
Vacuum structure and string tension in Yang-Mills dimeron ensembles

Falk Zimmermann,1,2 Hilmar Forkel,1 and Michael Müller-Preußker1

1Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
2HISKP and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

(Received 26 April 2012; published 1 November 2012)

We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight

determined by the classical action and perform a comprehensive analysis of their properties as a function

of the bare coupling. In particular, we examine the extent to which these ensembles and their classical

gauge interactions capture topological and confinement properties of the Yang-Mills vacuum. This also

allows us to put the classic picture of meron-induced quark confinement, with the confinement-

deconfinement transition triggered by dimeron dissociation, to stringent tests. In the first part of our

analysis we study spacial, topological-charge and color correlations at the level of both the dimerons and

their meron constituents. At small to moderate couplings, the dependence of the interactions between the

dimerons on their relative color orientations is found to generate a strong attraction (repulsion) between

nearest neighbors of opposite (equal) topological charge. Hence, the emerging short- to mid-range order in

the gauge-field configurations screens topological charges. With increasing coupling this order weakens

rapidly, however, in part because the dimerons gradually dissociate into their less localized meron

constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find

the growing disorder due to the long-range tails of these progressively liberated merons to generate a finite

and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark

potential, on the other hand, is dominated by small, ‘‘instantonlike’’ dimerons. String tension, action

density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to

be of the order of standard values. Hence, the above results demonstrate without reliance on weak-

coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills

vacuum can indeed produce a meron-populated confining phase. The density of coexisting, hardly

dissociated and thus instantonlike dimerons seems to remain large enough, on the other hand, to reproduce

much of the additional phenomenology successfully accounted for by nonconfining instanton vacuum

models. Hence, dimeron ensembles should provide an efficient basis for a more complete description of

the Yang-Mills vacuum.
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I. INTRODUCTION

The notorious complexity of the Yang-Mills vacuum
manifests itself in emergent infrared phenomena which,
despite vigorous theoretical efforts over the last decades,
remain only fragmentarily understood. Quark confinement
[1] was early recognized as a paradigm for these infrared
complexities, because of both its unprecedented nature
and its almost universal impact on the hadronic world. The
long struggle to explain the nonperturbative confinement
mechanism has led to the development and often ongoing
refinement of a wide variety of theoretical approaches [2],
ranging from various vacuum models to ab initio lattice
simulations [3]. The latter, in particular, have provided
strong and unbiased evidence for the main signatures of
quark confinement, i.e., the linear growth (and saturation)
of the static quark-antiquark potential at large distances
and the associated color flux-tube formation [4] (and
breaking [5]).

Beyond establishing confinement and its characteristics,
intense efforts were devoted to pinning down the under-
lying dynamical mechanism and identifying the infrared

degrees of freedom best suited to describe it in humanly
fathomable terms. Vacuum model analyses have played a
prominent and often pioneering role in this endeavor. The
majority of these models is based on ensembles of specific
‘‘constituent’’ fields, i.e., at least partly localized gauge
fields (with their prospective monopole loop and center
vortex content), which are supposed to populate and dis-
order the Yang-Mills vacuum. Potential candidates for
these building blocks can be classified according to the
increasing number of spacetime dimensions in which they
are localized, and thus equivalently to their increasing
efficiency in disordering the vacuum. The minimally,
i.e., in just two dimensions, localized candidates are center
vortices [6,7]. An intermediate position occupy both
(gauge-projected) Abelian [8,9] and non-Abelian mono-
poles or dyons [10,11] (possibly in the guise of BPS
constituents [12] of KvBLL calorons [13]), which are
localized in the three spacial dimensions.
Among the maximally, i.e., in all four (Euclidean)

spacetime dimensions, localized candidates for the build-
ing blocks of confining field configurations, finally, are
regular-gauge instantons [14], calorons with nontrivial
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[13,15–17] holonomy and merons [14,18,19]. All of these
‘‘pseudoparticles’’ carry a nontrivial topological charge,
mediate vacuum tunneling events and solve the classical
Yang-Mills equation [20]. The latter property, in particular,
has raised hopes that at least one of these solutions may
provide a basis for semiclassical and therefore potentially
analytical treatments of confinement. (This proved indeed
possible in lower-dimensional models, where instantons
or vortices were shown to generate confinement at weak
coupling [22,23]). In classically scale-invariant, four-
dimensional Yang-Mills theory, however, where one is
inevitably faced with large couplings at large distances,
the justification for semiclassical approximations depends
crucially on the characteristic distance scales involved. A
successful semiclassical description of confinement, in
particular, would require all physically relevant confine-
ment effects (as, for example, the quark binding inside
light hadrons) to take place over distances that remain
small enough to avoid the strong-coupling regime.

In order to overcome these potentially stymying limita-
tions, the numerical simulation of fully interacting pseu-
doparticle ensembles offers an attractive possibility. The
first and still most extensive of such calculations was based
on rather dilute superpositions of instantons and anti-
instantons in singular gauge [24]. Such superpositions main-
tain part of the instantons’ semiclassical nature, are known to
generate a variety of important physical effects including
spontaneous chiral symmetry breaking and describe a large
amount of successful vacuum and hadron phenomenology
[24]. However, they fail to generate a confining, i.e., linearly
growing, potential between static quarks [25–27]. By now,
numerical simulations have been performed for superposi-
tions of all the other above-mentioned pseudoparticle candi-
dates as well. A central result was that each of them proved
capable of generating a finite string tension.

The discovery of new finite-temperature instantons [13]
has given renewed impetus to semiclassically inspired
confinement models. These generalized calorons contain
Nc self-dual monopole (‘‘dyon’’) constituents without clas-
sical interactions and carry a nontrivial holonomy as an
explicit degree of freedom. The ability of the calorons to
separate into Nc quasi-independent constituents (without
cost in action) in the confinement phase has led to simulations
[17] where the separation appears as an additional (internal)
degree of freedom compared to the ‘‘old-fashioned’’ instan-
ton simulations. Encouraging results have been obtained.
Later, an analytic solution for the caloron-dyon gas was
proposed [12] at the price of a nonpositive weight of an
overwhelming multitude of configurations with respect to
the moduli metric [28]. An analytic as well as numerical
treatment of the purely Abelian noninteracting dyon gas was
shown to provide a confining force [29].

In addition, equilibrated lattice gauge-field configura-
tions were successfully searched for the presence of pseu-
doparticles (with the notable exception of merons) in the

Yang-Mills vacuum. Such searches are typically performed
by smoothing techniques designed to filter out infrared gluon
fields and, in particular, solutions of the classical Yang-Mills
equation. For examples in the most extensively studied case
of instantons and their size distribution, see Ref. [30], and for
calorons with nontrivial holonomy Ref. [16].
In the present paper, building upon the above develop-

ments, we are going to introduce and study a new type of
pseudoparticle ensemble. The latter is based on superposi-
tions of dimerons and antidimerons (in singular gauge),
i.e., of those four-dimensionally localized solutions of the
classical SU(2) Yang-Mills equation which contain two
meron centers [18]. The relatively large dimeron solution
family includes, as one extreme, members that are con-
tracted to (singular-gauge) instantons and, as another,
members that are dissociated into two far-separated mer-
ons. Moreover, it contains continuous sets of dimeron
fields that interpolate between these extremes. Hence, our
configuration space includes many of the previously
studied singular-gauge instanton and single-meron con-
figurations and is ideally suited to study transitions be-
tween instanton and meron ensembles. This is a crucial
advantage because such a transition was conjectured to
take place between the instanton, dimeron and meron
components of the Yang-Mills vacuum as a function of
the bare gauge coupling. Indeed, this transition is a central
ingredient of the meron-induced confinement scenario
which was put forward on the basis of qualitative argu-
ments by Callan, Dashen and Gross (CDG) [25,31] (and
further explored in several promising directions, including
e.g., a two-phase picture of hadron structure [32] supported
by recent lattice simulations [33]). (For more recent work
on merons, see Ref. [34]. An alternative meron confine-
ment mechanism was suggested in Ref. [35]).
The CDG confinement scenario was inspired by the

already mentioned weak-coupling confinement mecha-
nism in 2þ 1 dimensional Yang-Mills-Higgs theory
[22,23]. In analogy with the (2þ 1 dimensional) instan-
tons of this model, the meron and antimeron solutions of
3þ 1 dimensional Yang-Mills theory will form a meron
plasma component in the vacuum whose density increases
with the gauge coupling. This plasma generates crucial
long-range correlations which originate from the merons’
exceptionally broad and uniquely non-Abelian color tails.
Indeed, the latter do not turn into pure gauges (cf. Sec. II)
and thereby enable the merons’ field strengths to decay as
slowly as 1=x2 with the distance x from their center. This
distinctive behavior is reminiscent of color-magnetic
monopoles and in marked contrast to the field strength of
3þ 1 dimensional instantons which decays much faster (as
1=x4). Ever since the discovery of merons, the most promi-
nent role of the ensuing long-range color correlations was
expected to be the confinement of quarks [25,31].
In order to understand how a meron plasma can confine

quarks, it is useful to consider a rectangular Wilson loop

ZIMMERMANN, FORKEL, AND MÜLLER-PREUßKER PHYSICAL REVIEW D 86, 094005 (2012)

094005-2



with side lengths T and R. Its vacuum expectation value is
equal to expð�FÞwhere F ¼ VðRÞT is the free energy of a
steady, rectangular, color-electric current loop (generated
e.g., by a heavy quark-antiquark pair) in the meron plasma.
The non-Abelian analog of Ampere’s law implies that such
loops generate a color-magnetic field. A color-magnetic
dipole sheet is therefore formed across the loop to shield
this field from penetrating into the meron plasma. On one
side this dipole sheet is bounded by a surface layer of
merons and on the other by a layer of antimerons. As a
consequence, the color-magnetic field extends just be-
tween these two surfaces and the thickness of the sheet,
i.e., the distance between the surfaces, is of the order of the
plasma’s color-screening length. The crucial effect of the
merons’ long-range color tails is that the dipole sheet can
extend over the whole loop. For large loops, the free energy
will then be proportional to the minimal area spanned by
the loop. HenceWilson’s area-law criterion is satisfied, i.e.,
the potential between static color-electric charges grows as
VðRÞ � R and shows that the meron plasma can indeed
generate linear confinement. (This is in contrast to ensem-
bles of singular-gauge instantons with their more localized
dipole tails which generate a nonconfining Coulomb-type
potential.) For large R, furthermore, the fixed-T part of the
sheet corresponds to a tube of color-electric flux with an
energy proportional to R. As already mentioned, such flux
tubes are a basic feature of confinement which explains
e.g., linear Regge trajectories and was recently observed in
lattice simulations [4].

In contrast to the classic 2þ 1 dimensional Yang-Mills-
Higgs paradigm [22,23], however, even the ingenious use
of semiclassical arguments turned out to be of limited use
in 3þ 1 dimensional Yang-Mills theory. In fact, the result-
ing analytical estimates of the confinement behavior
remained qualitative at best [36]. Further progress was
achieved only recently when a numerical study of super-
positions of merons and antimerons [14,19] provided
convincing support for the expectation that the meron
component of the Yang-Mills vacuum indeed confines
and generates a static quark potential which rises linearly
at large interquark separations. The suggested origin of the
meron population in the vacuum from dimeron dissociation
remained obscure, however, since the field content was
from the outset restricted to a purely meronic phase.

