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Employing induced representations of the Lorentz group (Wigner’s little group construction), formal-

ism for constructing heavy particle effective Lagrangians is developed, and Lagrangian constraints

enforcing Lorentz invariance of the S matrix are derived. The relationship between Lorentz invariance

and reparametrization invariance is established and it is shown why a standard ansatz for implementing

reparametrization invariance in heavy fermion effective Lagrangians breaks down at order 1=M4.

Formalism for fields of arbitrary spin and for self-conjugate fields is presented, and the extension to

effective theories of massless fields is discussed.
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I. INTRODUCTION

Heavy particle effective field theories find a wide range
of applications in particle, nuclear and atomic physics
[1–5]. Recent investigations demand high orders in the
1=M expansion (see e.g., Refs. [6,7]), and involve con-
struction of effective theories for which a simple under-
lying ultraviolet completion is unknown, or unspecified
(see e.g., Ref. [8] and references therein). To avoid a
proliferation of undetermined constants, and to enable
efficient computations, it is important to recognize that
many Wilson coefficients are linked by Lorentz invariance
to coefficients appearing at lower orders. This may be
viewed in analogy to the constraints imposed by enforcing
invariance under broken chiral symmetries in low-energy
chiral effective field theories. The procedure for imple-
menting such chiral symmetry constraints, via the formal-
ism of nonlinear realizations, is well known [9,10]. It is
our aim here to bring similar clarity to the implementation
of Lorentz invariance in heavy particle effective field
theories, and to provide a practical and systematic imple-
mentation of Lorentz invariance constraints suitable for
arbitrary orders in phenomenological applications.

When the heavy particle is fundamental, we may derive
the effective theory Lagrangian by introducing a field
redefinition in the full theory. For example, in terms of
an arbitrary (spacetime independent) timelike unit vector
v�, the decomposition of a quark field QðxÞ of mass M,

QðxÞ ¼ e�iMv�x½hvðxÞ þHvðxÞ�; (1.1)

with 6vhv ¼ hv and 6vHv ¼ �Hv, defines an effective
heavy quark field hvðxÞ, and after integrating out the
antiparticle field HvðxÞ, we arrive at the effective
Lagrangian for a heavy quark. Invariance of observables
under small changes of v, so-called reparametrization
invariance, enforces certain constraints on the coefficients

of the effective Lagrangian [11]. These constraints are
consistent with the requirements of Lorentz invariance,
e.g., as imposed by matching effective theory S matrix
elements to Lorentz invariant full theory S matrix ele-
ments. However, this construction raises several questions.
Is reparametrization invariance a sufficient condition for
Lorentz invariance? How do we derive a reparametrization
transformation law without first constructing the under-
lying theory and explicitly integrating out degrees of free-
dom? For applications involving a composite particle such
as the proton, or hypothetical new particles that may not be
fundamental, we cannot in an obvious way introduce v as a
parameter inside of a field redefinition. What is the signifi-
cance of v in such cases? What is the general method for
constructing a Lorentz invariant heavy particle effective
field theory?
In this paper we present the formalism of induced rep-

resentations of the Lorentz group (Wigner’s little group
construction [12]) for application to field transformation
laws. The parameter v enters as an arbitrary reference
vector in the little group construction. The relationship
between Lorentz invariance and reparametrization invari-
ance is stated precisely, and a class of allowable repara-
metrization transformations is obtained. We find that a
standard ansatz for implementing reparametrization invari-
ance breaks down starting at order 1=M4. We explain this
subtlety and its resolution.
A large literature exists on topics relating to reparamet-

rization invariance, especially as applied to heavy quark
Lagrangians [11,13–19]. We aim to present a conceptually
clear statement of the constraints imposed by Lorentz
invariance, and of the relationship between Lorentz invari-
ance and reparametrization invariance. At a practical level,
we derive explicit field transformation laws that can be
consistently used to build Lorentz invariant Lagrangians to
arbitrary order in 1=M.
The remainder of the paper is structured as follows. In

Sec. II we briefly review the construction of Lorentz in-
variant field theories based on finite dimensional represen-
tations of the Lorentz group. In Sec. III we introduce the
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formalism of induced representations and investigate the
necessary conditions for a Lorentz invariant S matrix.
Section IV establishes the connection between Lorentz
invariance and reparametrization invariance. A subtlety in
the identification of allowable reparametrization transfor-
mations is explained, and a correct solution to the invari-
ance equation (4.17) is found for applications to 1=M4

heavy fermion Lagrangians. Section V provides a brief
overview of the analogous framework for effective theories
describing energetic massless particles. Section VI con-
cludes with a discussion. Appendix A presents formalism
in covariant notation for arbitrary spin particles and for
self-conjugate fields. Appendix B describes the solution of
the invariance equation for the construction of invariant
operators to arbitrary order in 1=M.

II. FINITE DIMENSIONAL REPRESENTATIONS
OF THE LORENTZ ALGEBRA

The standard method for constructing Lorentz invariant
Lagrangians postulates the field transformation law

�aðxÞ ! Mð�Þab�bð��1xÞ; (2.1)

where Mð�Þ is a finite dimensional (coordinate-
independent and, in general, nonunitary) representation of
the Lorentz group. In infinitesimal form, including also
spacetime translations �ðxÞ ! �ðx� aÞ, we have

�� ¼ iða0h� a � p� � � jþ � � kÞ�; (2.2)

where � and � are infinitesimal rotation and boost parame-
ters, and the generators of the Poincaré group acting on
fields are1

h ¼ i@t; (2.3a)

p ¼ �i@; (2.3b)

j ¼ r� pþ�; (2.3c)

k ¼ rh� tp� i�; (2.3d)

with �i the (2sþ 1)-dimensional matrix generators of the
spin-s representation of rotations (e.g., for spin-1=2 Weyl
fermions, � ¼ �=2 with �i the Pauli matrices). Using
(2.1) it is straightforward to construct Lorentz invariant
actions, and correspondingly to prove Lorentz invariance
of the S matrix. Let us briefly review this procedure.2

Recall the Poincaré algebra for generators of time trans-
lationsH, space translations Pi, rotations Ji, and boostsKi:

½H;Pi� ¼ 0; (2.4a)

½H; Ji� ¼ 0; (2.4b)

½Pi; Pj� ¼ 0; (2.4c)

½Ji; Pj� ¼ i�ijkPk; (2.4d)

½Ji; Jj� ¼ i�ijkJk; (2.4e)

½Ji; Kj� ¼ i�ijkKk; (2.4f)

½H;Ki� ¼ �iPi; (2.4g)

½Pi; Kj� ¼ �iH�ij; (2.4h)

½Ki; Kj� ¼ �i�ijkJk: (2.4i)

Having built a Lagrangian that is invariant under (2.2), we
may construct the corresponding conserved charges. Using
(2.3), we find in canonical quantization that these charges
obey the commutation relations (2.4).
Lorentz invariance of the S matrix demands that the

free-particle charges, denoted by H0, P0, J0,K0, commute
with the scattering operator, S ¼ limT!1�ðTÞy�ð�TÞ,
where �ðTÞ ¼ eiHTe�iH0T . We assume that momentum
and angular momentum operators for the interacting
theory are unchanged from the free theory and furthermore
demand translational and rotational invariance of the
interaction

P ¼ P0; J ¼ J0;

½H �H0;P0� ¼ ½H �H0;J0� ¼ 0:
(2.5)

Then ½P0; S� ¼ ½J0; S� ¼ 0, and by the definition of S also
½H0; S� ¼ 0. Finally, if one can show (2.4g) and that an
asymptotic smoothness condition for �K ¼ K� K0 is
obeyed, it follows that

½K0; S� ¼ limT!1½K0;�ðTÞy�ð�TÞ�
¼ limT!1f�½eiH0T�Ke�iH0T��ðTÞy�ð�TÞ

þ�ðTÞy�ð�TÞ½e�iH0T�KeiH0T�g ¼ 0; (2.6)

completing the proof of the Lorentz invariance of the S
matrix. For later application, we note that of the commu-
tation relations involving K, it is only necessary to show
the relation (2.4g); relations (2.4f), (2.4h), and (2.4i) are not
required to complete the proof.3

III. EFFECTIVE FIELD THEORYAND THE
LITTLE GROUP

The field transformation law (2.1), based on finite
dimensional representations of the Lorentz group, is not
suitable for heavy particle effective field theories. For
example, the associated irreducible representations of the
Lorentz group are chiral, in conflict with the low-energy

1We use bold letters for Euclidean three-vectors, e.g., @ ¼
ð@iÞ ¼ ð@iÞ ¼ ð@x; @y; @zÞ.

