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Recently a new state of the b �b system has been observed by the ATLAS Collaboration, with a mass of

10530� 5� 9 MeV. This state has been identified with the n ¼ 3 P-wave radial excitations of the b �b

system with parallel quark spins, called �bð3PÞ. The measured value of the mass corresponds to the

average of the J ¼ 0, 1, and 2 states, while the splittings of these states are not yet resolved. In this work

we present predictions from different potentials models for the values of these splittings.

DOI: 10.1103/PhysRevD.86.094011 PACS numbers: 12.39.Pn, 12.40.Yx, 14.40.Pq

I. INTRODUCTION

Heavy quarkonia, or mesons formed as heavy quark-
antiquark bound states, constitute a valuable ground to
study strong interactions, because they are related to both
the perturbative and nonperturbative regimes of QCD. In
heavy quarkonia energies are marginally high enough for
perturbative methods to become useful, while the confin-
ing, nonperturbative aspect of the interaction is also of
crucial importance.

Recently a new state of the b �b system has been observed
by the ATLAS Collaboration, with a spin-weighted aver-
age (‘‘barycenter’’) mass of 10530� 5� 9 MeV [1]. This
state has been identified with the n ¼ 3 radial excitation of
the b �b system with angular momentum numbers s ¼ 1,
‘ ¼ 1 (hence J ¼ 0, 1, 2), called �bð3PJÞ. The three states
J ¼ 0, 1, 2 are closely spaced in mass, so the measured
value of the mass corresponds to their average, while the
splittings of these states are not yet resolved. In this work
we present predictions from different potentials models for
the values of these splittings.

Since the discovery of the J=c meson in 1974, under-
stood as a c �c system, many potential models have been
proposed to describe the interaction between the quark and
antiquark in a bound state [2–25]. One of the first proposed
models was the so-called Cornell potential [2,5,7], which
is a Coulomb-plus-linear term combination that takes into
account general properties expected from the interquark
interaction: a Coulombic behavior at short distances and a
linear confining term at long distances, representing the
perturbative one-gluon exchange and the nonperturbative
chromoelectric flux tube of confinement, respectively.
Other models based on phenomenological grounds include
a logarithmic potential [4] and a noninteger power law
potential [9]. Subsequently, elements from QCD were
included in different ways in the potential formulation,
from the inclusion of the running of the QCD coupling
constant in the Coulombic interaction [6] to a derivation
of the short distance quark-antiquark potential from

perturbative QCD, where spin-dependent interactions
naturally appear [8,10–15]. A modification of the Cornell
potential to take into account a saturation effect in the
linearly growing confining part has also been proposed,
inspired in lattice data [16,18,21]. In the context of these
potential models, a successful description of many proper-
ties of quarkonia has been done, both for mass spectrum
and decay widths. A comprehensive review of the status of
heavy quarkonium can be found in Ref. [26]. For specific
studies of P-wave splittings in b �b, see also Ref. [27].
Even though the b quarks are heavy compared to the

scale of confinement in QCD, the b- �b interaction is suffi-
ciently strong to make the bound state somewhat relativ-
istic. Quark model calculations give typical velocities
vq � 0:25–0:4. Consequently, one expects relativistic ef-

fects to be important, and at a fundamental level the very
use of a potential, which represents an instantaneous static
interaction, is questionable. Nevertheless, potential models
have been successful in predicting mass spectra and decays
in quarkonia, and are particularly useful in describing the
mass splitting among different states of orbital angular
momentum and spin.
Here we study the prediction on the mass splitting in

�bð3PÞ from a set of potential models that have been able
to predict other quarkonium spectra with relative success.
We compare the average masses of known parts of the
spectra in P-wave states with the results given by each of
the potential models. An important issue to consider in the
model is the separation between the scalar versus vector
nature of the quark-antiquark interaction, as the spin-
dependent interaction is sensitive to this separation. Since
this separation is purely phenomenological, we must first
use as input a known part of the spectrum in order to fit the
parameters that model this separation; we then obtain
results for other parts of the known spectrum, which we
use to check the validity of the model. Then, taking into
consideration the degree of success of these results, we
venture into predicting the yet unknown mass splitting in
the �bð3PÞ state within each of these models.
In Sec. II we briefly describe the potential models that

we consider in our analysis. In Sec. III we present the
results obtained from the different models including the
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predictions for the splittings of the �bð3PÞ state. Finally, in
Sec. IV we state our conclusions.

