifically, in this work, we calculate direct CP violation
for charged B� decays and CP asymmetries for neutral
B0ð �B0Þ decays. For some channels, asymmetries of order
10% are found.
In general, we use the method and formulas developed

in Refs. [5,6,11], to estimate branching ratios and CP-
violating asymmetries. We make the respective changes
in the processes studied in this work, i.e., masses, decay
constants and form factors.
The decay constants f�0 and f�0 are not well-determined

input parameters. The range of values for the f�0 decay
constant obtained from different methods and its impact in
channels B ! P�0 and B ! V�0 is discussed in this work.
Some branching ratios are sensitive to the decay constants
f�0 and f�0 . This fact will allow us to determine decay

constants by experiment in cases where branching ratios
are measured.*german.calderon@uadec.edu.mx
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This paper is organized as follows. In Sec. II, we present
the framework used to calculate branching ratios of non-
leptonic two-body B decays, the effective Hamiltonian and
the generalized naive factorization approach. Input pa-
rameters, mixing schemes, decay constants and form fac-
tors are discussed in Sec. III. In Sec. IV, we discuss the
amplitudes involving radially excited mesons and calculate
numerical results for branching ratios. CP-violating asym-
metries for charged and neutral channels are presented
in Sec. V. Our conclusions are given in Sec. VI. In the
appendixes, we give the amplitudes for B ! P�0, V�0,
P�0 and V�0 processes, which are taken from the appen-
dixes in Refs. [5,6], without considering annihilation and
interchange contributions, with the appropriate changes in
the processes calculated in this work.

II. FRAMEWORK

A. Effective Hamiltonian

The framework to study B decays is the effective weak
Hamiltonian [12]. For �B ¼ 1 transitions, it is written as

Heff ¼ GFffiffiffi
2

p
� X
j¼u;c

VjbV
�
jqðC1ð�ÞOj

1ð�Þ þ C2ð�ÞOj
2ð�ÞÞ

� VtbV
�
tq

�X10
i¼3

Cið�ÞOið�Þ
��

þ H:c:; (1)

where GF is the Fermi constant, Cið�Þ are Wilson coef-
ficients at the renormalization scale �, Oið�Þ are local
operators and Vij are the respective CKM matrix elements

involved in the transitions. The local operators for b ! q
transitions are

Oj
1 ¼ �q��

�Lu� � �u���Lb�

Oj
2 ¼ �q��

�Lu� � �u���Lb�

O3ð5Þ ¼ �q��
�Lb� �X

q0
�q0���LðRÞq0�

O4ð6Þ ¼ �q��
�Lb� �X

q0
�q0���LðRÞq0�

O7ð9Þ ¼ 3

2
�q��

�Lb� �X
q0
eq0 �q

0
���RðLÞq0�

O8ð10Þ ¼ 3

2
�q��

�Lb� �X
q0
eq0 �q

0
���RðLÞq0�;

(2)

where q ¼ d or s, Oj
1 and Oj

2 are the current-current

operators (j ¼ u, c),O3 �Q6 the QCD penguins operators
and Q7–Q10 the electroweak penguins operators. The
indexes � and � mean SUð3Þ color degrees, L and R are
the left and right projector operators, respectively. The sum
extends over active quarks u, d, s and c at the scale of B
meson � ¼ OðmbÞ.

In order to calculate the branching ratios and CP asym-
metries in this work, we use the next to leading order

Wilson coefficients for �B ¼ 1 transitions obtained in
the naive dimensional regularization scheme (NDR) at the

energy scale� ¼ mbðmbÞ,�ð5Þ
MS

¼ 225 MeV and quark top

mass mt ¼ 170 GeV. These coefficients are taken from
Ref. [12], see Table 22. Those values are c1 ¼ 1:082,
c2 ¼ �0:185, c3 ¼ 0:014, c4 ¼ �0:035, c5 ¼ 0:009,
c6 ¼ �0:041, c7=� ¼ �0:002, c8=� ¼ 0:054, c9=� ¼
�1:292 and c10=� ¼ 0:263, where � ¼ 1=137 is the fine
structure constant.

B. Generalized naive factorization approach

The decay amplitude of a nonleptonic two-body B decay
can be calculated using the effective weak Hamiltonian by

MðB ! M1M2Þ ¼ hM1M2jHeff jBi

¼ GFffiffiffi
2

p X10
i¼1

Cið�ÞhOið�Þi; (3)

where the hadronic matrix elements hOið�Þi are defined by
hM1M2jOið�ÞjBi and Mi are final state mesons. In the
naive factorization hypothesis, hadronic matrix elements
hOið�Þi are evaluated by the product of decay constants
and form factors. These matrix elements are energy� scale
and renormalization scheme independent; consequently,
there is no term to cancel the energy � dependency in
the Wilson coefficients, and the amplitudes for nonleptonic
two-body B decays are scale and renormalization scheme
dependent.
The improved naive factorization approach [5,6] is for-

mulated to solve the problem of energy scale dependency
by including some perturbative QCD contributions in
Wilson coefficients. This is considered in order to isolate
the energy� dependency from the matrix element hOið�Þi
and join it with the Wilson coefficients to produce effective
Wilson coefficients ceffi , which are scale � independent.
Schematically,X

i

Cið�ÞhOið�Þi ¼ X
i

Cið�Þgið�ÞhOiitree

¼ X
i

ceffi hOiitree; (4)

where gið�Þ are perturbative QCD corrections to Wilson
coefficients and hOiitree are tree-level hadronic matrix ele-
ments. Explicit expressions for the effective Wilson coef-
ficients ceffi are given in Refs. [6]. These coefficients are
recalculated with the current CKM parameters [13].
Effective Wilson coefficients, for transitions b ! d and
b ! s, are shown in Table I. They are evaluated at the
factorizable scale � ¼ mb, with an averaged momentum
transfer of k2 ¼ m2

b=2 and using the central values for

CKM parameters from Ref. [13].
In the factorizable decay amplitude, the effectiveWilson

coefficients appear as linear combinations. Thus, to sim-
plify decay amplitudes, ai coefficients are introduced
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ai � ceffi þ 1

Nc

ceffiþ1 ði ¼ oddÞ;

ai � ceffi þ 1

Nc

ceffi�1 ði ¼ evenÞ;
(5)

where index i runs over 1; . . . ; 10; and Nc ¼ 3 is the color
number of QCD. Effective coefficients ai for b ! d and
b ! s transitions are shown in Table II.

The improved naive factorization approach contains
various sources of theoretical uncertainties, i.e., renormal-
ization scheme dependence, 1=NC value, and k2 depen-
dence, which we discuss in the following.

The Wilson coefficients depend on renormalization
energy scale �, though improved naive factorization was
built to resolve this problem. In addition, Wilson coeffi-
cients at next leading order also depend on the renormal-
ization scheme; see Ref. [12] where an analysis is
presented for naive dimensional regularization (NDR)
and ’t Hooft Veltman (HV) schemes. Thus, we have a
dependency on the renormalization scheme used in the
calculation of effective Wilson coefficients ceffi . The had-
ronic matrix elements do no have terms to cancel this
dependency in the physical amplitude. In this work, we

use the next-to-leading order Wilson coefficients, obtained
in the naive dimensional regularization scheme at the
energy scale � ¼ mbðmbÞ.
In the naive generalized factorization approach, the

parameter 1=NC is considered as a phenomenological
parameter, which includes nonfactorization effects and it
is varied to model the nonfactorization contributions in
matrix elements. Although Neff is scale energy � and
renormalization scheme independent, it is a gauge and
infrared regulator dependent quantity, see Ref. [14].
Thus, we consider NC the parameter defined and fixed to
NC ¼ 3 in QCD.
The effective coefficients ceffi depend on an averaged

momentum transfer k2. In a specific model and from two-
body decays, kinematics has been estimated to lie in the
range m2

b=4< k2 <m2
b=2. It is found that the CP average

branching ratios are not sensibly dependent on if k2 is
varied, see Refs. [5,6].