2For a pedagogical discussion, see Ref. [20].

3In fact, these relations do follow from the observation that
having proven Lorentz invariance of the S matrix, it can be
shown thatH, P, J and K are related to their free counterparts by
the similarity transformation �ð�1Þ [20].
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limit of a parity conserving theory such as QED or QCD.
Let us consider instead the class of infinite dimensional
induced representations. We first review their appearance
in transformations of physical states, and then apply them
as transformations acting on fields.

A. Little group formalism

Consider Lorentz transformations acting on the Hilbert
space of physical states for a spin-s particle of mass M.
These transformations are implemented by an induced
representation [12]. In terms of a fixed timelike reference
vector v� (we assume v2 ¼ 1), define the associated little
group as the subgroup of Lorentz transformations leaving
v invariant, �v ¼ v. The little group for massive particles
is isomorphic to SOð3Þ, the group of rotations. Let LðpÞ
denote a standard Lorentz transformation taking Mv to p,
yielding a (momentum-dependent) mapping of the Lorentz
group into the little group,

� ! Wð�; pÞ ¼ Lð�pÞ�1�LðpÞ: (3.1)

We may define physical states to transform
schematically as

jp;mi ! Uð�; pÞjp;mi ¼ Xs
m0¼�s

Dm0m½Wð�; pÞ�j�p;m0i;

(3.2)

where p0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
, and DðWÞ is a spin-s representa-

tion matrix for rotations. A representation for the little
group thus induces a representation for the full Lorentz
group.

A convenient choice for the standard Lorentz transfor-
mation is LðpÞ ¼ �ðp=M; vÞ, where �ðw; vÞ denotes
the generalized rotation in the plane of the unit vectors v
and w such that �ðw; vÞv ¼ w. This matrix is given by
�ðw; vÞ ¼ exp½�i�J ��w

�v��, with the Lorentz genera-

tors J �� defined in Eq. (A2) and the angle � chosen

appropriately [11]. In the vector and spinor representations
we have, respectively

�ðw;vÞ�	 ¼g�	� 1

1þv �w ðw�w	þv�v	Þþw�v	

�v�w	þ v �w
1þv �w ðw�v	þv�w	Þ; (3.3a)

�1
2
ðw;vÞ¼ 1þw 6vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þv �wÞp : (3.3b)

It is straightforward to verify that for elements of the little
group, i.e., rotations with Rv ¼ v, this choice of LðpÞ
implies

WðR; pÞ ¼ R; (3.4)

a property that greatly simplifies the construction of in-
variant Lagrangians (cf. Secs. III C, IVA, and IVB below).
Other choices of LðpÞ do not share this property. For

example, suppose that we introduce a spacelike vector s�

with s2 ¼ �1. Then we may define L0ðpÞ ¼ RðpÞBðpÞ,
with BðpÞ a boost taking Mv� to MBðpÞ�	v

	 ¼
ðv � pÞv� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv � pÞ2 �M2

p
s�, and RðpÞ a rotation taking

MBðpÞ�	v
	 to p�. Such an L0ðpÞ provides a simple inter-

pretation of U½LðpÞ�jMv;mi in terms of helicity eigen-
states (note that the spacelike vector is required to define a
direction for helicity decomposition), but this considera-
tion is secondary to the simplicity of (3.4) for our present
purposes.
The remaining independent Lorentz generators repre-

sent boosts that shift v. They can be chosen as BðqÞ ¼
�ðv� q=M; vÞ with ðv� q=MÞ2 ¼ 1. The appearance of
the 1=M factor in v� q=M will be explained in Sec. III C
below. For an infinitesimal momentum q, which obeys
v � q ¼ Oðq2Þ, these boosts are given by

BðqÞ�	 ¼ g�	 þ v�q	 � q�v	

M
þOðq2Þ; (3.5a)

B1
2
ðqÞ ¼ 1� 6q 6v

2M
þOðq2Þ: (3.5b)

For the transformation (3.2), we find

WðBðqÞ; pÞ ¼ 1� i

2

�
1

MðMþ v � pÞ ðq
�p�

? � p�
?q

�Þ
�

� J �� þOðq2Þ; (3.6)

where for any four-vector kwe define k
�
? � k� � ðv � kÞv�.

B. Field transformation law and Lorentz invariance

In place of (2.1) let us postulate the transformation law
for free massive fields,

�aðxÞ ! D½Wð�; i@Þ�ab�bð��1xÞ: (3.7)

For notational simplicity consider the special choice v ¼
ð1; 0; 0; 0Þ. Equation (3.7) together with Eq. (3.6) corre-
sponds to replacing the boost generator (2.3d) by4

k ¼ rh� tp� i
�� @

Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � @2

p : (3.8)

The generators (2.3a)–(2.3c) together with (3.8) will satisfy
the Poincaré algebra when acting on fields satisfying

i@t� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � @2

p
�: (3.9)

It follows that the conserved charges derived from
a free field Lagrangian invariant under (3.7) will satisfy
(2.4).
In contrast to (2.1), transformation (3.7) acts on the field

coordinates, spoiling gauge invariance. To include gauge

4For spin-1=2 particles, (3.8) may also be obtained by per-
forming a Foldy-Wouthuysen transformation on Eq. (2.3d)
[21,22].
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interactions, we promote the partial derivatives in (3.7) to
covariant derivatives D� ¼ @� � igAA

�t
A � @� � igA�,

�aðxÞ ! D½Wð�; iDÞ�ab�bð��1xÞ; (3.10)

and correspondingly the infinitesimal generators become

h ¼ i@t; (3.11a)

p ¼ �i@; (3.11b)

j ¼ r� pþ�; (3.11c)

k ¼ rh� tp� i
��D

Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �D2

p þOðgÞ: (3.11d)

In the expansion of D=ðMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �D2

p
Þ we assume a

choice of ordering for the covariant derivatives. The OðgÞ
terms in k denote field strength-dependent corrections that
vanish for the noninteracting theory (i.e., g ! 0). Such
OðgÞ terms can be introduced so that the resulting invariant
Lagrangian is in canonical form, i.e., where the only time
derivative acting on � appears in the leading term,

L ¼ ��ðiDt þ . . .Þ�: (3.12)

The existence of suitable field strength-dependent terms,
ensuring a boost generator k which yields a nonzero in-
variant Lagrangian, is implied by the all-orders construc-
tion in Sec. IVand Appendix B. The explicit form of these
corrections is not required for the following argument.

Although the field-dependent generators (3.11) do not
obey simple commutation relations, we may nevertheless
show that the S matrix derived from the resulting invariant
action is Lorentz invariant (and hence that the conserved
charges in the interacting theory satisfy the Poincaré alge-
bra). To see this, we assume as before the relations (2.5).
Relation (2.4g) is satisfied if the explicit time dependence
of the conserved charge K satisfies @K=@t ¼ �P, so that

0 ¼ d

dt
K ¼ @

@t
Kþ i½H;K� ¼ �Pþ i½H;K�: (3.13)

The fact that @K=@t ¼ �P follows from the assumed form
of the infinitesimal generators (3.11). For the boost � !
ð1þ i� � kÞ�, we find the conserved charge5

K ¼ X
�

i
Z

d3x
�L

� _�
k�þ . . .