To understand the development of such a meron-
dominated phase and to analyze the underlying mechanism
in dimeron-antidimeron ensembles evolving under the
Yang-Mills dynamics will therefore be important points
on our agenda. For this purpose, and in contrast to previous
simulations of pseudoparticle ensembles, we will monitor
pertinent vacuum properties in a wide range of gauge-
coupling values. In particular, we will look for signatures
of the envisioned dimeron dissociation process. Similar to
the gradual breakup of molecules into their atomic con-
stituents with increasing temperature, this dissociation is

suggested to be driven by a competition between the
decreasing attraction among the dimerons’ regularized
meron centers and the entropy [38] gain from their increas-
ingly distant positions. Guided by the behavior of an ideal
dimeron gas, one may indeed roughly estimate the inter-
meron attraction to decrease relative to the entropy with
growing coupling. In view of the strong interactions an-
ticipated, especially between the meron centers of different
dimerons, in significantly dissociated ensembles, however,
such estimates are unreliable. Moreover, in our dynamical
context the coupling-dependent competition between en-
ergy and entropy is particularly subtle since both attraction
and entropy are expected to depend only logarithmically
on the intermeron separation [39]. This further impedes
even qualitative analytical estimates of dimeron-ensemble
properties.
Our fully interacting ensembles, on the other hand, are

well suited to tackle and clarify these issues. Since they
take all classical gauge interactions—including those
which may be strong, long-range or many-body—between
the dimerons into account, we do not have to rely on the
semiclassical or any other weak-coupling or low-density
approximation. Nevertheless, it will be of heuristic value
and of help for future, possibly more analytic treatments
to understand which aspects of the dimeron-ensemble
dynamics may be described semiclassically. In fact, one
of our reasons for transforming the individual dimerons
into a singular gauge was to provide additional insight
into this issue by more strongly localizing them. This
allows the dimerons and their meron centers to retain their
identities and their classical shapes to a larger extent, even
in the presence of quantum fluctuations, and thus facilitates
(semi-)classical behavior. At several points during the
course of our investigation, we will therefore check for
indications of such behavior.
Besides studying the dimeron dissociation process and

its dynamics in detail, we will also survey other structural
and topological properties of the ensemble configurations.
In particular, we will examine distributions and correla-
tions of the topological charge carriers and search for
ordering tendencies with respect to both dimeron and
meron centers. (A side benefit for investigating topology
distributions is that dimerons, in contrast to e.g., center
vortices and monopoles [42], carry the topological charge
of the Yang-Mills gauge group [43] directly). This will
result in a more detailed understanding of the restructuring
processes which accompany the transition to the strong-
coupling regime. We will pay particular attention to the
behavior of the topological susceptibility and of confine-
ment properties, which we monitor by evaluating Wilson-
loop expectation values and the associated string tension,
as a function of the bare coupling. The quantitative picture
emerging from these investigations will reveal, in particu-
lar, at which stage of dissociation (as quantified e.g., by
the average separation of the dimerons’ meron partners)
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dimeron ensembles can best describe the confining phase
of the Yang-Mills vacuum.

In the next section we start by acquainting the reader
with pertinent properties of the dimeron solutions, trans-
form them into a singular gauge and discuss the regulari-
zation of their singularities. We then set up our ensemble
field configurations and write down their partition function.
Section III presents an outline of our simulation strategy
and, in particular, of the measures taken to control system-
atic finite-size and discretization errors. The next and
central Sec. IV contains our results and their discussion.
We start with an extensive statistical analysis of the space-
time, topological-charge and color structure of the en-
semble configurations as well as of the crucial dimeron
dissociation process. These investigations provide a broad
spectrum of insights into the behavior of the dimeron
ensemble and its phase structure as a function of the gauge
coupling. They furthermore relate this behavior to the
changes in the average properties of the individual dimer-
ons. We then evaluate the topological susceptibility and the
static quark potential (based on the calculation of Wilson-
loop expectation values) and analyze the results in relation
to the coupling-dependent restructuring of the ensemble
configurations. We further discuss scale-setting issues,
evaluate dimensionless observable ratios, rewrite our re-
sults in physical units and confront them with those of
other approaches. Section V, finally, contains a summary of
our main findings and presents our conclusions.

II. SINGULAR-GAUGE DIMERON
CONFIGURATIONS AND THEIR DYNAMICS

In the following subsections we construct the (continuum)
dimeron field-configuration space on which our study will
be based. Along the way, we will motivate our expectation
that such dimeron configurations approximate crucial
features of the gauge-field population in the Yang-Mills
vacuum and, in particular, that they may provide a decent
description of the confinement-deconfinement transition
with decreasing gauge coupling. We start by deriving the
building blocks of our fields, i.e., the individual
dimeron solutions of the Yang-Mills equation in singular
gauge, and discuss their collective coordinates. We then
superpose these solutions to define our gauge-field con-
figuration space and write down the partition function
which specifies its dynamics. Finally, we discuss the
(both gauge-dependent and-independent) singularities of
our configurations and introduce suitable regularization
procedures to prepare for their numerical treatment in
Sec. III.

A. Yang-Mills dimerons in singular gauge

Dimerons (or meron pairs) are those classical solutions
of the Euclidean Yang-Mills equation that contain two
meron centers where their only singularities are located
[18]. In regular gauge, with the two merons located

symmetrically at the distances �a from the center at x0,
the SU(2) dimeron solution family reads [18]

AðD;rÞ
� ðx; fx0; a; ugÞ ¼

�ðx� x0 þ aÞ�
ðx� x0 þ aÞ2

þ ðx� x0 � aÞ�
ðx� x0 � aÞ2

�
uy���u; (1)

where ��� :¼ �a���a=2 with the Pauli matrices �a and

the ’t Hooft symbols �a��. (The latter are defined as

�a�� ¼ "a��, �a�4 ¼ ��a4� ¼ �a� for �, � ¼ 1, 2, 3

and �a44 ¼ 0 [44]). The unitary matrices u are global
SU(2) color rotations. The dimerons (1) carry the same
topological charge as instantons, i.e., Q ¼ 1. The antidi-

meron �AðD;rÞ
� with opposite topological charge Q ¼ �1 is

obtained from Eq. (1) by replacing �a�� ! ��a�� :¼
ð�1Þ��4þ��4�a��. In contrast to instantons, however,

dimerons are not self-dual.
The solution class (1) depends on eleven real and con-

tinuous ‘‘collective coordinates’’ or ‘‘moduli’’ whose val-
ues uniquely and completely specify each member. Eight
of these parameters, x0;� and a�, determine the spacetime

position and orientation of the dimeron while the remain-
ing three determine the SU(2) group elements u [45]. The
collective coordinates correspond to those 11 independent
combinations of the classical and continuous Yang-Mills
symmetries, i.e., of Euclidean spacetime translations and
rotations, conformal transformations and global SU(2)
color rotations, which transform a representative dimeron
into a gauge-inequivalent solution [46].
It is instructive to consider several limits of the solution

family (1). For a ! 0 the meron centers coalesce and the
dimeron turns into a pointlike, regular-gauge instanton.
(A finite-size instanton is reached after suitably regulariz-
ing the meron singularities, cf. Sec. II C). For jaj ! 1, on
the other hand, the dimeron breaks up into two merons.
Although these merons maintain the fixed relative
color orientation of Eq. (1), changing it by hand will yield
increasingly action-degenerate, two-meron solutions when
the intermeron separation jaj becomes large. This is
because the color-dependent attraction which locks the
meron constituents of Eq. (1) into their rigid color orienta-
tion decreases with increasing jaj. Hence, both instantons
and merons are contained in the solution class (1) as limit-
ing cases. The fields (1) therefore provide on-shell interpo-
lations between instantons and isolated meron pairs, i.e.,
continuous paths in Yang-Mills solution space which con-
nect these particular gauge fields. In our context these paths
are of particular interest since they provide preferred door-
ways alongwhich the dimeronsmay dissociate intomerons.
As already mentioned, such dissociation processes are con-
jectured to drive the deconfinement-confinement transition.
The solutions (1) have the same jxj ! 1 behavior as an

instanton in regular gauge [37,47,48], i.e., they contain a
long-distance tail
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AðD;rÞ
� ðxÞ !jxj!1

2
x�

x2
��� (2)

�1=jxj which implies an exceptionally weak localization.
In multidimeron configurations these tails generate strong
overlap interactions between the individual dimerons.
Building dimeron ensembles by superposing solutions of
the type (1) would thus lead to very strongly correlated
systems, in some respects similar to the regular-gauge
instanton ensembles studied in Ref. [14]. In the present
work we will take a different route, however. In contrast to
merons, dimerons—like instantons—may be transformed
to singular gauges in which they are more strongly local-
ized, with their long-range tails decaying as 1=jxj3. A
superposition of singular-gauge dimerons thus improves
the vacuum description at short distances, compared to
superpositions of either regular-gauge instantons or single
merons. As long as the characteristic dimeron size is small
compared to the average interdimeron separation, further-
more, it will provide much better approximations to clas-
sical Yang-Mills solutions. This is essentially because at
moderate pseudoparticle densities, the contribution of the
overlap regions to the action is much smaller than in
regular-gauge dimeron superpositions. Hence, singular-
gauge multidimeron configurations provide a privileged
testing ground, especially for the semiclassical features
of the CDG confinement mechanism [25,31,32].

In addition, dimeron configurations in singular gauge
may also describe less classical or even fully quantum-
mechanical aspects of confinement. This holds, in particu-
lar, for the vacuum disordering mechanism envisioned
by CDG. The latter relies on the long-distance tails of
the individual merons which come into play when the
separation jaj between the meron centers of the dimerons
becomes large. As discussed above, the partner merons are
then practically independent and regain their long-range
tail �1=jxj (at least in isolation). The ensuing long-
distance color correlations among these merons were
found in Refs. [14,19] to be far from semiclassical and to
generate confinement. Of course, a complete dimeron dis-
sociation into isolated and, thus far, separated merons is
impossible in the finite spacetime volumes in which
numerical simulations are feasible. (The same holds for
the solution in which one of the merons delocalizes on the
three-sphere at spacetime infinity [18,25]). However, such
isolated merons would anyhow be unphysical (since they
carry infinite action) and incompatible with a finite di-
meron density. Instead, one expects that beyond some
typical separation, the two meron centers of a dimeron
experience stronger interactions with their individual field
environment than with their partner. The rigid link between
their color orientations can then be broken, i.e., the partner
merons can become effectively independent of each other.