II. POTENTIAL MODELS

Rigorously speaking, a potential in a bound state is a
static instantaneous interaction. Such a description is good
only in the nonrelativistic limit. A systematic relativistic
expansion of the interaction provides additional terms that
are corrections that depend on the orbital angular momen-
tum and spin of the bound particles. The expansion should
represent charmonium and bottomonium rather well since
the motion of their constituents is not highly relativistic.
In what follows we consider four representative models
given in terms of a spin-independent, static central potential,
where relativistic corrections are incorporated as the afore-
mentioned expansion. We call these models (a) the Cornell
model, (b) the Screened Cornell model, (c) the Richardson
model, and (d) the pQCD (perturbative QCD) model,
which we describe in what follows. In addition, for the
first two models we consider two variations, henceforth
called Cornell-I and Cornell-II and Screened Cornell-I and
Screened Cornell-II, respectively, depending on the sepa-
ration of the potential into a vector exchange and a scalar
exchange, as explained below.

A. Cornell model

The Cornell potential [2] was originally proposed to
describe masses and decay widths of charmonium states.
It takes into account the following features of the interac-
tion between the constituents: (i) a Coulomb-type interac-
tion which should describe the short distance regime
mediated by a single gluon exchange in perturbation theory
and (ii) a quark confining interaction that dominates at long
distances. Explicitly, the potential is given by

VðrÞ ¼ ��

r
þ r

a2
þ V0; (1)

where the first term corresponds to the Coulombic inter-
action and the second is the interaction responsible for
confinement that arises from the color field flux tube
between the quarks. The coefficients a and � are adjusted
to fit the charmonium spectrum, but with the assumption
that, roughly speaking, it should be valid for all other heavy
quarkonia. As such, the flavor dependence should arise
solely from the mass of the bound quarks.

Many fits have been done to adjust these parameters
[2,7,28]. In this work we will consider the most recent
values: � ¼ 0:52, a ¼ 2:34 GeV�1, mc ¼ 1:84 GeV, and
mb ¼ 5:17 GeV [7], where �, a, and mc were fitted using
as inputs the mass differences of the charmonium states
J=c ð1SÞ, c ð2SÞ, and the �cð1PÞ spin-weighted barycen-
ter, as well as the requirement that the charm quark mass
should be close to the lightest charmed-meson mass. The
value ofmb was chosen taking into account limits based on
the � masses.

The potential in Eq. (1) represents the static limit of
the interaction. A relativistic expansion will include
additional terms, that will constitute smaller corrections
in the case of heavy quarkonia, and some of them will
depend on the orbital angular momentum and spin of the
constituents. These terms are essential in order to repro-
duce or predict the mass splittings of quarkonium states
that differ in angular momentum, such as the �bð3PJÞ, for
J ¼ 0, 1, 2.
A general expression for the spin-dependent part of the

potential of a q �q bound state in QCD using a Wilson loop
approach was calculated to order 1=m2 [29,30]:

VSDðrÞ ¼
�
S1 �L1

2m2
1

� S2 �L2

2m2
2

��
dVðrÞ
rdr

þ 2
dV1ðrÞ
rdr

�

þ ðS2 �L1 � S1 �L2Þ
2m1m2

dV2ðrÞ
rdr

þ 1

6m1m2

ð6S1 � r̂S2 � r̂� 2S1 � S2ÞV3ðrÞ

þ 2

3m1m2

S1 � S2r2V2ðrÞ; (2)

where VðrÞ is the spin-independent part of the potential,
while V1ðrÞ, V2ðrÞ, and V3ðrÞ are the spin-dependent parts,
that can be expressed as expectation values of color electric
and magnetic fields. These potentials are not all indepen-
dent, as pointed out by Gromes [31]. Lorentz invariance
imposes the relation VðrÞ þ V1ðrÞ � V2ðrÞ ¼ C, where C is
an irrelevant integration constant. We can thus eliminate
dV1ðrÞ=dr from Eq. (2) and, in the equal-mass case,
m1 ¼ m2 � m, we can rewrite it as

VSDðrÞ ¼ S �L
2m2

�
�dVðrÞ

rdr
þ 4

dV2ðrÞ
rdr

�

þ 1

12m2
ð6S � r̂S � r̂� 2S � SÞV3ðrÞ

þ 1

6m2
ð2S � S� 3Þr2V2ðrÞ; (3)

where S � S1 þ S2 and L � L1 ¼ �L2. The terms in
Eq. (3) are referred to as spin-orbit, tensor, and hyperfine
interaction, respectively. Notice that only the spin-orbit
and tensor interactions are responsible for the mass split-
tings of the �bðnPJÞ.
Now, the otherwise independent potentials VðrÞ, V2ðrÞ,

and V3ðrÞ are further related if one assumes that the
quark-antiquark potential due to the strong interaction
arises from the effective exchange of a scalar and a
vector particle. This assumption is clearly part of the
modeling, as there could be further effective exchanges,
but if we stick to it, the quark-antiquark Lagrangian has
the form:

Lint ¼ ~sðq2Þ �uu �vvþ ~vðq2Þ �u��u �v�
�v: (4)
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The expansion of this expression in powers of v2=c2

gives a Breit-Fermi form of the spin-dependent potential
[32,33]:

VðeffÞ
SD ðrÞ ¼ S �L

2m2

�
�dvðrÞ þ dsðrÞ

rdr
þ 4

dvðrÞ
rdr

�

þ 1

12m2
ð6S � r̂S � r̂� 2S � SÞ

�
dvðrÞ
rdr

� d2vðrÞ
dr2

�

þ 1

6m2
ð2S � S� 3Þr2vðrÞ: (5)

Comparing Eqs. (3) and (5), one can make the following
identifications, which relate VðrÞ, V2ðrÞ, and V3ðrÞ:

VðrÞ ¼ vðrÞ þ sðrÞ; V2ðrÞ ¼ vðrÞ;

V3ðrÞ ¼ dvðrÞ
rdr

� d2vðrÞ
dr2

:

We then see that the spin-independent potential VðrÞ is
composed by the vector and scalar parts, while the spin-
dependent parts, V2ðrÞ and V3ðrÞ, are given in terms of the
vector part only.

To leading order in the wave function obtained from the
spin-independent potential VðrÞ [e.g., Eq. (1)], one can
express the spectrum of the �bðnPJÞ, for a fixed radial
excitation n, as

MðP2Þ ¼ �Mþ a� 2b=5; MðP1Þ ¼ �M� aþ 2b;

MðP0Þ ¼ �M� 2a� 4b; (6)

where a and b are the expectation values of the
radial functions in the spin-orbit and tensor terms,
respectively:

a ¼ 1

2m2

�
� ds

rdr
þ 3

dv

rdr

�
;

b ¼ 1

12m2

�
dv

rdr
� d2v

dr2

�
:

As such, the potential VðrÞ provides an explicit form for the
sum vðrÞ þ sðrÞ, and for the bound state wave function to
leading order. However, to obtain the explicit form of the
spin-dependent potential, Eq. (5), it is necessary to know,
or to define within the model, the separation of VðrÞ into
the scalar and vector parts sðrÞ and vðrÞ.

For the Cornell potential, Eq. (1), one can argue that a
reasonable separation is to assign the Coulombic term to
the vector part, coming from a single gluon exchange at
short distances, and the linear term to the scalar part,
coming from the flux tube at long distances:

vðrÞ ¼ ��

r
; sðrÞ ¼ r

a2
: (7)

Here we call this prescription the Cornell-I model.
Alternatively, one can relax this assumption by introduc-

ing two phenomenological parameters, �s and �v, that
define the combinations of Coulomb and linear terms of

the scalar and vector potentials [where the case�s¼�v¼1
corresponds to Eq. (7)]:

sðrÞ ¼ �ð1� �vÞ�r þ �s

r

a2
;

vðrÞ ¼ ��v

�

r
þ ð1� �sÞ r

a2
:

(8)

One can then find the values of �s and �v that provide the
best fit to a part of the spectrum. In this study we look for
the values that minimize the following �2 function, using
the mass splittings in the experimentally known �bð1PJÞ
and �bð2PJÞ:

�2 ¼ X
n¼1;2

ij¼21;10

�
�MijðnPÞðmodelÞ ��MijðnPÞðexpÞ

�ijðnPÞðexpÞ
�
2
; (9)

where

�M21ð1PÞ � Mð1P2Þ �Mð1P1Þ;
�M10ð1PÞ � Mð1P1Þ �Mð1P0Þ

(10)

are the mass splittings in the �bð1PJÞ, and similarly are the
�Mijð2PÞ defined for the �bð2PJÞ. Following this proce-

dure, we find the optimal values �s ¼ 1 and �v ¼ 0:923.
We call this prescription the Cornell-II model.
It is interesting to notice that the optimal values of �s

and �v are remarkably close to the Cornell-I prescription,
which is the one commonly assumed in the literature.

B. Screened Cornell model

A variation of the Cornell potential, which we call the
Screened Cornell potential, has been used to include the
effect of saturation of the strong interaction at long dis-
tances that appears in lattice data [16]:

VðrÞ ¼
���

r
þ r

a2

��
1� e��r

�r

�
; (11)

where� is the screening parameter. This potential behaves
like a Coulomb potential at short distances but, unlike in
the previous model, it tends to a constant value for large r
(namely, for r � ��1Þ. In other words, the linearly grow-
ing confining potential flattens to a finite value at large
distances, corresponding to the saturation of �S to a finite
value for decreasing Q2 [34–36]. This effect should be due
to the creation of virtual light quark pairs that screen the
interaction between the bound quarks at long distances.
The values of�, a, and�we use here are those of Ref. [21]
and are shown in Table I. Of these values, � and � are
intrinsic to the model, while a, mc, and mb were fixed by
the authors in order to reproduce the J=c mass in c �c and
the �ð1SÞ and �ð2SÞ in b �b.
For the potential in Eq. (11), we can separate the scalar

and vector parts in the same common way as in the Cornell
potential (that is, the Coulombic term as vector and the
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linear term as scalar), a prescription we call here the
Screened Cornell-I model.