III. INPUT PARAMETERS AND FORM FACTORS

A. Input parameters

The CKM matrix is parametrized in terms of
Wolfenstein parameters 	, A, �� and �� [15],

1� 1
2	

2 	 A	3ð ��� i ��Þ
�	 1� 1

2	
2 A	2

A	3ð1� ��� i ��Þ �A	2 1

0
BB@

1
CCA; (6)

with �� ¼ �ð1� 	2=2Þ and �� ¼ �ð1� 	2=2Þ, including
Oð	5Þ corrections [16]. The Wolfenstein parameters are
determined by unitarity constraint of three family of quarks
and a global fit to experimental data. The central values
	 ¼ 0:2253, A ¼ 0:808, �� ¼ 0:132, and �� ¼ 0:341 are
used in calculations, see Ref. [13].
Running quark masses enter in loop calculation of ef-

fective Wilson coefficients. Furthermore, they are present
in the equation of motion necessary to calculate the chiral
factor, which multiplies the matrix elements of penguin
terms a6 and a8 in the effective weak Hamiltonian. These
contributions are only present in the processes involving
pseudoscalar mesons �, �, �0, K and �0 in final states.
Since the energy release in B decay is of order mb, the

scale energy for evaluation of running quark masses should
be � � mb. The values muðmbÞ ¼ 3:2 MeV, mdðmbÞ ¼
6:4 MeV, msðmbÞ ¼ 127 MeV, mcðmbÞ ¼ 0:95 GeV and
mbðmbÞ ¼ 4:34 GeV are used in calculations, see
Ref. [17].
The decay constants of pseudoscalar and vector mesons

are determined using branching ratio of mesons and 

semileptonic decays, respectively. The central values,
f� ¼ 130, fK ¼ 160, f� ¼ 212, f! ¼ 195, fK� ¼ 221

and f� ¼ 237 MeV are extracted using experimental

data, see Ref. [13].

TABLE II. Effective coefficients ai for b ! d and b ! s
transitions (in units of 10�4 for a3; . . . ; a10).

ai b ! d b ! s

a1 1.046 1.046

a2 0.024 0.024

a3 72 72

a4 �386� i108 �388� i118
a5 �28 �28
a6 �438� i108 �441� i118
a7 �0:59� i2:50 �0:63� i2:66
a8 3:38� i0:83 3:36� i0:89
a9 �92:2� i2:50 �92:2� i2:66
a10 0:44� i0:83 0:43� i0:89

TABLE I. Effective Wilson coefficients ceffi for b ! d and
b ! s transitions. Evaluated at �f ¼ mb and k2 ¼ m2

b=2, where

the central values for Wolfenstein parameters 	 ¼ 0:2253,
A ¼ 0:808, � ¼ 0:132 and � ¼ 0:341 are used, see Ref. [13].

ceffi b ! d b ! s

ceff1 1.1680 1.1680

ceff2 �0:3652 �0:3652
ceff3 0:0226þ i0:0041 0:0227þ i0:0044
ceff4 �0:0461� i0:0122 �0:0464� i0:0133
ceff5 0:0133þ i0:0041 0:0134þ i0:0044
ceff6 �0:0483� i0:0122 �0:0486� i0:0133
ceff7 =� �0:0264� i0:0343 �0:0270� i0:0365
ceff8 =� 0.0551 0.0551

ceff9 =� �1:4229� i0:0343 �1:4235� i0:0365
ceff10 =� 0.4804 0.4804
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In Ref. [18] is presented the argument that decay
constants of radial excited pseudoscalar mesons are sup-
pressed relative to the pion decay constant. Decay constant
f�0 computed in models has also been found to be small,
see Ref. [19]. In unquenched lattice QCD [19], the ratio
f�0=f� ¼ 0:078ð93Þ is calculated. Using f� ¼ 131 MeV,
the value of decay constant f�0 ¼ 16:3� 6:1 MeV is
obtained. From the experimental bound on branching ratio
Brð
 ! �0�
Þ [20] is established a bound in the decay
constant, f�0 < 8:4 MeV [3]. In Ref. [21], the authors
obtain f�0 ¼ 26 MeV and f�0 ¼ 128 MeV, using a light

cone quark model. Recently, in the large-Nc limit and using
QCD spectral sum rules in Ref. [22], the authors estimate
the decay constant f�0 ¼ 182� 5 MeV.

In order to calculate branching ratios and CP asymme-
tries for channels B ! P�0 and B ! V�0, two values of
decay constant are used f�0 ¼ 0 and 26MeV, which are the
minimum and maximum in the range of values obtained by
different methods. For channels B ! P�0 and B ! V�0,
the decay constant f�0 ¼ 128 MeV is used to calculate

branching ratios and CP asymmetries.
The mixing of the �� �0, �0 �! and !�� systems

are considered by mixing in decay constants and form
factors. Ideal mixing is considered for !��, i.e., the

mesons have quark content !¼1=
ffiffiffi
2

p ðu �uþd �dÞ and
� ¼ s�s.

Two-mixing angle formalism is used to describe mixing
in �� �0 system, see Refs. [23,24]. The physical states �
and �0 are defined in terms of flavor octet �8 and singlet �0.
In Ref. [24], we find a complete fit of mixing parameters
to experimental data, resulting for decay constants
the following central values fu� ¼ 76:2, fu�0 ¼ 61:8,

fs� ¼ �110:5 and fs
�0 ¼ 138 MeV. Decay constants

fc� ¼ �ð2:4� 0:2Þ and fc�0 ¼ �ð6:3� 0:6Þ MeV are used

to include the �c meson in the mixing scheme. When scalar
and pseudoscalar densities in penguin terms a6 and a8 are
evaluated, the correct chiral behavior must be ensured. Thus,
these matrix elements are multiplied by the factor r�ð0Þ .

The numerical values r� ¼ �0:689 and r�0 ¼ 0:462 are

used, see Ref. [25].
For the meson B lifetime, the values 
B� ¼ ð1:638�

0:011Þ � 10�6 s and 
 �B0 ¼ ð1:525� 0:009Þ � 10�6 s are
used, and for B mass mB� ¼ 5279:17� 0:29 and m �B0 ¼
5279:50� 0:30 MeV [13], which are required to calculate
branching ratios.

B. Form factors

The WSB model [7] and LCSR approach [8] are used to
calculate form factors for B ! P and B ! V transitions.
Since the WSB model and LCSR approach provide form
factors only for the above transitions, form factors for
B ! �0 and B ! �0 transitions are calculated using the
ISGW2 quark model [10].
The transitions B ! P and B ! V can be written in

terms of form factors by the following expressions

hPðpPÞjV�jBðpBÞi �
�
ðpB þ pPÞ� �m2

B �m2
P

q2
q�

�
F1ðq2Þ

þ
�
m2

B �m2
P

q2

�
q�F0ðq2Þ (7)

and

hVðpV; �ÞjðV� � A�ÞjBðpBÞi � �������
��p�

Bp
�
V

2Vðq2Þ
ðmB þmVÞ � i

��
��� � �� � q

q2
q�

�
ðmB þmVÞA1ðq2Þ

�
�
ðpB þ pVÞ� � ðm2

B �m2
VÞ

q2
q�

�
ð�� � qÞ A2ðq2Þ

ðmB þmVÞ þ
2mVð�� � qÞ

q2
q�A0ðq2Þ

�
; (8)

where q ¼ ðpB � pPÞ or q ¼ ðpB � pVÞ and � is the po-
larization of the vector meson V. The following restrictions
are imposed over form factors in order to cancel poles at
q2 ¼ 0

F1ð0Þ ¼ F0ð0Þ;
2mVA0ð0Þ ¼ ðmB þmVÞA1ð0Þ � ðmB �mVÞA2ð0Þ:

(9)

In the case of the WSB model, a single pole dominance
model is used for the q2 momentum squared dependency

fðq2Þ ¼ fð0Þ
ð1� q2=m2�Þ

; (10)

where m2� is the pole mass given by the vector meson, and
fð0Þ is the form factor at zero momentum transfer.

TheWSBmodel is a relativistic constituent quark model
where the meson-meson matrix elements are evaluated
from the average integral corresponding to meson func-
tions, which are solutions of a relativistic harmonic oscil-
lator potential [7]. The wave function depends on the
parameter !2 ¼ h ~p2

Ti, which represents the average trans-
verse quark momentum. The estimate of the form factors
are sensible to the ! value used. The central values for
form factors reported in Ref. [7] are calculated with the
value ! ¼ 0:40. Additionally, we use the values ! ¼ 0:35
and ! ¼ 0:50 to estimate form factors in the WSB model
and obtain the uncertainties associated to the form factors
due to reasonable variations of the parameter !.
The LCSR approach uses the method of QCD sum rules

on the light cone [8]. The second set of parameters are used
in the calculations, see Ref. [8]. A fit parametrization is
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utilized for the q2 dependency of the form factors. The
authors in Ref. [8] make variations of parameters and
determine the dependency for the form factors from the
input parameters. These estimates can be considered the
uncertainties associated with the prediction of the LCSR
approach for the form factors.

