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The recent measured ��� ! �0 transition form factor in the spacelike region by the Belle

Collaboration together with the previously published results by CLEO, CELLO, and BABAR collabo-

rations, are analyzed using the mathematical theory of Padé approximants. The theory provides a good

and systematic description of the low-energy region exemplified here with the extraction of the slope a�
and curvature b� of the form factor in a model-independent way. Their impact on the pion exchange

contribution to the hadronic light-by-light scattering part of the anomalous magnetic moment a� is also

discussed.
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I. INTRODUCTION

The pion transition form factor (TFF) between a photon
and a pion is extracted from the eþe� ! eþe��0 process,
where the �0 is produced via the two-photon production
mechanism. This transition is represented as a function of
the photon virtualities as F�0���� ðq21; q22Þ. The TFF is then

extracted when one of the electrons is tagged. This electron
emits a highly off-shell photon with momentum transfer
q21 � �Q2 and is detected, while the other, untagged, is
scattered at a small angle and then its momentum transfer
q22 is near zero. The pion transition form factor is then
defined as F�0���� ð�Q2; 0Þ � F�0���ðQ2Þ.

The TFF was measured in the CELLO [1] and
CLEO [2] experiments in the momentum transfer ranges
0:7–2:2 GeV2 and 1:6–8:0 GeV2, respectively. At 2009,
the BABAR Collaboration extended these measurements
in the Q2 range from 4 to 40 GeV2 [3]. And recently [4],
the Belle Collaboration has measured the form factor in the
same BABAR’s energy region with slightly different results
on the high-energy region.

At low transferred momentum, the TFF can be described
by the following expansion:

F�0���ðQ2Þ ¼ a0

�
1þ a�

Q2

m2
�

þ b�
Q4

m4
�

þOðQ6Þ
�
; (1)

where the parameter a0 can be determined from the axial
anomaly [5,6] in the chiral limit of QCD, a0 ¼ 1

4�2f�
with

f� the pion decay constant.
The parameter a�, the slope of the TFF, was meas-

ured by [7–9], with the results a� ¼ �0:11ð3Þð8Þ, a� ¼
0:026ð24Þð48Þ, and a� ¼ 0:025ð14Þð26Þ, respectively
(the first error is statistic and the second systematic).
The CELLO Collaboration estimated a� to be a� ¼
0:0326ð26Þstatð26Þsys in Ref. [1] using an extrapolation

from the region of large spacelike momentum transfer,
assuming a vector meson dominance (VMD) and using at

zero transferred momentum the current experimental value
for the partial decay width ��0!�� [which, as we will see

later, is related to F�0���ðQ2 ¼ 0Þ, the axial anomaly]. The

KTeV Collaboration also predicted a� ¼ 0:040ð40Þ
through a model-dependent fit to timelike data [10]. The
CELLO prediction, however, dominates the number
quoted by the PDG [11] since the direct measurements
are less precise.
AVMD fit to all of the available data (CELLO, CLEO,

BABAR, and Belle) would yield a� ¼ 0:0275ð5Þ with a
�2=d:o:f: ¼ 2:4 (d.o.f. meaning ‘‘degrees of freedom’’),
which means a 1.4 standard deviation from the CELLO
result. This result suggests that the high-energy data may
be important for determining low-energy properties of
the TFF.
One immediately comes to the question of how to

improve the quality of the fits to stabilize the predicted
result and also of how to assign a systematic error to the fit
procedure.
In Ref. [12] it was suggested that the VMD is a first step

of a sequence of particular rational approximations called
Padé approximants (PA). In that reference, it was also
suggested that using Padé approximants as fitting functions
to analyze the pion vector form factor in the spacelike
region, one can go beyond the VMD in a systematic
approximation.
In the TFF case, this fact is of particular interest since

the data from the BABAR Collaboration cannot be easily
accommodated in the VMD picture. With the help of these
rational approximants, one could reach systematically the
intermediate and high-energy experimental data, produc-
ing, at the same time, accurate results for the slope and
curvature of the TFF at low energies.
The Padé techniques provide a simple, model-

independent, and systematic method of fitting data with a
larger range of convergence than the simple polynomial fit
or a VMD-like fit (such as the one used by the CELLO
Collaboration to extract the a� parameter). Given a func-
tion fðzÞ defined in the complex plane, the PA PN

MðzÞ
are ratios of two polynomials RNðzÞ and QMðzÞ (with*masjuan@ugr.es
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degree N and M, respectively), the coefficients of
which exactly coincide with the coefficients of the
Taylor expansion of fðzÞ up to the highest order; i.e.,
fðzÞ � PN

MðzÞ ¼ OðzNþMþ1Þ.
The PA method also provides an estimation of a system-

atic error and could also be used to evaluate the impact of
the vector excitations in the process considered. The tech-
niques described here were also applied to the search for
resonance poles in Ref. [13].