In order to construct the multidimeron configurations
motivated above, we first transform the dimeron solution
family (1) into a specific singular gauge,

AðD;sÞ
� ¼ Ûyðx̂ÞAðD;rÞ

� Ûðx̂Þ þ iÛyðx̂Þ@�Ûðx̂Þ; (3)

where Û is the large, i.e., topologically active, gauge group
element

Ûðx̂Þ ¼ ix̂��
ðþÞ
� (4)

(�ðþÞ
� � ð ~�;�iÞ, x̂� � x�=

ffiffiffiffiffiffiffiffiffiffi
x�x�

p
) which has a singularity

at the origin of the coordinate system. The result can be
cast into the form

AðD;sÞ
� ¼ f1ðx; aÞx� ���� þ f2ðx; aÞa�X��ðx̂Þ (5)

( ���� :¼ ��a���a=2). Choosing for simplicity x0 ¼ 0 and

u ¼ 1, the two scalar functions f1;2 become

f1ðx; aÞ :¼ 2

x2
� 1

ðxþ aÞ2 �
1

ðx� aÞ2 ; (6)

f2ðx; aÞ :¼ 1

ðxþ aÞ2 �
1

ðx� aÞ2 : (7)

The antisymmetric and anti—self dual field X�� contains

important parts of the SU(2) and spacetime tensor struc-
tures (and their mutual couplings). Explicitly,

X��ðx̂Þ ¼ �a��Xaðx̂Þ with

Xaðx̂Þ ¼
�
1

2
� x̂rx̂r

�
�a þ x̂ax̂s�s � x̂4x̂s"asc�c (8)

(latin indices are spacial). After regularization of the
short-distance singularity (cf. Sec. II C), the a ! 0 limit
turns the dimeron (5) into a singular-gauge instanton with
f1ðx; a ¼ 0Þ ¼ 2�2=½x2ðx2 þ �2Þ� and f2ðx; a ¼ 0Þ ¼ 0.
In the following, we will often use the term ‘‘dimeron’’
to refer to both dimerons and antidimerons in singular
gauge. Occasionally, we will use the term ‘‘pseudopar-
ticle’’ for the same purpose.
The leading asymptotic behavior of the singular-gauge

dimerons (5) is

AðD;sÞ
� !jxj�jaj � 4

a�x�

x4
a��a��Xaðx̂Þ � 1

x3
; (9)

i.e., the long-range tail (2) has, as intended, disappeared
and the overlap between neighboring dimerons is strongly
reduced. (This is in contrast to the meron ensembles of
Refs. [14,19] whose constituents exist only in regular
gauge). In addition to the meron-center singularities at
x ¼ �a, the solution (5) inherits another singularity at
x ¼ 0 from the gauge transformation (4). Hence, the im-
pact of the latter will disappear when forming (topologi-
cally insensitive) gauge-invariant quantities from Eq. (5).
The regularization of these singularities will be discussed
in Sec. II C.
By construction, the singular-gauge dimerons (5) pro-

vide only a subset of the full solution family. The complete
11-parameter family can be recovered by translating the
solutions (5) to x0 and by gauge-rotating them with a
constant matrix u 2 SU(2), i.e.,
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A�ðx; fx0; a; ugÞ ¼ uyAðD;sÞ
� ðx� x0Þu

¼ RabðuÞAðD;sÞ;b
� ðx� x0Þ�a

2
; (10)

where the orthogonal matrices RabðuÞ ¼ trf�au
y�bug=2

are obtained from the condition uy�bu ¼ RabðuÞ�a. The
group elements u depend on three real and continuous
parameters which form (local) coordinates on the SU(2)
group manifold S3. In the following it will be convenient to
use the quaternion representation

uðcÞ ¼ c0 þ ica�a; (11)

which embeds S3 into R4 with Euclidean coordinates
c0; . . . ; c3 by imposing the unit three-sphere constraintP3

�¼0 c
2
� ¼ 1. In these coordinates, R takes the form

RabðuðcÞÞ¼ðc20�ccccÞ�abþ2cacb�2"abcc0cc: (12)

For our discussion below it will be useful to keep in
mind that dimerons have three more continuous and
noncompact collective coordinates than instantons (but
three less than a pair of independent merons, due to the
locking of the intermeron color orientation). The three
additional coordinates arise from the more complex struc-
ture of extended (i.e., jaj � 0) dimerons which requires
more degrees of freedom to locate and orient them in
spacetime. This results in a substantially larger ‘‘position
entropy’’ [25,49] which is instrumental in counterbalanc-
ing the (regularized) dimeron action which grows logarith-
mically with jaj. Indeed, the larger entropy is a necessary
(but not sufficient) requirement for dimerons to dissociate
with increasing coupling g2 and to finally split up into their
meron partners.

B. Field configurations and partition function
of the dimeron ensembles

As motivated above, we intend to study a model which
drastically reduces the field content of Yang-Mills theory
(as integrated over in amplitudes and the partition function)
to superpositions of ND dimerons and N �D ’ ND antidimer-
ons in singular gauge [50], i.e.,

A�ðx; fCI;i; �C �I;igÞ ¼
XND

I

AðD;sÞ
� ðx; fCI;igÞ þ

XN �D

�I

�AðD;sÞ
� ðx; f �C �I;igÞ

(13)

with N � ND þ N �D. Each term in this sum is uniquely
characterized by the set fCIg ¼ fx0;I; aI; cIg of collective
coordinates of the corresponding (anti-) dimeron.We recall
that the configurations (13) differ distinctly from those
obtained by transforming a regular-gauge dimeron super-
position into (any) singular gauge. This is because
in Eq. (13) the gauge of each dimeron is chosen relative
to its individual position. One may wonder, incidentally,
whether n-meron solutions with Q> 1 and their antisolu-
tions should be added to the superposition ansatz (13).

As in the case of instantons, however, the Bogomoln’yi-
type bound S � ð8�2=g2ÞjQj on the action [47] implies
that such multi- (anti-) meron contributions to the partition
function are exponentially suppressed relative to the di-
meron contributions [51]. Since the entropy increases only
logarithmically with n and thus cannot compensate this
suppression, such multimeron contributions may be safely
neglected.
Nevertheless, the ansatz (13) should be regarded

as a rather minimal choice. It is mainly geared toward a
transparent study of the proposed dimeron (and instanton)
dissociation mechanism and its role in the deconfinement-
confinement transition [25,31,32]. Hence, there are several
natural directions in which Eq. (13) may be extended in
future studies to provide a more complete description of
the Yang-Mills vacuum physics. An example would be
to add the meron-antimeron pair solutions [18] of the
Yang-Mills equations, again individually transformed
into singular gauge. This would maintain the approxi-
mately semiclassical nature of the configurations at small
jaj and yield a richer dynamics. However, it would proba-
bly also lead to a less transparent interpretation of the
results, and we do not expect the topologically trivial
meron-antimeron pair configurations to provide qualita-
tively new insights into the transition behavior. Indeed,
their limits for jaj ! 0, a pure-gauge field of zero action,
and for jaj ! 1, a meron and an independent antimeron,
indicate that meron-antimeron pairs do not generate new
pathways for the transition. More promising improvement
options would include generalizations of the dimeron su-
perposition ansatz (13) which allow for a complete tran-
sition into a meron ensemble (e.g., by releasing the rigid
color locking between the dimerons’ meron partners be-
yond a suitable intermeron separation jajmin) or the admix-
ture of a pure instanton component [25,32] with a realistic
size distribution [52].
As discussed above, we view the dimeron configurations

(13) as a pertinent subset of the SU(2) gauge fields gov-
erned by the Yang-Mills dynamics. Hence, we define the
partition function of our dimeron model as

Z ¼
Z YND;N �D

I; �I

dCId �C �I expf�S½A�ðfCI;i; �C �I;jgÞ�g; (14)

where S is the Euclidean Yang-Mills action

S½A� ¼ 1

2g2

Z
d4x trfF��F��g ¼:

Z
d4xsðxÞ (15)

and F�� is the gauge field strength

F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ � i½A�ðxÞ; A�ðxÞ�: (16)

As already indicated, we expect the gauge interactions
among the dimerons in Eq. (14) to play an important role
in generating confining long-range correlations for large
jaj and, in particular, to provide a disordering mechanism
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for the vacuum. This is in contrast to the situation in
nonconfining singular-gauge instanton ensembles where
for most amplitudes a random orientation of the instantons
(i.e., the neglect of the interaction term expð�SÞ in
Eq. (14)) yields a reasonable approximation to the vacuum
physics [24].

The integration over the collective coordinates will be
performed with the measure

dC ¼ d4x0d
4ad�ð ~cÞ (17)

(d�ð ~cÞ is the SU(2) Haar measure) for the dimerons, and
analogously for the antidimerons. This type of measure if
familiar from instanton vacuum models [24]. An improved
alternative may include Jacobians which arise from the
transformation of the linear gauge-field measure dA into
the collective-coordinate basis and thereby implement the
full moduli-space metric. Finally, an additional a depen-
dence of the measure can emerge from the trace anomaly
[25,32].

C. Regularization of the gauge-field singularities

The singular-gauge dimeron solutions (5) contain two
types of singularities. The first are those located at the
constituent meron centers x ¼ x0 � a which persist in
any gauge. In addition, there is a gauge singularity inher-
ited from the topologically large and thus necessarily
singular gauge transformation (4), chosen to sit at the
origin. In isolated dimerons, such gauge singularities could
be gauged away and would therefore not affect (topologi-
cally insensitive) observables. This ceases to be the case
for the superpositions (13), however, where the location of
the gauge singularities varies with the positions of the
pseudoparticles.

Since both types of singularities would impede our
numerical simulations, they have to be regularized in a
physically acceptable manner. (Recall that the individual
dimeron fields (1) and (5) do not solve the Yang-Mills
equation at their singularities, so that a suitably localized
regulator will only minimally affect the semiclassical
properties of the configurations (13)). A natural way to
regularize the singularities at the meron centers is to add
the square of a ‘‘size’’ parameter � to the denominators
ðx� x0 � aÞ2 in Eqs. (6) and (7). Such a regulator imitates
the way in which the size parameter enters the instanton
solutions. Hence it may arise from scale-symmetry break-
ing quantum fluctuations which are expected to smear the
classical singularities. A finite � furthermore acts as a UV
cutoff since it limits the gradients of the configurations (13).
Of course, the regularized field configurations cease to be
exact solutions of the classical Yang-Mills equation. Hence
the value of � should be chosen large enough to avoid
sizeable discretization errors (cf. Sec. III D) but also small
enough to avoid unnecessary deformations of the dimeron
solutions from the semiclassical saddle points. We have
found �2 ¼ 0:3 to be a reasonable compromise between

both criteria and will use this value in our numerical simu-
lations, if not stated otherwise.
The remaining singularities are, at least for isolated

dimerons, gauge artifacts. They remain unlikely to have a
physical impact in our dimeron superpositions, too, but
they may nevertheless cause problems in numerical ap-
proximations (even for single dimerons), e.g., when subtle
cancellations in gauge-invariant quantities are upset by
discretization errors. A finite-size regulator as above would
hardly help to avoid such problems since it would just
spread out the unphysical action-density peaks at the sin-
gularities. Hence, we treat these gauge-dependent singu-
larities in a pragmatic way, namely by interpolating the
gauge field in 4d balls of radius " around the singularities
with the field value at a specific point on the surface of the
ball. In practice, it turns out that with �2 ¼ 0:3 these highly
localized singularities are smoothly regularized by taking "
as small as " ¼ 5� 10�10. (The values of dimensionful
quantities, such as � and " above, are given in ‘‘numerical
units’’ originating from the discretization grid to be intro-
duced in Sec. III A. As a convenient length unit, we have
chosen a ¼ 0:1, i.e., a tenth of the distance between near-
est grid points. (Of course, this a should not be confused
with the four-vector a which parametrizes the dimeron
solutions.) When transforming our results into physical
units starting from Sec. IVC, we will denote quantities in
these numerical units by a hat above their symbols,
cf. Sec. IVC). In our simulations it typically took several
hundred sweeps through configurations of N ¼ 487 pseu-
doparticles (cf. Sec. III B) before such a singularity was
first encountered. (Even with a dramatically reduced
floating-point variable length of 16 bits, incidentally, we
have observed no overflows (which unregularized gauge
singularities would generate) when evaluating the action
density of a regularized two-dimeron configuration).