Altenatively, just as before, we can introduce two
phenomenological separation parameters, �s and �v,
which are fitted by the same optimization procedure:

sðrÞ ¼
�
�ð1� �vÞ�r þ �s

r

a2

��
1� e��r

�r

�
;

vðrÞ ¼
�
��v

�

r
þ ð1� �sÞ r

a2

��
1� e��r

�r

�
:

(12)

The optimal values we find in this prescription are
�s ¼ 0:810 and �v ¼ 1. We call this prescription the
Screened Cornell-II model.

C. Richardson model

The Richardson potential is another well-known model
that incorporates the features of asymptotic freedom at
short distances and linear confinement at long distances
[6]. With a minimal interpolation between these two
asymptotic behaviors, the Richardson potential is obtained:

VðrÞ ¼ 8�

33� 2nf
�

�
�r� fð�rÞ

�r

�
; (13)

with

fðtÞ ¼ 1� 4
Z 1

1

dq

q

e�qt

ln2ðq2 � 1Þ þ �2
:

Here nf is the number of light quarks relevant to the

renormalization scale, taken equal to 3, while � ¼
0:398 GeV is the scale of interpolation between the two
asymptotic regimes and mc ¼ 1:49 GeV is the constituent
mass of the charm quark in the model. These values have
been fitted to reproduce the mass of the charmonium states
J=c ð1SÞ and c ð2SÞ. For bottomonium the same value of
nf and � should be used, setting the bottom quark mass at

mb ¼ 4:8877 GeV in order to reproduce the current �ð1SÞ
mass. According to Richardson, the value of nf is kept

equal to 3 (i.e., the number of light quarks), since the
Appelquist-Carazzone theorem [37] implies that the effect
of quarks heavier than the energy scale that determines the
dynamics should be small (the latter is related to the
binding energy or the inverse of the radius). With these
values for �, nf, and mb, the �ð2SÞ mass is predicted with

good agreement with experiment.

In contrast to the Cornell potential, the Richardson
potential has no obvious separation into scalar and vector
parts. In order to be able to determine the splittings with
this potential, one needs this separation. The following
phenomenological separation has been used in previous
works [33]:

vðrÞ ¼ VðrÞe�r2=a2r ; sðrÞ ¼ VðrÞð1� e�r2=a2r Þ: (14)

Here VðrÞ is the Richardson potential of Eq. (13) and ar is a
phenomenological length scale that separates the vector
character at short distances and scalar character at large
distances. Following the same �2 optimization procedure
as before, the value ar ¼ 0:1782 fm is found.

D. pQCD model

One last potential model we consider in our study
[12,38] is based on a semirelativistic treatment of pertur-
bative QCD interactions to one loop, which we call the
pQCD model, where the spin-dependent potentials, which
appear in the perturbative treatment, are somewhat differ-
ent than those in the previous models. The Hamiltonian
in this model considers a relativistic expression for the

quark kinetic energy, H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
, unlike the previous

models where a purely nonrelativistic approximation,
H0 ¼ mþ p2=2m, is used. Additionally, the potential
is composed of a short distance part obtained from
perturbative QCD to one loop and a phenomenological
long-range confining part. The complete potential has the
form

VðrÞ ¼ � 4�S

3r

�
1� 3�S

2�
þ �S

6�
ð33� 2nfÞðln�rþ �EÞ

�

þ Arþ VS þ VL: (15)

The first term is the spin-independent Coulomb-like part,
corrected to one loop in QCD. The term Ar, where A is a
phenomenological constant, is the spin-independent, long-
range confining potential, assumed to be linear in r. VS is a
short-range part of the potential that appears in the pertur-
bative calculation to one loop, and includes most spin-
dependent parts in the form of spin-orbit (LS), tensor (T),
and hyperfine (HF) terms, and a short-interaction spin-
independent term (SI):

TABLE I. Best values of the parameters for each of the potential models, according to previous authors, exceptmb in the Richardson
model, which was updated with the current experimental data, and the separation parameters �s, �v, and ar obtained in our own fits.