There are several types of PA but, as pointed out in
Ref. [12], the analytic properties of the function to be
approximated determine which PA should be used. The
timelike region is largely dominated by the �-meson con-
tribution. The natural choice seems to be a PL

1 ðQ2Þ. On the
other hand, since it is well known [14] that the TFF
behaves like 1=Q2 at very large energies, one could try to
incorporate this information by considering a PN

Nþ1ðQ2Þ.
For explanatory reasons we show here how to construct a

PL
1 ðQ2Þ approximant [a PN

Nþ1ðQ2Þ is more involved and

less illustrative].
Given a function fðzÞ defined in the complex plane, a

Padé approximant PL
1 is defined [15], without any loss of

generality, by

PL
1 ðz; z0Þ ¼

XL�1

k¼0

akðz� z0Þk þ aLðz� z0ÞL
1� aLþ1

aL
ðz� z0Þ ; (2)

where the coefficients ak are the Taylor coefficients of the
corresponding fðzÞ function that has been approximated.

Equation (2) shows that the pole sp of each PL
1 is

determined by the ratio sp ¼ aL=aLþ1.

The TFF seems to be well described by the simple VMD
ansatz. VMD relies on the accurate knowledge of the light
meson spectra. When the spectral information is given in
advance, one should also take advantage of that informa-
tion and consider other kinds of rational approximants.
These are the Padé-type approximants (PTAs). In the
PTAs the poles of the Padé are fixed to certain values (in
our case, the resonances of the spectrum).

The simplest PTA sequence incorporates the lowest
resonance, the M�, and it is called TL

1 . The famous

VMD ansatz is nothing but the simplest PTA, the T0
1

approximant.
The purpose of this paper is twofold: First, we want to

extract the slope and the curvature of the transition form
factor using a sequence of PL

1 approximants as fitting
functions to the available experimental data. We demand
an assignment of a systematic error to our predictions.
Second we estimate the impact of our results on the
light-by-light (LBL) contribution to the hadronic process
on the muon g-2. We also comment in passing on the recent
proposal to measure the transition form factor at low
energy using the BESIII experiment.

We proceed as follows: In Sec. II we study the reliability
of the PA method at fitting functions and then proceed in

Sec. III to analyze the real data. In Sec. IV we consider the
impact of the previous result on the LBL contribution to
the muon g-2. We finally collect all of the results in the
Conclusions section.

II. TESTING THE METHOD WITH A MODEL

Before applying the method to the experimental data to
extract the slope and the curvature of the TFF, we want to
test its reliability with a particular model. Since it has not
been possible to describe rigorously the TFF from basic
principles, several models have been developed during
the last years with the purpose of analyzing the spacelike
data to extract fundamental QCD properties. In these
Refs. [16–38], we try to summarize the large effort made
toward this purpose.
Considering the variety of models, we examine three of

them instead of just one. We think these three are repre-
sentative of the large amount of work done in this respect.
Since our intent is to show the properties of our method, the
selected models should describe well the experimental data
but keep the complexity at a manageable level. This exer-
cise will also provide a way to estimate the systematic error
of our approximations.
For ease of reading, we comment here about the first

model and relegate the other two to the Appendix.
The first model considered is motivated by a quark

model (e.g., Refs. [19–21,36]; see also Ref. [28] for other
logðQ2=M2Þ related models), although it can also be
inspired by the lowest order perturbative QCD (pQCD)
with a flat pion distribution amplitude (see, for example,
Ref. [20]) or even by the BABAR fitting function [3]. We
named this model the ‘‘log model’’:

F�0���ðQ2Þ ¼ M2

4�2f�Q
2
log

�
1þ Q2

M2

�
; (3)

with M2 ¼ 0:6 GeV2 and f� ¼ 92 MeV.
Expanding F�0���ðQ2Þ in Eq. (3) in powers of Q2, we

obtain

F�0���ðQ2Þ ¼ a0 � a1Q
2 þ a2Q

4 � a3Q
6 þOðQ8Þ; (4)

with known values for those ai coefficients (in particular
a0 ¼ 1

4�2f�
), as shown in the last column of Table I.

