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Two-body charmless hadronic B decays involving a light tensor meson in their final states are studied in
the perturbative QCD approach based on k; factorization. From our calculations, we find that the decay
branching ratios for the color-allowed, tree-dominated decays B — 61(2)77'+ and B — a, 7 are of orders
1075 and 1077, respectively, while other color-suppressed, tree-dominated decays have very small
branching ratios. In general, the branching ratios of most decays are in the range of 107> to 1078, which
are bigger by 1 or 2 orders of magnitude than those predictions obtained in the Isgur-Scora-Grinstein-Wise
II model and in the covariant light front approach, but consistent with recent experimental measurements
and QCD factorization calculations. Since decays with a tensor meson emitted from vacuum are
prohibited in naive factorization, the contributions of nonfactorizable and annihilation diagrams are very
important to these decays, which are calculable in our perturbative QCD approach. We also give
predictions for the direct CP asymmetries, some of which are large enough for the future experiments
to measure. Because we consider the mixing between f, and f%, the decay rates are enhanced significantly

for some decays involving f} mesons, even with a small mixing angle.
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L. INTRODUCTION

In the quark model, all kinds of mesons are classified
by their spin-parity quantum numbers, J”. For example,
JP = 0 denotes pseudoscalar mesons, and J* = 2" rep-
resents tensor mesons. The p-wave tensor mesons that we
study in this paper include isovector mesons, a,(1320);
isodoublet states, K5(1430); and two isosinglet mesons,
f2(1270), f4(1525) [1,2]. For these nine tensor mesons,
both the orbital angular momentum and the total spin of
their quarks are equal to 1. Because of the requirement of
the Bose statistics of the tensor meson, the light-cone
distribution amplitudes of tensor mesons are antisymmet-
ric under the interchange of momentum fractions of the
quark and antiquark in the flavor SU(3) limit [3,4].

Recently, several experimental measurements about
charmless B decay modes involving a light tensor meson
(T) in their final states have been obtained [5—18]. These
decays have been studied in the naive factorization
approach [19-27], with which it can be easily shown that
(O j* | T)=0, where j* is the (V = A) or (§ = P) cur-
rent [3,4,22,23]. The factorizable amplitude with a tensor
meson emitted vanishes, so these decays are prohibited
in the naive factorization approach. The branching rations
predicted in the naive factorization approach are too small
compared with the experimental results, which implies
the importance of nonfactorizable and annihilation-type
contributions. The recent QCD factorization (QCDF)
approach analysis [4] proved this. It is worth mentioning
that the perturbative QCD (PQCD) approach [28,29] is
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almost the only method for calculating these kinds of
diagrams without fitting the experiments.

In this work, we shall study charmless B, — PT
decays in the perturbative QCD approach based on the
kr factorization. Due to the heavy mass of the B meson,
the two light mesons decayed from it are moving very fast
in the rest frame of the B meson. The light quarks in the
final-state mesons are all collinear, while the light spectator
quark from the B meson is soft. Therefore, there must be a
hard gluon to kick the light spectator quark in the B meson
to form a fast-moving light meson. In this case, the hard
process dominates the decay amplitude, which makes
it perturbatively calculable. By keeping the transverse
momentum of quarks, the endpoint singularity in the col-
linear factorization can be eliminated. A double logarithm
appears in the QCD radiative corrections due to the addi-
tional energy scale introduced by the transverse momen-
tum. By using the renormalization group equation, the
double logarithm can be resummed to give the Sudakov
factor, which effectively suppresses the endpoint contribu-
tion of the distribution amplitude of mesons in the small
momentum region to make the perturbative calculation
reliable. The annihilation diagrams can also be perturba-
tively calculated in the PQCD approach, which provides
the dominant strong phase in B decays for the direct CP
asymmetry [30]. Phenomenologically, the PQCD approach
has successfully predicted the direct CP asymmetry in
hadronic B decays [30] and the branching ratios of pure
annihilation-type B decays [31].

This paper is organized as follows: In Sec. II, we present
the formalism and wave functions of the B meson and
the final-state mesons. Then, we perform the perturbative
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calculations for considered decay channels with the PQCD
approach in Sec. III. The numerical results and phenome-
nological analysis are given in Sec. I'V. Section V contains
the main conclusions and a short summary. Finally,
Appendix A contains input parameters and distribution
amplitudes used in this paper, and Appendix B gives
various functions that enter the factorization formulas in
the PQCD approach.

II. FORMALISM AND WAVE FUNCTIONS

The related weak effective Hamiltonian H. [32] for
charmless b — d(s) transitions can be written as

Gr | < \
H = Tg {Z Ci()Vy,Vup Of (1)
i=1

10
~ Vi Vip Z C,,‘(M)Oj(,U«)}, (1)

j=3

where V,,;,, V.p, Vi, and V,p are CKM matrix elements; D
denotes the light down quark d or s; and Cy;(u) are
Wilson coefficients at the renormalization scale pu.
O;(j(u) are the well-known effective tree (penguin) opera-
tors [32].

The nonleptonic B meson decays involve three energy
scales, including the electroweak scale My, the b-quark

mass scale Mg, and the factorization scale \//_\M B, Where

A = Mgz — m;,. When the energy scale is higher than the
W-boson mass My, the physics invoked is the electroweak
interaction, which can be calculated perturbatively. The
physics from the My, scale to the My scale is described
by the Wilson coefficients of effective four-quark opera-
tors, which is the resummation of the leading logarithm by
renormalization equations. The physics between the Mp
scale and the factorization scale is calculated by the hard
part calculation in the PQCD approach. The physics below
the factorization scale is described by the hadronic wave
functions of mesons, which are nonperturbative but uni-
versal for all decay processes.

In the PQCD approach, the decay amplitude can be
factorized into the convolution of the Wilson coefficients,
the hard scattering kernel, and the light-cone wave func-
tions of mesons characterized by the respective scales.
Then, for B — M, M5 decays, the decay amplitude is con-
ceptually written as the convolution

ﬂ"“/dxldXZdX3bldblbzdb2b3db3Tr[C(t)q)B(Xl,bl)q)Mz

X (x2, b2) @y, (x5, b3)H (x;, by, 1) S, (x;) e 5V, (2)

where x; are the longitudinal momentum fractions of
valence quarks, b; are the conjugate space coordinates
of the transverse momenta k;r of the light quarks, and ¢ is
the largest scale in the function H(x;, b;, t). By using the
renormalization group equations, the large logarithms
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In(my, /1) are included in the Wilson coefficients C(z). By
the threshold resummation, the large double logarithms
(In’x;) are summed to give S,(x;), which smears the end-
point singularities on x; [33]. The last term, e 5@, is the
Sudakov factor, which suppresses the soft dynamics effec-
tively [34]. Thus, it makes the perturbative calculation of
the hard part H applicable at an intermediate scale, i.e., the
mp scale.