¼ X
�

i
Z

d3x
�L

� _�
½�tp��þ . . . ¼ �tP þ . . . : (3.14)

Here the important point is that the remaining terms have
no explicit time dependence, so that (3.13) follows.

Let us close this section with two comments. First, the
choice v ¼ ð1; 0; 0; 0Þ is not essential to the argument. The

generators for arbitrary v can be obtained by a coordinate
change using a boost which takes (1, 0, 0, 0) to v. While the
resulting explicit expressions for rotation and boost gen-
erators become more complicated, the demonstration of
Lorentz invariance is not essentially changed. Second,
having specified an ordering for covariant derivatives ap-
pearing in the boost generator k, additional field strength-
dependent corrections are determined at each order in 1=M
by enforcing that the resulting invariant Lagrangian is in
canonical form. We illustrate this with an explicit example
in the following subsection. The existence of such a
generator is implied by the analysis of Sec. IV and
Appendix B.

C. 1=M expansion and Lagrangian constraints

To enable the 1=M expansion we extract the rest mass by
the field redefinition,

�ðxÞ ¼ e�iMt�0ðxÞ: (3.15)

In phenomenological applications it is also convenient to
work with nonrelativistic field normalization

�0ðxÞ ¼
�

M2

M2 �D2

�1
4
�00ðxÞ: (3.16)

We enforce invariance under (3.11a)–(3.11c) by ensuring
translational invariance (no explicit factors of x�) and
rotational invariance. For the boost transformation
(3.11d) we use � ¼ �q=M in (2.2) to preserve the power
countingDt ¼ Oð1=MÞ in (3.18). This explains the appear-
ance of 1=M in (3.5). The resulting 1=M expansion
becomes6

�00 ! e�iq�x
�
1þ iq �D

2M2
þ iq �DD2

4M4
��� q �D

2M2

�
�
1þ D2

4M2

�
þOðg; 1=M5Þ

�
�00: (3.17)

Gauge fields are assumed to transform as usual, in the
vector representation of the Lorentz group. Combined with
derivatives acting on the transformed coordinate in (3.17),
we have

Dt ! Dt þ 1

M
q �D; D ! Dþ 1

M
qDt: (3.18)

To illustrate the constraints, consider the canonical form
of the Abelian gauged heavy spin-1=2 fermion effective
Lagrangian [i.e., nonrelativistic QED (NRQED)] through
Oð1=M3Þ. Identifying �00 ¼ c as a two-component spinor
and setting g ¼ �e we obtain [14,23]

5The first ellipsis in (3.14) includes possible contributions
from a surface term in �L, which do not affect the term with
explicit t dependence in (3.14).

6For notational clarity we leave the coordinate change x !
x0 ¼ B�1x implicit and suppress primes on coordinates and
derivatives in (3.17) and (3.18).
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L ¼ c y
�
iDt þ c2

D2

2M
þ c4

D4

8M3
þ cFe

� �B
2M

þ cDe
½@ �E�
8M2

þ icSe
� � ðD�E�E�DÞ

8M2

þ cW1e
fD2;� �Bg

8M3
� cW2e

Di� �BDi

4M3
þ cp0pe

� �DB �DþD �B� �D
8M3

þ icMe
fDi; ½@� B�ig

8M3
þ cA1e

2 B
2 �E2

8M3
� cA2e

2 E2

16M3
þOð1=M4Þ

�
c : (3.19)

Here we have defined Ei � ð�i=eÞ½Dt;D
i�, �ijkBk � ði=eÞ½Di;Dj�. Under (3.17), a straightforward computation yields

�L ¼ 1

M
�L1 þ 1

M2
�L2 þ 1

M3
�L3 þ . . . ; (3.20)

where using � ¼ �=2 in (3.17),

�L1 ¼ c y½ð1� c2Þiq �D�c ; (3.21a)

�L2 ¼ c y
�
� 1

2
ð1� c2Þfq �D; Dtg þ e

4
ð1� 2cF þ cSÞ� � q �E

�
c ; (3.21b)

�L3 ¼ c y
�
e

8
cD½Dt; q �E� þ e

8
ðcF � cD þ 2cMÞq � ½@� B� þ i

4
ðc2 � c4Þfq �D;D2g

þ ie

8
cSfDt;� � q �Eg þ ie

8
ðc2 þ 2cF � cS � 2cW1 þ 2cW2Þfq �D;� �Bg

þ ie

8
ð�c2 þ cF � cp0pÞf� �D; q �Bg þ ie

8
ð�cF þ cS � cp0pÞq � �ðD � Bþ B �DÞ

�
c : (3.21c)

From �L1 and �L2, we find

c2 ¼ 1; cS ¼ 2cF � 1: (3.22)

The variation �L3 is equivalent to zero upon a field
strength-dependent modification of the boost transforma-
tion (3.17),

c ðxÞ ! e�iq�x
�
1þ iq �D

2M2
� � � q �D

4M2
þ icD

8M3
eq �E

þ cS
8M3

eq � � �EþO
�
1

M4

��
c ðB�1xÞ; (3.23)

and upon enforcing the constraints [7,14]

c4 ¼ 1; 2cM ¼ cD � cF;

cW2 ¼ cW1 � 1; cp0p ¼ cF � 1: (3.24)

The computation of the complete Lagrangian at Oð1=M4Þ
is presented in Ref. [24].

IV. REPARAMETRIZATION INVARIANCE AND
INVARIANT OPERATORS

While in practice it may be convenient to enforce
Lorentz invariance only after expanding the Lagrangian
in a series of rotationally invariant, but not Lorentz invari-
ant, operators, it is interesting to consider formalism that
permits an explicitly Lorentz invariant construction. This
formalism also addresses the question of existence of a

suitable boost generator, extending (3.23) to arbitrary order
in 1=M.
This section begins by introducing covariant notation

that can either be used in place of the v ¼ ð1; 0; 0; 0Þ
formalism above, or used to construct manifestly invariant
operators. The relation between Lorentz invariance and
reparametrization invariance is then demonstrated, and a
general discussion of the invariant operator method is
presented. In particular, we derive the necessary invariance
equation (4.17) and present the solution to order 1=M3. A
systematic, all-orders solution of the invariance equation is
given in Appendix B.

A. Covariant notation

The formalism of Appendix A allows us to straightfor-
wardly extend the discussion to a general reference vector
v and to arbitrary spin. Consider a term in the Lagrangian
of the schematic form

��vf� � �v� � � �D� � � �
� � � �g�v; (4.1)

where indices are contracted with g�	 and ��	��.

Invariance under generalized rotations of such a term in
the action follows using the field transformation (3.4),

�vðxÞ ! R�vðx0Þ; (4.2)

where x0 � R�1x. The transformation of the derivative
and the gauge field are as usual,
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@� ! @� ¼ R�
	@

0	; A� ! R�
	A

	ðx0Þ: (4.3)

If the Lagrangian is already constructed such that all vector
and spinor indices are contracted in (4.1), we can easily see
that the Lagrangian is invariant under generalized rotations
using the identities

v� ¼ R�
	v

	; 
� ¼ R1
2
ðR�

	

	ÞR�1

1
2

: (4.4)

According to (3.6), the infinitesimal boosts are imple-
mented by

�vðxÞ ! WðB; iDÞ�vðx0Þ; (4.5)

where x0 � B�1x, together with the transformation of the
derivative and gauge field,

@� ! @� ¼ B�
	@

0	; A�ðxÞ ! B�
	A

	ðx0Þ: (4.6)

We may proceed as in Sec. III C above to construct invari-
ant combinations of Lagrangian interactions of the form
(4.1), order by order in 1=M.