In Table III, values for form factors involved in transi-
tions B ! P and B ! V are shown, evaluated at zero
momentum transfer, in the WSB quark model [7] and
LCSR approach [8], with the corresponding errors from
input parameter dependency. Form factor in B ! � tran-
sition, evaluated in the LCSR approach, is small at one
sigma error compared to the WSB model. This result is in
accordance with current experimental data [13]. The pseu-
doscalar meson �0 is too heavy to be treated in the LCSR
approach, its value is not reported. In general, the form
factors calculated in LCSR approach are smaller than those
calculated in the WSB model, for this reason the branching
ratios are also smaller.

The improved version of the ISGW model [9], the so-
called ISGW2 model [10], a nonrelativistic quark model is
used in this work. Although, in the ISGWmodel is possible
to calculate transitions to a radially excited pseudoscalar
and vector mesons, the ISGW2 model is better because the
constrains imposed by heavy quark symmetry, hyperfine
distortions of wave functions, and form factor more real-
istic at high recoil momentum transfer. These additional
features incorporated in the ISGW2 model allow us to
make more reliable estimations.

In the ISGW2 model, B ! P0 transition is written as

hPðpPÞjV�jBðpBÞi � f0þðq2ÞðpB þ pPÞ�
þ f0�ðq2ÞðpB � pPÞ�; (11)

and matrix elements of vector and axial vector currents for
B ! V0 transition are written as

hVðpV; �ÞjV�jBðpBÞi � ig0ðq2Þ������
��ðpB þ pVÞ�

� ðpB � pVÞ� (12)

and

hVðpV; �ÞjA�jBðpBÞi � f0ðq2Þ��� þ a0þðq2Þð�� � pBÞ
� ðpB þ pVÞ� þ a0�ðq2Þ
� ð�� � pBÞðpB � pVÞ�; (13)

where q ¼ ðpB � pPÞ or (pB � pV) in the respective case.
The transitions B ! �0 and B ! �0 can be considered at

the quark level by b ! q1, where the pseudoscalar �
0 and

the vector meson �0 have quark content q1 �q2, and q2 is the
spectator quark. In the following we write down the basic
expressions for form factors in B ! �0 and B ! �0 tran-
sitions in the ISGW2 model. In the formulas X are�0 or �0,
respectively.
The form factors f0þ and f0�, which parametrize the

transition B ! �0, are determined in ISGW2 model by
the expressions

f0þ þ f0� ¼
ffiffiffi
3

2

s ��
1�m2

m1

�
U�m2

m1

V

�
F
ðf0þþf0�Þ
3

f0þ � f0� ¼
ffiffiffi
3

2

s
~mB

m1

�
Uþ m2

~mX

V

�
F
ðf0þ�f0�Þ
3 ;

(14)

where

U ¼ �2
B � �2

X

2�2
BX

þ �2
B


3�2
BX

;

V ¼ �2
B

6�2
BX

�
1þ m1

mb

��
7� �2

B

�2
BX

ð5þ 
Þ
�


 � m2
1�

2
Xð ~!� 1Þ

�2
B�

2
BX

; ~! ¼ tm � t

2 ~mB ~mX

þ 1:

(15)

TABLE III. Form factors at zero momentum transfer for B ! P and B ! V transitions, evaluated in the WSB quark model [7] and
LCSR approach [8].

Transition F1 ¼ F0 V A1 A2 A0

B ! � 0:333� 0:027
[0:258� 0:031]

B ! K 0:379� 0:020
[0:331� 0:041]

B ! � 0:307� 0:034
[0:275� 0:036]

B ! �0 0:254� 0:046
½��

B ! � 0:329� 0:052 0:283� 0:045 0:283� 0:046 0:281� 0:041
[0:323� 0:029] [0:242� 0:024] [0:221� 0:023] [0:303� 0:028]

B ! ! 0:328� 0:052 0:281� 0:044 0:281� 0:045 0:280� 0:041
[0:293� 0:029] [0:219� 0:025] [0:198� 0:022] [0:281� 0:030]

B ! K� 0:369� 0:046 0:328� 0:040 0:331� 0:042 0:321� 0:036
[0:411� 0:033] [0:292� 0:028] [0:259� 0:027] [0:374� 0:034]
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The parameters �B ¼ 0:43 and �X ¼ 0:41 are obtained
from the model, where �BX ¼ 1=2ð�2

B þ �2
XÞ. The expo-

nents nB and nX in the term FðiÞ
3 are ð�1=2;þ1=2Þ and

ðþ1=2;�1=2Þ in the cases ðf0þ þ f0�Þ and ðf0þ � f0�Þ,
respectively. The term FðiÞ

3 is given by

FðiÞ
3 ¼

�
�mB

~mB

�
nB
�
�mX

~mX

�
nX
�
~mX

~mB

�
1=2

�
�X�B

�2
BX

�
3=2

�
�
1þ 1

12
r2XBðtm � tÞ

��2
; (16)

where

r2XB ¼ 3

4mbm1

þ 3m2
2

2 �mB �mX�
2
BX

þ 1

�mB �mX

�
16

33� 2nf

�

� ln

�
�sð�QCDÞ
�sðm1Þ

�
: (17)

The parameters m1 and m2 are the masses of the quarks
q1 and q2, �m1 is the hyperfine averaged mass, ~m is the sum
of the masses of constituent quarks, tm ¼ ðmB �mXÞ2 is
the maximum momentum transferred, nf is the number of

active flavors at the b scale and �sð�Þ is the QCD coupling
at the � scale.

The transition B ! �0 is parametrized by the form fac-
tors f0, g0, a0þ and a0� and determined in the ISGW2 model
by the equations

f0 ¼ Cf0

ffiffiffi
3

2

s
~mBð1þ ~!ÞUFðf0Þ

3

g0 ¼ 1

2

ffiffiffi
3

2

s ��
1

m1

� m2�
2
B

2�� ~mX�
2
BX

�
Uþ m2�

2
B�

2
X

3�� ~mX�
4
BX

�
Fðg0Þ
3

(18)

and

a0þ þ a0� ¼ �
ffiffiffi
2

3

s
�2

B

m1mb�
2
BX

�
7m2

2�
4
X

8 ~mB�
4
BX

�
1þ 1

7



�

� 5m2
2�

2
X

4�4
BX

�
1þ 1

5



�

� 3m2
2�

4
X

8 ~mB�
2
B�

2
BX

þ 3m2�
2
x

4�2
B

�
F
ða0þþa0�Þ
3

a0þ � a0� ¼
ffiffiffi
2

3

s
3 ~mB

2mb ~mX

�
1� �2

B

�2
BX

�
1þ 1

7



�

� m2�
2
X

2 ~mB�
2
BX

�
1� 5�2

B

3�2
BX

�
1þ 1

5



��

� 7m2
2�

2
B�

2
X

12m1 ~mB�
4
BX

�
1� �2

X

�2
BX

þ �2
B


7�2
BX

��
F
ða0þ�a0�Þ
3 ;

(19)

where

�� ¼
�
1

m1

� 1

mb

�
; (20)

and Cf0 is a relativistic correction to the form factor f0.
The exponents nB and nX in the factors FðiÞ

3 for i ¼ f0, g0,
ða0þ�a0�Þ and ða0þ�a0�Þ are ðþ1=2;þ1=2Þ, ð�1=2;11=2Þ,
ð�3=2;þ1=2Þ and ð�1=2;�1=2Þ, respectively.
The relevant parameters which determine the numerical

value of the above form factors, including masses of quarks
and mesons involved in the exclusive channel, are the
variational parameters �B, �X and the Cf0 relativistic

correction to the form factor f0. In the ISGW2 model,
when we vary the parameters �B ¼ 0:43� 0:01, �X ¼
0:41� 0:01 and CF ¼ 0:776� 0:019 by 2.5%, we get
variations between 10 and 20% in predictions of the form
factors. These variations are considered the uncertainties of
the model to form factors predictions.
Form factors in ISGW2model are related to form factors

in the WSB model by the following relations

F1ðq2Þ ¼ f0þðq2Þ; Vðq2Þ ¼ ðmB þmVÞg0ðq2Þ;
A1ðq2Þ ¼ ðmB þmVÞ�1f0ðq2Þ;
A2ðq2Þ ¼ �ðmB þmVÞa0þðq2Þ;

A0ðq2Þ ¼ 1

2mV

½f0ðq2Þ þ ðm2
B �m2

VÞa0þðq2Þ;þq2a0�ðq2Þ�:
(21)

The form factors for B ! �0 and B ! �0 transitions,
calculated at momentum transfer q2 ¼ m2

�, are presented
in Table IV, including estimates of uncertainties. To esti-
mate branching ratios, it is necessary to calculate form
factors at different momentum transfers, namely at q2 ¼
m2

K, m
2
�, m

2
�0 , m2

!, m
2
K� and m2

�.