We will work in the B-meson rest frame and employ the
light-cone coordinates for momentum variables. So the
B-meson momentum is chosen as P, = m—\/%(l, 1,0;). For

the nonleptonic charmless B — M,M; decays, we assume
that the M,(M5) meson moves in the plus(minus) z direc-
tion carrying the momentum P,(P;). Then the momenta
are given by
_ s ) — Mg
P,==E(1—-12730p) py=-2
2 5 ( 3 I T) 3 \/5

NG

(r3, 1 =13, 0p),

3)

where r, = mm—"lz and ry = % The (light) quark momenta

in B, M,, and M5 mesons are defined as k;, k,, and k;,
respectively. We choose

ky = (X1P1+’ 0, le), ky = (x2P2+, 0, sz),

_ “4)
k3 = (0, X3P3 , k3T)'

For a tensor meson, the polarization tensor €, (A) with
helicity A can be constructed via the polarization vectors of
a vector meson [3,4]. They are given by

e*’(£2) = e(£1)*e(x1)?,

err(x1) = \/%[e(il)"e(O)” + e(0)*e(x1)"],

e*r(0) = \/%[6(4‘1)”‘6(—1)” + e(—1)*e(+1)"]

+ ‘/26(0)“ €(0)”. (5)

With the tensor meson moving in the plus direction of the z
axis, the polarization vectors of the vector meson are
chosen as

1

\/EmT

1
e*(+1) =—=(0,0,1, *i),

2

where k, denotes the energy, and k; is the magnitude of
the tensor meson momentum in the B-meson rest frame.
The polarization tensor satisfies the relations [3,4]

e*(0) =

(ko + k3, ko - k3, O, 0),
(6)
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€u(A) =0,
— em* (AP, =0,

err (1) = (),
e*”(MN)P,,

(7
In the following calculation, we define a new polariza-

tion vector e7 for the considered tensor meson for conve-
nience [2]:

er(d) = —
B

€., (V)P 8)

which satisfies

€(0) - Pge, (*1)

frﬂ(iz) = O, \/-Zm
B

ery(£1) =

- ©)
. V2€(0) - Pye(0)
é_T;,L( ) mpg .
One can find that the new vector €; is similar to the
polarization vector € of a vector meson, regardless of the
related constants [2].

In the PQCD approach, we should choose the proper
wave functions for the B meson and light mesons to
calculate the decay amplitude. Because the B meson is a
pseudoscalar heavy meson, the two-structure (7, ys) and
5 components remain as leading contributions [2]. Thus,
the B-meson wave function ®p is written as

b, — kw  mp)ysdp)] (10)

For the distribution amplitude, we can choose

l(me)2 _ w3b?
2 wp 2 ’

(1n

dp(x, b) = Npx*(1 — x)? exp|:—

where Ny is the normalization constant.
For the light pseudoscalar meson (P), the wave function
is generally defined as

Pp(x) = \/LEYS{F(M’(X) +mg p(x) +mg (Y — D p(0)},
(12)

where (;’)AP T and m? are the distribution amplitudes and
chiral scale parameter of the pseudoscalar mesons, respec-
tively. The variable x denotes the momentum fraction
carried by the quark in the meson, and n = (1,0, 0) and
v = (0, 1, 0) are dimensionless lightlike unit vectors point-
ing in the plus and minus directions, respectively.

€, (V)" (A))* = 8.
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The wave functions for a generic tensor meson are
defined by [2]

1 €.
Pk = %[mwé )+ €0, PO+ S 10|
D7 \/—[mré*lst(X) +£5 PHL(x)

+ mTlE,quo"}’S ’yM e:lj_ npvo(bt;(x)]. (13)

Here n is the moving direction of the tensor meson, and v is
the opposite direction. We adopt the convention €13 = 1.

P-v
tensor. The distribution amplitudes can be given by [2—4]

€
The vector €, = &~

d Y)
’ d
i) = Wg(ﬁ(x), o) = 5 m T80,
(14)

The asymptotic twist-2 distribution amplitude is given by
&L (x) = 30x(1 — x)(2x — 1). (15)

The twist-3 distribution amplitudes are also asymptotic,
and the forms are chosen as [2—4]

MW = 2 2x = D= 6x + 622,
R (x) = 15x(1 = x)(2x — 1),

g (x) = 20x(1 — x)(2x — 1),
g(x) = 50x — 1),

(16)

III. PERTURBATIVE CALCULATION

In this section, we will calculate the hard part H(z),
which includes the effective four-quark operators and
the necessary hard gluon connecting the four quark-
operator with the spectator quark [35]. There are eight
types of diagrams contributing to the B — PT decays,
shown in Fig. 1. From the first two diagrams, Figs. 1(a)
and 1(b), by perturbative QCD calculations, we gain the
decay amplitudes for factorizable emission contribution.
For (V — A)(V — A) current, the amplitude is written as
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FIG. 1. Diagrams contributing to the B — PT decays, with a pseudoscalar meson emitted.

2 00
ALk = —8\[§wcppr§ [0 dxdaxs fo bydbybydbs by, b{br () s + 1) — (3 (xs)
+ 1 (x3))rr(2x3 = D)]hep(x1, X3, b1, b3)E f(1,) + [2r7 3 (x3) Jhe (x5, X1, b3, 1) E 4 (1))}, (17)

where rp = ’”T, Cr = 3, and fp is the decay constant of the pseudoscalar meson. The functions A, f,;, and E,; can be
found in Appendlx B. From Eq. (17), we can obtain the (T|V — A|B) transition form factor in the PQCD approach.