As an explicit example, let us focus presently on the
phenomenologically important one-heavy particle sector
of a spin-1=2 theory. To enable the 1=M expansion and
convert to nonrelativistic normalization, we introduce the
field redefinition as in (3.15) and (3.16),

c vðxÞ ¼ e�iMv�xNðv; iDÞc 0
vðxÞ;

Nðv; iDÞ ¼
�

M2

M2 þD2
?

�1
4
:

(4.7)

The boost transformation (4.5) becomes

c 0
v ! eiq�x ~W1

2
ðB; iDþMvÞc 0

v; (4.8)

where

~WðB; iDþMvÞ ¼ Nðvþ q=M; iD� qÞ�1

�WðB; iDþMvÞNðv; iDÞ: (4.9)

The 1=M expansion of this transformation is the extension
to arbitrary v, for spin-1=2, of the previous (3.17):

c 0
v ! eiq�x

�
1þ iq �D?

2M2
� iq �D?D2

?
4M4

þ 1

4M2
���q

�D�
?

�
�
1� D2

?
4M2

�
þOðg; 1=M5Þ

�
c 0

v: (4.10)

Similarly, we find the extension to arbitrary v of the trans-
formations (3.18)

v �D ! v �Dþ 1

M
q �D?;

D�
? ! D�

? � 1

M
q�ðv �DÞ:

(4.11)

Using these transformations one can build an invariant
Lagrangian, which (in the Abelian case) is equivalent to
the extension of the Lagrangian (3.19) to arbitrary v with
the same constraints (3.22) and (3.24).

B. Reparametrization invariance

We can reformulate the transformation law for general-
ized boosts by using the identities,

v� ¼ B�
	ðB�1Þ	�v� � B�

	w
	;


� ¼ B1
2
ðB�

	

	ÞB�1

1
2

: (4.12)

In place of (4.5) and (4.6) the transformation of any opera-
tor of the form (4.1) is identical to the transformation
obtained by the substitutions

v ! w ¼ vþ q=M;

�v ! �w � B�1WðB; iD�Þ�v;
(4.13)

with no transformation of the coordinate and gauge field.
The rules (4.13), with suitable choice for W, may be
identified with the rules obtained by enforcing reparamet-
rization invariance [11]. However, we emphasize that from
the present perspective, we are not changing the reference
vector v, but simply noticing the equivalence of (4.5) and
(4.6) on the one hand, and (4.13) on the other hand, when
acting on operators of the form (4.1).

C. Invariant operator method

It is not obvious that a nonzero Lagrangian, invariant
under (4.5) and (4.6) to arbitrary order, will exist. For
example, in (3.20) invariance relies on the possibility to
enforce �Ln ¼ 0 by modifying the boost generator as in
(3.23) and enforcing relations as in (3.22) and (3.24). It is
not evident that this procedure can be extended to arbitrary
order. We present here a method of constructing operators
that are manifestly invariant under a particular choice of
boost generator, to arbitrary order in 1=M. The details of
the construction are given in Appendix B.
The embedding of the little group into constrained rep-

resentations of the full Lorentz group (cf. Appendix A)
provides a framework for constructing explicitly invariant
operators. Suppose that we find an operator �ðv; iDÞ
such that

�ð��1v; iDÞ��1Wð�; iDÞ ¼ �ðv; iDÞ; (4.14)

when acting on fields �v obeying the appropriate
constraints, as given in Appendix A (e.g., 6v�v ¼ �v

for spin-1=2). It follows from the rules (4.13) that the
combination

�v � �ðv; iDÞ�v (4.15)

is invariant under the reparametrization implementation
(4.13) of generalized boosts. Provided that invariance
under generalized rotations (4.2), (4.3), and (4.4) is
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maintained, we may build operators that are explicitly
invariant. For example, in the spin-1=2 case

�� vi 6D�v; ��v�v; ��vi�
�	½D�;D	��v; (4.16)

are invariant. Note that because of Eq. (3.4) the only
constraints on �ðv; iDÞ from Eq. (4.14) come from boosts
� ¼ B.

Applying field redefinitions as in (4.7), the condition
(4.14) for � becomes

�ðvþ q=M; iD� qÞB�1 ~WðB; iDþMvÞ ¼ �ðv; iDÞ:
(4.17)

Wewill refer to (4.17) as the invariance equation. Provided
that such a �ðv; iDÞ can be found, the field

�0
vðxÞ � �ðv; iDÞ�0

vðxÞ; (4.18)

obeys a simple transformation law under the reparametri-
zation implementation of generalized boosts (4.13),

�0
v ! �0

w � eiq�x�0
v: (4.19)

Noting that e�iq�xðiD� þMw�Þeiq�x ¼ iD� þMv�, in-
variant operators may thus be built from contractions of

polynomials of 
� and v� þ iD�=M, between ��0
v and�

0
v.

For example in the spin-1=2 case,

�� 0
vði 6DþM 6vÞ�0

v; ��0
v�

0
v;

��0
vi�

�	½D�;D	��0
v;

(4.20)

are invariant.

D. Solution for �ðv; iDÞ
The key element of the invariant operator construction

is a solution of the invariance equation (4.17). Without
loss of generality, let us set Nðv; iDÞ ¼ 1; the solution
for general N can then be obtained by �ðv; iDÞ !
�ðv; iDÞNðv; iDÞ�1. The method presented can be easily
extended to arbitrary spin, but for illustration we focus on
the one-heavy particle sector of a spin-1=2 theory.

In order to obtain a solution in closed form for the free
theory, and to make contact with previous work, it is
convenient to take the free theory limit for W1

2
ðB; i@þ

MvÞ of the form [11]

W1
2
ðB; i@þMvÞ¼B1

2
�1

2
ðV̂ free;vþq=MÞ�1�1

2
ðV̂ free;vÞ

¼ 1þ 1

4M2
��	

? q�@	

�
1� iv �@

M

þ 1

M2

�
ðiv �@Þ2�1

4
ði@?Þ2

��

þOð1=M5Þ; (4.21)

where �1
2
ðu; vÞwas defined in (3.3),V�

free � v� þ i@�=M

and V̂
�
free � V�

free=jV freej. We have also used that 6vc v ¼
c v. Inspection of (4.17) shows that an all-orders solution
can be written for � in the noninteracting theory,

�ðv;i@Þ¼�1
2
ðV̂ free;vÞ

¼ 1þ i6@?
2M

þ 1

M2

�
�1

8
ði@?Þ2�1

2
i6@?iv �@

�

þ 1

M3

�
1

4
ði@?Þ2iv �@þ i6@?

2

�
�3

8
ði@?Þ2

þðiv �@Þ2
��

þOð1=M4Þ: (4.22)

In the interacting theory it turns out that one cannot simply
replace @ by D in (4.22) to obtain a solution for �ðv; iDÞ.
It is instead necessary to add specific field strength-
dependent terms, first to W [as in (4.23) and (B2a) below]
in order to satisfy consistency conditions, and then to � in
order to solve the invariance equation (4.17). The compu-
tations of Appendix B show that a solution for �ðv; iDÞ
will exist if we specify

W1
2
ðB; iDþMvÞ ¼ 1þ 1

4M2
�?

�	q
�D	

?

�
1� iv �D

M

�

þOð1=M4Þ; (4.23)

with (4.23) reducing to (4.21) at g ¼ 0. Let us proceed
through Oð1=M3Þ, writing

� ¼ 1þ 1

M
�ð1Þ þ 1

M2
�ð2Þ þ 1

M3
�ð3Þ þ . . . ; (4.24)

and deriving a solution to the invariance equation (4.17)
order by order in 1=M. In Appendix B we present a
systematic construction that extends the solution to arbi-
trary order.
Modulo terms that vanish when acting on c v with

6vc v ¼ c v, we find

�ð1Þ ¼ 1

2
i 6D?; (4.25a)

�ð2Þ ¼ � 1

8
ðiD?Þ2 � 1

2
i 6D?iv �Dþ gA��	G�	 þ gB
�v	G�	; (4.25b)

�ð3Þ ¼ 1

4
ðiD?Þ2iv �Dþ i 6D?