Mixing �� �0 effect is not included in the WSB model
prediction. SUð3Þ symmetry is used to consider mixing in
B ! � and B ! �0 transitions, which imply the relations

FB�ð0Þ ¼ ffiffiffi
3

p
FB�0ð0Þ ¼ ffiffiffi

6
p

FB�8ð0Þ and
FB� ¼ FB�8 cos� FB�0 sin;

FB�0 ¼ FB�8 sinþ FB�0 cos;
(22)

where  ¼ �15:4	 is the mixing angle [24]. Using
FB�ð0Þ ¼ 0:333 from the WSB model, form factors

FB�ð0Þ ¼ 0:181 and FB�0 ð0Þ ¼ 0:148 are obtained. In
the LCSR approach, using the form factor FB�ðtÞ and

SUð3Þ symmetry, the form factors FB�ðtÞ and FB�0 ðtÞ are
estimated.
The �0 �! mixing is introduced in hadronic matrix

element B ! �0. Nevertheless, the effect in B ! ! tran-
sitions is negligible and it is not included in branching
ratios calculations. In the limit of isospin symmetry, physi-
cal states �0 and ! are expressed in terms of isospin
eigenstates �I and !I by a rotation matrix
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j�0i ¼ j�Ii þ �j!Ii j!i ¼ j!Ii � �0j�Ii; (23)

where numerical values for mixing parameters are
ð1þ�Þ¼ ð0:092þ0:016iÞ and ð1��0Þ¼ ð1:011þ0:030iÞ.
Including isospin effects, hadronic matrix element for
B ! �0 transition is modified by the factor (1þ �), see
Ref. [26].

IV. AMPLITUDES AND BRANCHING RATIOS

The amplitudes for processes studied in this work are
explicitly written in the Appendixes. These amplitudes
are given in terms of decay constants and form factors
and contain all the contributions of the effective weak
Hamiltonian. Basically, the formulas for the decay ampli-
tudes are taken from the appendixes in Refs. [5,6], with the
appropriate changes for the processes studies in this article,
i.e., masses, decay constants and form factors, without
annihilation and exchange contributions.

Appendix A contains the amplitudes for B ! P�0
decays, where P is the pseudoscalar meson �, �, �0 or
K. The amplitude for the process �B0 ! ���0� is not
written, but it can be obtained directly from �B0 !
�þ�0þ, interchanging � by �0. Similarly, the amplitude
for B� ! ���00 can be obtained from B� ! �0�0�.

To compare B ! P�0 with B ! P� modes, besides
obvious differences in decay constants and form factors,
a point to remark is the following one. In the penguin sector
the more important contributions come from terms a4 and
a6. Particularly, the a6 and a8 coefficients are enhanced by
a chiral factor, which is proportional to the squared mass of
pseudoscalar P or pseudoscalar radial excitation �0. In the
case of radial excitation �0, this contribution can be two
orders of magnitude bigger than contribution of the pseu-
doscalar meson�. This enhancement effect is shown in the
branching ratios of channels B ! ��0, B ! ��0 and
B ! �0�0.

In Appendix B, the amplitudes for B ! V�0 processes
are shown, where V is the vector meson �, !, K� or �. In
these modes, the increased factor in the a6 and a8 penguin
contributions occur like in B ! P�0 modes. This effect
appears in the branching ratios of modes B ! ��0 and
B ! !�0, with the exception of channel �B0 ! ���0þ.

The amplitudes for B ! P�0 processes are given in
Appendix C. The processes B ! ��0 are not written, but
they can be obtained from amplitudes B ! ��0 in
Appendix B, interchanging �0 by � and � by �0.

In Appendix D, the decay amplitudes for B ! V�0
processes are given by the factorized term

XB�0;V ¼ hVjð �q3q2ÞV�Aj0ih�0jð �q1bÞV�AjBi
¼ �ifVmV

�
ð��V � ���0 ÞðmB þm�0 ÞAB�0

1 ðm2
VÞ

� ð��V � pBÞð���0 � pBÞ 2A
B�0
2 ðm2

VÞ
ðmB þm�0 Þ

þ i������
�
V�

�
�0p�

Bp
�
�0

2VB�0 ðm2
VÞ

ðmB þm�0 Þ
�
; (24)

where �V and ��0 are the polarization vectors of the vectors

mesons V and �0, respectively. This notation is introduced
to simplify expressions in Appendix D.
The amplitudes for processes which contain the meson

�0, �00, �0 or �00 in the final state, are multiplied by the

factor 1=
ffiffiffi
2

p
due to the wave function of these neutral

mesons, i.e., 1=
ffiffiffi
2

p ð �uu� �ddÞ.
From decay amplitude and input parameters, branching

ratios are straightforward calculated. The decay rate for
processes B ! P�0 is given by

�ðB ! P�0Þ ¼ 	1=2ðm2
B;m

2
P;m

2
�0 Þ

16�m3
B

jMðB ! P�0Þj2; (25)

where 	ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2ðxyþ xzþ yzÞ. The
decay rate for processes B ! V�0 and B ! P�0 are calcu-
lated using Eq. (25). In this case, the squared amplitude is
proportional to j�V � p�0 j2 and j��0 � pPj2, respectively. In
processes B ! V�0, the squared amplitude is involved due

to interfering terms proportional to XB�0;V and XBV;�0

contributions.
The branching ratios listed in Tables V and VI are

CP-averaged conjugate modes. Charged and neutral chan-
nels are calculated by

�ðBþ ! fþÞ þ �ðB� ! f�Þ
2

;

�ðB0 ! fÞ þ �ð �B0 ! �fÞ
2

;

(26)

where f is the two-body meson final state, i.e., f ¼ P�0,
V�0, P�0 or V�0.
Form factors in transitions B ! P and B ! V are calcu-

lated using two representative methods, the WSB quark
model [7] and LCSR approach [8]. The branching ratios
calculated in LCSR approach are listed between squared
brackets in Tables V and VI. In transitions B ! �0 and
B ! �0, the improved version of the ISGW nonrelativistic
quark model [10] is used.

TABLE IV. Form factors at momentum transfer q2 ¼ m2
� for B ! �0 and B ! �0 transitions, evaluated in the ISGW2 quark

model [10].

Transition F1 ¼ F0 V A1 A2 A0

B ! �0 0:25� 0:04
B ! �0 0:455� 0:030 0:118� 0:019 �0:117� 0:024 0:429� 0:075

BRANCHING RATIOS AND CP ASYMMETRIES IN . . . PHYSICAL REVIEW D 86, 094022 (2012)

094022-7



In Table V, branching ratios for processes B ! P�0 and
B ! V�0 are shown, where P is the pseudoscalar meson�,
�, �0 or K and V is the vector meson �, !, K� or �.
Branching ratios are calculated using two different values
in decay constant f�0 ¼ 26 MeV (first and second column)
and f�0 ¼ 0 MeV (third column).

In Table V, channels with K, K� or � in the final state,
have equal branching ratio calculated in the WSB model or
in the LCSR approach. The branching ratio in processes
�B ! �þ�0� and �B ! ���0þ have independent value of
the decay constant f�0 , since decay amplitude has only one
contribution proportional to f� or f�, respectively.

