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We investigate single-inclusive high-pT jet production in longitudinally polarized pp collisions at the

Relativistic Heavy Ion Collider, with particular focus on the algorithm adopted to define the jets.

Following and extending earlier work in the literature, we treat the jets in the approximation that they

are rather narrow, in which case analytical results for the corresponding next-to-leading order partonic

cross sections can be obtained. This approximation is demonstrated to be very accurate for practically all

relevant situations, even at Tevatron and LHC energies. We confront results for cross sections and spin

asymmetries based on using cone and kt-type jet algorithms. We find that jet cross sections at the

Relativistic Heavy Ion Collider can differ significantly depending on the algorithm chosen, but that the

spin asymmetries are rather robust. Our results are also useful for matching threshold-resummed

calculations of jet cross sections to fixed-order ones.
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I. INTRODUCTION

Jets are copiously produced at high-energy hadron col-
liders. Among other things, they play important roles as
precision probes of QCD and nucleon structure. At the
Relativistic Heavy Ion Collider (RHIC), jets are by now
a well-proven tool for investigating the spin structure of the
nucleon through double-helicity asymmetries measured in
the reaction pp ! jetX. The corresponding measurements
[1] have in particular provided exciting information on the
proton’s polarized gluon distribution, �g.

There is no unique way of defining a jet. As a result,
different jet algorithms exist and are being used in experi-
ments. The jet definitions and algorithms can be broadly
divided into two classes [2]: (i) successive recombination
algorithms [3–6], and (ii) cone algorithms [7]. For the
former, one first defines a distance between a pair of pro-
duced objects (initially, two particles), as well as a beam
distance of each object to the collider beam axis. For each
object, the smallest of these distances is determined. If it is a
beam distance, the object is called a jet and removed from
the list of objects in the event; otherwise the two objects are
combined into a single object. This procedure is repeated
until no further recombinations take place. Prominent
examples of successive recombination algorithms are the
so-called kt [3,4], Cambridge-Aachen [5], and anti-kt [6]
algorithms, which differ in how the distances are defined.
We will collectively refer to such algorithms as ‘‘kt-type’’
algorithms.

Cone algorithms also come in different variants [7].
They have in common that the jet is defined by the particles
found inside a circle in the plane formed by rapidity and
azimuthal angle, such that the sum of the four-momenta of
these particles points in the direction of its center. While
widely used in experiments, the traditional cone algorithms
(notably the ones known as midpoint algorithm mostly

used at RHIC [1,8] and the iterative cone algorithm)
were found to be not infrared safe [9,10]. This evidently
sets a serious limitation to the use of such algorithms in the
theoretical calculation and to comparisons of data and
theory. For single-inclusive jet cross sections, the lack of
infrared safety becomes an issue first at next-to-next-to-
leading order in perturbation theory, so that next-to-leading
order (NLO) calculations remain meaningful in the sense
that they produce finite and well-defined answers. In case
of the midpoint cone algorithm, a solution to the problem
of infrared unsafety was found in terms of the ‘‘seedless
infrared-safe cone’’ (SISCone) algorithm [10]. It was also
shown that the anti-kt algorithm mentioned above can
effectively cure the lack of infrared safety of the iterative
cone algorithm [6]. As a result, the SISCone and all kt-type
algorithms are nowadays known to be infrared safe and are
preferred for use in experiments.
In earlier work [11,12], the spin-dependent (and spin-

averaged) cross sections for pp ! jetX were derived at
NLO.Reference [11]was basedon aMonteCarlo integration
approach, while [12] used a largely analytic technique for
deriving the relevant partonic cross sections for cone algo-
rithms, which becomes possible if one assumes the jet to be a
rather narrow object [12–16]. This assumption is equivalent
to the approximation that the cone opening R of the jet is not
too large, and hence was termed small cone approximation
(SCA) in Ref. [12]. In the SCA, one systematically expands
the partonic cross sections around R ¼ 0. The dependence
on R is of the formA logRþBþOðR2Þ. The coefficients
A and B are retained and calculated analytically, whereas
the remaining terms OðR2Þ and beyond are neglected. The
advantage of the analytical method is that it leads to much
faster andmore efficient computer codes and is hence readily
suited for inclusion of jet spin asymmetry data fromRHIC in
a NLO global analysis of polarized parton distributions.
Indeed, the results of Ref. [12] have been used in the global
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analysis [17], where the experimental data from the STAR
Collaboration [1]were used to constrain�g. TheSCAwill of
course fail if R becomes too large. It was shown in Ref. [12]
that the SCA is in fact an excellent approximation to the full
Monte Carlo calculation (which is valid for arbitrary cone
openings), for all values of R and kinematics relevant at
RHIC. (We shall revisit this finding in our phenomenological
Sec. III below). At very small R, the SCA will technically
remain accurate, but the NLO result will become physically
unreliable. Ultimately, asR ! 0, the NLO cross section will
change sign and nominally become negative. The reason for
this behavior is that j logRj becomes very large. When this
happens, logarithmic terms of the form �k

s log
kR that are

present at higher orders in perturbation theory all become
important and need tobe taken into account to all orders. This
resummation of terms�k

s log
kRwill then tame the unphysical

behavior of the NLO result. In practice, the NLO cross
section turns negative at values of R well below 0.05
and hence not in a regime of interest for present experiments.
A simple estimate based on comparing powers of �s logR
indicates that the resummation of terms �k

s log
kR will

likely not make any significant impact for R * 0:1.
We can therefore safely assume that our NLO predictions
to be presented in this paper are reliable for R down to, at
least, 0.2.