In order to illustrate the utility of the PA as a fitting
function, we simulate the situation of the experimental data
[1–4] with the model by considering the function Eq. (3)
evaluated at 22 points in the region 0:7 � Q2 � 5:5 GeV2,
16 points in the region 5:5 � Q2 � 12:5 GeV2, and 14
more points in the region 12:5 � Q2 � 35 GeV2. On top
of these sets of data points, we add the value of
F�0��ð0; 0Þ ¼ 1

4�2f�
. All of these data points have zero

error because we want to obtain a pure systematic error
on our fitting functions.
We construct a sequence of PL

1 ðQ2Þ approximants with
unknown coefficients, as defined in Eq. (2), and then we fit
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the set of data which yields a predictions for the ai coef-
ficients. The results are shown in Table I, where we go up to
the P5

1. The first P0
1 has only two parameters (a0 and a1),

and then a2 is not fitted but predicted through expansion.
We also include in this table the position of the pole of each
PA. The reader should notice how these poles, although
showing a convergence pattern, differ from the lowest-
lying vector mass used in the model of Eq. (3).1

As expected [12], the sequence of PAs converges to the
exact result in a hierarchical way (much faster for a0 than
for a1 and so on), achieving with the last PA P5

1 a relative

error of 0.04%, 5.6%, and 21.0% for a0, a1, and a2
respectively.

Similar results can be found by using a sequence of PTAs
as fitting function, as we wrote in the introduction. Thus,
fixing the pole of the TL

1 at sp ¼ M2 ¼ ð0:77Þ2 GeV2, we

obtain for the T5
1 a relative error of 3%, 34%, and 92% for

a0, a1, and a2, respectively. These results could be easily
improved if instead of fixing the pole of our PTA on the
starting point of the branch cut, i.e., at sp ¼ ð0:77Þ2 GeV2,

we fix it at a different sp > ð0:77Þ2 GeV2. For example, if

sp ¼ 1 GeV2 (value motivated by the result obtained with

the previous P5
1) the relative errors turn out to be 0.15%,

2.3%, and 14.4% for a0, a1, and a2, respectively. Since the
PTA’s predictions are very similar to PA’s ones, we do not
show explicitly the corresponding table. This simple exer-
cise shows that fixing the pole of our approximant to the
physical resonance, as in the VMD case, might not be the
best strategy to follow for low-energy constant predictions,
as extensively studied in Ref. [39].

The nice convergence pattern shown by our PA sequence
should not be a surprise, since it turns out that our model
Eq. (3) is a Stieltjes function. Thus, the convergence of the
PA sequences is guaranteed by Padé theory [40].

On the other hand, a possibility has been recently con-
sidered in Ref. [41] for the KLOE-2 experiment at Frascati
to measure the TFF at very low energies in the spacelike
region (for 0:01<Q2 < 0:1 GeV2) and the width ��0!��

at the percent level. This new low-energy data may reduce
our systematic error for the PA P5

1 to 4.2% and 18% for a1
and a2, respectively. An even better result might be
obtained when the BES-III experiment at the eþe� collider

BEPC-II in Beijing will cover a range from low-energy up
to CELLO energies, i.e., up to Q2 � 0:7 GeV2 (which will
turn out to have systematic errors less than 3% and 15%
for a1 and a2, respectively, considering the feasibility
study for BES-III performed in Ref. [42]). Indeed, the
�� physics program at BES-III for the measurement of
pseudoscalar TFFs will allow us to cover a wide Q2 range
below 10 GeV2, the gap between KLOE-2 and CLEO
experiments.
We analyze two more models in the Appendix using the

same technique explained here, and the similar results
obtained with the three of them give us confidence in our
fit procedure. This exercise allows us to assign a systematic
error for each element on the PA and the PTA sequences.
To ascribe a particular (and conservative) systematic error,
and taking into account that we do not know the structure
of the whole TFF, we select the worst of the three cases as a
guide. For PA P5

1, 5.6% and 21% are the relative systematic
errors for a1 and a2, respectively; for PTA T5

1 , they are

5.4% and 20%.

III. FITS TO REAL DATA

With all the tools developed so far, we can now proceed
to analyze the real TFF. For this purpose we use all the
available experimental data in the spacelike region, which

TABLE I. a0, a1, and a2 low-energy coefficients of the log model in Eq. (3), fitted with a
PL
1 ðQ2Þ and its exact values (last column). We also include the prediction for the pole of each

PL
1 ðQ2Þ (sp) to be compared with the lowest-lying meson in the model.