2

�
� 3

8
ðiD?Þ2 þ ðiv �DÞ2

�
� g

8
G�	v

�D	
? � g

16
��	

? G�	i 6D?; (4.25c)
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where we define ½iD�; iD	� � igG�	. Starting at order
1=M2 the solution is not unique. However, since we will
consider arbitrary factors of V� � v� þ iD�=M when
constructing invariant operators, we can set A ¼ B ¼ 0
by considering instead of �, the operator �0 given by

�ðv; iDÞ ¼ ð1� iA��	½V�;V 	� � iB
�V 	½V�;V 	�
þ . . .Þ�0ðv; iDÞ: (4.26)

Similarly, we have absorbed additional 1=M3 terms in
(4.25c). The remaining terms in (4.25) have free derivatives
D� acting to the right, and cannot be removed as in (4.26).

A complete basis of bilinears required through order
1=M3 is

L¼ ��v

�
MðV � 1Þ�aFg

��	G�	

4M

þ iaDg
fV�; ½MV 	;G

�	�g
16M2

�aW1g
½MV �; ½MV �;�

�	G�	��
16M3

þaA1g
2
G�	G

�	

16M3

þaA2g
2
V �G

��G��V �

16M3

�
�v: (4.27)

Performing field redefinitions to arrive at canonical form,
we recover the result (3.19) with constraints (3.22) and
(3.24). The computation at Oð1=M4Þ is presented in
Ref. [24]. We may perform a similar computation for
heavy vector particles (or particles of arbitrary spin),
and/or enforce constraints appropriate to self-conjugate
fields (cf. Appendix A).

The passage from (4.22) to (4.25) is not as simple as
previously envisaged [11,14], and careful attention must
be paid to the interplay of Lorentz and gauge symmetry.
The computations in Appendix B show that an arbitrary
covariantization of (4.21) does not solve the invariance
equation (4.17). The covariant little group element
WðB; iDþMvÞ must satisfy consistency conditions for a
solution to exist, and specific field strength-dependent
terms, such as those appearing in (4.25c), are necessary
in order that �ðv; iDÞ satisfy the resulting invariance
Eq. (4.17). These considerations have previously been
overlooked [11,14]. For example, a naive covariantization
of Eq. (4.22),

�naiveðv;iDÞ¼1þi 6D?
2M

þ 1

M2

�
�1

8
ðiD?Þ2�1

2
i 6D?iv�D

�

þ 1

M3

�
1

4
ðiD?Þ2iv�Dþi 6D?

2

�
�3

8
ðiD?Þ2

þðiv�DÞ2
��

þOð1=M4Þ (4.28)

is not a solution to the invariance equation.
The necessity for such additional field strength-

dependent terms can also be seen from the fact that the

right-hand side of (4.28) would imply a transforma-
tion c v ! c w ¼ �naiveðw; iDÞ�1eiq�x�naiveðv; iDÞc v that
takes c v outside of the assumed representation space, with
6vc v ¼ c v. In the heavy fermion Lagrangian, the effects
of these field strength-dependent terms appear first7 at
order Oð1=M4Þ, where omission of the final term in
(4.25c) would lead to incorrect 1=M4 Lagrangian coeffi-
cient relations [24].
Before closing this section, let us summarize the value of

the invariant operator method. Appendix B shows that we
can find a suitable covariantization ofWðB; i@þMvÞ that
allows solution of the invariance equation for �ðv; iDÞ to
any order in 1=M. Hence this method proves the existence
of a covariantized boost operator and a nonzero, Lorentz
invariant Lagrangian to arbitrary order. We may proceed in
either of two ways to construct invariant Lagrangians.
Firstly, we may proceed as in (4.27), where we construct
manifestly invariant interactions through some fixed order
in 1=M; to achieve canonical form we must then perform
field redefinitions. Alternatively, we may proceed as in
(3.19) (or its generalization to arbitrary v), armed with
the knowledge that a suitable boost generator as in (3.23)
can be reconstructed order by order.

V. EFFECTIVE FIELD THEORIES FOR
MASSLESS PARTICLES

Although our primary focus has been on the constraints
imposed by Lorentz invariance in heavy particle effective
field theories, it is interesting to consider the applications
of other Lorentz representations. Recall that for physical
states, representations of the Lorentz group fall into dis-
tinct classes, depending on the nature of p0 and p2. For
example, in our heavy particle applications we considered
the little group for p0 > 0 and p2 ¼ M2 > 0.
Consider now the case p0 > 0 and p2 ¼ 0. This applies

to the collinear sector of soft-collinear effective theory
[25–29]. The little group in this case is isomorphic to
Eð2Þ, the Euclidean group of rotations and translations
in two dimensions. In analogy to the construction in
Sec. III A, let us consider the little group defined by the
invariant vector En, where n2 ¼ 0 and E is a reference
energy. In order to define the induced representation, let us
also introduce a timelike unit vector vwith v2 ¼ 1.8 Given
n and v we may define an additional lightlike vector,

�n� � 1

n � v
�
2v� � n�

n � v
�
; (5.1)

7When building invariant fermion bilinears, the leading terms
involve iv �D multiplying 1=M corrections appearing in
�ðv; iDÞ. Since such terms are eliminated in going to canonical
form, nontrivial effects of the 1=M3 corrections to �ðv; iDÞ
appear first at order 1=M4.

8In applications to heavy quark processes thevectorv is naturally
identified with the reference vector for the heavy quark field.
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satisfying �n2 ¼ 0 and n � �n ¼ 2. In this section (only) we
define perpendicular components p? with respect to n and
�n. We also define vectors pþ and p� along the n and �n
directions, respectively,

p� � �n �p
2

n�þn �p
2

�n�þp
�
? �p

�
þþp��þp

�
?: (5.2)

With this notation let us define a standard Lorentz trans-
formation taking En to p as

LðpÞ ¼ L �SðpÞLBðpÞ; (5.3)

where LB is a boost that takes En� to p�
þ and L �S is a

parabolic Lorentz transformation taking p�
þ to p�. They

are given by

LBðpÞ�	 ¼ g�	 þ 1

2

�
�n � p
2E

� 1

�
n� �n	

þ 1

2

�
2E

�n � p� 1

�
�n�n	; (5.4a)

L �SðpÞ�	 ¼ g�	 þ 1

�n � p ðp�
? �n	 � �n�p?	Þ

� p2
?

2ð �n � pÞ2 �n� �n	: (5.4b)

The choice (5.3) for LðpÞ is convenient due to the resulting
simplicity of Wð�; pÞ. The space of physical states gen-
erated by U½LðpÞ�jEn�;�i is sufficient to describe parti-
cles of a given helicity with nonvanishing �n � p.