Commensurate with the procedure chosen by the STAR
Collaboration, the calculation [12] was performed for the
midpoint cone algorithm. In the present paper, we will
extend the work in Ref. [12] to the case of kt-type algo-
rithms. We will again use the approximation of a rather
narrow jet. As we do not really have a jet ‘‘cone’’ for the
kt-type algorithms, we shall from now on refer to this
approximation as narrow jet approximation (NJA). This
term will be collectively applied to both the cone (where it
used to be the SCA) and the kt-type algorithms. The mean-
ing of the NJAwill always be that the jet parameter R used
to define the jet (cone opening for the cone algorithm and
distance between two objects for the kt-type algorithms) is
not too large, as we shall discuss in more detail below.

One motivation for our new study is that kt-type algo-
rithms are also being considered by the STAR Collaboration
now [18], so that it is timely to prepare the corresponding
theoretical NLO calculations for the spin asymmetries. The
differences between the jet cross sections for the cone and
kt-type algorithms in the NJA are also interesting from a
theoretical point of view. We will find that they amount to
finite contributions with leading order (LO) kinematics. As
such they play a role as matching coefficients in threshold
resummation studies of jet production, as was discussed in
Ref. [19]. They also appear in a related context in studies of
jet shapes in the framework of ‘‘soft collinear effective
theories’’ [20].

The remainder of this paper is organized as follows:
In Sec. II we present the technical details and analytical
results of our calculation of single-inclusive jet cross

sections in the NJA, focusing on the kt-type algorithms.
Section III contains phenomenological results relevant for
RHIC. We summarize our work in Sec. IV.

II. TECHNICAL DETAILS

A. Cone and kt-type jet definitions

We consider single-inclusive jet production in hadronic
collisions, pp ! jetX, where the jet has a transverse mo-
mentum pTJ

, rapidity�J, and azimuthal angle�J. The cross

section is infinite unless a finite jet size is imposed as a
parameter. The different jet algorithms vary in the way this
size is defined. In the cone algorithm [7], one defines the jet
by all particles j that satisfy

R2
jJ � ð�J � �jÞ2 þ ð�J ��jÞ2 � R2: (1)

Here �j and �j denote the rapidities and azimuthal angles

of the particle, and R is the jet cone aperture. The jet four-
momentum sets the center of the cone; it is nowadays
usually defined as the sum of the four-momenta of the
particles j forming the jet.
For the kt-type algorithms [3–6] one defines for each

pair of objects (initially, particles) j, k the quantity

djk � minðk2pTj
; k2pTk

ÞR
2
jk

R2
; (2)

where p is a parameter that specifies the algorithm, kTj

denotes the transverse momentum of particle jwith respect
to the beam direction, and

R2
jk � ð�j � �kÞ2 þ ð�j ��kÞ2: (3)

The parameter R is called the jet radius. djk may be viewed

as a distance between two objects j and k. One also defines
for each object a distance to the initial beams:

djB � k2pTj
: (4)

The algorithm identifies the smallest of the djk and djB. If it

is a beam distance, the object is defined as a jet and removed
from the list of objects. If the smallest distance is a djk, the

two objects j, k are merged into a single one. The procedure
is repeated until no objects are left in the event. As men-
tioned above, the jet algorithm is fully specified by the
parameter p. We have p ¼ 1 for the kt algorithm [3,4],
p ¼ 0 for the Cambridge-Aachen algorithm [5], and
p¼�1 for the anti-kt algorithm [6].
Note that on top of the choice of jet algorithm one also

has to define how objects are to be merged if the need
for that arises. Throughout this paper our choice will be
(for both algorithms) to define the four-momentum of a
new object as the sum of four-momenta of the partons that
form the new object. This so-called ‘‘E recombination
scheme’’ [7] is the most popular choice nowadays.
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B. Calculation of single-inclusive jet production
cross sections at NLO

The spin-averaged cross section for the process
pðPaÞpðPbÞ ! jetðpJÞX can be written as [12]

d2�

dpTJ
d�J

¼ 2pTJ

S

X
a;b

Z V

VW

dv

vð1�vÞ

�
Z 1

VW=v

dw

w
faðxa;�FÞfbðxb;�FÞ

�
2
4d�̂ð0Þ

ab!jetXðs;vÞ
dv

�ð1�wÞ

þ�sð�RÞ
�

d2�̂ð1Þ
ab!jetXðs;v;w;�F;�R;RÞ

dvdw

3
5; (5)

where the dimensionless variables V and W are defined in
terms of pTJ

and �J as

V ¼ 1� pTJffiffiffi
S

p e�J and W ¼ p2
TJ

SVð1� VÞ ; (6)

with
ffiffiffi
S

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðPa þ PbÞ2
p

the hadronic c.m.s. energy. v and
w are the corresponding parton-level variables; they are
given in terms of the partonic Mandelstam variables

s � ðpa þ pbÞ2; t � ðpa � pJÞ2;
u � ðpb � pJÞ2; (7)

as

v ¼ 1þ t

s
; w ¼ �u

sþ t
: (8)