The operators Os, Og, O7, and Og have the structure (V — A)(V + A). In some decay modes, some of these operators
will contribute to the decay amplitude. Because only the axial part of (V + A) current will contribute to the pseudoscalar
meson production, we have

AR = AL (18)

In some cases, in order to get the right color structure, we must do a Fierz transformation for these operators. So we obtain
(S — P)(S + P) operators from (V — A)(V + A) ones. The decay amplitude is

2 1 00
A% - 16\[§chpwm§ [ daxidxs [ bidbibsdb - iy b)br ) + (i) +2)
— @7 (x3)x3)Jroh, p(x1, X3, b1, D3)E, 4 (1,) + 217193 (x3) Jh (X3, X1, b3, by E £ (25}, (19)
where ry = m{ /mgp.
For the nonfactorizable diagrams in Figs. 1(c) and 1(d), the amplitudes involve all three wave functions. The integration

of b; can be performed through the & function 6(b, — b3), leaving only the integration of b, and b,. For the
(V—=A)V —A), (V—-A)V + A), and (S — P)(S + P)-type operators, the amplitudes are
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MSZL‘ :¥CF7T””% fol dx;dx,dx3 fooobldblbzdbzq’)g(x],b1)¢§‘3(x2){[¢T(x3)(x2 -1+ (¢§(x3) - ¢IT(X3))7”TX3]

'henf(xp 1 —x3,x3,by, bZ)Eenf(tc) +[r(x3)(xy + x3) — (¢A}(x3) + ¢’T(x3))rTx3] : henf(xlyx2’x3! by, bz)Eenf(fd)},
(20)

32 1 0
fM%? = _?Cﬂ”om%/o dxldxzdx3[0 bydb bydb,y ¢ p(x,, b]){[¢£(x2)(¢7(x3)(x2 -1+ ’”T(d’tr(xs)(_xz + a3+ 1)

+ ¢ () (xy + x3 = D)) + dp(dpr(xa — 1) + rp(f(x3)(xn — x5 = 1) = dF(x3)(xy + x3 — 1)))]
“henp(xy, 1= X3, X3, by, Do) E ey f(2) + [0 (x2) (@7 (x3)xs + rp(dh(x3)(x3 — x3) + ¢3(x3)(x + x3)))

+ Pp(rr(d3(x3)(x3 — x2) + Ph(x3)(xy + x3)) = Pr(x3)x2)] * Bopp(x1, X2, X3, b1, D) E i p(2)}, (21)
MSf = =5 Commiy [ andvadss [ bidbibrdbry(a, b1l =53 = D+ (B1(0) + B
“henp(x1, 1= xo, x3, by, DY) E,, p(t) + [pr(x3)xy + (7 — dP)rrxs] - heyp(x1, X0, X3, by, b)E oy, f(2,)}. (22)

Figures 1(e) and 1(f) give factorizable annihilation diagrams; the three kinds of decay amplitudes for these two diagrams
are

‘Alt;% = S‘ECFfBﬂ'm% jol dxydx; j:o bzdb2b3db3{[2¢>,€(xz)rTr0(¢sT(x3)(x3 —2)— ¢7(x3)x3) — ?,(xz)¢T(x3)(x3 - 1]

“hap(xp, 1= x3,b9,b3)E4(1,) + [205(x3) rrro(d 5 (x2) (0 — 1) + 5 (x2) (x5 + 1)) — d5(x2) pr(33)x, ]
“hap(1—=x3,%5, b3, D7) Ef (1)}, (23)

Alf =~ Al @

ASp= lé\Echme;; [ dvadxs [ badbsbsdb 265 0) x5 )+ e — 1]
’ haf(x2r 1 —x3,b, b3)Eaf(fe) —[xarg ¢T(x3)(¢;(x2) - ¢>§(xz)) + 2¢§(X2)¢ST(X3)VT] : haf(l —X3,%2, b3, bz)Eaf(ff)}-
(25)

For the nonfactorizable annihilation diagrams in Figs. 1(g) and 1(h) all three wave functions are involved in the
amplitudes. The integration of b5 can be performed by the & function 6(b, — b3). The expressions of contributions for
these two diagrams are

32 1 0
Mg == Commy [ dridadrs [ bidbibadby by, bOHL=rrr( S (@ (es)xr = 1+23) = G (x3)x 1= x3)

+ dp)(D5(3)(1 — x5 — x3) + P (x3) (% — X3+ 3))) + Ph(x2) Dr(x3)x2] - A1 (X1, X2, X3, by, by) E gy (1)
+ [rrro(@ p(xa) (5 (x3)(xa — x3 + 1) + d7(x3)(x2 + x5 — 1)) = P p(x2) (4 (x3)(x2 — x3 + 1) + ¢ (x3) (x, + 23 — 1))

+ 5 (x2) pr(x3)(x3 = DAy o (X1, X0, X3, b1, 2) E gy (24)}, (26)
g _ 32 4 ! * A s ‘
Mgt = ?CFW’"B/; dxldx2dx3j;) bydb,bydb, ¢ g(xy, bi{[rr dp(x2)(d7(x3) — d7(x3))(x3 + 1)
= rodr(3) (5 (x0) + Pp(x2)) * (r = 2)Jhgp1 (X1, X2, X3, by, D) Egyp(t,) + [rodr(x3)x2(p 5 (x)
+ d’;(xz)) - ”T‘l”fn(h)(‘f’%(&) - ¢tr(x3))(x3 -] hanf2(x1: X, X3, by, bZ)Eanf(th)}’ (27)
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FIG. 2. Diagrams contributing to the B — PT decays, with a tensor meson emitted.

32

1 00
M% :7CF7Tm%-/(; dxldxzdxsfo bydb,bydbyp(x,, bl){[_rrroﬁbg(xz)((ﬁ‘%(&)(xz -1 +x3) + ¢’T(x3)(x2 -1 —x3))

3

+ rorrd p(02) (5 (x3)(xa — x3 4 3) + 4 (x3)(xy + x5 — 1) + 3 (x2) dr(x3) (x5 — DAy 1 (X1, X2, %3, b1, b2) E gy 1(2,)
+ [ rorr () (@3 (x3) (02 + 1= x3) + 1 (x3)(1 — x5 — x3)) — rorr b p(x)(D7(x3)(—x2 + x5 — 1)
+ 5(x3)(xa + x5 = 1)) + dP(x2) D7 (x3)x0 g 2 (X1, X2, X3, b1, ) E gy (1)} (28)

If we exchange the pseudoscalar meson and the tensor
meson in Fig. 1, the result will be different. Because a
tensor meson cannot be produced through (V = A) or
tensor current, the factorizable emission diagrams do not
contribute to the amplitude of B decays with a tensor
meson emitted [3,4]. Therefore, there are only six diagrams
shown in Fig. 2. The individual decay amplitudes for these
diagrams can be easily deduced from Egs. (20)—(28) by the
replacement of the wave functions of the pseudoscalar and
the tensor meson:

$p(x) = —dr(x), bp(x) = 3 (x),

p(x) = dr(x),  pr(x) = — (), 29)
7)) = —dp(x), 7)) = —dpx),
rr = ro, ro— rr.