III. SIMULATION DETAILS

In the following subsections we summarize the process
by which we generated the dimeron-configuration ensem-
bles on which all our subsequent calculations will be
based. We further discuss predominant sources of system-
atic errors in these ensembles. It may be useful to
reemphasize at this point that we work in a continuous
spacetime. The continuum dimeron configurations (5) are
superposed and statistically weighted by the classical ac-
tion (15) of the resulting, non-Abelian gauge fields (13).
Observables, in particular the topological susceptibility
and Wilson-loop expectation values, are computed on
these continuum fields. Just the numerical evaluation of
integrated quantities requires a numerical grid and a finite
volume which we introduce below and whose refinement
we keep under control. Although we perform Monte Carlo
simulations as in lattice field theory, our approach is there-
fore genuinely rooted in the continuum.
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A. Sampling volume and resolution

Owing to the translational invariance of the Yang-Mills
dynamics (15), ensemble averages over the pseudoparticle
configurations (13) in infinite spacetime will likewise
be translationally invariant. In our simulations we are
restricted to a bounded volume of numerically manageable
size, on the other hand, and thus have to keep boundary
artifacts in calculated amplitudes under control, ideally
within the size of the statistical uncertainties. Our initial
step in this direction was to adopt singular-gauge dimerons
with their more rapidly decaying long-range tails as the
constituents of our gauge-field configurations (13). A suf-
ficient suppression of boundary artifacts turned out to
require additional measures, however, since the overlap
among the still rather moderately localized dimerons gen-
erates important (and typically repulsive) interactions over
ranges beyond the average nearest-neighbor distance. In
fact, these interactions are expected to play an important
role in the confinement mechanism and should thus be
distorted as little as possible by the boundary. Simulation
costs, on the other hand, with their by far largest part due to
integrating the action density on a spacetime grid, should
be kept minimal.

In order to approximately meet these conflicting goals,
we will adopt a multilayered description of the boundary
with decreasing grid-point density towards the outer layers,
as sketched in Fig. 1. The innermost ‘‘core volume’’ is a
rectangular spacetime box in which we intend to evaluate
amplitudes and thus require the physics to best approxi-
mate the infinite-volume limit. In order to allow for an
efficient evaluation of Wilson loops with elongated time
directions in Sec. IV F, this volume and its grid are chosen
to be asymmetric. One dimension, singled out as the
Euclidean time direction, contains 40 grid points while
each spacial dimension contains 25. This turns out to
provide a sufficiently high resolution for the amplitudes
to be calculated below (cf. Sec. III D).

The core volume is encompassed by an ‘‘ensemble
volume’’ which contains the (anti-) meron centers of all
(anti-) dimerons. Its surface is implemented numerically
by rejecting Metropolis updates (cf. Sec. III B) during
which a meron center would leave this volume. The extent
of the ensemble volume in a given direction will be taken
15% larger than that of the core in the same direction. In
the part of the ensemble box which surrounds the core, we
reduce the grid-point density to ð2=3Þ4 � 20% of that in the
core volume. This turns out to yield a still adequate reso-
lution while substantially reducing the computational cost
of evaluating the action.
A satisfactory suppression of field distortions inside the

core volume turns out to require an additional precaution-
ary measure, however. It consists in correcting for a par-
ticularly prominent boundary effect, namely the artificial
attraction of the pseudoparticles to the surface of the
ensemble volume. The latter arises because a substantial
part of the action density of dimerons near the boundary is
located outside the ensemble volume and thus not
accounted for, while the compensating tails of outside
dimerons reaching into the ensemble volume are neglected.
We approximately remove this artifact by surrounding the
ensemble box with another, ‘‘covering’’ volume which
extends beyond the ensemble box by 10% of the core
size in each direction. To keep the additional computa-
tional costs under control, we decrease the grid-point den-
sity of the outermost shell (i.e., the part of the covering
volume not shared by the ensemble volume) inversely with
the distance from the ensemble boundary. Since this shell
does not contain the rapidly varying fields close to the
meron centers, calculating the action in the full covering
volume, indeed, largely prevents the fake attraction to the
ensemble boundary (cf. Sec. IVB). Alternatively, finite-
size effects in pseudoparticle ensembles can be efficiently
corrected by employing the Ewald summation technique,
as has been shown very recently in the simpler case of
Abelian dyon field ensembles [29].

B. Monte-Carlo updates with dynamical resolution
and step-size adaptation

We evaluate the discretized functional integral over the
pseudoparticle fields, i.e., the multidimensional integral
over their collective coordinates in the partition function
(14) or any other amplitude, stochastically by Monte Carlo
importance sampling. Hence, we average over dimeron
configurations chosen randomly from a Gibbs distribution
with Boltzmann factor expð�SÞ where S is the Yang-Mills
action (15). More specifically, we use the Metropolis
algorithm to generate homogeneous Markov sequences
of dimeron configurations that visit fields with larger
probabilities more often. After reaching equilibrium, the
probability of finding a configuration in the ensemble
of subsequently generated fields follows the Gibbs
distribution.

FIG. 1 (color online). The multilayered multigrid designed to
control boundary effects when numerically evaluating the action
density.
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The initial pseudoparticle configurations for these
Markov sequences are obtained by choosing their collec-
tive coordinates from a uniform random distribution. This
procedure has equal access to all members of the configu-
ration space and practically always results in configura-
tions far from equilibrium, with actions several orders of
magnitude above their equilibrium values. We have also
tested various more ordered initial arrangements of the
dimerons and convinced ourselves that those lead within
errors to equivalent equilibrium ensembles (see Sec. III D).

For the Markov update of the n-th configuration An to its
sequel Anþ1 according to the Metropolis rules, we first
generate some candidate configuration A0 by randomly
choosing an individual pseudoparticle in An and modifying
alternately (from one candidate to the next) either its
position, i.e., a� ! a� þ da� and x0;� ! x0;� þ dx0;�,

or its color orientation ci ! ci þ d�ðciÞ. The increments
da, dx0 and dc are chosen randomly and uniformly subject
to the constraint that their length remains limited. More
specifically, we demand jdx0j 2 ½0; jdx0jmax�, jdaj 2
½0; jdajmax� as well as jdcj 2 ½0; jdcjmax� [53] and further
restrict jdajmax ¼ jdx0jmax. The candidate configuration A

0
is accepted as the new configuration Anþ1 with probability
minf1; expðS½A� � S½A0�Þg. If a candidate is rejected, the
unchanged configuration is taken as Anþ1 (and included in
measurements like all others).

The choice of the maximal modification step sizes
jdajmax and jdcjmax can be used to optimize both the
thermalization rate and the decorrelation among subse-
quent field configurations of the generated ensembles.
This requires a compromise between too small values,
which impede the progression through configuration space,
and too large values which more strongly decorrelate sub-
sequent configurations but cause an inefficiently large
update rejection rate. Examination of the relation between
maximal step sizes and typical acceptance probabilities
suggests an optimal acceptance rate of about 25%
for updates in both position and color space. During the
initial thermalization process, we will therefore increase
(decrease) by 10% the maximal step sizes jdajmax and
jdcjmax after every ten consecutive candidate field configu-
rations if the average acceptance rate for these configura-
tions falls below (rises above) 25%.

This dynamical step-size adaptation procedure acceler-
ates the approach to equilibrium and avoids getting trapped
into approximate would-be equilibria. Initially, i.e., far
from equilibrium and near the high-action random con-
figurations, the fields can relax in larger steps while closer
to equilibrium the action fluctuations become smaller and
require decreasing step sizes to maintain sufficient accep-
tance rates. From the time when approximate equilibration
sets in, however, the step size is kept constant to preserve
detailed balance. We further note that increasing g in-
creases the acceptance probability since the Yang-Mills
action (15) scales as g�2. Hence, larger g allow for larger

step sizes, accelerate thermalization (in less Markov steps)
by decreasing the autocorrelation time and result in equi-
librium ensembles with larger entropy.
As a case in point, for g2 ¼ 1 (and �2 ¼ 0:3) we find

jdajmax � 0:05 and jdcjmax � 0:1 in equilibrium, where the
scale of the fluctuations is set by the competition between
action and entropy. (For �2 ¼ 0:2, i.e., for more strongly
localized meron centers, one instead reads off the smaller
values jdajmax � 0:025 and jdcjmax � 0:2 from Fig. 2). For
g2 ¼ 102, on the other hand, one finds the indeed substan-
tially larger maximal step sizes jdajmax � jdcjmax � 0:5
(again for �2 ¼ 0:3). The decreasing step width during a
typical thermalization history is plotted in the uppermost
row of Fig. 2 for g2 ¼ 1 and g2 ¼ 25. Note that different
step sizes in position and color space are generally required
to obtain action changes of comparable magnitude.
The efficiency of the ensemble generation process can

be further improved by exploiting the during equilibration
decreasing ruggedness and action of the dimeron configu-
rations in yet another way, namely by starting on coarser
grids and increasing the resolution only when a higher
accuracy of the action evaluation becomes necessary.
Indeed, as long as the action density is comparable to or
larger than its value around the regularized meron centers,
a reduced resolution is generally sufficient and can save
computer time. During thermalization the overall action
decreases strongly, however, and the grid must be refined to
prevent the then more prominent meron centers from arti-
ficially reducing their action density by ‘‘hiding’’ between
grid points. In practice, we implement this refinement
procedure by starting the simulations with a ð1=3Þ4 times
smaller grid-point density. When the values of suitable
quantities (e.g., the distance between nearest-neighbor
meron centers) begin to saturate, this factor is increased
to ð2=3Þ4. Only after again reaching approximate satura-
tion, the full grid-point density of Sec. III A is activated for
the final approach to equilibrium and the subsequent gen-
eration of the thermal ensembles. The approximate satura-
tion plateaus and subsequent grid refinements (indicated by
dotted vertical lines) are clearly visible in the thermaliza-
tion histories of Fig. 2.
In the following we will denote a set of 2N consecutive

Markov steps as a ‘‘sweep’’ (where N ¼ ND þ N �D,
cf. Sec. II B). During such sweeps each pseudoparticle of
a configuration is on average considered once for a full
update. (The factor two arises since the individual Markov
steps attempt to modify either a dimeron’s position or its
color orientation, i.e., only one of the two subsets of its
degrees of freedom.) After four consecutive sweeps with
the acceptance rate kept fixed at 1=4, all pseudoparticles in
a configuration are therefore on average updated once. In
order to reduce autocorrelations among ensemble configu-
rations and thus to increase the statistical independence of
successive measurements, we will only select the configu-
rations generated by every fifth sweep (after approximate
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equilibration of the Markov chain) as ensemble members
and employ a binning procedure to calculate amplitudes
and their errors (cf. Sec. III E).