Using the value f�0 ¼ 26 MeV in calculations, channels
�B0 ! ���0þ, B� ! ��0�, �B0 ! ���0þ, �B0 ! �þ�0�,
B� ! �0�0� and B� ! ���00 have branching ratios of
the order of 10�5. The channels with branching ratios
of order below 10�6 are B� ! �0�0�, �B0 ! K�0�00,
�B0 ! ��00 and B� ! ��0�.
Numerical values for branching ratios of processes

B ! P�0 and B ! V�0 are listed in Table VI. The branch-
ing ratios are calculated using the decay constant f�0 ¼
128 MeV. Branching ratio prediction for the decays
�B0 ! ���0þ, �B0 ! ���0þ �B0 ! �þ�0� and B� !
���00 are of order 10�5. The branching ratio of the chan-

nels �B0 ! �0�00, �B0 ! �ð0Þ�00, �B0!K0�00, B�!K��00,
B�! �K0�0�, �B0 ! �0�00, �B0 ! !�00, �B0 ! ��00 and
B� ! ��0�, are suppressed of order below 10�6. The
modes �B0 ! �þ�0�, �B0 ! �0�00, B� ! ���00, B� !
��0�, �B0 ! �þ�0�, �B0 ! !�00 and B� ! !�0� have
different branching ratios when form factors are calculated
using the WSB model or the LCSR approach.
The authors in Ref. [4] can calculate the ratios

R�þ ¼Brð �B0!���0þÞ
Brð �B0!���þÞ ; R�0 ¼BrðB�!���00Þ

BrðB�!���0Þ (27)

and obtain approximatelyR�þ � R�0 � 2. Using theworld-

averaged experimental data from Refs. [13,27], Brð �B0!
�
��Þ¼23:0�2:3�10�6 and BrðB�!���0Þ¼
8:3�1:2�10�6, it is possible to predict the branching ratios
Brð �B0!���0þÞ¼46:0�10�6 and BrðB�!���00Þ¼
16:6�10�6. These numbers can be compared with our
CP-averaged branching ratios calculated in Table VI,
Brð �B0 ! ���0þÞ ¼ 14:6� 4:9½14:6� 4:9� � 10�6 and

TABLE VI. Branching ratios (in units of 10�6) averaged over CP conjugate modes for B ! P�0 and B ! V�0 decays, using the
WSB [7] model and LCSR approach [8], and decay constant f�0 ¼ 128 MeV. ð�Þ means same value.

Mode B Mode B

�B0 ! �þ�0� 9:8� 1:6½6:5� 1:6� �B0 ! ���0þ 37:8� 11:9½��
�B0 ! ���0þ 14:6� 4:9½�� �B0 ! �þ�0� 28:3� 8:6½21:2� 4:1�
�B0 ! �0�00 0:02� 0:01½0:009� 0:001� �B0 ! �0�00 0:14� 0:05½0:13� 0:04�
B� ! �0�0� 8:3� 2:8½�� B� ! �0�0� 7:5� 2:2½6:0� 1:2�
B� ! ���00 5:8� 0:9½3:8� 1:0� B� ! ���00 20:7� 6:5½��
�B0 ! ��00 0:008� 0:002½0:006� 0:002� �B0 ! !�00 0:15� 0:05½0:04� 0:02�
B� ! ��0� 3:3� 0:6½2:0� 0:5� B� ! !�0� 10:2� 8:0½5:7� 1:4�
�B0 ! �0�00 0:04� 0:01½�� �B0 ! K���0þ 7:7� 2:5½��
B� ! �0�0� 2:0� 0:4½1:2� 0:3� �B0 ! K�0�00 6:7� 2:0½��
�B0 ! K��0þ 1:1� 0:4½�� B� ! K���00 6:3� 1:9½6:3� 1:8�
�B0 ! K0�00 0:13� 0:02½0:11� 0:3� B� ! �K�0�0� 9:1� 2:9½��
B� ! K��00 0:6� 0:2½�� �B0 ! ��00 0:009� 0:002½��
B� ! �K0�0� 0:01� 0:007½�� B� ! ��0� 0:03� 0:01½��

TABLE V. Branching ratios (in units of 10�6) averaged over
CP conjugate modes for B ! P�0 and B ! V�0 decays, using
the WSB [7] model and LCSR approach [8], decay constants
f�0 ¼ 26 and f�0 ¼ 0:0 MeV. ð�Þ means same value.

Mode B

�B0 ! �þ�0� 5:4� 1:1½5:5� 1:1�5:5� 1:1
�B0 ! ���0þ 38:3� 6:2½24:6� 5:6�0
�B0 ! �0�00 6:2� 1:0½4:2� 1:0�0:03� 0:01
B� ! ���00 2:8� 0:5½2:8� 0:5�2:9� 0:6
B� ! �0�0� 0:22� 0:04½0:14� 0:04�0:004
�B0 ! ��00 4:0� 0:7½2:6� 0:7�0:04� 0:01
B� ! ��0� 14:1� 2:3½9:0� 2:3�0:05� 0:01
�B0 ! �0�00 2:2� 0:3½1:4� 0:4�0:007� 0:001
B� ! �0�0� 8:1� 1:3½5:0� 1:3�0:01� 0:001
�B0 ! K��0þ 6:0� 1:1½���
�B0 ! K0�00 3:7� 0:7½3:7� 0:7�3:4� 0:7
B� ! K��00 3:6� 0:7½3:5� 0:7�3:2� 0:6
B� ! �K0�0� 7:3� 1:4½7:4� 1:4�7:3� 1:4
�B0 ! ���0þ 13:7� 2:6½���
�B0 ! �þ�0� 21:7� 6:2½27:8� 5:1�0
�B0 ! �0�00 3:3� 1:1½4:3� 0:9�0:02� 0:01
B� ! �0�0� 15:3� 4:3½19:4� 3:6�0:04� 0:01
B� ! ���00 13:1� 3:1½14:9� 2:8�7:4� 1:4
�B0 ! !�00 6:7� 1:9½7:3� 1:6�0:05� 0:005
B� ! !�0� 9:9� 3:1½10:7� 2:6�0:1� 0:05
�B0 ! K���0þ 2:8� 0:5½���
�B0 ! K�0�00 0:8� 0:2½0:7� 0:1�0:8� 0:2
B� ! K���00 1:7� 0:4½1:7� 0:3�1:5� 0:3
B� ! �K�0�0� 3:4� 0:7½���
�B0 ! ��00 0:004½���
B� ! ��0� 0:009� 0:002½���
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BrðB� ! ���00Þ ¼ 5:8� 0:9½3:8� 1:0� � 10�6, which
could be indicating an overestimate of the ratios in
Eq. (27), by a factor of 2.

Up to now, the only measured branching ratios reported
are BrðBþ!�þ�ð1450Þ0Þ¼1:4þ0:6

�0:9�10�6 [28], and

upper limit at 90% confidence level for the decays
BrðBþ ! �ð1450Þ0KþÞ< 11:7� 10�6 [29] and BrðB0 !
�ð1450Þ�KþÞ< 2:1� 10�6 [30], see Ref. [27].

Our estimate of this CP-averaged branching ratios
are BrðB� ! ���00Þ ¼ 5:8� 0:9½3:8� 1:0� � 10�6, and
BrðBþ!Kþ�00Þ¼0:6�0:2½0:6�0:2��10�6, BrðB0 !
Kþ�0� ¼ 1:1� 0:4½1:1� 0:4� � 10�6Þ, see Table VI.
These results could be indicating that the decay constant
f�0 and the form factors in the transitions B ! �0 are

overestimated.

V. CP ASYMMETRIES

Direct CP-violation asymmetry in charged B� decays is
defined by [1,2]

ACP ¼ �ðBþ ! fþÞ � �ðB� ! f�Þ
�ðBþ ! fþÞ þ �ðB� ! f�Þ : (28)

For b ! q transitions (where q ¼ d, s), the decay
amplitudes can be written generically by

M ¼ VubV
�
uqT � VtbV

�
tqP; (29)

where T is current-current contributions, P is penguin
QCD and electroweak contributions, see the decay ampli-
tudes in the Appendixes.