In addition, we must add a minus sign to M5F after apply-
ing the above replacement.

For the 39 B — PT decay channels, not all the effective
operators contribute to each decay mode. We list the
number of effective operators contributing to the individual
decay channels in Appendix B for reference.

IV. NUMERICAL RESULTS AND DISCUSSIONS

For the numerical analysis, we need various input pa-
rameters, such as decay constants, CKM elements, and the
wave functions, which are given in Appendix A. The
CP-averaged branching ratios for those B — PT decays
with AS = 1, together with the Isgur-Scora-Grinstein-Wise
II (ISGW2) model [24] and the QCDF results [4] are shown
in Table I. The experimental data are taken from
Refs. [1,36]. Similarly, the branching ratios of B — PT
decays with AS = 0 calculated in the PQCD approach
are shown in Table II. For illustration, we classify these
decays by their dominant topologies, indicated through the
symbols T (color-allowed tree), C (color-suppressed tree),
P (penguin emission), and PA (penguin annihilation).
Although we include also the W annihilation and W ex-
change diagram contributions, none of these channels has a
dominant contribution from these two topologies. For the
theoretical uncertainties in our calculation, we estimate
three kinds of error: The first set of errors are caused by
the uncertainties of the decay constants of tensor mesons.
The second set of errors are from the decay constant
f5 = (0.21 = 0.02) GeV of the B meson and the shape
parameter wg = (0.5 = 0.05) GeV in the B-meson wave
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TABLE 1.
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The PQCD predictions of CP-averaged branching ratios (in units of 107%) for B — PT decays with AS = 1, together with

the Isgur-Scora-Grinstein-Wise II (ISGW2) model [24] and QCDF results [4]. The experimental data are from Refs. [1,36].

Decay modes Class This work ISGW2 [24] QCDF [4] Expt.
B* — K3'm* PA 0.9503703703 31783 5.6%13
B* — K3t PA 0.4205 01501 0.090 2.2%4

BT — adK* T, PA 21707406408 0.31 49784 <45
B* — ajK° PA 310370 0.011 8.4114!

Bt — f,K" T, PA, P 11.8737%32%39 0.34 3.8178 1067035
B — fIK* P, PA 38104705 00 0.004 4.077¢ <717
Bt - KTy PA, P 0.8%93703703 0.031 6.814%3 9.1 +3.0
BT — Kyt PA, P 12.7437+43740 1.41 1214297 28.0733
B — Ki*ar PA 1.0£93+02+0.3 3.3%83 <6.3
B — K070 PA 0.650101701 0.084 1.2743 <4.0
B’ — a; K" T, PA 500160 0.58 9.7+4%2

B — a3K?® PA 2.0703704%00 0.005 4.27%3

B® — f,K° PA, P 9.2+20+25+26 0.005 3.4+85 2.7+13
B® — fLK° P, PA 3.7403407499 0.00007 3.8473

B’ — K30y PA, P 1.0553763753 0.029 6.614%3 9.6 * 2.1
B — K37/ PA, P 116735743738 1.30 12.44213 13.773%

function [3,4,28,37]. The third set of errors are estimated
from the unknown next-to-leading-order QCD corrections
and the power corrections, characterized by the choice that
Agcp = (0.25 + 0.05) GeV and the variations of the fac-
torization scales shown in Appendix B, respectively. One
can find that for most channels, the sizes of these three
kinds of theoretical uncertainties are comparable.

There are large theoretical uncertainties in any of the
individual decay mode calculations. However, we can
reduce the uncertainties by ratios of decay channels. For
example, simple relations among some decay channels are
derived in the limit of SU(3) flavor symmetry:

B(B* — K5°7%) ~ B(BT — K5"7°)
1 1
-~ EB(BO - K;+W_) ~ EB(B+ - K;07T+),

B(B® — a; K™) _ B(B™ — af KY) _
B(B* — a3K")  B(B° — aJK")

2. (30)

One can find that our results basically agree with the
relation given above within the errors.

Among the considered B — PT decays, the PQCD
predictions for the CP-averaged branching ratios vary in
the range of 1073 to 10~8. From the numerical results, we
can see that the predicted branching ratios of penguin-
dominated B — PT decays in PQCD are larger than those
of naive factorization [24,25,27] by 1 or 2 orders of magni-
tude, but are close to the QCDF predictions [4]. For the
leading tree-dominated modes such as a; 7" and f, 7™, the

predicted results in PQCD are bigger than those obtained
by QCDF [4] but smaller than those in Ref. [27]. The reason
is that the B-to-tensor form factor in this work is larger than
that used in Ref. [4]. For a%w*, the result is not larger than,
but the same as, that of Ref. [4]. This is the result of
destructive interference from color-suppressed tree (C)
topology. It is worth remarking that B® — K;"K~ and
BY — K5~ K™ are pure annihilation modes, which can be
perturbatively calculated in the PQCD approach.

The decays with a tensor meson emitted are prohibited in
the naive factorization approach for the reason that a tensor
meson cannot be produced from the local (V £ A) and
tensor currents [3,4]. In order to predict these decay chan-
nels, it is necessary to go beyond the naive factorization
framework to estimate the contributions of the nonfactor-
izable and annihilation diagrams. Fortunately, in the PQCD
approach, the total contribution of the nonfactorizable dia-
grams with a tensor meson emitted [Figs. 2(c) and 2(d)] is
sizable and larger than that of the nonfactorizable diagrams
emitting a pseudoscalar meson [Figs. 1(c) and 1(d)]. The
reason is that the asymmetry of the light-cone distribution
amplitudes of the tensor meson makes the contributions
from Figs. 2(c) and 2(d) strengthen with each other, while
the situation is contrary for Figs. 1(c) and 1(d). One can see
from Table II that for B — a,7 decays, the ay 7~ and
a5 7° modes are highly suppressed relative to a; 7" and
adm™, respectively. This is a natural consequence of facto-
rization, as the tensor meson cannot be created from the
(V —A) current. For B— a%7"(a; m*), the dominant
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TABLE II.

PHYSICAL REVIEW D 86, 094015 (2012)

The PQCD predictions of CP-averaged branching ratios (in units of 10~7) for B — PT decays with AS = 0, together

with the Isgur-Scora-Grinstein-Wise II (ISGW2) model [24] and QCDF results [4]. The experimental data are from Refs. [1,36].