It is straightforward to compute the little group element
corresponding to arbitrary Lorentz transformations accord-
ing to (3.1). The six independent Lorentz transformations
can be grouped into four classes. First, there is the one-
parameter group of rotations R that keep n and �n fixed.
Second, there is the two-parameter group of parabolic
Lorentz transformations S that keep n fixed but change
�n. These two classes form the little group of n. Third, there
is the one-parameter group of boosts B in the n direction
that change n and �n. Fourth, there is the two-parameter

group of parabolic transformations �S that keep �n fixed but
change n. In infinitesimal form these transformations are
given by

Rð�Þ�	 ¼ g�	 þ ���	��n
� �n� þOð�2Þ

½n ! n; �n ! �n�; (5.5a)

Sð�Þ�	 ¼ g�	 þ ��n	 � n��	

2
þOð�2Þ

½n ! n; �n ! �nþ ��; (5.5b)

Bð�Þ�	 ¼ g�	 þ �
n� �n	 � �n�n	

2
þOð�2Þ

½n ! ð1þ �Þn; �n ! ð1� �Þ �n�; (5.5c)

�Sð�Þ�	 ¼ g�	 þ �� �n	 � �n��	

2
þOð�2Þ

½n ! nþ �; �n ! �n�; (5.5d)

where �� ¼ �
�
? and �� ¼ �

�
?. Note that physical states

must transform trivially under S to avoid continuous in-
ternal degrees of freedom and that little group elements can
be parametrized as (e.g., see Ref. [20])

Wð�; pÞ ¼ S½~�ð�; pÞ�R½~�ð�; pÞ�: (5.6)

We find that the mapping (3.1) with LðpÞ chosen as in
Eq. (5.3) takes the little group rotation Rð�Þ into itself. Of
the remaining three cases only the little group elements
Sð�Þ have a nontrivial mapping

~�½Rð�Þ; p� ¼ �; ~�½Rð�Þ; p�� ¼ 0; (5.7a)

~�½Sð�Þ; p� ¼ � 1

2ð �n � pÞ ��	���
�p	

?n
� �n�;

~�½Sð�Þ; p�� ¼ E

�n � p��; (5.7b)

~�½Bð�Þ; p� ¼ 0; ~�½Bð�Þ; p�� ¼ 0; (5.7c)

~�½ �Sð�Þ; p� ¼ 0; ~�½ �Sð�Þ; p�� ¼ 0: (5.7d)

The result (5.6) with little group parameters (5.7) defines
the transformation law for particle states. As in the timelike
case, we postulate the field transformation law,

�aðxÞ ! D½Wð�; iD�Þ�ab�bð��1xÞ; (5.8)

where nowDðWÞ refers to a representation of the Eð2Þ little
group.
We focus on the representation appropriate to a massless

spin-1=2 particle,

D½Sð~�ÞRð~�Þ� ¼ exp½i~�=2�; (5.9)

and embed this representation into a Dirac spinor repre-
sentation c n of the Lorentz group. A trivial action of S on
this field is equivalent to the constraint

6nc n ¼ 0: (5.10)

The transformation law,

c nðxÞ !
�
1þ i

4
!ð�; iDÞ�	�

�	

�
c nð��1xÞ; (5.11)

with !�	ð�; iDÞ obtained from (5.7) and c n satisfying

(5.10), reduces to (5.9).
Similar to the timelike case, we may investigate general

conditions under which (5.11) leads to a Lorentz invariant
theory. We note that for terms in the fermion Lagrangian of
the form

�c nf� � � n� . . . �n� � � �D� � � �
� � � �gc n; (5.12)

we may recast invariance under (5.11) as a collection of
reparametrization transformations acting on n and �n
(cf. Sec. IVB). In particular, invariance under rotations
Rð�Þ is ensured by writing a naively covariant Lagrangian
in terms of the constrained field c n, as in (5.12).

Transformations �Sð�Þ, Sð�Þ and Bð�Þ translate to the
type-I, type-II and type-III transformations considered in
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Ref. [30]. A more detailed discussion of the lightlike case,
involving a rigorous discussion of Lorentz invariance, and
the inclusion of multiple momentum modes and multiple
gauge symmetries, is beyond the scope of the present paper
and is left to future work.

VI. SUMMARY

The usual procedure of implementing Lorentz invari-
ance via finite dimensional representations of the Lorentz
group is insufficient for application to heavy particle ef-
fective theories. We have adapted the formalism of induced
representations for application to heavy particle field trans-
formation laws. Returning to the questions posed in the
Introduction, we see that the parameter v enters as an
arbitrary reference vector in the effective theory construc-
tion. Rules identifiable with reparametrization invariance
(4.13) are obtained by a rewriting of the transformation law
for generalized boosts, and the class of reparametrization
transformations consistent with Lorentz and gauge invari-
ance is identified through a systematic solution of the
invariance equation (4.17). While an explicit construction
such as in (1.1) must map into this framework, it is not
necessary to refer to a specific underlying ultraviolet com-
pletion, or to explicitly integrate out degrees of freedom
when deriving these transformation laws.

Let us compare our formalism to previous work. A naive
ansatz for implementing Lorentz invariance via reparamet-
rization invariance breaks down for �ðv; iDÞ starting at
order 1=M3, corresponding to new effects at order 1=M4

in the canonical Lagrangian. The transformation law de-
fined by Wð�; iDÞ is corrected at order 1=M4. These
subtleties were not treated in the classic work of Luke
and Manohar [11,14], and the ansatz proposed there would
lead to inconsistencies at the orders in 1=M specified
above. Brambilla et al. [17,18], who studied Lorentz in-
variance constraints in nonrelativistic QCD, recognized
that Wilson coefficient-dependent corrections to Wð�Þ
must be included when deriving an invariant Lagrangian
in canonical form. In Refs. [17,18] the constraints of
Lorentz invariance are derived (through order 1=M2 in
the one-heavy particle sector) at the level of canonically
quantized charges, a procedure that becomes increasingly
cumbersome at high orders in the 1=M expansion. In
Sec. III we have used general properties of commutators
of the S matrix with conserved charges to derive con-
straints at the Lagrangian level that implement Lorentz
invariance for heavy particle effective theories in canonical
form. In Sec. IV we have derived consistent reparametri-
zation transformations that allow a solution to the invari-
ance equation (4.17), and hence the construction of
manifestly invariant Lagrangians to arbitrary order.

We demonstrated the application of our formalism in the
case of NRQED (i.e., the parity and time-reversal symmet-
ric theory of a heavy spin-1=2 particle coupled to an
Abelian gauge field). At a practical level, the main results

for building heavy fermion Lagrangians are contained in
(3.23), or for the invariant operator method, in (4.24) and
(4.25). The NRQED Lagrangian is computed at Oð1=M4Þ
in Ref. [24].
We note that a choice must be made between a canonical

form of the Lagrangian with a somewhat complicated
boost generator versus a simpler form of the boost genera-
tor with a noncanonical Lagrangian. In practical computa-
tions, it is typically easier to choose the former approach.
We remark that a regularization scheme that breaks
Lorentz symmetry must be accompanied by counterterms
that reinstate the symmetry.9 Renormalization of the
Lagrangian in canonical form should be defined in such a
way that noncanonical terms are not generated.
The heavy particle limit considered here assumes

a single large mass scale. Interesting complications can
arise when this is not the case, e.g., in the phenomenology
of heavy baryons in low-energy processes involving
pions, � excitations and electroweak gauge interactions.
Numerically large coefficients appearing in the m=mN

expansion limit the usefulness of the heavy particle expan-
sion unless certain formally suppressed terms are re-
summed, introducing nontrivial power counting and
renormalization issues [31–36]. While it may be possible
to embed a given heavy particle theory into a larger struc-
ture, this does not lessen the importance of understanding
Lorentz invariance in the low-energy limit.10

The formalism presented here can be applied to straight-
forwardly construct heavy particle Lagrangians of arbitrary
spin. It can also be easily extended to include multiple
heavy particle fields, and other relativistic degrees of free-
dom beyond the Abelian gauge fields considered here. As
described in Sec. V the extension to effective field theories
for massless particles involves induced representations for
the little group isomorphic to Eð2Þ, the Euclidean trans-
formations in two dimensions. A rigorous analysis along
these lines may help clarify several outstanding issues in
soft-collinear effective theory, ranging from the appearance
of new momentum modes, to the interplay of ultraviolet
regulators and factorization [37–39]. It may be interesting
to investigate the application of the little group correspond-
ing to a spacelike reference vector, s2 ¼ �1 (cf. our v2 ¼ 1
and n2 ¼ 0 cases), and to explore embeddings into non-
linear realizations with fictitious Goldstone fields [40].
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APPENDIX A: EXTENSION TO ARBITRARY SPIN
AND SELF-CONJUGATE FIELDS

Although the explicit results in this paper are focused on
spin-1=2 fields transforming under an Abelian (i.e., com-
plex) gauge group, the formalism extends straightfor-
wardly to fields of arbitrary spin or to self-conjugate
fields. In Sec. A 1 we describe the formalism for embed-
ding arbitrary spin representations within products of Dirac
spinor and Lorentz vector representations of the Lorentz
group. For a related discussion see e.g., Ref. [41].
Section A 2 describes the constraints imposed on the
effective theory deriving from self-conjugate fields. For a
related discussion see e.g., Ref. [8].