P0
1 P1

1 P2
1 P3

1 P4
1 P5

1 F�0��� (exact)

a0 (GeV�1) 0.2556 0.2694 0.2734 0.2746 0.2751 0.2752 0.2753

a1 (GeV�3) 0.1290 0.1716 0.1935 0.2051 0.2124 0.2166 0.2294

a2 (GeV�5) 0.0651 0.1147 0.1492 0.1725 0.1898 0.2013 0.2549ffiffiffiffiffi
sp

p
(GeV) 1.41 1.22 1.14 1.09 1.05 1.03 0.77
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FIG. 1 (color online). The PL
1 sequence compared with the

��� ! �0 transition form factor data from CELLO (gray
squares) [1], CLEO (red diamonds) [2], BABAR (blue circles)
[3], and Belle (brown triangles) [4]: P0

1 (orange dashed), P1
1

(green dotted), P2
1 (brown short-dashed), P3

1 (blue long-dashed),

P4
1 (black dot-dashed), and P5

1 (red solid). The black dashed line

indicates the pQCD result.1The model of Eq. (3) has a branch cut starting at Q2 � �M2.
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may be found in Refs. [1–4], and also the recent mea-
surement of the ��0!�� decay width by the PrimEx

Collaboration [43].
The form factor for real photons is related to the

�0 ! �� decay width:

F2
�0��

ðq21 ¼ 0; q22 ¼ 0Þ ¼ 4

��2m3
�

��0!��; (5)

with � ¼ �em ¼ 1=137:0356.
The experimental world average collected in the PDG

tables [11] is �PDG
�0!��

¼ 7:74� 0:48 eV, although we

use here the PrimEx Collaboration result [43] that
has significantly improved the accuracy using a
Primakoff effect experiment at JLab, reporting the value
��0!�� ¼ 7:82� 0:14� 0:17 eV.

A. Fits with the rational approximants

The fits with the PL
1 sequence to the spacelike data

points in Refs. [1–4] determine those ak coefficients that
best interpolate them. As always, when fitting experimen-
tal data, one should find a compromise between the
increase of fit errors and decrease of systematic ones
when increasing the order L of the PL

1 . Figure 1 shows
the experimental data obtained by CELLO (gray squares),2

CLEO (red diamonds), BABAR (blue circles), and Belle
(brown triangles), together with the pQCD prediction
(horizontal black dashed line). The red curve in Fig. 1 is
our best approximant, the P5

1.

In Fig. 2 we show the results for the prediction of the
slope and curvature parameters a� and b� with the PL

1 up
to L ¼ 5. Approximants with L > 5 have the new coeffi-
cients compatible with zero and then do not introduce new
information with respect to P5

1. The internal errors shown

in Fig. 2 are only statistical; the external ones are a qua-
dratic combination of statistical and systematic errors, the

latter determined in the previous section. For completeness
we also ascribe a 45% systematic error to the PDG slope
value.3 The curvature parameters have never been mea-
sured, so for ease of comparison we expand the VMD fit
used by the CELLO Collaboration up to that order with the
corresponding systematic error.
As expected from the models studied, we see in these

figures a nice convergence pattern for both a� and b�.
The PA P5

1 yields

a� ¼ 0:0340ð35Þstatð19Þsys; (6)

and

b� ¼ 1:20ð28Þstatð25Þsys � 10�3; (7)

with a �2=d:o:f: ¼ 0:80, where the systematic error is
estimated from the previous section (5.6% for a� and
21% for b�). We also extract the position of the PA pole
sp ¼ aL=aLþ1. This ratio is shown in Fig. 3, together with

a band corresponding to the physical value M� � ��=2,

where M� ¼ 0:7755 GeV and �� ¼ 0:155 GeV is

believed to be the dominant resonance contribution. For

P01 P11 P21 P31 P41 P51 PDG

0.01

0.02

0.03

0.04

0.05

a

P01 P11 P21 P31 P41 P51 CELLO

0.0

0.5

1.0

1.5

2.0

b
10

3

FIG. 2 (color online). a� (left) and b�(right) predictions with the P
L
1 up to L ¼ 5. The internal band is the statistical error from the fit

and the external one is the combination of statistical and systematic errors determined in the previous section.

P01 P11 P21 P31 P41 P51
0.65

0.70

0.75

0.80

0.85

0.90

s p
G

eV

FIG. 3 (color online). Position of the pole
ffiffiffiffiffi
sp

p
for the different

PL
1 . For comparison, we also show (gray band) the range

M� � ��=2 corresponding to the physical �-meson value.

2CELLO data points Di are extracted from Ref. [1] using the

following normalization: Di ¼ ð 64�Ni

ð4��Þ2m3
�
Þ1=2, with the Ni ¼

F2ðQ2
i Þm3

�

64� provided in that reference and � ¼ 1=137:036.

3Again, this systematic error is obtained by comparing the
VMD result with the exact ones in Tables I, IV, and V.
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the P5
1, the pole is located at

ffiffiffiffiffi
sp

p ¼ 0:75þ0:03
�0:06 GeV, well

within this band.
It is interesting to notice the slightly larger results for the

slope obtained with PL
1 with L > 1, manifesting the need of

a systematic procedure for going beyond VMD. It turns out
that the larger L is, the larger the sensibility of the PL

1 to the
high-energy data. In this respect, the recent Belle data are
crucial to obtain an accurate low-energy prediction, since
up to now BABAR data were dominating the high-energy
region (see, for example, Ref. [13] for a preliminary study
without Belle data).