C. Approach to equilibrium

As indicated in the previous section, a reliable calcula-
tion of vacuum expectation values as ensemble averages
requires a sufficient thermalization of the Markov sequen-
ces which generate the ensemble configurations. Our
criteria for when their distribution approximates the
equilibrium distribution closely enough are based on the

measurement of several observables and correlations to be
described below.
First insights into the configurations’ thermalization

properties can be gained by following the Markov evolu-
tion of the average distance �d of a fixed meron center to its
nearest neighbor as a function of the number of sweeps.
Two examples for such histories are depicted in the second
row of Fig. 2. In the left panel the coupling is set to
g ¼ 1, i.e., our smallest value, which results in the slowest
equilibration rates we have to deal with in this paper
(cf. Sec. III B). (For these measurements we have also

FIG. 2 (color online). The thermalization histories of simulations with g2 ¼ 1 (left panels) and g2 ¼ 25 (right panels) as a function
of the number nswp of sweeps. The uppermost row shows the evolution of the maximal step widths in position (lower, black curves) and

color (upper, red curves) space. In the second row we plot the average distances �d between nearest-neighbor dimerons of equal (black
curves, uppermost for g2 ¼ 1), opposite (red curves, intermediate for g2 ¼ 1) and arbitrary (lowest-lying, blue curves) topological
charge. The last row shows the average probability �f for the nearest neighbor of a given meron center to have opposite topological
charge. (The dotted vertical lines indicate the sweep numbers at which the resolution of the action sampling is increased. For a
stringent test of the resolution quality we enhance the corresponding action changes by smearing the meron-center singularities less
broadly, corresponding to �2 ¼ 0:2, in the g2 ¼ 1 simulation (left panels). For g2 ¼ 25 (right panels) we use our standard value
�2 ¼ 0:3.)
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selected a smaller meron-size regulator �2 ¼ 0:2 which
further slows the equilibration process). A first and general
insight to be read off from this figure is how the degree of
thermalization reached after a given number of sweeps
depends on the measured quantity. While the average
distance to the closest neighboring meron of equal topo-
logical charge appears to have equilibrated after about 800
sweeps, the analogous distance for oppositely charged
merons may not be fully thermalized even after 1200
sweeps. A similarly long equilibration history can be ob-
served for the average probability �f that the nearest neigh-
bor of a given meron center has opposite topological
charge, as plotted in the last row of Fig. 2. This behavior
seems to indicate that the average distance between two
meron centers from the same dimeron equilibrates faster
than their average separation from the meron centers of
neighboring dimerons. For g2 ¼ 25 the typical relaxation
times reduce to at least half of those at g2 ¼ 1, confirming
the expectation that more strongly coupled ensembles
thermalize faster.

For a better understanding of the global thermalization
behavior, and especially of the character and uniqueness
of the reached equilibria, we have also compared ensem-
bles resulting from different initial configurations. More
specifically, we have prepared a set of initial dimeron
arrangements in which the pseudoparticles were regularly
positioned at maximal average distances. Their topological
charges, color orientations and sizes were chosen either to
approximate different types of action minima or to imitate
close-to-equilibrium configurations found in previous ther-
malization runs.

All ensembles resulting from these different initializa-
tions turned out to generate, within errors, the same aver-
ages. This provides, for once, evidence for the ergodicity of
the underlying Markov process, i.e., for its ability to access
any possible dimeron configuration in a finite number of
steps. More importantly, this result strongly supports the
conclusion that the thermalization processes indeed have
come sufficiently close to equilibrium, i.e., that our mea-
surements in Sec. IV are performed in almost thermalized
ensembles. This conclusion is strengthened by the fact that
all our runs with nonrandom initializations were performed
at g2 ¼ 1, where equilibration is particularly slow.

D. Finite-size and discretization errors

We now turn to the analysis of the systematic errors
which arise from finite-resolution and finite-size effects.
We then describe the steps taken to control them by ac-
cordingly refining our calculational strategy. Additional
error-reduction measures, which apply to the calculation
of specific amplitudes only, will be outlined in their cor-
responding sections below.

Discretization errors arise in our context from the prac-
tical necessity to sample the field configurations (13) on
spacetime grids of finite resolution. To meet our accuracy

requirements, we adapt the grid-point density according to
the characteristic length and gradient scales in the pseudo-
particle configurations under consideration. During ther-
malization, where these scales change drastically, we do so
dynamically as described in Sec. III B. In the (approxi-
mately) thermalized ensembles, on the other hand, these
scales are essentially fixed by the pseudoparticle density
and by the size of the regularized meron-center singular-
ities [54]. As described in Sec. II C, the regulator is chosen
about five times larger than the lattice unit a ¼ 0:1, at
� ’ 0:55. This proves sufficient to keep the action of an
isolated dimeron practically independent of its position on
the grid. Although configurations with gradients larger
than those around single meron centers frequently occur
among the dimeron superpositions (13), their enhanced
action renders them relatively unimportant when thermal-
ization is achieved. This explains why we did not encoun-
ter such configurations in our equilibrated ensembles
(cf. Sec. IVB).
The grid resolution’s impact on the calculated action

values and on the thermalization process can be seen
directly in the Markov evolution histories of Fig. 2. The
two vertical lines indicate the sweep numbers at which the
resolution of the grid is refined (cf. Sec. III B). The full
resolution, corresponding to a ¼ 0:1, is reached only after
the second refinement step. In order to provide a particu-
larly stringent test of discretization errors, we have reduced
our regulator � for this simulation by a factor of four, to
� ¼ 0:14. This size is of the order of the minimal lattice
unit and about half of the value �� 0:3 below which
discretization errors become a concern. As a consequence,
one observes that the evolution of both plotted quantities
(i.e., the average meron-center distances hdnearestMMi and
the probability for the nearest-neighbor meron to have
oppositeQ ¼ �1=2) on the coarsest grid begins to saturate
at a preliminary would-be equilibrium when further relaxa-
tion is prevented by insufficient action-density resolution.
Already after the first grid refinement, however, relaxation
continues until the deviation from the thermal values
reduces to about 15–20%. The equilibrium values are
approached after the second refinement step. For our stan-
dard meron size � ’ 0:55 the discretization errors will of
course be much smaller and should be well under control.
This conclusion is confirmed by checks on other observ-
ables, e.g., when calculating link elements and their con-
catenations into Wilson loops in Sec. IV F.
We now turn to the discussion of finite-size effects.

Those are artifacts of the simulation volume’s boundary
and turn out to be more difficult to control than the
discretization errors. Our choice of the more strongly
localized dimerons in singular gauge (5) as the constituents
of the configurations (13) was partly motivated by
reducing such boundary effects. For the same purpose we
designed the multilayered boundary outlined in Sec. III A.
Nevertheless, sizeable boundary artifacts of different
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origins, of different g2 dependence and with varying
impact on the calculated quantities remain to be dealt
with. In order to analyze those quantitatively, we start by
monitoring violations of translational invariance in the
ensemble-averaged action density hsðxÞi as a function of
the distance from the boundary for two values of g2. The
results are of direct physical and practical importance since
hsi is related to the gluon condensate and since a reliable
evaluation of the action is indispensable for generating
trustworthy ensembles.

The action density sðxÞ, as defined in Eq. (15), can be
obtained analytically by inserting the dimeron superposi-
tion (13) into the field strength (16). The ensemble average
hsi is then evaluated as outlined in Sec. III B, with en-
semble configurations taken from every fifth sweep after
equilibration. In order to visualize the local homogeneity
properties of the action density in different sectors of the
simulation volume, we plot hsi in Figs. 3 and 4 as a
function of the distance from the center of the box along
two different directions. The latter were chosen to provide
insight into the anisotropy of the boundary effects, caused
in particular by our asymmetric grid with its elongated
temporal direction. (Instead of calculating the values of
sðxÞ at neighboring, equidistant points throughout these
directions, we surround them with adjacent hypercubic
boxes of side length 0.2 inside which we sample sðxÞ at
10 randomly chosen points).

We start our discussion of the hsi plots with those
generated at our smallest coupling value, g2 ¼ 1. In the
left panel of Fig. 3 we show hsi (black squares, full line)
along the time direction, in the right panel along the
average over all diagonals of the spacial box at the mid-
point of the time axis. Deviations from a translationally

invariant, i.e., constant hsi near the center of the box are
somewhat smaller along the time direction than along the
diagonal. This is expected since the former keeps a larger
distance from the spacial boundaries. Nonetheless, hsi
fluctuates considerably even in the temporal direction
and even close to the box center. A reasonable fit to a
constant plateau remains possible inside most error bars up
to distances of order 1.0 both along the time and diagonal
directions, however, as also shown in Fig. 3. Beyond
distances of about ten lattice units, the missing field con-
tributions from outside of the box volume (cf. Sec. III A)
begin to reduce the action density substantially.
As a consequence of these results, we will restrict the

volume in which we evaluate amplitudes to subvolumes of
the core box in which the maximal distances from the
center are of order one (if not noted otherwise). To dem-
onstrate the g2 dependence of the boundary effects, we
further show the two analogous hsi profiles for g2 ¼ 25 in
Fig. 4. Clearly, the boundary effects are strongly reduced
and the regions close to the center now show manifest
plateaus which extend up to distances �1:5 from the
center. With further increasing g2 the boundary artifacts
become even more restricted to the surface region until the
growing dimeron dissociation (i.e., the growing intermeron
distance 2jaj) creates a different type of sensitivity to the
boundary, as discussed in Secs. III A and IVB.
Since, in general, both character and strength of the

boundary artifacts are amplitude dependent, we have also
monitored the vacuum expectation value of quadratic
‘‘probe’’ Wilson loops W as a function of their distance
from the box center. The results will guide us in reliably
calculating the expectation values of rectangular Wilson
loops in Sec. IV F. Since the largest among these loops play

FIG. 3 (color online). The averaged action density hsi (black squares, full line) and quadratic ‘‘plaquette’’ Wilson loop expectation
values hWi (red circles, dotted line, multiplied by 450) along the time direction (left panel) and along the spacial diagonals (right panel)
from the center of the simulation box for g2 ¼ 1. (The dashed horizontal lines are fits to constant plateaus for t, r 	 1. The two vertical
lines indicate the boundaries of the core and sampling volumes.)
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a crucial role in understanding the confinement properties
of dimeron ensembles, it becomes especially important to
understand the boundary’s impact on them.We survey it by
evaluating the expectation values hWi of quadratic Wilson
loops (for details see Sec. IV F) of side length 0.5 centered
along the same two lines as the action density hsi above.
The loop orientation turns out to have no significant impact
on the value of hWi and will thus be averaged over. In Fig. 3
we have included plots of 450� hWi along the time direc-
tion in the left panel and along the average over the spacial
diagonals in the right panel for g2 ¼ 1, and in Fig. 4 we
display 20� hWi for g2 ¼ 25. In all four cases, with
growing t, r the distance dependence of hWi becomes
increasingly proportional to that of the average action den-
sity hsi. For quadratic Wilson loops of minimal size this is
expected since such ‘‘plaquettes’’ form the essential part of
a discrete approximation to the Yang-Mills action density.
In our case, the observed proportionality further indicates
that the configurations are sufficiently smooth over our
rather large test loops, probably because their side length
is comparable to the regulated meron size � ’ 0:55.

To summarize, while discretization errors in our
dimeron simulations can be reliably controlled, we have
observed significant violations of translational invariance
in both action density and Wilson loops. Although our
efforts to reduce boundary artifacts prove effective close
to the center of the core box, substantial deviations from
homogeneity set in at distances of order one, in particular
for our smallest coupling value g ¼ 1 where they are most
pronounced. These boundary effects originate from a com-
bination of the strong intermediate-range interactions be-
tween dimerons and the collective effects emanating from
the boundary (cf. Sec. III A). The lessons learned from the
above analysis will guide us in keeping boundary artifacts
of our results tolerably small, mainly by relying on spe-
cifically reduced volumes in which to evaluate amplitudes.