Equation � a [GeV�1] mb [GeV] V0 [GeV] � [fm�1] �s �v � [GeV] ar [fm]

Cornell-I (1) 0.52 2.34 5.17 �0:50805 � � � � � � � � � � � � � � �
Cornell-II (8) 0.52 2.34 5.17 �0:50805 � � � 1 0.923 � � � � � �
Screened Cornell-I (11) 0.423 1.858 4.6645 � � � 0.71 � � � � � � � � � � � �
Screened Cornell-II (12) 0.423 1.858 4.6645 � � � 0.71 0.810 1 � � � � � �
Richardson (13) � � � � � � 4.8877 � � � � � � � � � � � � 0.389 0.1782
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VLS ¼ 2�SL � S
m2r3

�
1� �S

6�

�
11

3
� ð33� 2nfÞðln�rþ �E � 1Þ þ 12ðlnmrþ �E � 1Þ

�	
;

VT ¼ 4�Sð3S1 � r̂S2 � r̂� S1 � S2Þ
3m2r3

�
1þ �S

6�

�
8þ ð33� 2nfÞ

�
ln�rþ �E � 4

3

�
� 18

�
lnmrþ �E � 4

3

��	
;

VHF ¼ 32��SS1 � S2

9m2

��
1� �S

12�
ð26þ 9 ln2Þ

�
	ðrÞ � �S

24�2
ð33� 2nfÞr2

�
ln�rþ �E

r

�
þ 21�S

16�2
r2

�
lnmrþ �E

r

�	
;

VSI ¼ 4��S

3m2

��
1� �S

2�
ð1þ ln2Þ

�
	ðrÞ � �S

24�2
ð33� 2nfÞr2

�
ln�rþ �E

r

�
� 7�Sm

6�r2

	
:

Finally, VL is the relativistic correction arising from the confining potential (thus proportional to A), also composed of spin-
dependent terms:

VL ¼ �ð1� fVÞ A

2m2r
L � Sþ fV

�
A

2m2r

�
1þ 8

3
S1 � S2

�
þ 3A

2m2r
L � Sþ A

3m2r
ð3S1 � r̂S2 � r̂� S1 � S2Þ

�
:

The phenomenological parameter fV was introduced by
the authors to represent the fraction of vector versus scalar
character of the confining potential, which they fit with the
available data. For bottomonium the parameters A, m, �S,
�, and fV were fitted using as input eight masses of the b �b
spectrum. The authors obtained [39] A ¼ 0:175 GeV2,
m¼ 5:33 GeV, �S ¼ 0:295, � ¼ 4:82 GeV, and fV ¼ 0.
The values of �S and m are given in the renormalization
scheme of Ref. [40] for the value of � given above.

Remarkably enough, fV ¼ 0 implies, just like in the
other models, that the long distance part of the potential
corresponds to purely scalar exchange.

III. CALCULATIONS AND RESULTS

A. Spin-average masses of �bð1PÞ, �bð2PÞ, and �bð3PÞ
As seen in Eq. (6), the masses of the states �bðnP0Þ,

�bðnP1Þ, and �bðnP2Þ differ by small amounts. These
differences are determined by spin-dependent interactions.
On the other hand, the barycenter (or spin-averaged) mass
of these states is defined as

�M ¼ 5MðP2Þ þ 3MðP1Þ þMðP0Þ
9

; (16)

and is determined in each model by the leading, spin-
independent part of the potential. Consequently, we expect
the spin-independent part of the models we previously

described to correctly reproduce the experimental bary-
centers. We have calculated �M for the �bð1PÞ, �bð2PÞ,
and �bð3PÞ, numerically solving the Schrödinger equation
[41] for the potential models described in the previous
section, using the parameters listed in Table I, for the first
three models, respectively. The results we obtain are shown
in Table II. We include the results obtained in Ref. [39] by
the authors of the pQCD model. The value of the constant
V0 for the Cornell potential [Eq. (1)] was fitted in order to
obtain the experimental value of the �ð1SÞ.
We should recall that the parameters in the Cornell and

Richardson potentials, which are shown in Table I, were
fitted using charmonium states (except for the bottom
constituent mass mb), and those of the Screened Cornell
model were fixed using both c �c and b �bmasses. In contrast,
in the pQCD model the free parameters were fitted using
b �b states only. Consequently, one should naturally expect
the latter model to give a closer prediction for the �b, in
comparison with the other models, where an accurate
prediction for �b masses is clearly a more demanding
requirement.
The bottom line of Table II shows the experimental

values of the barycenter masses, in order to compare
them with the model results. To ease the comparison we
also include, for each �b, the mass discrepancy 	nP

between the model result and the corresponding experi-
mental value.

TABLE II. The mass barycenters of the states �bð1PÞ, �bð2PÞ, and �bð3PÞ reproduced by the potential models described in Sec. II,
and compared to the corresponding experimental values. On the right of each reproduced mass is the discrepancy between this value
and the corresponding experimental value, 	nP � �MðnPÞðmodelÞ � �MðnPÞðexpÞ. The experimental values for 1P and 2P are from

Ref. [42], while those for 3P are from Ref. [1]. All values are in MeV.