Our final result is a fit to all of the available data, but
for a deeper understanding of PA as fitting functions for
high-energy data, we consider two different scenarios
where first no Belle data are considered and second no
BABAR data are considered (Table II). Surprisingly enough,
the results shown in Table II (where ‘‘All’’ stands for all of
the available data) are nicely compatible within errors
although with slightly different central values. All of the
results are obtained with a P5

1.

Finally, we want to apply a last test of robustness to the
method, which is that fits to subsets of data should return
compatible results; i.e., fitting data up to 10 GeV2, up to
20 GeV2, and up to 36 GeV2 (all of the data) should be the
same (unless there are unknown problems with the data
such as normalization or systematics). The results are
shown in Table III, where we also indicate the best PL

1

that fits the particular subset of data. These results are
nicely compatible; otherwise we should take the difference
as a new source of systematic error.
For illustrative purposes, we show in Fig. 4 the result

when fitting data up to 10 GeV2. In this case we include
also the feasibility study for BES-III experiment performed
in Ref. [42]. With a P3

1 we obtain4 a� ¼ 0:036ð6Þ and

b� ¼ 1:41ð65Þ, where the errors are statistical and system-
atical with �2=d:o:f: ¼ 0:53, to be compared with the
results in Table II. In this scenario, the pole of the P3

1 is
located at

ffiffiffiffiffi
sp

p ¼ 0:73þ0:09
�0:05 GeV.

B. Other Padé approximants

1. PL
2 Padé approximants

The experimental data so far considered range up to
36 GeV2 then a natural extension of the previous analysis
would include higher resonances, although the form fac-
tor is believed to be dominated by the �ð770Þ meson. In
such a way, the consideration of two-pole PL

2 will give us
a way to assess any possible systematic bias in our PL

1

analysis.
In this case our best approximant is the P3

2. This approx-

imant yields

a�¼0:0324ð20Þ and b�¼1:07ð15Þ�10�3; (8)

with a �2=d:o:f: ¼ 0:71, nicely compatible with our
previous determination in Eqs. (6) and (7). Despite this
result, the poles of that approximant are located at
sp1 ¼ 0:53ð6Þ � i0:01ð1Þ and sp2 ¼ 0:56ð2Þ þ i0:01ð1Þ,
where we can see a certain parameter space region where
the poles may eventually become complex-conjugated.5

2. TL
1 Padé-type approximants

On the other hand, since the value of the physical
�-meson mass is well known, it is natural to attempt to

TABLE II. Slope and curvature of the TFF predictions with a P5
1 with different sets of data.

Data a� ð103Þb� ffiffiffiffiffi
sp

p
�2=d:o:f:

All 0.0340(35) 1.20(28) 0:75þ0:03
�0:06 0.80

CELLO+CLEO+BABAR 0.0348(39) 1.26(32) 0:73þ0:04
�0:06 0.61

CELLO+CLEO+Belle 0.0326(39) 1.08(30) 0:76þ0:05
�0:06 0.49

TABLE III. Slope of the TFF prediction with different sets of
data, as described in the main text.

Best PA a� �2=d:o:f:

Data up to 10 GeV2 P3
1 0.0364(51) 0.53

Data up to 20 GeV2 P4
1 0.0327(35) 0.69

All P5
1 0.0340(35) 0.80
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0.05
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FIG. 4 (color online). The PL
1 sequence compared with the

��� ! �0 transition form factor data up to 10 GeV2 [1–4,42]:
P0
1 (orange dashed), P

1
1 (green dotted), P2

1 (brown short-dashed),

P3
1 (blue solid). The black dashed line indicates the pQCD result.

4PA with larger L do not introduce new information. BES-III
data will be crucial to improve on this result.

5Complex-conjugate to render the approximant real.
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include this information in our analysis through the PTAs.
We have seen in the previous section, however, that locat-
ing the pole of a PTA exactly at the physical counterpart
is not the best strategy. In fact, we learned that sp >M2

�,

but it is not clear which particular value we should use.
To evaluate a possible systematic error in this choice, we
range the PTA pole in between the band drawn by the PA
results in Fig. 3; i.e.,

ffiffiffiffiffi
sp

p ¼ 0:73–0:83 GeV.

With a TL
1 sequence, we go up to T5

1 and obtain also a

nice and smooth convergence pattern for both a� and b�
parameters. With our best PTA, we obtain

a�¼0:0302ð28Þ and b�¼0:92ð18Þ�10�3; (9)

with a �2=d:o:f: ¼ 0:78–0:87, where the errors are mainly
the systematics of the pole range.