Decay modes Class This work ISGW2 [24] QCDF [4] Expt.
Bt — ay7* T, C 29.17128 18243 26.02 30113

B* —af7° T, C 0.35 0001700 0.01 2.47%3

B —ain C,PA, P 1.0793+04+04 2.94 11138

BY —ajn/ C,PA, P 35T, 13.1 1.174]

Bt — fym* T 42511391 185743 28.74 27714 157743
Bt — fimt T 1.2+93+04+2.1 0.37 0.097524

B* - K;*K° PA, P 1.2793%02+03 4.0 x 1074 4.4774

B* — KyK* PA 0.8*51%03°03 12733

B> aym* T 98.973547438+38 48.82 52+18 <3000
B —ajm™ T, PA 27503108704 2.1743

B — aa® C 4.6713115109 0.003 24443

B’ — adn C,PA, P 0.6 01 0101 1.38 0.6%3¢

B — adn’ C,PA, P 180840104 6.15 0.522

B’ — fom” C 2.8+ 107408 0.003 1.5+42

B’ — fim0 P 0.2 00 0100 40X 1073 0.05%542

B = fom C,P PA 2.6707+08+07 1.52 1.7+23

B — f,m C,PA, P 33HaEEAT09 6.8 1.37%3

B — fin PA, P 0.08%0.0570:03 7002 0.02 0.02%9.%

B — fiq/ PA, P 0.09* 000 003003 0.09 0.08+2:08

B'— K3'K~ PA 0162003003 7003 0.3%%3

B’ — K5 K" PA 0.9 0170402 13715

B® — K3°K° P, PA 15403703403 3.0x 1074 5.4788

B° — K3°K° P, PA 0.8°01704703 2.273%

contribution is from color-allowed factorizable emission
diagrams, while for B — a; #°(a3 7~), this large contri-
bution is prohibited for the above reason. Therefore, for
BT — aj @, the left factorizable emission diagrams are
color suppressed, and for B — a 7~ the dominant con-
tribution is from nonfactorizable emission diagrams sup-
pressed by the Wilson coefficient C.

From Table VI, one can see that the factorizable con-
tributions for the B* — K37 " and B® — K57~ decays
are zero, because the emitted meson in these diagrams is
the tensor meson. The contributions from nonfactorizable
diagrams are suppressed by the small Wilson coefficients
C; and Cs. Therefore, the dominant contribution comes
from the penguin annihilation diagrams. From Table I, one
can see that our predictions for the B* — K;’#* and
B — K;" 7~ decays are much smaller than those of
Ref. [4]. The reason is that in Ref. [4], there is an extremely
large contribution from the quark loop diagrams. In the
PQCD approach, the quark loop correction is next-to-
leading order and not considered in this work. In the
B — f,K decays, we have tree diagram contributions as

well as penguin emission diagram contributions, so the
branching ratios are much larger than those of BT —
K;°7r* and B® — K" 7~ decays. The current experimen-
tal measurements still have very large error bars. We expect
future experiments to give more information for these
decays.

For B— K31 and B — a,1") decays, one finds that
B(B— K;n') > B(B— K;n) and BB— arn) <
B(B — ayn’). For these modes, both 7, and 7, will
contribute, but the relative sign of the 7, state with respect
to the 7, state is negative for 7 and positive for n’, which
leads to destructive interference between 7, and 7, for
B— K;m and B — a,7, but constructive interference
for B— K5m' and B — a,n’. This is very similar to the
situations for B — K7 and B, — K" ") decays [38,39].

We also give the direct CP asymmetry parameters for
those B — PT decays with AS = 1, together with the
QCDF results [4], in Table III. The experimental data are
taken from Ref. [1]. Similarly, the direct CP asymmetry
parameters of B — PT decays with AS = 0 calculated in
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TABLE III.
results [4]. The experimental data are from Ref. [1].

PHYSICAL REVIEW D 86, 094015 (2012)

The PQCD predictions of direct CP asymmetries (%) for B — PT decays with AS = 1, compared with the QCDF

Decay modes This work QCDF [4] Expt.
BT = K7+ —5.5703+26+10 1.6732 5433
B* — K3'm° —6.9738711734 0.2%4%%

B — afK* —52.9139 540 2717333

B* —aj K’ 2.9101102703 —0.675%

BT — fLK* —24.611 3724148 —39.5%532¢ —68.0%12
B* — f'K* 86213110013 —0.6753

BT —K;"q —5.4154133 1.5%7¢ —45+30
B — K3/ 20551505503 —1753

B — K3tar 17551441603 17543

B — K3'n° —10.75505 15508 7155

B"— a; K* —48.3% 50453108 -21.573%3

B’ — a3K” LOZG304E0S 6.77¢3

B" = f,K° L2503 63507 —7.3553

B’ — fiK° —1LOZG3T0IEGY 0.8%57

BY— K3'7 —5.0503 5150 3.25% ~7.0=19.0
B — K3y’ 0.755060763 —2.2533

the PQCD approach are shown in Table I'V. The origins of the
theoretical uncertainties shown in these two tables are the
same as those of the branching ratios in Tables I and II.
However, the largest uncertainty here is the third one, from
the unknown higher-order QCD corrections. The direct CP
asymmetry is proportional to the strong phase originated
from the hard part, and the higher-order QCD corrections
of the hard part can influence the strong phase heavily.
Therefore, the theoretical uncertainty caused by the unknown
QCD corrections is larger than the first two errors from wave
functions, which do not generate strong phase directly.

It is easy to see that some channels have very large direct
CP asymmetries. But many of them have small branching
ratios which are difficult to measure. We recommend that
experimenters search for direct CP asymmetry in channels
like B* — f,K*, B > a; K", B* > af 7/, and B* —
fom", because they have both large branching ratios and
direct CP asymmetry parameters. In fact, there are already
some experimental measurements for the CP asymmetries
shown in Tables III and IV. Although the error bars are
still large, we are happy to see that all these measured
entries have the same sign as our theoretical calculations.
This may imply that our approach gives the dominant
strong phase in these channels. The decays B°(B°) —
ay 7" Jai 7, BYB°) — K;"K~ /K5 K™, and B(B°) —
K3;°K°/ KK have a very complicated CP pattern through
the B’B° mixing. Four decay amplitudes are involved for
each group of decays, with five CP parameters to measure.
We refer the readers to the similar situation for B°(B%) —
p- 7t /ptm decays [40].