Model �Mð1PÞ 	1P
�Mð2PÞ 	2P

�Mð3PÞ 	3P

Cornell 9958.3 58.4 10312.6 52.5 10595.3 65.3

Screened Cornell 9907.9 8.0 10261.2 1.0 10516.4 �13:6
Richardson 9895.7 �4:2 10248.8 �11:4 10520.1 �9:9
pQCD [39] 9898.7 �1:2 10261.2 1.0 10543.9 13.9

Experiment 9899:87� 0:27 � � � 10260:20� 0:36 � � � 10530� 10 � � �
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As a first observation from Table II, one can see that in
most cases the model discrepancies are larger than the
experimental uncertainties, indicating that in general there
is still need for improvement in the models.

Notwithstanding, the errors are quite small in all models
except Cornell. This tendency indicates that the inclusion
of saturation (i.e., going from Cornell to Screened Cornell)
clearly improves the predictions for the barycenter masses,
but there is no clear distinction in the reliability between
the last three models at this stage.

We must also comment that the discrepancy in the
Cornell model can be considerably improved in a very
simple way: the offset V0 was fitted using the �ð1SÞ
mass. If we had fitted V0 using �bð1PÞ instead, the dis-
crepancy in the barycenter mass of �bð2PÞ and �bð3PÞ
in Table II would have been 	2P ¼ �6:1 MeV and
	3P ¼ 6:8 MeV, instead of 52.5 and 65.3 MeV, respec-
tively. In this sense, the Cornell potential does not fit
very well the whole b �b spectrum, but could still be good
in predicting mass differences within �bðnPÞ states, which
are all of the same spin and orbital angular momentum.

B. Splittings of �bð1PJÞ, �bð2PJÞ, and �bð3PJÞ
To date, the splittings of the J ¼ 0, 1, 2 states in the

�bð1PJÞ and �bð2PJÞ have been experimentally measured
with reasonable precision, while there is still no data for the
splitting in the �bð3PJÞ. Our main goal here is to predict
the latter splitting according to each of the aforementioned
models.

We characterize the splittings of the J ¼ 0, 1, 2 states
within a given �bðnPÞ by the mass differences �M21ðnPÞ
and �M10ðnPÞ, as defined in Eq. (10). An additional
parameter which is used in the literature to characterize
the splittings is the ratio of the mass differences within a
given �bðnPÞ, defined as

R�ðnPÞ ¼ �M21ðnPÞ
�M10ðnPÞ : (17)

In our calculations, we first reproduce within each model
the splittings in the �bð1PJÞ and �bð2PJÞ and compare
these results with their corresponding experimental values,
as a way to check the reliability of the models. These
results are shown in Tables III and IV, respectively. In these
tables one can make several observations.

First, from Table III for the splitting in �bð1PÞ, the best
results for the �Mij are obtained with the Richardson and

pQCDmodels, followed by the Cornell-II model, while the
largest discrepancies appear with the Screened Cornell-I
model. On the other hand, concerning the splitting ratios
R�, the pattern of performance is different: the Screened

Cornell-I joins the Richardson and pQCD models in giving
the best results, while the largest discrepancy occurs with
the Screened Cornell-II model.

Alternatively, we can see whether the results for the
splitting in �bð1PÞ improve in going from the Cornell to

the Screened Cornell model (i.e., by including saturation at
long distances), as it happened in the results for the bary-
centers. Clearly this is not the case: there is no such
improvement on the splittings; the Screened Cornell mod-
els actually perform worse than the simple Cornell models.
Finally, we can see whether the best fitted vector versus

scalar separation causes an improvement in the results (i.e.,
going from models of type I to type II). Indeed, a moderate
improvement can be seen in Table III going from Cornell-I
to -II or from Screened Cornell-I to -II, which in any case is
expected, because the fitting was done with that purpose.
However, the improvement occurs only in the �Mij, but

not so in the ratio R�.

In turn, for the splittings in �bð2PÞ, the best results for
�Mij are given by the pQCD model and the Screened

Cornell-I and -II models, while the largest discrepancy is
found in the results given by the Cornell-I model. In
contrast, for the splitting ratio R� the best results are given

by the Screened Cornell I and pQCD models, while the
largest discrepancy occurs in the Screened Cornell-II
model.
From the above one sees that the results are rather

disperse: models that reproduce well some of the splitting

TABLE III. The mass splittings in the �bð1PÞ mesons calcu-
lated for each of the models described in Sec. II, and their
experimental values: the mass differences �M21 and �M10 are
defined as in Eq. (10), and the splitting ratio R� is defined as in

Eq. (17).