3. PN
Nþ1 Padé Approximants

As suggested in the Introduction, we may attempt to
include the asymptotic behavior of the TFF [14] in our fits
by considering a PN

Nþ1 sequence. With these approximants

we can go up to the P2
3, which yields

a�¼0:0331ð45Þ and b�¼1:11ð27Þ�10�3; (10)

with a �2=d:o:f: ¼ 0:73.
The P2

3 approximant has the right falloff as Q�2, but the

corresponding coefficient (which reads 0:17� 1:8 GeV) is
not correctly predicted due to its large statistical error. This
asymptotic coefficient is known to be 2f� by first prin-
ciples [14]. It seems logical to try to include this informa-
tion on the P2

3. Using the asymptotic coefficient when

constructing the P2
3, we obtain a constrained approximant

called P02
3 which yields, after fitting the TFF data, for the

low-energy coefficients,

a�¼0:0332ð25Þ and b�¼1:13ð19Þ�10�3; (11)

with a �2=d:o:f: ¼ 0:70.
It is remarkable that these results for the P02

3 , which make

use of all of the experimental data and the asymptotic limit

at once, are nicely compatible with all of the previous
results. This approximant seems to suggest that the scale
where the pQCD should be applied is much further away
than the last BABAR and Belle data points.

C. Final result

The results shown in Eqs. (6)–(11) agree quite well.
Combining them, our final weighted average result yields

a� ¼ 0:0324ð12Þstatð19Þsys; (12)

and

b� ¼ 1:06ð9Þstatð25Þsys � 10�3; (13)

to be compared with other theoretical determinations: from
a Regge analysis, a� ¼ 0:032ð1Þ [17]; from ChPT at the
loop level with� ¼ M�, a� ¼ 0:036 [44]; from a study of

the Dalitz decay�0 ! eþe��, a� ¼ 0:029ð5Þ [45]; from a
hard-wall holographic model of QCD, a� � 0:031 [46]
and a� � 0:035 [47]; from a soft-wall holographic model
of QCD, a� ¼ 0:024ð5Þ [48]6; and finally from the compi-
lation of holographic models in Ref. [49], a� ¼ 0:031ð6Þ,
where the error is estimated by the spread of the different
results obtained from these models.
In the next section, we explore possible consequences of

our final results in Eqs. (12) and (13) on the light-by-light
scattering contribution to the anomalous magnetic moment
of the muon.

IV. IMPLICATIONS ON THE HADRONIC LIGHT-
BY-LIGHT CONTRIBUTION TO THE ðg-2Þ�

We can use the results in Eqs. (12) and (13) to constrain
any model that estimates the pion-exchange piece to the
light-by-light scattering contribution to the ðg-2Þ�, the

aLBL;�
0

� term. As an example, we consider the so called

LMDþ V model (defined in Ref. [50]) to account for that
contribution:

FLMDþV
�0���� ðQ2

1; Q
2
2Þ ¼

f�
3

�Q2
1Q

2
2ðQ2

1 þQ2
2Þ þ h1ðQ2

1 þQ2
2Þ2 þ h2Q

2
1Q

2
2 � h5ðQ2

1 þQ2
2Þ þ h7

ðQ2
1 þM2

V1
ÞðQ2

1 þM2
V2
ÞðQ2

2 þM2
V1
ÞðQ2

2 þM2
V2
Þ : (14)

The TFF is related to the LMDþ V model Eq. (14)
when one of the photons on the latter is on shell. That
means we cannot fix all of the free parameters (hi, with
i ¼ 1, 2, 5, 7, and MV1

, MV2
) on this LMDþ V model at

once. We need more information, for example, from the
high-energy region (Q2F�0���ðQ2;0Þ¼2f�; see Ref. [14]).

If we match the high-energy limit, we find h1 ¼ 0 and
h5 ¼ �6M2

V1
M2

V2
. The axial anomaly on the low-energy

limit fixes h7 ¼ � Nc

4�2f2�
M4

V1
M4

V2
. With these results and

h2 ¼ 0 as suggested in Ref. [50], we can use the slope and
the curvature of the TFF to fix MV1

and MV2
. We find

M2
V1

¼ 0:33ð11Þ GeV2 and M2
V2

¼ 0:94þ0:99
�0:25 GeV2 and

we obtain aLBL;�
0

� ¼ 5:4ð5Þ � 10�10.

6This number is obtained through the large-Nc limit relation

CW
22 ¼ a�Nc

64�2m2
�
[45] with CW

22 ¼ 6:3� 10�3 obtained in Ref. [48].