E. Ensemble statistics

The effective dimeron field theory introduced in Sec. II
has three adjustable parameters: the gauge coupling g2,
the meron-center size �, and the approximately equal
numbers ND ’ N �D of dimerons and antidimerons. We
have generated all our ensembles with N ¼ ND þ N �D ¼
487 pseudoparticles, divided into ND ¼ 243 ’ N=2 dimer-
ons and N �D ¼ 244 ’ N=2 antidimerons, in the multilay-
ered, multigrid volume specified in Sec. III A. We
emphasize that a fixed overall number of pseudoparticles
corresponds to a statistical treatment based on the canoni-
cal Gibbs ensemble. Hence topological charge fluctuations
have to be observed in subvolumes.
The meron centers are smeared as described in Sec. II C,

with a common regulator value �2 ¼ 0:3. We have gener-
ated two independent ensembles for each of the coupling
values g2 2 f1; 25; 100; 1000;1g (with decreasing number
of members) and a third one for g2 ¼ 1. The total number
of sweeps per coupling in equilibrium as well as the
maximal step sizes are collected in Table I.
In order to estimate autocorrelation effects in the ensem-

bles with g2 ¼ 1, where they should be maximal, we have
calculated autocorrelation functions for several quantities
of interest, including the average distance between nearest-
neighbor meron centers of equal and opposite topological

FIG. 4 (color online). Same as in Fig. 3, but for g2 ¼ 25 (and with hWi multiplied by 20).

TABLE I. Dimeron ensemble characteristics. (For definitions
see Sec. III B.)

g2 # of sweeps jdajmax jdcjmax

1 1843 0.04 0.11

25 1550 0.20 0.40

100 1470 0.36 0.44

1000 554 0.47 0.49

1 574 0.10 1.00
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charges. For those of opposite topological charge the au-
tocorrelations decay fastest, after about 300–400 equilib-
rium sweeps, while this takes up to a few hundred sweeps
longer for equally charged neighbors. The autocorrelation
functions for the average distance between nearest-
neighbor dimerons, on the other hand, show no obvious
preference for either equally or oppositely charged neigh-
bors. Both distances approximately decorrelate after 500
sweeps. The same holds for the average distance between
the dimerons’ meron partners.

Based on the above observations, we have adopted the
following strategy to reduce autocorrelations. The ensem-
bles contain the configurations generated by every fifth
Metropolis sweep. The total number of equilibrium sweeps
(per coupling) is divided into ten bins. (For g2 ¼ 1 a bin
thus contains about 180 sweeps and about 36 ensemble
configurations). The quantities of interest are then calcu-
lated on every ensemble configuration, and their mean
values are obtained for each bin. Finally, the ensemble
average is computed as the mean value of the bin averages,
and its error is estimated as the standard deviation among
the bin averages (if not noted otherwise). (On an Intel Core
2 Quad Q6700 processor at 2.67 Ghz a thermal Markov
step takes about tm � 7 seconds and a thermal sweep
2Ntm � 1:89 hours).

IV. RESULTS AND DISCUSSION

In the following subsections we analyze the physics
content of dimeron ensembles which were numerically
generated at the five squared coupling values g2 ¼
f1; 25; 100; 1000;1g according to the procedure outlined
in Sec. III.

A. Dimeron dissociation as a function
of the gauge coupling

One of the essential features of the CDG mechanism is
that with increasing coupling, instantons are supposed to
gradually dissociate into dimerons and to finally break up
into their two meron partners. This process is suggested to
be driven by a competition between the attraction among
the regularized meron centers and their position entropy
which increases with g2 (since the latter plays the role of
temperature in the classical statistical analog ensemble).
The competition is effective because both energy and
entropy depend logarithmically on the distance 2jaj be-
tween the meron centers. In fact, this distance will play a
key role in characterizing both the structure of the ensem-
bles’ dimeron constituents and the interactions among
them. The latter depend sensitively on the dimerons’ color
dipole moment which is of Oða2Þ.

Before the dimerons break up completely, they should
already have effectively released their two meron centers
which then become the dynamically active degrees of
freedom. In fact, this is expected to signal the onset of a
phase transition in a finite system like ours where a

complete jaj ! 1 dissociation is prevented by the
boundary. With their slowly decaying and thus strongly
overlapping long-distance tails (� 1=x) the essentially
independent merons may then sufficiently disorder the
vacuum to generate linear quark confinement. In the above
sense, our dimeron configurations thus approach confining
meron ensembles of the type studied in Refs. [14,19]. One
should keep in mind, however, that our dimeron superpo-
sition ansatz (13) is not rich enough to describe ensembles
of completely independent merons since it does not allow
to untie the rigid color locking between the meron partners.
Guided by the above considerations, we are thus led to

study the coupling dependence of the average dimeron
dissociation 2hjaji in our ensembles. These average inter-
meron distances, which contribute to the typical dimeron
size scale �2ð�þ hjajiÞ, are plotted as a function of the
square coupling g2 in Fig. 5 and listed in Table II. As
expected, the average dimeron dissociation 2hjaji initially
increases rather strongly with g2. For our two largest
square couplings g2 ¼ 1000 and 1, on the other hand, its
value approaches saturation since it becomes comparable
to the linear extent of the ensemble box. Hence, 2hjaji will

FIG. 5. The average separation 2hjaji between the (anti-)
meron centers of the (anti-) dimerons as a function of the
squared gauge coupling. (The error bars are smaller than the
plot symbols and the dotted vertical line indicates the scale
change at g2 ¼ 1000.)

TABLE II. The average intermeron distance 2hjaji for five
values of the square coupling.

g2 2hjaji
1 0:267� 0:003
25 0:567� 0:001
100 0:893� 0:003
1000 2:239� 0:014
1 3:061� 0:016
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be underestimated in this coupling region. Moreover, large
dimerons close to the boundary are then increasingly
forced to align themselves with the boundaries, and the
largest dimerons accumulate along the box diagonals.
Below we will nevertheless find indications for the meron
centers (which are color zero-poles) to gradually replace
the dimerons (i.e., color dipoles) as the dynamically most
relevant degrees of freedom when the coupling increases,
as alluded to above.

B. Spacetime structure of the dimeron configurations

We begin to explore the multidimeron physics of our
ensembles by analyzing the spacetime structure of a typical
member configuration. To this end we survey the action
density of this field configuration and its amount of local
(anti-) self-duality on different hyperplanes of the simula-
tion volume. More specifically, we display these quantities
as two-dimensional density plots in two section planes
through the core volume which are chosen parallel to the
x4 � x1 plane. One of them is separated from the x4 � x1
plane by the distances ðx2; x3Þ ¼ ð0:4; 0:4Þ in the remaining
directions, i.e., it lies rather close to the boundary in these
transverse directions. The other one is positioned close to
the center in the x3 direction, at ðx2; x3Þ ¼ ð0:4; 1:2Þ. (The
origin of our coordinate system coincides with a corner of
the core box. The spacial axes x1;2;3 range from 0 to 2.5 and

the x4 axis from 0 to 4. Hence, the box center is located at
ðx1; x2; x3; x4Þ ¼ ð1:25; 1:25; 1:25; 2Þ, cf. Sec. III A).

Since the detection and control of boundary effects is a
recurrent issue when dealing with dimeron ensembles, we
draw all plots for a g2 ¼ 1 configuration where the impact
of the boundary is maximal (at least up to g2 ’ 1000) and
thus best analyzable. Such weak-coupling configurations
with their small entropy are of additional interest because
they are most likely to approximate semiclassical fields. In
fact, at not too high densities (and not too large meron size
regulators) such fields would be dominated by rather isolated
and strongly contracted singular-gauge dimerons. These
dilute superpositions of almost instantonlike solutions
(cf. Sec. IVA) indeed approximate semiclassical systems
quite similar to those studied in instanton vacuum models
[24]. The following plots are designed to check how far our
g2 ¼ 1 configuration resembles such semi-classical fields.

Although our numerically generated dimeron field
configurations contain redundant, i.e., gauge-dependent
information without impact on observables, it is of techni-
cal interest to understand their spacetime structure since they
lay the foundation for all our ensuing work. We have there-
fore examined typical dimeron ensemble configurations on
the above set of hypersurfaces and found thefields to be fairly
smooth. More importantly, all prominent spacial features of
the gauge fields components were found to be closely mir-
rored in the gauge-invariant densities to be discussed below.
In particular, we have found no evidence for the buildup of
gauge-dependent peaks (potentially approximating gauge

singularities [55]) which could adversely affect the simula-
tion behavior even though they are invisible in gauge-
invariant quantities. Hence, we can refrain from plotting
selected components of the gauge field itself.
Instead, we turn to the gauge-invariant action density

sðxÞ of our example configuration which is plotted in the
two mentioned planes through the core volume in the two
left panels of Fig. 6. The graphs indicate that the action
density is indeed rather smooth, with the exception of a few
dilute peaks. All these peaks show a slightly nonspherical
shape and an extension of about 0.5. Now we recall
from Table II that for g2 ¼ 1 the average distance between
the (anti-) meron centers of the (anti-) dimerons is
2hjaji � 0:27. This is about half of the regularized meron
size � ’ 0:55 and suggests to identify the peaks with the
two strongly overlapping meron centers of the regularized
dimerons. The average number of peaks is indeed consis-
tent with the pseudoparticle density of the configuration.
Moreover, the somewhat elongated action density of the
peaks finds a natural explanation in the small but finite
separation between the meron centers. Finally, in the
more central ðx2; x3Þ ¼ ð0:4; 1:2Þ plane the peak density
is larger than in the ðx2; x3Þ ¼ ð0:4; 0:4Þ plane which lies
closer to the boundary. This may be a reflection of the
strongly reduced average action density near the boundary
(cf. Sec. III D and Fig. 3). Statistical fluctuations are too
large to substantiate this conjecture, however, as indicated
by the fact that no such dilution is recognizable in Fig. 6
close to the boundaries in the x1, x4 directions.
Another instructive property of the dimeron field con-

figurations is their amount of local self-duality. This fea-
ture characterizes the interplay between the Yang-Mills
dynamics and the topological charge density qðxÞ [as
defined in Eq. (23)] and can be monitored by evaluating
the expression

RðxÞ ¼ 4

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfF��F�� � F��

~F��g
trfF��F�� þ F��

~F��g

vuut
0
@

1
A� 1; (18)

which varies from �1 at positions where the field is
selfdual to þ1 where it is anti-self dual. Since for g2 ¼ 1
the strongly overlapping, regularized meron centers render
the (anti-) dimerons almost (anti-) instantonlike, one ex-
pects that the peaks are approximately (anti-) self-dual
while the surrounding regions, dominated by overlapping
tails, are neither. The plots of RðxÞ in the right panels of
Fig. 6 confirm this expectation and thus allow to associate
the action density peaks with either dimerons or antidimer-
ons. Due to the one-to-one correspondence between the
peaks in sðxÞ and RðxÞ the above comment on boundary
effects applies here as well.

C. Topological charge distribution

We now proceed to a more quantitative analysis of the
dimeron ensemble structure and its dependence on the
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square coupling g2. In the present section we look for
patterns in the topological charge density which indicate
short- and medium-range order. More specifically, we pick
a pseudoparticle in a given ensemble configuration and
measure the average density of the surrounding pseudo-
particles with either equal or opposite topological charge,
as a function of their distance from the selected one [56].
We then repeat this procedure for all pseudoparticles in the
configuration and average over the obtained density pro-
files, again for equal and opposite topological charge sepa-
rately. After finally averaging over all configurations of the
g2 ¼ 1 ensemble we end up with the two distance profiles
�D plotted in the left panel of Fig. 7. The analogous
procedure, but with the pseudoparticles replaced by indi-
vidual meron centers, yields the profiles �M shown in the
right panel. The integral of these densities over the full
ensemble is normalized to one. (The smallest and largest
distances are excluded in both figures since they corre-
spond to tiny shell volumes (inside the ensemble volume)
in which the densities cannot be reliably estimated.)