Model

�M21ð1PÞ
[MeV]

�M10ð1PÞ
[MeV] R�ð1PÞ

Cornell-I 23.13 32.24 0.717

Cornell-II 20.12 29.14 0.690

Screened Cornell-I 16.19 25.21 0.642

Screened Cornell-II 20.87 28.46 0.733

Richardson 18.58 30.87 0.602

pQCD [39] 19.3 29.94 0.645

Experiment 19:43� 0:57 33:34� 0:66 0:583� 0:021

TABLE IV. The mass splittings in the �bð2PÞ mesons calcu-
lated for each of the models described in Sec. II, and their
experimental values: the mass differences �M21 and �M10 are
defined as in Eq. (10), and the splitting ratio R� is defined as in

Eq. (17).

Model

�M21ð2PÞ
[MeV]

�M10ð2PÞ
[MeV] R�ð2PÞ

Cornell-I 19.22 26.43 0.727

Cornell-II 16.77 23.91 0.701

Screened Cornell-I 12.91 19.34 0.668

Screened Cornell-II 15.91 21.45 0.742

Richardson 18.27 25.36 0.720

pQCD [39] 16.40 24.30 0.675

Experiment 13:5� 0:6 23:5� 1:0 0:574� 0:035
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features do not do so well on other features. The inclusion
of saturation in the Cornell model does not seem to make it
much better, and the optimal adjustment of the vector
versus scalar separation does not cause a significant
improvement either.

The sole exception, to some degree, is the pQCD model,
which tends to be more often within the best results.
However, this tendency was expected, since this model
contains a larger number of parameters and they were fitted
purely with b �b. In contrast, all the other models were built
using the charmonium spectrum and are now required to fit
the b �b spectrum as well.

One clear pattern in the results for �bð1PÞ and �bð2PÞ is
that all models give values for the ratio R� which are

consistently larger than experiment. This feature could be
an indication that the separation of the potentials purely in
terms of scalar and vector exchanges may not be sufficient,
and an expansion into exchanges of additional spin and
parity may be required [43].

Now, concerning the prediction of the models for the so
far unknown splitting in the �bð3PJÞ, Table V shows the
results of our calculations, together with the prediction of
the pQCD model according to its authors [44].

Looking at the values for the ratio R�ð3PÞ, if we ex-

trapolate from the results on �bð1PÞ and �bð2PÞ we may
suspect that these are also overestimations, i.e., all models
tend to give too large values for R�. Within that assump-

tion, we may consider more successful those models that
give the smallest prediction for R�, which correspond to

the pQCD and the Screened Cornell-I models.
However, if we look at the �Mij results in the 3P, the

predictions of the Screened Cornell-I model are much
lower than all the others. Then, going back to 1P and 2P,
where there is experimental evidence, this model also
gives too small splittings in those states. In that sense,
concerning the splittings the reliability of this model is
questionable.

Besides that observation, among the other models there
is a tendency in �M10 to be near 22 MeV. For �M21 the
predictions are more dispersed, but centered around a value
of 15 MeV. If we consider these two values as the best

predictors for the splitting, one then predicts a ratio
R� ¼ 0:68 for the �bð3PÞ.
Using the definition of the barycenter given in Eq. (16)

we can deduce the masses of the states J ¼ 0, 1, and 2 of
the �ð3PJÞ in terms of the barycenter and splittings:

MðP0Þ ¼ �M� 5�M21 þ 8�M10

9
;

MðP1Þ ¼ �M� 5�M21 ��M10

9
;

(18)

MðP2Þ ¼ �Mþ 4�M21 þ �M10

9
: (19)

Using the experimental value and its uncertainty for
the barycenter and the estimated splittings, the masses
of the three �bð3PÞ states (J ¼ 0, 1, 2) would then be
10502�10MeV, 10524�10MeV, and 10539�10MeV,
respectively. On the other hand, the threshold for
BþB� decay is 10558:5� 0:3 MeV. Consequently our
estimate of the J ¼ 2 state is just 20� 10 MeV below
the threshold.

IV. SUMMARYAND CONCLUSIONS

Recently, the �bð3PÞ state was observed and its bary-
center was determined, while there is still no available data
regarding its mass splittings.
Here we have used four well-known potential models to

predict the so far unresolved splitting in the �bð3PÞ states.
The models were described in Sec. II and are called here
the Cornell, Screened Cornell, Richardson, and pQCD
models, respectively. The first three models were originally
adjusted to reproduce the charmonium spectrum, and are
required to work for bottomonium as well. In contrast, the
latter model was fitted using bottomonium states only.
As a first attempt to test the reliability of these models,

we use them to reproduce the known barycenter masses of
the �bð1PÞ, �bð2PÞ, and �bð3PÞ states.
The Cornell model, which is the simplest of all of them,

shows the largest deviations in its results for the barycenter
masses. The Screened Cornell model, which is similar to
the previous one, but with the additional feature of satura-
tion at long distances, shows a clear improvement in its
results for the barycenters. The other two models,
Richardson and pQCD, give similar values. Up to here, it
seems that the latter three models perform similar in terms
of reliability. In any case, one should notice that the dis-
crepancies in these model results are in general larger than
their current experimental uncertainties. This is an indica-
tion that there is still need for model improvement.
Now, concerning the splittings, we recall that the

barycenters of the �b states are determined by the spin-
independent part of the potential, while the splittings are
determined by the spin-dependent part. The latter, which is
a relativistic correction, should be subdominant for heavy
quarkonia like the �b. The spin-dependent part, however, is

TABLE V. The predictions for the mass splittings in the
�bð3PÞ mesons according to each of the models described in
Sec. II: the mass differences �M21 and �M10 are defined as in
Eq. (10), and the splitting ratio R� is defined as in Eq. (17).