Indeed, with our final value for a�, we predict CW
22 ¼ 8:4ð9Þ �

10�3 GeV�2.
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V. CONCLUSIONS

In this paper, we analyzed the collection of all of the
experimental data on the �0��� transition form factor
at low energies with a model-independent approach
based on Padé approximants, and we obtain the slope
a� ¼ 0:0324ð12Þstatð19Þsys and curvatureb� ¼ 1:06ð9Þstat�
ð25Þsys � 10�3 of the form factor. The method is simple and

systematic, and it provides a model-independent estimation
of all of the systematic errors.We analyzed the impact at low
energy of theBelle andBABAR high-energy data and also the
future BES-III data. We also evaluate the implications of
these results on the pion-exchange contribution on the light-
by-light scattering part of the anomalous magnetic moment
of the muon. Using the well-knownLMDþ V parametriza-
tion and the Padé theory techniques, we estimate that con-

tribution to be aLbyL;�
0

� ¼ 5:4ð5Þ � 10�10.

ACKNOWLEDGMENTS

We thank F. Cornet, R. Escribano, A. Nyffeler, E. R.
Arriola, and V. Savinov for discussions, B. Kloss, E.
Prencipe, and M. Vanderhaeghen for providing us with
the feasibility study at the BES-III experiment, and also
F. Cornet and E. R. Arriola for a critical reading of the
manuscript. This work has been supported by MICINN,
Spain (FPA2006-05294), the Spanish Consolider-Ingenio
2010 Programme CPAN (CSD2007-00042) and by Junta
de Andalucı́a (Grants No. P07-FQM 03048 and No. P08-
FQM 101).

APPENDIX

For completeness we also studied two more models for
the F�0���� ðq21; q22Þ. The first is based on the Regge theory

and the second on the light-front holographic QCD. After
generating a set of zero error data points for each model,
we fit the data with PL

1 ðQ2Þ and TL
1 ðQ2Þ sequences.

1. Regge model

We consider first a Regge model based on the large-Nc

limit, Nc being the number of colors (see, for example,
Refs. [16,17,30,35], where similar large-Nc models are
used to fit the available data directly). In this limit, the
vacuum sector of QCD becomes a theory of infinitely many
noninteracting mesons and the propagators of the hadronic
amplitudes are saturated by infinitely many sharp meson
states. In the particular case below, the pion couples first to
a pair of vector mesons V� and V!, which then transform

into photons. Thus, we have

F�0���� ðq21; q22Þ

¼ X
V�;V!

FV�
ðq21ÞFV!

ðq22ÞG�V�V!
ðq21; q22Þ

ðq21 �M2
V�
Þðq22 �M2

V!
Þ þ ðq1 $ q2Þ;

(A1)

where FV�
and FV!

are the current-vector meson couplings

and G�V�V!
is the coupling of two vector mesons to the

pion. The dependence on the resonance excitation number
n is the following:

M2
V�

¼ M2
V!

¼ M2 þ n�2; and FV�
¼ NcV! � F:

(A2)

The combination of sums in Eq. (A1) can be expressed in
terms of the digamma function c ðzÞ ¼ d

dz log�ðzÞ:

F�0���� ðq21; q22Þ ¼ F�0���� ðQ2; AÞ

¼ c

NcAQ
2

�
c

�
M2

�2
þQ2ð1þ AÞ

2�2

�

� c

�
M2

�2
þQ2ð1� AÞ

2�2

��
; (A3)

where Q2 ¼ �ðq21 þ q22Þ, A ¼ q2
1
�q2

2

q2
1
þq2

2

, and c a constant.

To reassemble the physical case, we consider Nc ¼ 3,
�2 ¼ 1:3 GeV2 (as suggested by the recent light non-
strange q �q meson spectrum analysis [51]), A ¼ 1 (which
means q22 ¼ 0), M2 ¼ ð0:8Þ2 GeV2; and the constant c in
such a way that the anomaly F�0��ð0; 0Þ ¼ 1

4�2f�
is

recovered.
Equations (A1) and (A3) use the large-Nc and chiral

limits and thus have an analytic structure in the complex
momentum plane which consists of an infinity of isolated
poles but no branch cut (as does the log model of Sec. II);
i.e., they become meromorphic functions. As such, they
have a well-defined series expansion in powers of momen-
tum around the origin with a finite radius of convergence
given by the first resonance mass. It is well known [52] and
largely explored in the context of large Nc [39,53] that the
convergence of any near diagonal PA sequence to the
original function for any finite momentum, over the whole
complex plane (except perhaps in a zero-area set), is
guaranteed.
For meromorphic functions such as Eqs. (A1) and (A3),

another important result of Padé theory applies here: the
Montessus de Ballore’s theorem [13,15], which states that
given a certain analytic function fðzÞ at the origin which is
meromorphic with exact M poles in a certain disk on the
complex plain, the sequence of PAs converges uniformly to
fðzÞ. In practice, provided M is known (M ¼ 1 in our
case), the Montessus’ theorem asserts convergence for
the sequence of M-pole Padé approximants PL