Figures 8 and 9 contain the same profiles as Fig. 7, but
for g2 ¼ 25 and g2 ¼ 100.
The averaged radial density profiles reveal an intriguing

amount of structure in the pseudoparticle distribution and
in its meron substructure. First of all, the left panels of
Figs. 7–9 show a depletion of both dimeron and antidi-
meron densities in the overlap region with the reference
(anti-)dimeron. Hence they provide direct evidence for a
strong short-distance repulsion between dimerons of any
topological charge. This repulsion is sensitive to the rela-
tive color arrangement between neighboring pseudopar-
ticles (cf. Sec. IVD) and may at least partly be caused by
our limited field configuration space. A similar repulsive
core (with a logarithmic distance dependence) shows up in
superpositions of instantons and anti-instantons in singular
gauge [57]. On a practical level, it helps to avoid clustering
among the pseudoparticles and promotes smoother and
more semiclassical ensemble configurations. Evidence
for the latter was already encountered in the density plots
of Sec. IVB.

FIG. 6. The action (left panels) and self-duality (right panels) densities of a typical g2 ¼ 1 ensemble configuration in two cross
sections parallel to the x1 � x4 plane. Lighter shades of gray indicate larger values. The ordinates denote the x1 and the abcissas
the x4 direction. The upper row shows the densities in the hyperplane at ðx2; x3Þ ¼ ð0:4; 0:4Þ and the lower row those in the plane at
ðx2; x3Þ ¼ ð0:4; 1:2Þ.
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At larger distances, a remarkable medium-range order
emerges among the pseudoparticles for g2 ¼ 1 (left panel
of Fig. 7). In fact, about one meron size �� 0:55 (or the
slightly larger average dimeron size �þ hjaji) from the
fixed reference particle one finds an enhanced (depleted)
density of pseudoparticles with opposite (equal) topologi-
cal charge. At about 2� this structure is inverted and
attenuated, i.e., the density of pseudoparticles with equal
(opposite) charge is weakly enhanced (depleted). A further,
even weaker inversion of the densities is discernible at
distances �3�, while from d * 3:5� both dimeron and
antidimeron densities remain within errors equal to those
of a random distribution. The almost periodic density oscil-
lations over three consecutive layers indicate a pronounced
mid-range order among the dimerons. In fact, the emerging
shell structure resembles Debye-type screening clouds and
indicates the existence of attractive short-distance correla-
tions between dimerons and antidimerons [58]

The above screening behavior should be enhanced at
g2 ¼ 1 where the entropy is lowest and the field configu-
rations therefore most strongly ordered. This can indeed be
seen in our results. While for g2 ¼ 1 the third shells are
clearly visible in Fig. 7 (although less pronounced than
the first two), they essentially disappear for g2 � 25
(cf. Figs. 8 and 9). Moreover, the dimeron densities in
the left panels of Figs. 8 and 9 show a weaker first shell
at somewhat larger distances (reflecting the growing aver-
age size of the dimerons), which now slightly favors pseu-
doparticles of equal topological charge. A hint of a second
shell with inverted topological charge remains recogniz-
able as well. Hence at stronger coupling and over typical
nearest-neighbor distances the (anti-) dimerons show a
tendency to surround themselves with (anti-) dimerons.
This behavior could be another indication for the with
growing dimeron dissociation increasing role of the meron
centers as the dynamically relevant degrees of freedom.

FIG. 7 (color online). The average radial density of topologically equally (black squares, full line) and oppositely (red bullets, dotted
line) charged dimerons �D (left panel) and merons �M (right panel) as a function of the distance from a fixed (anti-) (di)meron at
g2 ¼ 1.

FIG. 8 (color online). The same as in Fig. 7, but for g2 ¼ 25.
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In order to test the latter interpretation, we show in the
right panels of Figs. 7–9 the analogous density profiles
�M for individual meron centers (without regard for the
dimerons which they are part of). At the smallest distances
d 
 �, i.e., in the immediate overlap region with the
fixed reference meron, the nearest-neighbor meron is most
likely its partner from the same dimeron, and hence has
the same topological charge. This explains the enhanced
(suppressed) density of equally (oppositely) charged mer-
ons for d 
 �. The enhancement is maximal for g2 ¼ 1
(cf. Fig. 7) where the mean intermeron distance 2hjaji is
minimal, and decreases due the growing hjaji with increas-
ing g2. Outside of the immediate overlap region, on the
other hand, i.e., for distances d > �, the meron density
profiles in the right panels of Figs. 7–9 follow those of the
corresponding dimeron densities (left panels) rather
closely. This is expected because for d > � the encoun-
tered merons belong more likely to different dimerons.
Since for g2 ¼ 1 with 2hjaji ’ 0:27� �=2 the meron
partners of the dimerons overlap almost completely,
furthermore, their densities outside the immediate neigh-
borhood of the reference meron should match those of the
dimerons most closely, as is indeed the case.

We have already pointed out that the strongest
intermediate-range order among the dimerons exists in
the g2 ¼ 1 ensemble with its particularly low entropy.
For a more systematic analysis of the changes in this
behavior with increasing coupling we now proceed to the
investigation of global ensemble properties. (Their smaller
statistical error simplifies the study of the g2 dependence.)
We first consider the fraction fD �D of dimerons in a given
configuration whose nearest neighbor has opposite topo-
logical charge [63]. The ensemble-averaged probability
hfD �Di is plotted in Fig. 10 for our five g2 values between
one and infinity. (The vertical line indicates a break in the
scale of the abscissa which allows to include the strong-
coupling limit g2 ¼ 1). For g2 ¼ 1 one reads off hfD �Di ’
87%. This large fraction confirms the strong preference of
the dimerons to surround themselves with screening clouds

consisting mostly of their antipseudoparticles. Already at
g2 ¼ 25 the value of hfD �Di has diminished by half,
however, to about 43%. This is a clear indication for the
with increasing coupling growing disorder in the field
configurations. It manifests itself not the least in the
stronger dissociation of the dimerons (2hjaji ’ 0:57 ’ �
at g2 ¼ 25, cf. Table II) which gradually replaces the
interactions between dimeron centers by interactions
between the increasingly independent meron centers. The
fact that hfD �Di remains within errors around 45% for g2 ¼
100 and 1000 signals the slight preference for equally
charged pseudoparticle neighbors at stronger couplings,
as already encountered in Figs. 8 and 9. At these couplings
the dimerons are so far dissociated, however, that correla-
tions between their centers do probably no longer charac-
terize the main interactions which they experience. In any

FIG. 9 (color online). The same as in Fig. 7, but for g2 ¼ 100.

FIG. 10. The average probability hfD �Di for the nearest neigh-
bor of a dimeron to have opposite topological charge. (The error
bars are smaller than the plot symbols and the dotted vertical line
indicates the scale change at g2 ¼ 1000.)
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case, the noninteracting value of 50% for hfD �Di is attained
only in the strong-coupling limit, i.e., in the random en-
semble with g2 ¼ 1 (notwithstanding additional boundary
effects which come into play for maximally dissociated
dimerons, cf. Sec. III D).

Further insight into the topological charge distribution
of dimeron ensembles and its coupling dependence can be
obtained from the average distances hdi between the pseu-
doparticle centers and their nearest neighbors with either
equal or opposite topological charge. The nearest-dimeron
distances are drawn in the left panel of Fig. 11 as a function
of the square coupling g2. (They are evaluated in the same
spherical shells as in Fig. 10). For g2 ¼ 1 one finds the
average distance hdi ’ 0:71 between oppositely charged
neighbors to be about 25% smaller than that between
equally charged ones (hdi ’ 0:93). This is a reflection of
the screening clouds found above. After increasing the
square coupling to g2 ¼ 25, on the other hand, the two
distances have become almost identical. The nearest pseu-
doparticles of equal charge are now somewhat closer, as
expected from the drop of hfD �Di below 50%. (The average
distance to the next dimeron of any charge remains rela-
tively constant, though). This seems to be another conse-
quence of the larger intermeron separation h2jaji ’ 0:6–3:1
for g2 ¼ 25–1 and the increasing dynamical importance
of the meron centers. (For close-to-maximally dissociated
dimerons, the mentioned boundary effects will distort the
nearest-neighbor distances as well, cf. Sec. III D).

Above we have found several pieces of evidence for the
merons to gradually turn into the dynamically relevant
degrees of freedom when the coupling increases. In order
to explore this issue from yet another angle, we further
computed the average distances between nearest-neighbor
meron centers, as plotted in the right panel of Fig. 11. In the

g2 ¼ 1 ensemble with its highly contracted pseudopar-
ticles, nearest-neighbor merons belong most likely to the
same dimeron and thus carry identical topological charge.
As a consequence, the average separation between equally
charged neighbor merons is almost the same as the distance
2hjaji ’ 0:27 between partner merons. Oppositely charged
neighbor merons, on the other hand, are more than twice
as far separated, i.e., about as far as the average distance
hdi ’ 0:59 between nearest-neighbor dimerons of opposite
charge (cf. left panel of Fig. 11). Again, this picture
changes significantly with increasing coupling. As the
dimerons dissociate farther, the average distance hdi
between equally charged nearest-neighbor merons must
increase as well. However, it does so more slowly than
the average separation 2hjaji of the meron partners. This
provides additional evidence for the interaction between
individual merons belonging to different dimerons to in-
creasingly determine the ensemble properties. At g2 ¼ 25
the average distance between oppositely charged nearest-
neighbor merons has not yet decreased much, on the other
hand. The main drop happens between g2 ¼ 25 and 100.
From about g2 ¼ 1000 the distances hdi between equally
and oppositely charged merons coincide and slightly in-
crease together on the approach to the strongly-coupled
random ensemble.

D. Color correlations

In the previous subsections we have found diverse
spacial correlations in dimeron ensemble configurations
and studied their coupling dependence. It remains to ex-
plore correlations between the color orientations of the
dimerons to which we turn in the present section. There
are several reasons for expecting these correlations to be
significant. First, the ‘‘hedgehog’’-type coupling between

FIG. 11 (color online). The left panel shows the average distance hdi of a reference dimeron center from its nearest neighbor with
equal (black squares, full line) and opposite (red bullets, dotted line) topological charge Q. The nearest-neighbor distance hdi
independent of Q is also included (blue crosses, dashed line). The right panel shows the same curves for the average distances between
meron instead of dimeron centers. (The error bars are smaller than the plot symbols and the dotted vertical line indicates the scale
change at g2 ¼ 1000.)
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the spacetime and color dependence of the individual
dimerons [cf. Eq. (5)] suggests that spacial and color
correlations will be at least partly linked in the ensemble
configurations as well. In fact, we have encountered a
prototype of such correlations when studying the color-
orientation dependence of the classical interaction energy
between two isolated dimerons. In weakly coupled ensem-
bles, furthermore, the almost completely contracted dimer-
ons will experience interactions and correlations similar to
those found in singular-gauge instanton ensembles (see
below). In the strong-coupling regime, on the other hand,
where the dimerons are dissociated and single merons with
their long-range tails become dominant, one may expect
color correlations of similar strength and importance as
in the meron and regular-gauge instanton ensembles of
Refs. [14,19].