The sum in (5) runs over all partonic channels aþ b !
jetþ X, with d�̂ð0Þ

ab!jetX and d�̂ð1Þ
ab!jetX the LO and NLO

terms in the corresponding partonic cross sections, respec-
tively. faðxa; �FÞ and fbðxb; �FÞ denote the parton distri-
bution functions at factorization scale �F whose partonic
momentum fractions are determined by V, W, v, and w:

xa ¼ VW

vw
; xb ¼ 1� V

1� v
: (9)

Finally,�R in (5) is the renormalization scale for the strong
coupling constant.

We note that expression (5) can be straightforwardly
extended to the case of collisions of longitudinally polar-
ized protons. Here one defines a spin-dependent cross
section as

d2��

dpTJ
d�J

� 1

2

"
d2�þþ

dpTJ
d�J

� d2�þ�

dpTJ
d�J

#
; (10)

where the superscripts indicate the helicities of the collid-
ing protons. The structure of Eq. (5) also applies to
d2��=dpTJ

d�J, except that the partonic cross sections

and parton distribution functions are to be replaced

by their spin-dependent counterparts d��̂ab!jetX and

�fa;bðxa;b; �FÞ, respectively. The former are defined in

analogy with (10), and for the latter we have

�faðx;�FÞ ¼ fþa ðx;�FÞ � f�a ðx;�FÞ; (11)

where fþa (f�a ) denotes the distribution for partons of type
a with the same (opposite) helicity as that of the parent
proton. All our expressions below will be formulated for
the spin-averaged case; however, they equally apply to the
polarized case with the modifications just discussed.
A possible way of organizing the NLO calculation of

the single-inclusive jet cross section was developed and
employed in Refs. [12,14–16,21]. It starts from the NLO
single-parton inclusive cross sections d�̂ab!cX, relevant for
the single-inclusive hadron production process pp ! hX
and analytically known from previous calculations [15,22].
These cross sections cannot directly be used to describe jet
production; they can, however, be converted to the desired
single-inclusive jet cross sections. To this end, one first
imagines a jet cone around the observed parton c and notices
that a NLO single-parton inclusive cross section contains
configurations where there is an additional parton d inside
the cone (note that we use the term cone here just for
simplicity—the considerations apply to any jet definition).
For a jet cross section, the observed final state should not
just be given by parton c, but by partons c and d jointly. One
therefore subtracts these contributions and replaces them
by terms for which partons c and d are both inside the
cone and form the observed jet together. To be more precise,
for a given partonic process ab ! cdewe have, after proper
bookkeeping of all partonic configurations that are possible
in the cone:

d�̂ab!jetX ¼ ½d�̂c � d�̂cðdÞ � d�̂cðeÞ�
þ ½d�̂d � d�̂dðcÞ � d�̂dðeÞ�
þ ½d�̂e � d�̂eðcÞ � d�̂eðdÞ�
þ d�̂cd þ d�̂ce þ d�̂de: (12)

Here d�̂j is the single-parton inclusive cross section where

parton j is observed (which also includes the virtual correc-
tions), d�̂jðkÞ is the cross section where parton j is observed
but parton k is also in the cone, and d�̂jk is the cross section

when both partons j and k are inside the cone and jointly
form the jet.
The single-parton inclusive cross sections d�̂j of

Refs. [15,22] were obtained after a subtraction of final-
state collinear singularities in the modified minimal

subtraction (MS) scheme. Upon calculation of the combi-
nations d�̂jðkÞ þ d�̂kðjÞ � d�̂jk in (12) one also finds

collinear singularities, which must match those initially
present in ðd�̂j þ d�̂kÞ=2. On the other hand, the full

expression in Eq. (12), being an inclusive-jet cross section,
must be collinear finite. Therefore, in order to obtain the
combination in (12) correctly, one just needs to perform an
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MS subtraction also of the singularities in the d�̂jðkÞ þ
d�̂kðjÞ � d�̂jk. For further discussion, see Ref. [12].

In practice, it is convenient to consider the d�̂jðkÞ and
d�̂jk separately. In the NJA, to which we will turn in the

next subsection, they may in fact be computed analytically.
At NLO, they both receive contributions only from real-
emission 2 ! 3 diagrams. Since for d�̂jðkÞ the jet is

obtained from the single parton j, it is independent of the
jet definition. The relevant results for this piece in the NJA
may be found in Ref. [12]. For d�̂jk, on the other hand,

the situation is different since here both particles j and k
jointly form the jet. In Refs. [12,14,16] the d�̂jk were

obtained for the case of cone algorithms. In the following
we will derive them also for the kt-type algorithms, using
again the NJA.