For the decays involving f(zl) in the final states, we have
taken f, — f mixing [Eq. (A13)] into account, while in
Ref. [4], f, is considered as an (uii + dd)/ V2 state and
f} as a pure s5 state. Although the mixing angle is small,
the interference between f7 and f3 can bring some remark-
able changes. For example, the branching ratio of B* —
f4m ™" is bigger than the prediction in Ref. [4]. This can
be understood as follows: Because of the contribution
from the color-allowed factorizable emission diagrams,
although suppressed by the mixing angle, the contribution
of f§ term is at the same level as that of f5 term. Due to the
enhancement from the f7 term, the branching ratio
becomes larger than the prediction without mixing. The
mixing can also bring remarkable change to direct CP
asymmetry. For B — f,n"), the direct CP asymmetries
are zero [4] when f) is a pure s5 state. Since the direct
CP asymmetry is proportional to the interference between
the tree and penguin contributions [30], it should be zero
indeed, because there are no contributions of penguin
operators when f) is a pure s§ state. After taking the
mixing into account, the fJ term can provide penguin
contributions, and then the direct CP asymmetries are no
longer zero in this work.

For B — f,m" and )1 decays, the relevant final-state
mesons contain the same components, %(uﬁ + dd) and

s5; therefore they have similar branching ratios. The small
differences among their branching ratios mainly come
from different mixing coefficients; i.e., cos¢, sin¢, cosé,
and sinf (see Appendix A).
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TABLE IV. The PQCD predictions of direct CP asymmetries (%) for B — PT decays with AS = 0, compared with the QCDF
results [4]. The experimental data are from Ref. [1].

PHYSICAL REVIEW D 86, 094015 (2012)

Decay modes This work QCDF [4] Expt.
B —aym* —0.675165708 9.6%45s

B* —ajn’ —5.8T01 TS —24.3553%

B —ajn —90.9153 716755 27.62 157

B —a; v/ —44STSI RS 313045,

BT — fomrt 27.6134 10189 60.2+371 41+ 30
B* — fim* 0.0361 7557134 0.0

B — K3'K° —43 7555550 30.355:7

BY — KK* 49550 —0.2615%

B® — a3m® 535544160143 —86.27128¢

B — djm 1755 ~76.7515%

B — dyn’ —59.9558 6505 —66.0,7

B’ — fom” —9.87133 535 0% —37.2555°

B — fym’ —0.7I3 TR 00

B" = fom —42.55 05508 69.7135.7

B — fo1' —0.05154737733 82,3753

B"— fin 7095597155708 00

B"— fin’ 455555 I 00

V. SUMMARY

We studied charmless hadronic B — PT decays by
employing the PQCD approach based on kr factorization.
In addition to the usual factorization contributions, we also
calculated the nonfactorizable and annihilation type dia-
grams. From our numerical calculation and phenomeno-
logical analysis, we found the following results:

(a) The factorizable amplitude with a tensor meson
emitted vanishes because a tensor meson cannot be
created from the (V £ A) currents or (S = P) den-
sity. The nonfactorizable and annihilation diagram
contributions are important in these decay modes.
For example, BY — K397 and B® — K" 7~ have
sizable branching ratios because of the contributions
of penguin annihilation diagrams.

(b) For penguin-dominated B — PT decays, because of
the dynamical penguin enhancement, the predicted
branching ratios are larger by 1 or 2 orders of
magnitude than those predicted in the naive factori-
zation approach but close to the QCD factorization
predictions in Ref. [4].

(c) For tree-dominated decay modes, the branching
ratios predicted by PQCD are usually very small
except for ad7*, a; 7", and fom" modes with
branching ratios of order 1076 or even larger. This
basically agrees with the situations in Refs. [4,27].

(d) For B— K; 1" decays, we find B(B — K3n') >
B(B— K;m). This large difference can be

explained by the destructive or constructive inter-
ference between 7, and 7.

(e) The interference between fg and f5 can bring
remarkable effects to some decays involving a f}
meson in branching-ratio and direct CP asymmetry.

(f) We predict large direct CP asymmetries for some of
the B — PT decays that are accessible to near-future
experiments.
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APPENDIX A: INPUT PARAMETERS AND
DISTRIBUTION AMPLITUDES

The masses and decay constants of tensor mesons are
summarized in Table V. Other input parameters are

TABLE V. The masses and decay constants of light tensor
mesons.

Tensor (mass in MeV) fr MeV) f+ (MeV)
£,(1270) 102 + 6 117 + 25
f£(1525) 126 = 4 65+ 12
a,(1320) 107 = 6 105 = 21
K3(1430) 118+ 5 77+ 14
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=4 _ —
AL =025, m,=48,

m(’f= 1.6,

f-=0.131,
mg =1.07,

fx=0.16,
mg =1.92.
(A1)

m§ =1.4,

We adopt the Wolfenstein parameterization for the
CKM matrix with A = 0.808, A = 0.2253, p = 0.132,
and 7 = 0.341 [1].

The twist-2(3) pseudoscalar meson distribution
amplitude(s) ¢p(dh, ¢ph) (P = 7, K) can be parameter-
ized as [41,42],

Pi(x) = Tx(l — 0[1 +0.44CY(1) + 0.25C32(1)],
(A2)
dP(x) = \/_[1 +0.43C2 (1) +0.09CY* ()], (A3)
dL(x) = — %[C}/%) +0.55C2 (0], (A4)
Ax) = %x(] —0[1+0.17¢ () +0267 ()], (AS)
P(x) = \/_[1 +0.24CY2(r) — 0.11CY* (0], (A6)
k() = —= f [C?(0) +035CY* (). (A7)
The Gegenbauer polynomials can be defined as
Cl(n) =1, (1) = 31,
C20) = 32— 1),
= Sr -1,
A8
ci(n) = %z(Stz - 3), (A9
Ci(r) = é(35;4 — 3022 + 3),
C3 (1) = g(zlf* — 1472 + 1),

where t = 2x — 1. In the above distribution amplitudes
for the kaon, the momentum fraction x is carried by the s
quark.