Model

�M21ð3PÞ
[MeV]

�M10ð3PÞ
[MeV] R�ð3PÞ

Cornell-I 17.7 24.0 0.734

Cornell-II 15.4 21.8 0.710

Screened Cornell-I 10.8 15.8 0.683

Screened Cornell-II 12.9 17.3 0.747

Richardson 17.1 22.1 0.773

pQCD [44] 14.8 22.1 0.670
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not unambiguously determined as an expansion of the
potential, as it also depends on the Lorentz character
(vector versus scalar) of the effective interaction. In the
models we study here, we have used a common phenome-
nological treatment of this feature, which is a separation of
the potential into a vector and a scalar exchange, where it is
usually assumed that the vector part should dominate the
short distance regime, while the scalar part should repre-
sent the confining regime at longer distances.

Accordingly, in the cases of the Cornell and the Screened
Cornell models, we considered two variants for the scalar
versus vector separation. Our variant I considers the com-
monly assumed separation where the vector part corresponds
to the short distance Coulombic term and the scalar part
corresponds to the long distance linear (or linear-saturated)
term. Our variant II uses an optimal scalar-vector separation
that minimizes the error in reproducing the known splittings
in the �bð1PJÞ and �bð2PJÞ. Interesting enough, we found
that this best fitted separation is very close to the usually
assumed separation in variant I, in which the short distance
part is purely vector exchange and the confining long dis-
tance part is purely scalar. This result also coincides with a
similar analysis done in the pQCD model by its authors,
where they found that their best fit corresponds to a long
distance part being purely scalar.

For the Richardson potential, unlike the previous mod-
els, there is no obvious separation into scalar and vector
parts, so we introduced a purely phenomenological func-
tion with one parameter to carry out a short distance versus
long distance separation. This parameter, also fitted with
the �bð1PÞ and �bð2PÞ states, is a length scale that sepa-
rates the two regions; the short distance part is then
assumed to be mediated by vector exchange and the long
distance part by scalar exchange.

Of all the models studied, those that give more consis-
tent results for the splittings are the pQCD model and, to
some degree, the Richardson model. One could have
expected the pQCD model to give the best results because
of its more detailed short-distance treatment from pertur-
bative QCD, and because it contains a larger number of
parameters, all fitted to the bottomonium spectrum.

Concerning the comparison between the Cornell and the
Screened Cornell models, we would have expected an
improvement in the reproduction of the splittings in the

latter, as was the case for the reproduction of the bary-
centers. However it was not the case: we found the
Screened Cornell model to give results that are no better
than the simpler Cornell model. On the other hand, when
comparing the variants I and II of these models, we had
expected better results in the variants II, because they were
fitted to do so. This was indeed the case in the results for
the �Mij, but not so for the ratios R�.

The one consistent pattern in all results for the splittings
is that all the models give ratios R� in �bð1PÞ and �bð2PÞ
that are larger than the corresponding experimental values.
Concerning the reliability of the models, this tendency may
be an indication that the composition of the potential in a
scalar and a vector part may not be enough, and exchanges
of further spins and parities may be present. From the point
of view of predictions, on the other hand, we may then
expect that the predictions for the �bð3PÞ splittings will
follow that tendency; i.e., the model with the best predic-
tions should give the smallest value for R�. This feature

again points to the pQCD model.
Now, looking at the predictions for the �M10 and

�M21 in �bð3PÞ, one can see that the largest deviations
around a central tendency are found in the Cornell-I and
Screened Cornell-I models. Besides those predictions the
tendency in �M10 is to be near 22 MeV, and for �M21 the
predictions, although more dispersed, are centered around
a value of 15 MeV. With these estimates and the experi-
mental value for the barycenter, the masses of the three
�bð3PÞ states (J ¼ 0, 1, 2) would be 10502� 10 MeV,
10524� 10 MeV, and 10539� 10 MeV, respectively
(the model uncertainty is not included). This means that
the J ¼ 2 state would be just 20� 10 MeV below the
BþB� threshold.
Finally, if we consider these values for �M21 and �M10

as the best predictions for the splitting, one then predicts a
ratio R� ¼ 0:68 for the �bð3PÞ, which is again quite close

to the result of pQCD.
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