In the standard model, CKM matrix elements contain
weak phases due to the weak dynamics. In the generalized
naive factorization approach, the effective Wilson coeffi-
cients ceffi ð�Þ are complex numbers, which contain a strong
phase due to QCD interactions [11]. Thus, phase contribu-
tions from the terms T and P in the decay amplitude can be
factorized in terms of weak and strong phases. This results
in the contributions T0 and P0. The decay amplitudeM and

its CP-conjugate amplitude �M can be written as

M ¼ ei�1ei�1T0 þ ei�2ei�2P0;
�M ¼ e�i�1ei�1T0 þ e�i�2ei�2P0;

(30)

where �i weak-decay phases change sign in a CP con-
jugate transformation and �i strong phases are conserved.
Using this factorization of phases, direct CP-violation
asymmetry can be calculated by

ACP ¼ jMj2 � j �Mj2
jMj2 þ j �Mj2 ¼

2 sinð��Þ sinð��Þr
1þ r2 þ 2r cosð��Þ cosð��Þ ;

(31)

where r is the ratio P0=T0, �� ¼ �1 ��2 and �� ¼
�1 � �2 are the difference in the weak- and the strong-
phase contributions to the terms T0 and P0. Three condi-
tions must be fulfilled for the existence of direct CP

violation. A CP-violationweak phase ��, final state inter-
actions which induce a strong phase ��, and two different
contributions to the amplitude of comparable size T0 � P0,
see Refs. [1,2].
In the framework of generalized naive factorization, the

effective Wilson coefficients ceffi are complex numbers.

The imaginary part of these coefficients are due to calcu-
lable QCD perturbative contributions [11]. This effect
induces a strong phase in the amplitudes, which is required
to have direct CP violation.
Direct CP-violating asymmetries have been calculated

using the form factors based on both the WSB [7] model
and LCSR approach [8]. The CP asymmetries depend
weakly on the form factors. However, it is not the case
for the weak decay constant f�0 . In the modes B ! P�0
and B ! V�0, dependency in the decay constant f�0 will
be discussed.
For the charged modes B� ! P�0, B� ! V�0, direct

CP-violating asymmetries are listed in Table VII.
Table VII shows the dependency of direct CP asymmetries
in the decay constant f�0 . Results using f�0 ¼ 26 MeV are
shown in the first and second columns, where the calcu-
lations are done in the WSB model and LCSR approach,
respectively. In the third column are results using f�0 ¼
0 MeV. In this case, numerical results are independent of
the model calculation of the form factors.
The processes B� ! K��00, B� ! ���00, B� !

K���00 have direct CP-violating asymmetries of order
10%. The channels B� ! �K0�0�, B� ! �K�0�0� and
B� ! ��0� have only one contribution to its decay am-
plitude, in consequence direct CP asymmetry is equal to
zero. Direct CP-violating asymmetry in channel B� !
���00 depends on the use of WSB model or the LCSR
approach.
In the channels B� ! ��0�, B� ! K��00 and B� !

K���00, direct CP violation asymmetries are not sensible
to the value of decay constant f�0 . When the value f�0 ¼ 0
MeV, direct CP violation asymmetry in channel B� !
���00 is equal to zero. In the same case, modes B� !
�0�0�, B� ! �0�0�, B� ! �0�0� and B� ! !�0� have
an increase in the direct CP-violation asymmetry. On the
contrary, channel B� ! ���00 has a decrease.
In Table VIII, direct CP-violating asymmetries for the

channelsB� ! P�0,B� ! V�0 are shown, using theWSB
model and LCSR approach, and the decay constant
f�0 ¼ 128 MeV.

Direct CP-violating asymmetry corresponding to the
channels B� ! K��00, B� ! !�0� and B� ! K���00
are bigger than 10%, which make them good candidates
to be observed experimentally. In channels B� ! �K0�0�,
B� ! �K�0�0� and B� ! ��0�, the decay amplitude has
only one contribution, thus the direct CP-violating asym-
metry is automatically equal to zero. The other channels
have direct CP-violating asymmetries of less than 10%
order.
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The channels B� ! �0�0�, B�!���00 and B�!
!�0� have direct CP-violating asymmetries which depend
on the use of the WSB model or the LCSR approach in
evaluating the form factors in transitions B ! � and
B ! !.

In neutral B0 decays, because of the B0 � �B0 mixing, it
is required to include time-dependent measurements in
CP- violation asymmetries. The CP-violation time-
dependent asymmetry is defined as

AfðtÞ ¼ �ðB0ðtÞ ! fÞ � �ð �B0ðtÞ ! �fÞ
�ðB0ðtÞ ! fÞ þ �ð �B0ðtÞ ! �fÞ

¼ Cf cosð�mtÞ þ Sf sinð�mtÞ; (32)

where f is a two-body final state. The coefficients Cf and

Sf are defined by

Cf ¼ 1� j	fj2
1þ j	fj2

; Sf ¼
�2 Imð	fÞ
1þ j	fj2

; (33)

given in terms of the ratio 	f, which is defined by

	f ¼ V�
tbVtdhfjHeffj �B0i

VtbV
�
tdh �fjHeffjB0i : (34)

The coefficients Cf and Sf are functions of 	f. The

quantity 	f is independent of phase conventions and physi-

cally meaningful, in consequence the coefficients Cf and

Sf are observables. CP violation in the interference of

decays with and without mixing is encoded in the coeffi-
cient Sf � 0. CP violation in decays means Cf � 0.

If the final state f is aCP eigenstate, i.e.,CPjfi ¼ �jfi,
and decay amplitudes are dominated by only one weak
phase term contribution, then hfjHeffj �B0i ¼ h �fjHeffjB0i,
Cf ¼ 0 and Sf ¼ �f sinð2�Þ, where �f is the CP eigen-

value of f and 2� is the difference in weak phase between
the B0 ! f and B0 ! �B0 ! f decay path. A contribution
of another term to the decay amplitude with a different
weak phase make the value of Sf depends on the strong

phase. In this situation is also possible that Cf � 0.

CP-violating asymmetry coefficients Cf and Sf for

neutral B0ð �B0Þ decays with radial excited mesons �0 and
�0 in final state are shown in Tables IX and X, respectively.
For the processes B0ð �B0Þ ! ��0 and B0ð �B0Þ ! ��0 the
coefficients Cf and Sf are equal to zero, since there is only

one contribution to the decay amplitude in the respective
channels.
The calculation results for the coefficients Cf and Sf are

practically equal when the form factors are estimated using
the WSB model or the LCSR approach. Nevertheless, for
the modes B ! P�0 and B ! V�0, there is a dependency
with respect to using the values for the decay constant
f�0 ¼26 or f�0 ¼0MeV. The channels with a strange
meson in the final state have the same value of the
coefficients using the two different values in decay con-
stant f�0 .
The channels with Cf � 0 and Sf � 0 are B0 ! K0�00,

B0 ! K�0�00, B0 ! K0�00 and B0 ! K�0�00. In these
channels, where there is only present CP violation in the
interference of the decay and in the mixing, it is possible to
relate the coefficient Sf to fundamental parameters in the

standard model, i.e., interior angles of the unitary triangle.
CP violation in neutral B0ð �B0Þ mesons is involved when

a final state f and its CP conjugate transformation state �f
are both common final states of B0 and �B0 mesons. The
final states f and �f are not CP eigenstates, i.e., CPjfi �
j �fi. For this case, time evolutions of the four decays
B0ðtÞ ! f, B0ðtÞ ! �f, �B0ðtÞ ! �f, B0ðtÞ ! �f and �B0ðtÞ !
f are studied in terms of four basic matrix elements

TABLE VII. Direct CP-violating asymmetries in percent for
B� ! P�0 and B� ! V�0 decays, using the WSB [7] model
and LCSR approach [8], decay constants f�0 ¼ 26 and f�0 ¼
0:0 MeV.

Final state ACP

���00 �1:6� 0:3½�1:1� 0:1�0:0
�0�0� �0:4� 0:1½�0:5� 0:1�1:7� 0:1
��0� 5:4� 0:1½5:5� 0:1�5:2� 0:1
�0�0� 5:9� 0:1½6:2� 0:1�23:5� 0:5
K��00 �14:0� 1:0½�14:0� 1:0� � 15:0� 1:0
�K0�0� 0½0�0
�0�0� �6:0½�6:0� 1:0� � 23:4� 1:0
���00 �22:0� 1:0½�23:0� 1:0�5:3� 1:0
!�0� �7:0� 1:0½�7:0� 1:0�14:9� 1:0
K���00 �27:0� 1:0½�27:0� 1:0� � 30:0� 1:0
�K�0�0� 0½0�0
��0� 0½0�0

TABLE VIII. Direct CP-violating asymmetries in percent for
B� ! P�0 and B� ! V�0 decays, using the WSB [7] model and
LCSR approach [8], and decay constant f�0 ¼ 128 MeV.