1. Higher spin representations

Irreducible higher spin representations can be built using
products of the Dirac spinor and vector representations

c v ! �1
2
c v; Z�

v ! ��
�Z

�
v ; (A1)

where � ¼ DðWÞ is a little group element as in Sec. III A,
i.e., �v ¼ v. The corresponding generators for these two
representations are given by

J ��
1
2

¼ 1

2
��� ¼ i

4
½
�; 
��;

ðJ ��Þ�	 ¼ iðg��g
�
	 � g��g

�
	Þ:

(A2)

We enforce a maximal set of constraints to isolate the
appropriate irreducible representation.

Integer spin: For integer spin s ¼ n, consider the totally
symmetric and traceless tensor Z

�1...�n
v , which has ðnþ 1Þ2

degrees of freedom. Imposing

v�1
Z
�1...�n
v ¼ 0; (A3)

yields n2 additional constraints, leaving us with 2nþ 1 ¼
2sþ 1 degrees of freedom as desired. Under Lorentz trans-
formations this field transforms as

Z
�1...�n
v ! ��1

	1 . . . �
�n

	n
Z	1...	n
v : (A4)

Using �Tg� ¼ g and �v ¼ v, it is easy to see that
symmetry, tracelessness and the constraint (A3) are pre-
served by this transformation.

Half-integer spin: For half-integer spin s ¼ nþ 1=2,
consider the spinor tensor c �1;�2;...;�n

v , which is totally
symmetric in the indices �1 . . .�n and therefore has
2ðnþ 1Þðnþ 2Þðnþ 3Þ=3 degrees of freedom. We impose
the constraints11

6vc �1...�n
v ¼ c �1...�n

v ; 
�1
c �1...�n

v ¼ 0: (A5)

The second constraint yields nðnþ 1Þðnþ 5Þ=3 equations,
while the first projects a four-component spinor onto a
two-dimensional subspace, reducing the degrees of
freedom by 1=2. In total 2ðnþ 1Þ ¼ 2sþ 1 degrees
of freedom remain. Under Lorentz transformations this
field transforms as

c �1...�n
v ! ��1

	1
. . . ��n

	n
�1

2
c 	1...	n

v : (A6)

This is symmetric in �1 . . .�n. That Eqs. (A5) are
preserved follows immediately from �v ¼ v and
��1

1
2


��1
2
¼ ��

	

	.

2. Self-conjugate fields

The self-conjugacy of SUð2Þ implies that for any
field �ðxÞ transforming as in (2.3) or (3.8) with the plus
sign, the field

�cðxÞ ¼ S��ðxÞ; (A7)

transforms as in (2.3) or (3.8) with the minus sign. Here S
is the ð2sþ 1Þ � ð2sþ 1Þ similarity transformation for
the spin-s representation of SUð2Þ, such that ð��iÞ� ¼
S�iS�1. In covariant language, this translates to the simul-
taneous transformations

�vðxÞ ! �c
vðxÞ; v� ! �v�: (A8)

In terms of the irreducible representations constructed in
Sec. A 1, the field transformation in (A8) reads12

Z
�1...�s
v ! ðZc

vÞ�1...�s ¼ ðZ�1...�s
v Þ�;

c �1...�s
v ! ðc c

vÞ�1...�s ¼ Cðc �1...�s
v Þ�; (A9)

for integer spin and half-integer spin fields, respectively.
The charge conjugation matrix C acts on the spinor index of
c v. It is symmetric and unitary, and obeys Cy
�C ¼
�
��. The parity (A8) arises if the effective theory is
describing a full theory of a self-conjugate field (neces-
sarily transforming in a real representation of a gauge
group). For example, the effective theory field for a real
scalar ’ ¼ ’� can be obtained via

’ðxÞ ¼ e�iMv�x’vðxÞ=
ffiffiffiffiffi
M

p ¼ eiMv�x’�
vðxÞ=

ffiffiffiffiffi
M

p ¼ ’�ðxÞ:
(A10)

Similarly, the effective theory for a Majorana fermion
represented by a Dirac spinor cM ¼ c c

M can be obtained
via

11Note that the second constraint implies g�	c
�	�3...�n
v ¼ 0

and, furthermore, is equivalent to imposing v�1
c �1...�n

v ¼ 0 and
�	���1

v	���c �1...�n
v ¼ 0. 12We here choose a basis such that S ¼ 1 for vectors.
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cM ¼ ffiffiffi
2

p
e�iMv�xðhv þHvÞ

¼ ffiffiffi
2

p
eiMv�xðhcv þHc

vÞ
¼ c c

M; (A11)

where 6vhv ¼ hv and 6vHv ¼ �Hv.
It follows from (A8) that the allowed operators

��vOðvÞ�v in the Lagrangian representing a self-conjugate
field can be chosen such that

O ðvÞ ¼ COð�vÞ�Cy: (A12)

Since we are often interested in constructing the
Lagrangian in canonical form, i.e., without higher iv �D
derivatives acting on�v, it is important to ask whether this
condition is preserved by the requisite field redefinitions.
By a similar reasoning to above, operators of the form
��v½iv �DXðvÞ þ XyðvÞiv �D��v appearing in the
Lagrangian must be such that XðvÞ ¼ CXð�vÞ�Cy.
Hence field redefinitions of the form �v!½1�XðvÞ��v

achieve canonical form of the Lagrangian while preserv-
ing (A12).

APPENDIX B: SOLUTION TO THE
INVARIANCE EQUATION

Section IVD describes the solution of the invariance
equation (4.17) for the function �ðv; iDÞ in the free theory.
The solution in the interacting theory is not simply ob-
tained from the free one by replacing @ with D. Here we
present a method of solution that is valid to any order in
1=M. Since we use �ðv; iDÞ to construct the invariant
Lagrangian, the existence of a solution for �ðv; iDÞ proves
that a nonzero Lagrangian exists at any order in 1=M. First,
we will construct the general solution in Sec. B 1 and then
explicitly apply this construction to the spin-1=2 theory up
to order 1=M3 in Sec. B 2.

1. Series solution for �

Recall Eq. (4.17) for � required to build explicitly
invariant operators,

�ðvþ q=M; iD� qÞB�1WðB; iDþMvÞ ¼ �ðv; iDÞ;
(B1)

where to first order in qwe haveB�1v ¼ vþ q=M. Let us
expand in orders of 1=M and define

X � B�1W ¼ 1þ q�X�

¼ 1þ q�
�
1

M
Xð1Þ
� þ 1

M2
Xð2Þ
� þ . . .