For the 7 — 1’ system, we use the quark flavor basis
[43], with 5, and 7, defined by

1 _ _
U ﬁ(uu + dd),

The physical states 17 and 5’ can be given by

n, = s5. (A9)

PHYSICAL REVIEW D 86, 094015 (2012)

(1)-( 2)z) o
n’ singg  cos¢ M5

The decay constants are related to f, and f via the same

mixing matrix:
mohn cos —sin 0
K T A %) an
fo Iy sing  cos¢ 0 f

The three input parameters f,, f,, and ¢ have been

extracted from related experiments [43,44]:

f,=0.07£0.02)f, f,=(1.34=0.06)f,
$=39.3°+1.0°.

(A12)

As with 5 — n' mixing, the isoscalar tensor states

f>(1270) and f%(1525) also have a similar mixing:

fa = ficosh + f3 sind, £y = fisind — f3 cosd,

(A13)

where f§ = \/%(uﬁ + dd), 5 = s3, and the mixing angle
0 = 5.8° [45], 7.8° [46], or (9 = 1)° [1].

APPENDIX B: AMPLITUDE AND
RELATED HARD FUNCTIONS

For each individual decay channel, various effective
operators contribute to the decay amplitude. We summa-
rize the number of effective operators contributing to every
channel in Tables VI and VII for AS =1 and AS = 0,
respectively, with

C] CZ
_G.c, =C +2,
al 3 2 a2 1 3
aj=C;+ j+1(1—3579) B
C,_
ay =21+ C,(n = 4,68, 10)

For factorizable emission diagrams [Figs. 1(a) and 1(b)],
the A function is given by
hef(x1,x3:b1,b3)

= KO(\/x,x3me1 NO(b, — b3)K0(\/x_3me] )Io(\/x_3m3b3)

+6(b3 — b)) Ko(x3mpb3)Iy(Jx3mpb)}S,(x3). (B2)
The hard scales
ta = max{\/‘EmBr l/blr 1/b3}) (B3)

tb = max{\/)_chB, l/bl, 1/b3}

are the maximum energy scales in each diagram to cancel
the large logarithmic radiative corrections. The factor S,
resums the threshold logarithms In?x in the hard kernels to
all orders, as given by [33]
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TABLE VI. The effective operators contributing to each decay mode with AS = 1.

Channels Emission Annihilation

Factorizable Nonfactorizable Factorizable Nonfactorizable
B — K3t w™ C,, C3, Cs, Cq, Cg ay, ag, ag, Ao Cs, Cs, C7, Cy
B> a; Kt a,, ay, ag, dg, dyo C,, C3, Cs, Cq, Cy as, ag, ag, Ao Cs, Cs, C7, Cy
B — agKO ay, ag, ag, djg C,, Cs, Cs, Cq, Cg, Cy, Cqp ay, ag, ag, djg Cs, Cs, C7, Gy
B’ — K;'m" ap, as, dg sy, C3, Cs, €7, Cg, Gy, Cyg ay, ag, dg, djg G, Cs, €7, Gy
B’ — ngo Ay, dg, dg, dyg Gy, G5, Cy, Cs, Cg, Cq, Cg, Cy, Cyg ay, dg, Ag, djg Cs, Cs, C7, Gy
B — ”’IqK;O az, asz, ds, dg, dg Gy, G, Gy, Cs, G, C7, Cg, Gy, Cyg ay, dg, ag, djg C;, Cs, C7, Gy
B’ — f3K° T Cs, Gy, Cs, G, C7, Gy, Gy, Cyy ay, ag, ag, djg G, G5, C7, Gy
B’ — n°K3° C3, Cy, Cs, Cs, Gy, Gy, Co, Cyg ay, ag, ag, djg Cs, Cs, €7, Gy

as, dg, ds, dg, a7, dg, dg, A
BT = K7+ e
B* — K%
B+ . K>2k+,n.0

ay, e, Adg, Ao
ap, dg, dg

C3’ CS’ C7’ C9
C3v CS? C7’ C9
Cl’ CZ’ C37 CS’ C7’ CS’ C97 CIO
Ci, Gy, G5, Cs, G, Gy, Gy, Cyg
C1, Gy, G5, Cy, Cs, Cg, C7, G, Co, Cyg
Cl’ CZ’ C3’ C4s CS? C67 C7’ CS! CQ? Cl()
Cs3, C4, Cs, Co, C7, Cg, Co, Cg

ap, Ay, Ae, Ag, Ao
ap, dy, Ae, dg, Ajo
ai, dy, Ae, dg, Ajo
ap, Ay, de, Ag, Ao
ap, dy, Ae, dg, Ajo
ai, dy, Ae, dg, Ajo
ai, dy, Ae, dg, Ajo

Cl’ CS’ CS’ C7’ C9
Clv C3’ CS? C7v C9
Cli C3’ C57 C7’ C9
C,, Cs, Cs, Cy, Co
Ci, G5, G5, €7, Gy
Cls C3’ C57 C7’ C9
C1, G5, G5, €7, Gy

C3’ C47 CS’ CG’ C7’ C87 C9’ CIO

ai, ay, as, ag, a9 Cy, C3, Cs, C7, Gy

BT — K"a) ap, ay, as, ds, djg
B+_'K+fg aj, dy, de, ag, djg
BJr g K;+77q day, as, ds, dy, dg
B+ — f£K+ [N
B = 0Kt as, ay, as, ag, a7, ag, ag, ayg
21+201“(3/2 + C)
S;(x) = —==———[x(1 — x)], (B4)

Jal(1 + ¢)

with ¢ = 0.3 in this work. In the nonfactorizable con-
tributions, S,(x) provides a very small numerical effect to
the amplitude [47]. Therefore, we omit S,(x) in those
contributions.

The evolution factors E,(t,) and E,(t,) in the matrix
elements (see Sec. III) are given by

E;(1) = a(t) exp[—Sp(r) = S3(1)] (B5)
The Sudakov exponents are defined as
npg 5[
$a) = (v ) 3 [ Ly @0
S,(1) = s<x2 %, b2) + s((l — xz)%, bz)
+2 [ R (), B7)
S3(r) = s<x3 %, b3) + s((l — )@)%, b3>
t di _
+2 ﬁ/b3 7 Yq(as(ﬂ))r (BS)

where s(Q, b) can be found in Appendix A of Ref. [29].
For the other diagrams, the related functions are sum-
marized as follows:

t. = max{,/x;x3mp, \/|1 —xy —X|x3mp, 1/by, 1/by},

to=max{\/x;x3mp, /|x; = x5]x3mp,1/b1,1/b5}, (B9)