Final state ACP

�0�0� �5:1� 2:4½�7:3� 3:2�
���00 5:9� 1:1½6:6� 1:0�
��0� 5:7� 0:5½5:8� 0:5�
�0�0� 5:4� 0:5½5:5� 0:5�
K��00 �20:5� 1:0½�20:0� 1:0�
�K0�0� 0½0�
�0�0� 0½0�
���00 0½0�
!�0� 15:0� 5:0½16:8� 2:6�
K���00 �20:7� 1:8½�20:7� 1:7�
�K�0�0� 0½0�
��0� 0½0�
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g ¼ hfjHeffjB0i; h ¼ hfjHeff j �B0i;
�g ¼ h �fjHeffj �B0i; �h ¼ h �fjHeffjB0i: (35)

The following two CP-violating asymmetries are
introduced

�A fðtÞ ¼ �ðB0ðtÞ ! fÞ � �ð �B0ðtÞ ! fÞ
�ðB0ðtÞ ! fÞ þ �ð �B0ðtÞ ! fÞ

¼ �Cf cosð�mtÞ þ �Sf sinð�mtÞ (36)

and

�A �fðtÞ ¼
�ðB0ðtÞ ! �fÞ � �ð �B0ðtÞ ! �fÞ
�ðB0ðtÞ ! �fÞ þ �ð �B0ðtÞ ! �fÞ

¼ �C �f cosð�mtÞ þ �S �f sinð�mtÞ; (37)

where the coefficients of cosð�mtÞ and sinð�mtÞ are
defined by

�C f ¼ jgj2 � jhj2
jgj2 þ jhj2 ;

�Sf ¼
�2 ImðV�

tb
Vtd

VtbV
�
td

h
gÞ

1þ jh=gj2 (38)

and

�C �f ¼ j �hj2 � j �gj2
j �hj2 þ j �gj2 ;

�S �f ¼
�2 ImðV�

tb
Vtd

VtbV
�
td

�g
�h
Þ

1þ j �g= �hj2 : (39)

The condition for CP violation is that width decays
�ðB0ðtÞ!fÞ��ð �B0!fÞ and �ðB0ðtÞ! �fÞ��ð �B0! �fÞ,
which means, in terms of CP-violating asymmetry coef-
ficients, �Cf � � �C �f and (or) �Sf � � �S �f.

Numerical values in percent for the CP-violating asym-
metry parameters �Cf, �Sf, �C �f and

�S �f in the B0ð �B0Þ ! ��0,
B0ð �B0Þ ! ��0, B0ð �B0Þ ! ��0 and B0ð �B0Þ ! ��0 decays
are listed in Table XI. The form factors for the transitions
B ! � and B ! � are calculated using the WSB model
and LCSR approach.
The CP-violating asymmetry parameters for the final

states �þ�0�, ���0þ have the same value if they are
calculated using the WSB model or LCSR approach. The
parameters for the final states with a �0 mesons are only
calculated using the values in decay constant f� ¼
26 MeV. When the value f�0 ¼ 0 MeV is used, results
are not reported, since there are zero contributions, g ¼ 0
and cg ¼ 0, with the consequence that �Cf ¼ � �C �f ¼
100%, �Sf ¼ 1 and �S �f ¼ 0.

No significant direct CP asymmetry for the mode
B� ! �0ð1450Þ�� is observed, see Ref. [28], reporting
ACPð%Þ ¼ �6:0þ36:0

�42:0. For this channel we have obtained

ACPð%Þ¼5:9�1:1½6:6�1:0�; note that we have defined
direct CP asymmetry differently by a sign. One of the
reasons for this work is to estimate these asymmetries and
to motivate the experimental measurement of them.

VI. CONCLUSIONS

In the framework of generalized naive factorization we
calculate branching ratios and CP-violating asymmetries
of exclusive nonleptonic two-body B decays including the
radial excited �ð1300Þ or �ð1450Þ meson in the final state.
Branching ratios and CP-violating asymmetries for the
exclusive channels B ! P�0, B ! V�0, B ! P�0 and

TABLE IX. CP-violating asymmetry parameters Cf and Sf in percent for neutral B0ð �B0Þ ! P�0 and B0ð �B0Þ ! V�0 decays, using
the WSB [7] model and LCSR approach [8], decay constants f�0 ¼ 26 and f�0 ¼ 0 MeV.

Final state Cf Sf

�0�00 �0:7��0:1½0:8� 0:1� � 10:1� 0:1 �2:7� 0:3½�3:4� 0:2� � 30:6� 0:1
��00 0:4� 0:1½0:6� 0:2�5:2� 0:1 1:7� 0:4½2:3� 0:6�21:5� 0:5
�0�00 0:5� 0:1½0:7� 0:2�23:5� 0:5 2:0� 0:5½2:7� 0:7�40:9� 0:5
K
�0� �15:0� 1:0½�15:0� 1:0� � 15:0� 1:0 28:0� 1:0½28:0� 1:0�28:0� 1:0
K0�00 0½0�0 69:0� 1:0½69:0� 1:0�70:0� 1:0
�0�00 1:0� 0:5½1:2� 0:5� � 23:4� 1:0 5:0� 1:0½4:8� 0:8� � 58:0� 1:0
!�00 1:0� 0:5½1:0� 0:5�14:9� 1:0 3:0� 1:0½3:6� 0:8�46:5� 1:0
K�
�0� �30:0� 1:0½�30:0� 1:0� � 30:0� 1:0 �20:0� 1:0½�20:0� 1:0� � 20:0� 1:0
K�0�00 0½0�0 70:0� 1:0½70:0� 1:0�70:0� 1:0
��00 0½0�0 0½0�0

TABLE X. CP-violating asymmetries parameters Cf and Sf in
percent for neutral B0ð �B0Þ ! P�0 and B0ð �B0Þ ! V�0 decays,
using the WSB [7] model and LCSR approach [8], and decay
constant f�0 ¼ 128 MeV.

Final

state Cf Sf

�0�00 �57:3� 6:7½�62:6� 7:7� �78:6� 1:7½�75:1� 5:6�
��00 �44:3� 1:4½�44:6� 1:2� �87:3� 2:1½�80:8� 8:6�
�0�00 �5:9� 1:3½�4:6� 1:3� �48:3� 1:2½�47:2� 1:3�
K
�0� �14:5� 1:0½�14:5� 1:0� �12:9� 1:0½�12:9� 1:0�
K0�00 0½0� 64:5� 1:0½64:5� 1:0�
�0�00 �23:0� 1:0½�23:0� 1:0� �58:0� 1:0½�58:0� 1:0�
!�00 17:5� 4:5½17:5� 4:5� 46:5� 1:0½46:5� 1:0�
K�
�0� �30:0� 1:0½�30:0� 1:0� �20:0� 1:0½�20:0� 1:0�
K�0�00 0½0� 65:0� 1:0½65:0� 1:0�
��00 0½0� 0½0�
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B ! V�0 (where, P and V denote a pseudoscalar and
vector meson, respectively) have been estimated using
all the contributions coming from the effective weak
Hamiltonian Heff .

The form factors in B ! P and B ! V transitions are
estimated using the WSB model [7] and LCSR approach
[8]. In order to obtain form factors in B ! �0 and B ! �0
transitions, we use the improved version of the nonrelativ-
istic ISGW quark model [9], called ISGW2 model [10].
The factorized decay amplitudes for these decays are listed
in the Appendixes.

We obtain branching ratios for 52 exclusive channels.
Some of these decays can be reached in experiments. In
fact, decays �B0 ! ���0þ, B� ! ��0�, �B0 ! ���0þ,
�B0 ! �þ�0�, B� ! �0�0�, B� ! ���00, �B0 ! ���0þ,
�B0 ! ���0þ, �B0 ! �þ�0�, and B� ! ���00 have
branching ratios of the order of 10�5.

We also studied the dependency of branching ratios in
channels B ! P�0 and B ! V�0 with respect to the decay
constant f�0 . The more sensible modes to the value in
decay constant f�0 are �B0 ! ���0þ, �B0 ! �0�00, B� !
��0�, B� ! �0�0�, �B0 ! �þ�0�, B� ! �0�0�, �B0 !
!�00, and B� ! !�0�. These channels could be the best
scenario to determine the decay constant f�0 in nonleptonic
two-body B decays.