C. Calculation of d�̂jk in the ‘‘narrow
jet approximation’’

It is instructive to discuss the cone and kt-type algorithms
inparallel, in order tomake contactwith the derivationsmade
in Ref. [12] and to make our paper self-contained. From
Sec. IIA,we see that both the cone and the kt-type algorithms
contain a jet parameter R. In the NJA one assumes R to be
relatively small. As discussed at the end of Sec. IIA, our
choice is tomerge objects by adding their four-momenta. For
d�̂jk this means that the four-momentum pJ of the jet is the

sum of the parton four-momenta pj and pk.

We first observe that for the kt-type algorithms the two
partons j, k are merged into one jet if their distance defined
in (2) is smaller than their respective beam distances diB
and djB defined in (4). For d�̂jk this has to be the case by

definition, and we therefore arrive at the condition

R2
jk � R2 for kt � type algorithms; (13)

with Rij defined in Eq. (3). We stress that this condition

holds for all kt-type algorithms, regardless of the choice of
the parameter p. This implies that at NLO all kt-type
algorithms lead to the same jet cross section, a result that
does not rely on the NJA. Equation (13) is to be contrasted
with Eq. (1) valid for the cone algorithm:

R2
jJ � R2 ^ R2

kJ � R2 for cone algorithm: (14)

The difference between Eqs. (13) and (14) is solely respon-
sible for any differences between the NLO results for the
two types of jet algorithms. For the kt-type algorithms it
is the distance between the two partons that is constrained
by the jet algorithm, whereas for the cone algorithm it is the
distance of each parton to the jet itself. Note that this
observation was already made in Ref. [3], and in Ref. [20]
in a slightly different context.

As was shown in Ref. [12], in the NJA d�̂jk is, up to

trivial factors, given by the following expression [see
Eqs. (19), (20), and (27) of that paper]:

d�̂jk

dvdw
/
Z dPS3

dvdw

P<
jKðzÞ

2pj � pk

; (15)

where the integration dPS3 is over the phase space of the
three-body final state of the overall partonic process, which
is carried out in d ¼ 4� 2" dimensions. Expression (15)
arises from the fact that d�̂jk is strongly dominated by

contributions for which particles j and k result from col-
linear splitting of an intermediate particle K. The reason is
that in this case the propagator of the intermediate particle,
represented by the denominator 1=ð2pj � pkÞ, goes on shell.
For instance, if the jet is formed by a quark and a gluon, the
pair will predominantly originate from a quark splitting
into a quark plus a gluon, described by the splitting func-
tions Pqq and Pgq. The argument z of the splitting function

is the fraction of the intermediate particle’s momentum
transferred in the splitting. The superscript ‘‘<’’ on the
splitting function indicates that the d-dimensional splitting
function PjKðzÞ is strictly at z < 1, that is, without its

�ð1� zÞ contribution that is present when j ¼ K. This is
a necessary condition in order to have two partons produc-
ing the jet. Explicitly, we have

P<
qqðzÞ ¼ CF

�
1þ z2

1� z
� "ð1� zÞ

�
;

P<
qgðzÞ ¼ 1

2
½z2 þ ð1� zÞ2 � 2"zð1� zÞ�;

P<
gqðzÞ ¼ CF

�
1þ ð1� zÞ2

z
� "z

�
;

P<
ggðzÞ ¼ 2CA

ð1� zþ z2Þ2
zð1� zÞ ;

(16)

with CA ¼ 3 and CF ¼ 4=3 the usual SU(3) Casimir opera-
tors. For additional details, we refer the reader to Ref. [12].
Making use of the fact that pJ ¼ pj þ pk, the term on

the right-hand side of (15) may be written as [12]

Z dPS3
dvdw

P<
jKðzÞ

ð2pj �pkÞ

¼
�
1

8�

�
4�

s

�
" ðvð1�vÞÞ�"

�ð1�"Þ
�

1

8�2

�
4�

s

�
"�ð1�wÞ
�ð1�"Þ

�
Z EJ

0
dEj

EJ

E2
k

�E2
j

s

��"
P<
jKðzÞ

Z �max

0
d�j

sin1�2"�j
1�cos�jk

; (17)

where EJ ¼ Ej þ Ek is the jet energy (with Ej;k the ener-

gies of partons j, k), z ¼ Ej=EJ, and �jk the angle between

the three-momenta of partons j and k. �j is the polar angle

of parton j, measured with respect to the jet direction. �max

is an upper limit on the �j integration that needs to be

derived according to the jet algorithm. It is of the order of
the jet parameter R, and hence treated as small in the NJA.
It is useful to write the �j integral as an integral over

the (squared) invariant mass p2
J � m2 ¼ 2pj � pk of the

produced jet. One finds
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cosð�jkÞ¼1� m2

2EjEk

; cosð�jÞ¼
2EjEJ�m2

2Ej

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
J�m2

q : (18)

With this one obtains after some algebra:

Z dPS3
dvdw

P<
jKðzÞ

ð2pj � pkÞ

¼
�

1

64�3

�
4�ffiffiffi
s

p
�
2" ðvð1� vÞÞ�"

�2ð1� "Þ
�
�ð1� wÞ

�
Z 1

0
dzz�"ð1� zÞ�"P<

jKðzÞ
Z m2

max

0

dm2

m2
m�2"; (19)

where we have also expressed the integral over the energy
Ej as an integral over z. In the NJA, m

2 is a small quantity,

and we have hence neglected powers of m2 wherever
possible. Note however that the m2 integral produces a
1=" singularity at the lower end.