Eop(t) = (1) - exp[—Sp(1) — $12(0) — S3(O]lp,=p,
(B10)
henf(xlr X2, X3, by, by)
=[0(by — bl)KO(\/X]x3me2)IO(\/x1x3mel)
+ 0(by — by)Ko(x1x3mpb)o(\/X1X3mpb,)]
) {%H(()l)(\/(xz — x))xzmghy), x, — x; >0; B11)
Ko((x1 = x3)x3mpby), xp — x> 0.
t, = max{y/1 — x3mg, 1/b,, 1/b3}, B1n
lf = max{\/x_QmB, l/bz, 1/b3}, ( )
E (1) = a (1) - exp[—S,(1) — S3()],  (B13)
haf(-xzr x3, by, b3)
i\ 2
= (%) Hél)(\/x2x3m3b2)[0(b2 - b3)H(()1)
X (x3mpby)Jo(\Jx3mpbs) + 6(b; — bz)Hé])
X (x3mpb3)Jo(Jx3mpby)] - S,(x3). (B14)

ty =max{\/x2(1 —x3)m3,\/1 —(1=x; —xy)mp,1/b,1/by}

Ih =max{\/x2(1 —x3)mB,\/|x1 —X%|(1 =x3)mp, 1/b1,1/by},
(B15)

E.p = ay(t) - exp[—Sg(t) — S,(t) — S3(0)]lp,—p,, (B16)
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TABLE VII. The effective operators contributing to each decay mode with AS = 0.
Emission Annihilation
Channels Factorizable Nonfactorizable Factorizable Nonfactorizable
0 q,0
BY — f27T daj, Ay, dg, A7, C2, C3, C4, CS, CG’ aj, dy, dg, a7, dg, Cz, C3, C5, C7, Cg,
ag, dg, djo C7, Cg, Cy, Cyy Ag, djo Cy, Cyp
0
BO —_— nqaz ay, az, Ay, ds, dg, C2, C3, C4, C5, C6’ as, Ay, ag, A7, Adg, Cz, C3, CS, C7, Cg,
az, as, dy, ayg C7, Gy, Cy, Cy ag, g Co, Cyo
0 —
B —aym ay, ay, dg, dg, Ay Cy, C3, Cs, C7, Gy ay, as, ay, ds, de, C,, C3, Cy4, Cs, Cg,
asy, 8, dg, Ao C7! CS» C97 ClO

BY — 777(1;

B — agﬂo
BY — f%’iTO
B0 — nsag
B — fin?
B — f5m'

B’ — fin’

B — fim4

B’ — K;"K~
B — K5 K*
B — K;9K°

B — K';OKO
BT — dd7*
BT — a;’iTO
B+ _'f12777+
B* — nilay
B* —afn*
B+ — ’7T+f§

Bt — K+IZ§()
BT — K>2k+K0

ay, Ay, Adg, A7, dg,
dg, Ay
as, ds, dq, dg
aj, as, 44, ds, Ag,

as, ag, dg, Ay

as, ds, dq, dg

ay, dg, dg, djo

ap, ay, Ae, dg, Ajo

ay, Ay, ag, A7, Adg,
ag, djp
ap, Ay, Ae, Ag, Ao

ay, s, dy, Ads, dg,

am, ag, dg, djo
as, ds, dq, ag

ay, dg, dg, Ay

Cy, C3, Cs, Cq, Gy

C27 C3’ C57 C7’ C8’
C9v Cl()

Cy, Cg, Cg, Cy
Cy4, G, Cs, Cyo
C2, C3, C4, Cs, C(,,
C7, Gy, Cy, Cyy

C4’ C6’ CS’ ClO
C49 C67 CS? CIO

Cs, Cs, C7, Cy
Cs, Cs, C7, Cy

Cl! C2a C37 CSa C7’
C8’ C9’ CIO
Ci, Gy, C3, Cs, G,
Cs, Co, Cyo
Cy, Gy, C3, Cy, Cs,
CG’ C7! CS’ C9’ C]O
CI’ CZ’ C3’ C4’

Cs, Cg, C7, Cg, Cy, Cyg

Cy, Cs, Cg, Cy
Cs4, Cs, Cg, Cyp
Cs, Cs, C, Co
Cs3, Cs, C7, Co

as, as, Ay, ds, dg,
as, 8, ag, ay

a,, as, dy, ds, dg,
as, 8, ag, ay

ay, as, dy, ds, de,
as, ag, dg, djg
as, ds, dq, dg

dy, d3, ds, d7, Ay
ap, as, ds, dg, dg
as, dy, ds, dg, d7,
as, do, djo
as, dy, as, dg, A7,
ds, dg, djo
ap, ag, dg, ag, djo

ap, Ay, Ag, Ag, djo
ay, Ay, de, dg, djo

ay, dy, Ag, dg, Ao

ay, dy, Ae, dg, Ao
ay, Ay, de, Ag, Ay

C2’ C39 C4, CS’ C6?
C7’ CS’ C9’ CIO
C,, C3, Cy4, Cs, Cg,
C7a CS? C9’ Cl()

C27 CS: C4s CS’ C()v
C77 CS? C97 CIO
Cy, Cs, Gy, Cyp

Gy, Cy, G, Cg, Cyy
Gy, Cy, G, Cg, Cyy
Cs, Cy, Cs, Cg, C,
CS: C99 CIO
C3, Cy, Cs, Cg, C5,
Cs, Cy, Cy
C]a C37 CSa C77 C9

Cy, Cs3, Cs, Cq, Cy
Cy, C3, Cs, Cq, Cy

Cy, C3, Cs, Cq, Cy

Cy, C3, Cs, Cq, Cy
Cy, C3, Cs, Cq, Cy

hanf'l(xhxz» x3, by, b,) :%[ﬁ(bl - bz)Hél)(sz(l —x3)meI)JO(Vx2(1 —x3)m3b2)
+0(by — b1)H(()1)(Vx2(1 = x3)mpby)Jo(yfxx(1 = x3)me1)]K0(\/1 — (1 =x; —xp)x3mpb,), (B17)

where H(()l)(z) = Jo(z) + iYy(2).

094015-13

i
hangs (51, 0,55, b1, b2) = 2[00y = b)H Qa1 = x5)mb) ool = x5)mgbs)
+0(b, — b])Hél)(vxz(l — x3)mpby)Jo(yfx2(1 = x3)mpb,)]

%Hé)l)(\/(xz —x)(I — x3)mghy), x; — x, <0,

Ko(\/(x; = x2)(1 — x3)mph,), xX; — x>0,

(B18)
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