M. These
convergence theorems are confirmed by the good results
collected in Table IV, where after generating a set of zero-
error data points with the model of Eq. (A3), we fit them
with the PA sequence and obtain the predictions for the ai
coefficients.
With the PA P5

1 we obtain a relative error of 0.02%,
2.9%, and 9.4% for a0, a1, and a2, respectively. The
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inclusion of the feasibility study at BES-III [42] decreases
the error down to 2.4% and 7.9% for a1 and a2, respec-
tively. With a PTA sequence the results return 0.02%, 0.7%,
and 0.8% for a0, a1, and a2, respectively, when the PTA
pole is located at sp ¼ 0:70 GeV2.

2. Holographic model

Finally, as a third model we analyze a simple holo-
graphic confining model presented in Ref. [32] (and also
explored in Refs. [18,25,31,33]), based on light-front holo-
graphic QCDwhere the correct smallQ2 behavior (in order
to simulate confinement) is introduced using the dressed
current (see Ref. [32] for details).7

In this context, the TFF is defined as

F�0���ðQ2Þ ¼ Pq �q

�2f�

Z 1

0

dx

ð1þ xÞ2 x
Q2Pq �q=ð8�2f2�Þ; (A4)

where Pq �q is the probability of finding the q �q com-

ponent in the pion light-front wave function. To repro-
duce the anomaly F�0��ð0Þ ¼ 1=ð4�2f�Þ, we impose

Pq �q ¼ 0:5.

This model reproduces quite well the transition form
factor data up to 10 GeV2, but disagrees in particular with
BABAR’s large Q2 data (although compatible with Belle
data within errors), especially because the model is reach-
ing its asymptotic prediction (Q2F�0���ðQ2 ! 1Þ ¼ 2f�
[14]) already at this medium-Q2 region. Another interest-
ing feature of this model is that no convergence theorem
from Padé theory is known for this kind of function, so the
Padé convergence is not guaranteed in advance (in contrast
to the previous Regge model). It represents a robustness
test of our method.
After generating again a set of zero-error data points

with the model of Eq. (A4), we use the PA sequence to fit
these data and to obtain again the predictions for the ai
coefficients. We collect the results in Table V.
With the PA P5

1 we obtain 0.04%, 4.6%, and 18.7% as a

relative errors for a0, a1, and a2, respectively. With the
inclusion of the feasibility study at BES-III [42], we go
down to 4.3% and 17.1% for a1 and a2, respectively. With
the PTA sequence (the approximant pole located at
sp ¼ 1 GeV2), we obtain 0.6%, 4.8%, and 19.2%, respec-

tively. Although no convergence theorem for this kind of
function in Eq. (A4) is known, the convergence of our
PA sequence is clear. That is one of the most interesting
features of the PA methods: the convergence may occur
beyond expectations.

TABLE IV. a0, a1, and a2 low-energy coefficients of the Regge model in Eq. (A3), fitted with
a PL

1 ðQ2Þ and its exact values (last column). We also include the prediction for the pole of each

PL
1 ðQ2Þ (sp) to be compared with the lowest-lying meson in the model.

P0
1 P1

1 P2
1 P3

1 P4
1 P5

1 F�0��� (exact)

a0 (GeV�1) 0.2672 0.2730 0.2746 0.2751 0.2752 0.2753 0.2753

a1 (GeV�3) 0.2662 0.3121 0.3338 0.3457 0.3529 0.3571 0.3678

a2 (GeV�5) 0.2652 0.3600 0.4244 0.4616 0.4868 0.5030 0.5550ffiffiffiffiffi
sp

p
(GeV) 1.00 0.92 0.87 0.86 0.85 0.84 0.80

TABLE V. a0, a1, and a2 low-energy coefficients of the holographic model in Eq. (A4), fitted
with a PL

1 ðQ2Þ and its exact values (last column). We also include the prediction for the pole of

each PL
1 ðQ2Þ (sp) to be compared with the lowest-lying meson in the model.

P0
1 P1

1 P2
1 P3

1 P4
1 P5

1 F�0��� (exact)

a0 (GeV�1) 0.2791 0.2774 0.2764 0.2759 0.2756 0.2754 0.2753

a1 (GeV�3) 0.3571 0.3362 0.3213 0.3108 0.3033 0.2986 0.2856

a2 (GeV�5) 0.4567 0.4031 0.3643 0.3358 0.3148 0.3009 0.2535ffiffiffiffiffi
sp

p
(GeV) 0.88 0.91 0.94 0.96 0.98 1.00 1.16

7We do not consider higher-twist components to keep the
model easy to use.
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