All that is left to be done now is to determine the upper
limit of the integral over m2, which depends on the jet
algorithm chosen. In order to make contact with the results
in Ref. [12], we do this first for the cone algorithms and
afterwards for the kt-type algorithms we are mainly inter-
ested in here. In both cases we first write the jet four-
momentum as

pJ ¼
�
EJ; j ~pJj cosð�JÞ

coshð�JÞ ; j ~pJj sinð�JÞ
coshð�JÞ ; j ~pJj tanhð�JÞ

�
;

(20)

where

j ~pJj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
J �m2

q
: (21)

For the parton momenta pj and pk, which are lightlike, we

write accordingly

pj ¼ Ej

�
1;

cosð�jÞ
coshð�jÞ ;

sinð�jÞ
coshð�jÞ ; tanhð�jÞ

�
;

pk ¼ Ek

�
1;

cosð�kÞ
coshð�kÞ ;

sinð�kÞ
coshð�kÞ ; tanhð�kÞ

�
;

(22)

with the azimuthal angles �j;k and pseudorapidities �j;k of

the partons.
(i) Cone algorithms: We write

m2 ¼ 2pj � pk ¼ 2pj � pJ

� 2EjEJ

coshð�j � �JÞ � cosð�j ��JÞ
coshð�jÞ coshð�JÞ

þ Ejm
2

EJ

cosð�j ��JÞ þ sinhð�jÞ sinhð�JÞ
coshð�jÞ coshð�JÞ ; (23)

where we have expanded j ~pJj to first order in m2. The
combination ðcoshð�j � �JÞ � cosð�j ��JÞÞ in (23) is

small, while in the other term m2 is small. Therefore, to
the order we consider, we can set �j ¼ �J, �j ¼ �J in all

other places. This gives

m2 � EjEJ

cosh2ð�JÞ
R2
jJ þ

Ejm
2

EJ

; (24)

where RjJ is as defined in Eq. (1). We solve for m2 and get

m2 � E2
J

cosh2ð�JÞ
z

1� z
R2
jJ: (25)

Likewise, we find

m2 � E2
J

cosh2ð�JÞ
1� z

z
R2
kJ: (26)

The jet criterion (14) in the cone algorithm then immedi-
ately translates into

m2
max;cone ¼ E2

JR
2

cosh2ð�JÞ
min

�
z

1� z
;
1� z

z

�
: (27)

The last two integrals in (19) are now readily performed:

Z 1

0
dzz�"ð1� zÞ�"P<

jKðzÞ
Z m2

max;cone

0

dm2

m2
m�2"

¼ � 1

"

�
E2
JR

2

cosh2ð�JÞ
��"

IconejK ; (28)

where

IconejK �
�Z 1=2

0
dzz�2" þ

Z 1

1=2
dzð1� zÞ�2"

�
P<
jKðzÞ: (29)

The explicit results for these integrals for the various
splitting functions in (16) were given in [12]:

Iconeqq ¼ CF

�
� 1

"
� 3

2
þ "

�
� 7

2
þ �2

3
� 3 log2

��
¼ Iconegq ;

Iconeqg ¼ 1

2

�
2

3
þ "

�
23

18
þ 4

3
log2

��
;

Iconegg ¼ 2CA

�
� 1

"
� 11

6
þ "

�
� 137

36
þ �2

3
� 11

3
log2

��
:

(30)

Note that the ratio R= coshð�JÞ corresponds to the half-
opening � of the jet cone considered in Ref. [12]. We also
note the logarithmic dependence of d�̂jk on R arising from

the factorR�2" in Eq. (28). At first sight, Eq. (28) would also
suggest the presence of double-logarithmic terms / log2R
in the jet cross section, resulting from the double poles
/ 1="2 that are generated in the diagonal cases j ¼ K.
These double logarithms cancel, however, against similar
terms in the piece d�̂jðkÞ þ d�̂kðjÞ defined in Eq. (12) [13].

This cancellation happens simultaneously with that of the
double poles between d�̂jk and d�̂jðkÞ þ d�̂kðjÞ.
(ii) kt-type algorithms: Here we use Eq. (22) to directly

compute
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m2¼ 2EjEk

coshð�jÞcoshð�kÞðcoshð�j��kÞ�cosð�j��kÞÞ:
(31)

We can approximate this by

m2 � EjEk

cosh2ð�JÞ
ðð�j � �kÞ2 þ ð�j ��kÞ2Þ

¼ EjEk

cosh2ð�JÞ
R2
jk; (32)

with Rjk defined in (13). The condition R2
jk � R2 then

immediately gives

m2
max;kt

¼ E2
JR

2

cosh2ð�JÞ
zð1� zÞ; (33)

and instead of (28) we have

Z 1

0
dzz�"ð1� zÞ�"P<

jKðzÞ
Z m2

max;kt

0

dm2

m2
m�2"