In general, we can explain the large branching ratios in
decays �B0 ! ���0þ, �B0 ! ���0þ, �B0 ! �þ�0�, and
B� ! ���00 by the effect of the enhancement of the chiral
factor that multiply the penguin contributions a6 and a8 in
the effective weak Hamiltonian Heff .

Direct CP-violating asymmetry in channels B� !
K��00, B� ! ���00, B� ! K���00, B� ! K��00,
B� ! !�0�, and B� ! K���00 are more than 10%
order. In the modes B� ! �0��, B� ! �0�0� and
B� ! !�0�, estimation of direct CP-violating asymme-
try using the value of the decay constant f�0 ¼ 0 MeV,
give an increase with respect to the calculations using
the value f�0 ¼ 26 MeV. On the contrary the channel
B� ! ���00 has a decrease in its estimation. When the
value in the decay constant f�0 ¼ 0 MeV is used, esti-
mation of direct CP-violating asymmetry in modes

B� ! �0�0�, B� ! �0�0� and B� ! !�0� are more
than 10% order.
In the neutral modes B0 ! K0�00, B0 ! K�0�00, B0 !

K0�00 and B0 ! K�0�00, we have estimated the CP- vio-
lating asymmetry coefficients Cf � 0 and Sf at more

than 60%.
For the channels �B0 ! ���0þ and B� ! ���00, our

predictions are lower like the ones obtained by Ref. [4],
although our value is the same order of magnitude that the
only experimental branching ratio measured B� ! ���00
[28]. The estimations of the bracing ratios for the chan-
nels Bþ ! Kþ�00 and B0 ! Kþ�0� are consistent with
the upper limits measured by BABAR Collaboration
[29,30].
Finally, we want to mention that, even the direct

CP-violation asymmetry ACPð%Þ ¼ �6:0þ36:0
�42:0 for the

mode B� ! �0ð1450Þ�� is consistent with zero, and our
predictions for that asymmetry are compatible with the
central value.
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APPENDIX A: MATRIX ELEMENTS
FOR B ! P�0 DECAYS

Mð �B0 ! ���0þÞ ¼ �i
GFffiffiffi
2

p f�0FB!�
0 ðm2

�0 Þðm2
B �m2

�Þ

�
�
VubV

�
uda1 � VtbV

�
td

�
�
a4 þ a10 þ 2ða6 þ a8Þ

� m2
�0

ðmb �muÞðmd þmuÞ
��
; (A1)

TABLE XI. CP-violating asymmetry parameters �Cf, �Sf, �Cf and �Sf in percent for B0ð �B0Þ !
��0, B0ð �B0Þ ! ��0, B0ð �B0Þ ! ��0 and B0ð �B0Þ ! ��0 decays, using the WSB [7] model and
LCSR approach [8].

Final states �Cf, �C �f
�Sf, �S �f

�þ�0�, ���0þ 77:5� 0:7½61:8� 6:9� �70:7� 0:9½�52:1� 8:8�
61:5� 0:9½76:7� 5:8� 66:5� 0:8½80:9� 5:1�

�þ�0�, ���0þ 30:0� 13:3½33:0� 16:7� �30:1� 13:3½�33:1� 16:6�
�94:3� 4:2½�92:6� 5:9� �88:0� 1:0½�84:8� 4:9�

�þ�0�, ���0þ 24:1� 19:1½37:1� 24:6� �22:1� 16:5½�32:4� 25:5�
5:8� 1:0½5:4� 1:0� 5:5� 1:0½5:1� 1:0�

�þ�0�, ���0þ 16:0� 1:0½16:0� 1:0� �5:4� 1:0½�5:4� 1:0�
16:0� 1:0½16:0� 1:0� 16:0� 1:0½16:0� 1:0�
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Mð �B0 ! �0�00Þ ¼ i
GF

2
ffiffiffi
2

p f�F
B!�0
0 ðm2

�Þðm2
B �m2

�0 Þ
�
VubV

�
uda2 � VtbV

�
td

�
�a4 þ 1

2
a10 � 3

2
ða7 � a9Þ

� ð2a6 � a8Þ m2
�

ðmb �mdÞðmd þmdÞ
��

þ i
GFffiffiffi
2

p f�0FB!�
0 ðm2

�0 Þðm2
B �m2

�Þ
�
VubV

�
uda2

� VtbV
�
td

�
�a4 þ 1

2
a10 � 3

2
ða7 � a9Þ � ð2a6 � a8Þ

m2
�0

ðmb �mdÞðmd þmdÞ
��
; (A2)

MðB� ! ���00Þ ¼ �i
GF

2
f�F

B!�0
0 ðm2

�Þðm2
B �m2

�0 ÞfVubV
�
uda1g � i

GFffiffiffi
2

p f�0FB!�
0 ðm2

�0 Þðm2
B �m2

�Þ
�
VubV

�
uda2

� VtbV
�
td

3

2

�
a9 þ a10 � a7 þ 2a8

m2
�0

ðmb �muÞðmd þmuÞ
��
; (A3)

Mð �B0 ! �ð0Þ�00Þ ¼ �i
GF

2
f�0F

B!�ð0Þ
0 ðm2

�0 Þðm2
B �m2

�ð0Þ Þ
�
VubV

�
uda2 � VtbV

�
td

�
�a4 þ 1

2
a10 � ð2a6 � a8Þ

� m2
�0

ðmb �mdÞðmd þmdÞ þ
3

2
ða9 � a7Þ

��
þ i

GF

2
fu
�ð0ÞF

B!�0
0 ðm2

�ð0Þ Þðm2
B �m2

�0 Þ
�
VubV

�
uda2

þ VcbV
�
cda2

fc
�ð0Þ

fu
�ð0Þ

� VtbV
�
td

�
a4 þ 2ða3 � a5Þ þ 1

2
ða9 � a7 � a10Þ þ ð2a6 � a8Þ

m2
�ð0Þ

ðmb �mdÞðms þmsÞ

�
�fs

�ð0Þ

fu
�ð0Þ

� 1

�
r�ð0Þ þ ða3 � a5 þ a9 � a7Þ

fc
�ð0Þ

fu
�ð0Þ

þ
�
a3 � a5 þ 1

2
ða7 � a9Þ

� fs
�ð0Þ

fu
�ð0Þ

��
; (A4)

MðB� !�ð0Þ�0�Þ ¼ i
GFffiffiffi
2

p f�0FB!�ð0Þ
0 ðm2

�0 Þðm2
B�m2

�ð0Þ Þ
�
VubV

�
uda1�VtbV

�
td

�
a4þa10þ 2ða6þa8Þ

m2
�0

ðmb�muÞðmdþmuÞ
��

þ i
GFffiffiffi
2

p fu
�ð0ÞF

B!�0
0 ðm2

�ð0Þ Þðm2
B�m2

�0 Þ
�
VubV

�
uda2þVcbV

�
cda2

fc
�ð0Þ

fu
�ð0Þ

�VtbV
�
td

�
a4þ 2ða3�a5Þ

þ 1

2
ða9�a7�a10Þþ ð2a6�a8Þ

m2
�ð0Þ

ðmb�mdÞðmsþmsÞ
�fs

�ð0Þ

fu
�ð0Þ

� 1

�
r�ð0Þ
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þ
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�fs
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��
; (A5)

Mð �B0 ! K��0þÞ ¼ �i
GFffiffiffi
2

p fKF
B!�0
0 ðm2
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�
VubV

�
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�
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; (A6)

Mð �B0 ! �K0�00Þ ¼ �i
GF
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fKF

B!�0
0 ðm2

KÞðm2
B �m2

�0 ÞVtbV
�
ts
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; (A7)
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MðB� ! K��00Þ ¼ �i
GF

2
fKF

B!�0
0 ðm2
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B �m2

�0 Þ
�
VubV

�
usa1 �VtbV

�
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MðB� ! �K0�0�Þ ¼ �i
GFffiffiffi
2

p fKF
B!�0
0 ðm2

KÞðm2
B �m2

�0 ÞVtbV
�
ts

�
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a10 þ ð2a6 � a8Þ
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K0

ðmb �mdÞðmd þmsÞ
�
: (A9)

APPENDIX B: MATRIX ELEMENTS FOR B ! V�0 DECAYS

Mð �B0 ! ���0þÞ ¼ ffiffiffi
2

p
GFf�F
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