�
; (B2a)

� ¼ 1þ 1

M
�ð1Þ þ 1

M2
�ð2Þ þ . . . : (B2b)

We note that the variation in � arises from the variations in
v and in iD,

�� ¼ �ðvþ q=M; iD� qÞ � �ðv; iDÞ

¼ q�
�
� @

@iD� �þ 1

M

@

@v� �

�
: (B3)

Equating orders in 1=M, we find

@

@iD� �ðnÞ ¼ @

@v� �ðn�1Þ þ �ðn�1ÞXð1Þ
�

þ �ðn�2ÞXð2Þ
� þ . . .þ �ð0ÞXðnÞ

� � YðnÞ
� ; (B4)

where we define �ð0Þ ¼ 1. Note that Eq. (B4) is understood
to be contracted with q� so that pieces proportional to v�

should be dropped. We can solve this equation for �ðnÞ
obtaining

�ðnÞ ¼ Xn
m¼1

ð�1Þm�1

m!
iD�1

? iD�2

? . . . iD�m

?
@

@iD�1

� @

@iD�2
. . .

@

@iD�m�1
YðnÞ
�m

¼ iD
�
?Y

ðnÞ
� � 1

2!
iD

�
?iD

	
?

@

@iD� YðnÞ
	 þ . . . ; (B5)

provided that at each order, the YðnÞ derived from the

already determined �ð1Þ; . . . ;�ðn�1Þ satisfy13

@

@iD½	 Y
ðnÞ
�� ¼ 0; (B6)

where A½�B	� ¼ ðA�B	 � A	B�Þ=2 denotes antisymmet-

rization. Using the definition of YðnÞ we can show that this

imposes constraints on XðnÞ, for n � 2,

@

@iD½	 X
ðnÞ
�� ¼ � @

@v½� Xðn�1Þ
	� þ Xðn�1Þ

½� Xð1Þ
	� þ Xðn�2Þ

½� Xð2Þ
	�

þ . . .þ Xð1Þ
½�X

ðn�1Þ
	� � ZðnÞ

�	: (B7)

For Eq. (B7) to have a solution, a consistency condition on

ZðnÞ
�	 requires that14

0 ¼ v��
�	�� @

@iD� Z
ðnÞ
�	: (B8)

We can show by induction that Eq. (B7) can be solved at

each order. SinceXð1Þ is dimensionless, it cannot depend on

iD; hence Zð2Þ from (B7) is also independent of iD and
solves (B8). Now assume that we have constructed solu-

tions XðnÞ to Eq. (B7) for n ¼ 1; . . . ; N � 1 [necessarily
obeying the constraint (B8)]. Application of the Jacobi
identity shows that the constraint (B8) is then obeyed for
n ¼ N and a solution to Eq. (B7) can be found for n ¼ N.
Let us find a solution to Eq. (B7) that reduces to a given

Xfree for the noninteracting theory [e.g., Xfree ¼ B�1W

13This is the analog of ~r� ~E ¼ ~0 for the existence of a
solution � of ~r� ¼ ~E in electrostatics.
14This is the analog of ~r � ~B ¼ 0 for the existence of a solution
~A of ~r� ~A ¼ ~B in magnetostatics.
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from (4.21)]. First, note that the existence of the free case

solution given in (4.22) implies that the XðnÞ defined in the
free case from (4.21) must obey the constraint (B7). Let us

define naively covariantized quantities X̂ðnÞ ¼ XðnÞ
freej@!D,

with a definite ordering prescription, e.g., as in (4.28),

and define ẐðnÞ by

Ẑ ðnÞ
�	 � @

@iD½	 X̂
ðnÞ
�� : (B9)

A straightforward calculation then shows that (B7) is
solved by15

XðnÞ
� ¼ X̂ðnÞ

� þ 2
Xn�1

m¼1

ð�1Þm
ðmþ 1Þ! iD

	1

? � � � iD	m

?

� @

@iD	1
� � � @

@iD	m�1
ðZðnÞ

	m� � ẐðnÞ
	m�Þ: (B10)

In the free case we have ZðnÞ ¼ ẐðnÞ and XðnÞ reduces to the
free case solution. Having found a suitable XðnÞ satisfying
(B7) we may then proceed to build �ðnÞ satisfying (B4), and
hence � satisfying (4.17).

Note that ZðnÞ has mass dimension n� 2 so that n ¼ 4 is
the first order at which field strength-dependent terms can

cause ZðnÞ � ẐðnÞ. Correspondingly, our choice (B10) en-

sures that field strength-dependent corrections to XðnÞ �
X̂ðnÞ can first appear at order n ¼ 4. This can be explicitly
seen in the solution for the spin-1=2 theory in the next
section.

2. Explicit solution for � in the spin-1=2 theory

To illustrate, let us calculate � for the spin-1=2 theory.
Consider the free solution (4.21),

X�ðv; i@Þ ¼ 1

2M

?
� þ 1

4M2
�?

�	@
	

�
1� iv � @

M
þ 1

M2

�
�
ðiv � @Þ2 � 1

4
ði@?Þ2

�
þ . . .

�
; (B11)

and the arbitrary covariantization,

X̂�ðv; iDÞ ¼ 1

2M

?
� þ 1

4M2
�?

�	D
	

�
1� iv �D

M
þ 1

M2

�
�
ðiv �DÞ2 � 1

4
ðiD?Þ2

�
þ . . .

�
: (B12)

A corresponding solution for � in the free theory is dis-
played in (4.22). Now let us follow the construction of the
previous section order by order.

Order 1=M: First, we determine

Yð1Þ
� ¼ Xð1Þ

� ¼ X̂ð1Þ
� ¼ 
?

�

2
: (B13)

This function clearly satisfies Eq. (B6) so that we may
solve for

�ð1Þ ¼ 1

2
i 6D?: (B14)

Order 1=M2: Continuing to the next order, we evaluate

Zð2Þ
�	 ¼ � i

4
�?

�	 ¼ Ẑð2Þ
�	; (B15a)

Xð2Þ
� ¼ 1

4
�?

�	D
	 ¼ X̂ð2Þ

� ; (B15b)

Yð2Þ
� ¼ � 1

2

?
�iv �D� 1

4
iD?

�: (B15c)

Solving for �ð2Þ yields

�ð2Þ ¼ � 1

8
ðiD?Þ2 � 1

2
i 6D?iv �D: (B16)

Order 1=M3: At the next order, we find

Zð3Þ
�	 ¼ i

4
�?

�	iv �D ¼ Ẑð3Þ
�	; (B17a)

Xð3Þ
� ¼ � 1

4
�?

�	D
	iv �D ¼ X̂ð3Þ

� ; (B17b)

Yð3Þ
� ¼ 1

2

?
� ðiv �DÞ2 þ 3

8
iD?

�iv �D

þ 1

8
iv �DiD?

� � 1

2
i 6D?iD?

� � 1

16
ðiD?Þ2
?

�

þ 1

8
i 6D?�?

�	D
	: (B17c)

After some manipulations, the resulting �ð3Þ is

�ð3Þ ¼ 1

4
ðiD?Þ2iv �Dþ i 6D?

2

�
� 3

8
i 6D?ðiD?Þ2

þ ðiv �DÞ2
�
� g

8
v�G��D

�
? � g

16
�?

��G
��i 6D?

þ g

8

�
i
�

?�
��
? ½D�;G��� � v�½D�

?; G���

� ½D�
?; G

?
���
�

?

�
: (B18)

Order 1=M4: Continuing to higher order we find

Zð4Þ
�	 ¼ Ẑð4Þ

�	þ g

32
ð�iG?

�	þ�?
��G

?�
	 ��?

	�G
?�
� Þ; (B19a)

Xð4Þ
� ¼�?

�	D
	

�
1

4
ðiv �DÞ2� 1

16
ðiD?Þ2

�

þ g

32
iD	

?ð�iG?
�	þ�?

��G
?�
	 ��?

	�G
?�
� Þ: (B19b)

Note that Xð4Þ
� differs from the trial solution X̂ð4Þ

� . We may

continue in this manner to construct Yð4Þ
� and �ð4Þ.

15It may be verified from (B7) and (B10) that the resulting field
transformation law maintains the constraints on heavy particle
fields discussed in Appendix A.
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