¼ � 1

"

�
E2
JR

2

cosh2ð�JÞ
��"

IktjK; (34)

where

IktjK �
Z 1

0
dz½zð1� zÞ��2"P<

jKðzÞ; (35)

which, using (16), gives

Iktqq ¼ CF

�
� 1

"
� 3

2
þ "

�
� 13

2
þ 2�2

3

��
¼ Iktgq;

Iktqg ¼ 1

2

�
2

3
þ 23

9
"

�
;

Iktgg ¼ 2CA

�
� 1

"
� 11

6
þ "

�
� 67

9
þ 2�2

3

��
:

(36)

Comparison with (30) shows that the pole terms in Eqs. (28)
and (34) are the same, as they have to be. The finite
remainders, however, differ and will lead to finite and
R-independent differences in the NLO cross sections for
the two types of algorithms. As seen from Eq. (17), the cross
sections d�̂jk are proportional to �ð1� wÞ and hence have

LO kinematics. This will, therefore, also be true for the finite
differences just mentioned. We note that expressions similar
to those in (36) were also obtained in Ref. [20] in the context
of jet studies in soft collinear effective theories.

It is now straightforward to use the integrals IktjK given

above to derive the NLO jet cross section for the kt-type
algorithms in the NJA—the calculation proceeds exactly as
in Ref. [12]. In fact, it is very easy to change the numerical
code of Jäger et al. [12] to the case of the kt-type algo-
rithms: The integrals IconejK are the only sources of terms

/ log2 in the NLO calculation for the cone algorithms.
Thus, by replacing these terms appropriately in each sub-
process one can translate the result from the cone algorithm

to the case of kt-type algorithms without having to do the
full calculation in (12).
While we have derived all the results above for the spin-

averaged cross section, it is straightforward to extend them
to the case of jet production in polarized collisions. In the
NJA, the contributions by particles j and k forming the jet
entirely arise from final-state emission, which is indepen-
dent of the polarization of the initial partons. Therefore the

same integrals IconejK or IktjK apply to the polarized case.

III. PHENOMENOLOGICAL RESULTS

In this section, we present some phenomenological
results for single-inclusive jet production cross sections
and spin asymmetries in pp collisions at RHIC. Our
main focus is of course on the sensitivity of these quantities
to the jet algorithm used.

A. Unpolarized collisions

We begin by ascertaining the accuracy of the NJA. It was
shown already in Ref. [12] that for the cone algorithm the
approximation is very accurate for the values of R and
kinematics relevant at RHIC. To confirm this finding, we
make use of the recently developed fastNLO package [23]
which is based on the NLO code NLOJetþþ by Nagy [24]
and allows us to compute NLO jet cross sections with
Monte Carlo integration methods. In fact, the authors of
the code offer an online tool that provides numbers for the
jet cross section at RHIC for the midpoint cone algorithm, as
used by the STAR Collaboration [1]. In the upper left part of
Fig. 1 we compare these results to the ones we find with our
code based on the NJA. We plot the ratio of the two
theoretical results. We have used here the CTEQ6.6M parton
distributions [25], which will be our choice for the spin-
averaged parton distribution functions throughout this paper.

The comparison is for
ffiffiffi
S

p ¼ 200 GeV, R ¼ 0:4, and a
range of rapidity 0:2 � j�Jj � 0:8. We have chosen the
factorization and renormalization scales as �F¼�R¼pTJ

.

As one can see, there is excellent agreement between the full
NLO Monte Carlo calculation and our approximated result.
The largest deviations occur at the lowest pTJ

; even here

they amount to at most 5%.
The lower left part of Fig. 1 shows a similar comparison

for the kt-type algorithms (we remind the reader that at
NLO the jet cross section is the same for all kt-type
algorithms). The exact NLO calculation was performed
here with the FastJet code [26,27], which is also based
on Ref. [24]. Kinematics are similar as before, except that
we have used here the rapidity range j�Jj � 0:6. We have
again used R ¼ 0:4 for the jet parameter in the kt-type
algorithms. Again, the NJA reproduces the full NLO cal-
culation very accurately. Interestingly, comparing the
upper and lower left parts of Fig. 1, we observe that the
NJA very slightly overpredicts the NLO cross section for
the case of cone algorithms, but underpredicts it in the
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kt-type case. We note that the excellent overall agreement
between the NJA and the exact NLO calculation occurs
also for other choices of the factorization and renormal-
ization scales.

As an aside, we also show in the right part of Fig. 1
results for similar comparisons for p �p collisions at the

Tevatron (
ffiffiffi
S

p ¼ 1960 GeV) and for the LHC (
ffiffiffi
S

p ¼
7 TeV), for various jet algorithms. The kinematics corre-
spond to those used in experiments [28–31]. The exact
NLO results were again obtained using the fastNLO [23]
and FastJet [26,27] packages. One can see that the NJA
also works very well in these cases.

Another way of gauging the accuracy of the NJA is to
consider the ratio of jet cross sections for different jet
parameters R:

R ðR1; R2Þ �
d2�=dpTJ

d�JðR ¼ R1Þ
d2�=dpTJ

d�JðR ¼ R2Þ
: (37)

As shown in Ref. [32], R can be expanded perturbatively
in orders of �s. To the lowest nontrivial order one has

R ðR1; R2Þ ¼ 1þ d2�NLOðR1Þ � d2�NLOðR2Þ
d2�NLOjOð�2

s Þ
; (38)

where d2�NLOðRÞ denotes the NLO cross section for a
given R and d2�NLOjOð�2

s Þ its truncation to the lowest order,
keeping however the strong coupling constant �s and the
parton distributions at NLO. d2�NLOjOð�2

s Þ does not depend
on R. The difference of cross sections in the numerator of
(38) is of order �3

s , so that RðR1; R2Þ is of the form
1þOð�sÞ. Figure 2 shows the result for Rð0:2; 0:4Þ at

RHIC energy
ffiffiffi
S

p ¼ 200 GeV, as a function of pTJ
. The

cross sections have been integrated over j�Jj � 0:6, and
we have used here scales �F ¼ �R ¼ pTJ

. Our result may

be directly compared to the corresponding one given in

Ref. [32] for the same set of parameters, also shown in the
figure, where the full FastJet code was used. One can see
that the agreement is excellent, impressively demonstrat-
ing the accuracy of the NJA. We note, however, that in the
NJA the ratioRðR1; R2Þ is independent of the jet algorithm
chosen. The agreement seen in Fig. 2 hence is a test of the
NJA as such, but not of the implementation of a specific jet
algorithm.
Having established the validity of the NJA, we now

provide results for jet cross sections at RHIC. Figure 3

shows the spin-averaged cross sections for j�Jj�1 at
ffiffiffi
S

p ¼
200 GeV (left) and

ffiffiffi
S

p ¼ 500 GeV (right). Results are
presented for both the cone and the kt-type algorithms, using
two values for the jet parameter, R ¼ 0:4 and R ¼ 0:7. The
renormalization and factorization scales have again been set
to pTJ

. Figure 4 examines how the cross sections vary with
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FIG. 2 (color online). The ratio Rð0:2; 0:4Þ as defined in
Eq. (38) for pp collisions at RHIC at

ffiffiffi
S

p ¼ 200 GeV. The solid
histogram shows our result within the NJA, while the dashed one
shows the corresponding result for the kt=anti-kt algorithms
presented in Ref. [32].
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FIG. 1 (color online). Upper left: Ratio of single-inclusive jet cross sections at RHIC for the cone algorithm, as computed within
the NJA and with fastNLO [23]. Lower left: Same for the jet cross sections for the kt-type algorithms. Here, the exact NLO calculation
was performed with the FastJet code [26,27]. Right: Similar comparisons for Tevatron (upper,

ffiffiffi
S

p ¼ 1960 GeV) and LHC (lower,ffiffiffi
S

p ¼ 7 TeV) energies. The exact NLO results for Tevatron and for the LHC with R ¼ 0:5 were obtained from fastNLO, the others
from FastJet.
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the choice for the scale� � �F ¼ �R, for the case R¼0:4.
We vary the scales in the region pTJ

=2 � � � 2pTJ
and

show the relative deviation from the result for the case
� ¼ pTJ

. Interestingly, for this value of R, the scale depen-

dence is not too similar for the cone and the kt-type
algorithms. For the former, the cross section increases
monotonically when going from scale � ¼ 2pTJ

to � ¼
pTJ

=2, while for the latter the cross section for � ¼ pTJ
is

for most pTJ
larger than those for both other scales. Also,

the scale dependence is overall somewhat smaller for the
kt-type algorithms. We have verified that these patterns are
present in the exact NLO calculation with FastJet [27].

We now turn to a more detailed comparison of the jet
cross sections at RHIC for the two different jet algorithms.
We define the ratio

R algo �
½d2ð�Þ�=dpTJ

d�J�kt�type

½d2ð�Þ�=dpTJ
d�J�cone

; (39)

choosing the same jet parameter R for both cross sections.
Figure 5 shows our results for Ralgo as a function of pTJ

(we have chosen pTJ
bins of 5 GeV width), for R ¼ 0:4

and 0.7. We present results for both energies relevant at

RHIC,
ffiffiffi
S

p ¼ 200 GeV (left) and
ffiffiffi
S

p ¼ 500 GeV (right).
We have in both cases integrated the cross sections over
the rapidity range j�Jj � 1. Results are presented for the
default scale � ¼ pTJ

. As one can see, for this scale, the

cross section for the kt-type algorithms is about 10%
smaller than that for the cone algorithm, except at pTJ

&

10 GeV where the ratio Ralgo drops more strongly. Our

results are consistent with the trend seen in jet algorithm
studies by the STAR Collaboration [33]. The ratio Ralgo

also shows relatively little dependence on the jet parameter
R. Keeping in mind the results shown in Fig. 4, it is clear
that the scale dependence of Ralgo must be quite large. As

an example, the dash-dotted lines in the left part of Fig. 5

show Ralgo at
ffiffiffi
S

p ¼ 200 GeV and R ¼ 0:4 computed for

scales � ¼ pTJ
=2 (lower curve) and � ¼ 2pTJ

(upper

curve). Indeed, Ralgo depends quite sensitively on �.

However, the basic finding that the jet cross section for
the kt-type algorithms is smaller than that for the cone
algorithm for the same value of R is independent of the
scale choice. This observation in fact implies that a choice
of a larger R for the kt-type algorithms should bring the
two cross sections much closer together. Indeed, it was
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FIG. 3 (color online). Spin-averaged NLO cross sections for single-inclusive jet production at RHIC at center-of-mass energies
200GeV (left) and 500GeV (right). Results are shown for the cone and kt-type algorithms, for two different values of the jet parameterR.
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found in Ref. [3] that a choice Rkt � 1:35Rcone makes the

cross sections for the two algorithms quite similar, also for
other choices of the scale �. We confirm this finding.

B. Longitudinally polarized collisions

For the polarized case we use the ’’DSSV’’ helicity
parton distributions of Ref. [17]. Our first finding is that
for the polarized case the effects of changing the jet
algorithm are somewhat more pronounced than in the
unpolarized one. Figure 6 shows the ratio Ralgo for polar-

ized collisions at RHIC, again computed for the scale � ¼
pTJ

.Ralgo is again around 90% at high pTJ
, but shows large

deviations from unity in the bin around pTJ
¼ 12:5 GeV.

The reason for this is that for the DSSV set of parton
distributions the polarized jet cross section crosses zero
around pTJ

¼ 10 GeV. Depending on the jet algorithm,

this zero will be at slightly different locations, making the
denominator and numerator ofRalgo vastly different there.

This is, of course, for the most part an artifact of the way
we are performing the comparison of the jet cross sections,
taking ratios of small numbers at some pTJ

� 10 GeV. On

the other hand, it does demonstrate the issue that in regions
where the polarized cross section is very small it may also
be quite susceptible to the choice of jet algorithm and
hence (at the nonperturbative level) to hadronization cor-
rections. We note that the difference between the cross
sections for the kt-type and cone algorithms may again
be diminished by choosing a larger value of R for the
former, Rkt � 1:35Rcone as in the spin-averaged case dis-

cussed above. This also brings the two polarized cross
sections somewhat closer together in the bins near their
zero, even though marked differences remain here.
Figure 7 shows the spin asymmetries ALL at RHIC,

which are defined by

ALL � d2��=dpTJ
d�J

d2�=dpTJ
d�J

: (40)

For the denominator we use the spin-averaged cross sections
shown in Fig. 3. The most important observation is that
the asymmetries are quite insensitive to the jet algorithm
chosen, and also to the value of the jet parameter R. The
exceptions are of course regions where the polarized cross
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section (nearly) vanishes, as we saw in Fig. 6. In these
regions, ALL is very small, and so these exceptions are not
really noticeable in Fig. 7.

V. CONCLUSIONS

We have computed the NLO cross sections for single-
inclusive high-pT jet production in spin-averaged and lon-
gitudinally polarized pp collisions at RHIC, with special
focus on the algorithm adopted to define the jets. Following
Ref. [12], we have treated the jets in the approximation that
they are rather narrow (narrow jet approximation). In this
approximation one can derive analytical results for the
corresponding partonic cross sections, which are of the
form A logRþB with R the jet parameter. We have ex-
tended the results of Ref. [12] to the case where an infrared-
safe ‘‘kt-type’’ algorithm (kt, anti-kt, Cambridge-Aachen
algorithm) is used. By comparison to available ‘‘exact’’
NLO jet codes for spin-averaged scattering [23,26], we
have found that the narrow jet approximation is very accu-

rate at RHIC for practically all relevant situations. The same
is true even at Tevatron and LHC energies.
Our numerical results show that for given R, jet cross

sections at RHIC depend significantly on the algorithm
chosen. Moreover, the scale dependence of the cross sec-
tions can be quite different for cone and kt-type algorithms.
For polarized cross sections, the dependence on the jet
algorithm can be very pronounced in the vicinity of a
zero of the cross section. On the other hand, spin asymme-
tries at RHIC overall turn out to be quite robust with
respect to the jet algorithm adopted.
We finally stress that our analytical results are also

relevant for matching threshold-resummed calculations of
jet cross sections to fixed-order ones. For the case of cone
algorithms, based on the results of Jäger et al. [12], this was
already exploited in Ref. [19]. Our present calculation
allows to extend this procedure to the case of the nowadays
more popular kt-type algorithms. We note that the jets we
consider here remain massive near partonic threshold (see
the discussion in Ref. [19]), which affects the logarithmic
structure of the partonic cross sections [34] and corre-
sponds to the situation encountered in experiment and in
the ‘‘exact’’ NLO codes such as FastNLO and FastJet. It is
known [35] that ‘‘nonglobal’’ threshold logarithms arise in
this case, since the observable is sensitive to radiation into
only a limited part of phase space. These appear first at
next-to-leading logarithmic level.
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