In order to characterize the SU(2) color orientation
between two neighboring dimerons with color coordinates
c	 and c0	 [cf. Eq. (11)], we introduce the angle

� :¼ 2 arcsin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc0 � cÞ	ðc0 � cÞ	

q �
(19)

(with � 2 ½0; ��) under which half of the geodesic dis-
tance between the two corresponding points on the group
manifold S3 (of unit radius) appears from the center. We
then find for every pseudoparticle in a given ensemble
configuration the nearest neighbors with equal and oppo-
site topological charges, separately calculate the angles
(19) between them and finally average over the configura-
tion (excluding double-counting of pairs) and over the
g2 ¼ 1 ensemble.

The resulting h�i distributions are divided into 20 bins
and plotted in Fig. 12 for both equally and oppositely
charged neighbors. For comparison, we also show the
angle distribution of the noninteracting g2 ¼ 1 random
ensemble. All three distributions are relatively broadly
peaked at h�i ¼ �=2. This happens even in the random
ensemble, which indicates that this peak position is statis-
tically favored. Indeed, � ¼ �=2 corresponds to the equa-
tor of S3 and thus to the � value with the maximal number
of color orientations. The main lesson of Fig. 12 is, how-
ever, that equally and oppositely charged dimeron neigh-
bors on average prefer remarkably different relative color
orientations. While the distribution of the mean color angle
h�D �Di between nearest neighbors of opposite Q is essen-
tially consistent with a random distribution, the peak value
of the h�DD; �D �Di distribution for neighbors of equal Q is

dynamically enhanced by about a factor of two.
These results can be rather directly understood by recall-

ing that the interactions between the strongly contracted
dimerons in the rather dilute g2 ¼ 1 ensemble (with
hdi> �, cf. Fig. 11) are similar to those among instantons
in singular-gauge instanton-anti-instanton superpositions
[24,57]. Between instantons of equal topological charge,
these classical interactions �SII; �I �I are repulsive for any

relative color orientation. More specifically, at distances
d > � one has [57]

�SDD; �D �D �g2¼1
�SII; �I �I ¼

32�2

g2

�
2þ

�
1� 2sin2

�

2

�
2
�
�6

d6

þO

�
�8

d8

�
: (20)

Since the average distance between DD and �D �D
pairs in our g2 ¼ 1 ensemble is hdDD; �D �Di ’ 0:93� 2�
(cf. Fig. 11), the leading term in Eq. (20) should reasonably
well approximate �SDD; �D �D. The resulting � distribution is

thus symmetric around �=2 and the individual repulsion is
minimal (maximal) at � ¼ �=2 (� ¼ 0, �). Hence the
average repulsion in the ensemble is reducedbymore strongly
populating the � ’ �=2 color orientations. This explains the
enhanced peak around h�DD; �D �Di ¼ �=2 in Fig. 12.
The instanton-anti-instanton interactions in singular-

gauge instanton superpositions, on the other hand, contain
the for d > � leading dipole-dipole interaction [57]

�SD �D �g2¼1
�SI �I ¼ � 32�2

g2
½1–4ðc�d̂�Þ2��

4

d4
þO

�
�6

d6

�
;

(21)

where the unit vector d̂� points from the instanton center to

the anti-instanton center. For spacial and color orientations

with jc�d̂�j< 1=2, which are predominant in the g2 ¼ 1

equilibrium ensemble, the leading term in Eq. (21) is
attractive. In fact, indirect evidence for this attraction

FIG. 12 (color online). The distribution of the average color
angle h�i between nearest neighbor pseudoparticles of equal
(black squares, full line) and opposite (red bullets, dotted line)
topological charge at g2 ¼ 1. For comparison, we also show h�i
for a random pseudoparticle distribution (i.e., at g2 ¼ 1; blue
crosses, dashed line) which is independent of the relative topo-
logical charge of the neighbors. (The error bars indicate the
statistical standard deviation of the averages per bin.)
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was already deduced from our dimeron distributions in
Sec. IVC. All remaining I �I interactions are repulsive,
on the other hand, as those between equally charged
neighbors. In contrast to the latter case, however, the
impact of �SD �D on the h�D �Di distribution is less transpar-
ent since the strength of the D �D attraction is not
determined by �. Moreover, the relatively small average
dimeron-antidimeron distance hdD �Di ’ 0:7� 3�=2 for
g2 ¼ 1 (cf. Fig. 11) indicates that the repulsive terms of
Oð�6=d6Þ remain relevant as well. Therefore it seems
likely that this repulsion, together with the overall short-
distance repulsion (cf. Sec. IVC) and the ensemble
entropy, on average compensates at least part of the leading
attraction. The resulting averaged D �D correlations should
thus be considerably weaker than those in theDD and �D �D
channels. As a consequence, the h�D �Di distribution will be
close to that of a random ensemble, and this is indeed what
we observe in Fig. 12.

The above reasoning focused on two-pseudoparticle
forces. This is legitimate because many-body interactions
in the rather dilute g2 ¼ 1 ensemble are suppressed by the
small packing fraction of the contracted dimerons and by
their reduced overlap. Moreover, the emerging parallels
with the color correlations in instanton—anti-instanton
superpositions reinforce our premise that the properties
of weakly coupled dimeron ensembles indeed approach
those of instanton liquid models. As already alluded to,
the above arguments further suggest that the smaller
average distance hdD �Di< hdDD; �D �Di between oppositely

charged dimerons and the related screening-cloud arrange-
ment in the g2 ¼ 1 ensemble (cf. Sec. IVC) are mainly
caused by attractive color-dipole interactions. With grow-
ing coupling and entropy, however, the relative impact of
the potentials (20) and (21) on the free energy and on the
ensemble structure decreases. This holds in particular for
the D �D attraction which has the longest range. Our finding
of hdD �Di � hdDD; �D �Di for g2 * 25 (cf. Fig. 11) indeed in-

dicates that the common repulsion in both D �D and DD,
�D �D channels and the growing entropy begin to dominate
at larger couplings. One would thus expect the peak in the
h�DD; �D �Di distribution to broaden with increasing coupling

until the random distribution is reached for g2 ! 1. The
h�D �Di distribution, on the other hand, may become some-
what more sharply peaked at larger g2 when the compen-
sating impact of the attraction subsides.

In order to test these expectations and to shed further
light on the coupling dependence of the color correlations,

we have evaluated the standard deviation
ffiffiffiffiffiffiffiffiffiffiffi
�h�ip

of the h�i
distribution from its (g independent) mean value h�i ¼
�=2. In Fig. 13 we plot

ffiffiffiffiffiffiffiffiffiffiffi
�h�ip

, again separately for
equally and oppositely charged neighbor dimerons, at
five g2 values. For g2 ¼ 1 the standard deviation of the
h�DD; �D �Di distribution reaches only about half of that of the
h�D �Di distribution, in agreement with its higher and nar-
rower peak in Fig. 12. Also expected from Fig. 12 is that

the g2 ¼ 1 value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h�D �Di

p
remains close to the random

ensemble value at g2 ¼ 1. In fact, the width of the h�D �Di
distribution decreases only little with growing coupling, as
anticipated above, until h�D �Di becomes randomly distrib-
uted. The width of the h�DD; �D �Di distribution, on the other

hand, grows rather strongly with g2 on its approach to the
random value, again confirming our above expectations.
Nevertheless, even at g2 ¼ 1000 the h�DD; �D �Di distribution
remains significantly more peaked than the random distri-
bution. Hence, some of the stronger average repulsion
between nearest-neighbor dimerons of equal topological
charge seems to remain influential even at these rather
large couplings (see also Sec. IVC).
Reflecting upon the above analysis one may wonder to

what extent pertinent features of the � distributions are
obscured by taking the configuration and ensemble aver-
ages. Indeed, the spacial averaging and the interplay be-
tween spacial and color correlations may wash out
interesting local features of the relative color ordering.
However, one would expect this type of leveling to be
weakest in the g2 ¼ 1 ensemble where the almost spherical
color distribution of the dimerons is most concentrated and
the impact of their spacetime orientation consequently
minimized. Other qualitative effects of the stronger
intermediate-range order among neighboring dimerons at
g2 ¼ 1 may therefore also be robust enough to survive the
averaging procedure.

E. Topological susceptibility

The topological susceptibility 
t characterizes several
fundamental properties of the Yang-Mills vacuum. It gov-
erns, for instance, the dependence of the free energy on the

FIG. 13 (color online). The standard deviation of the h�i
distribution between nearest neighbors of equal (black squares,
full line) and opposite (red bullets, dotted line) topological
charge Q as a function of g2. The standard deviation of the
color orientation for nearest neighbors independent of Q is also
included (blue crosses, dashed line).
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CP violating vacuum angle � around � ¼ 0 and the mass
of the �0 meson in quantum chromodynamics with a large
number Nc of colors [64]. Moreover, it contains informa-
tion on the interplay between the Yang-Mills dynamics and
the topology of the gauge group which was conjectured
long ago to be the origin of linear quark confinement [22].

In a finite spacetime volume V, the topological suscep-
tibility is defined as


ðVÞ ¼ hQðVÞQðVÞi
V

; (22)

(which may contain contact terms [65] in the � ! 0 and
a ! 0 limits), where QðVÞ is the topological charge of the
gauge field in V, i.e.,

QðVÞ ¼
Z
V
d4xqðxÞ with qðxÞ ¼ 1

16�2
trfF��

~F��g
(23)

( ~F�� � "���	F�	=2). In the context of our vacuum

description by topologically active constituents, 
 is of
particular interest because it quantifies the strength of
topological charge fluctuations around hQi ¼ 0. The latter
is enforced by CP symmetry which is sufficiently mani-
fest in our ensembles because the configurations (13)
contain a very nearly equal number of dimerons and
antidimerons [66].

The topological susceptibility 
t � limV!1
ðVÞ of
SU(2) Yang-Mills theory is known from several indepen-
dent high-precision lattice simulations [67,68] (with their
scale set by prescribing the value of the physical string
tension). At large Nc, furthermore, the value of 
t can be
obtained either from lattice extrapolations [68–70] or from
experimentally measured properties of the lightest pseudo-
scalar meson nonet. Indeed, to leading order in 1=Nc the
Witten-Veneziano mechanism predicts [64]


t;SUðNc!1Þ ’ f2�
2Nf

ðm2
�0 þm2

� � 2m2
KÞ ’ ð180 MeVÞ4;

(24)

(where f� is the pion decay constant, Nf is the number of

flavors andm�,m�0 ,mK are the�,�0 andKmeson masses)

and thereby relates 
t;SUð1Þ to the part of the �0 mass which

does not originate from the strange-quark mass. The above
values of 
t will serve as benchmarks for comparison with
our results and for scale-setting purposes.

To evaluate 
 in our dimeron ensembles, we first com-
pute the topological charge QðVÞ of each gauge-field con-
figuration. More specifically, we integrate the topological
charge density, obtained analytically from Eqs. (13) and
(23), on a special grid [71] whose extent is varied in small
steps to tune through the desired range of volumina V. The
correlation between discretization errors in the two Q
factors of 
 (which arise from neglecting fluctuations
with wavelengths below the grid-point distance in the
coarse-grained density q) is reduced by evaluating the

second factor on a modified grid. The latter is obtained
by replacing each of the original grid-point positions with a
randomly chosen one inside a surrounding volume deter-
mined by the inverse grid-point density. Finally, the
ensemble average is carried out according to Eq. (22).
Translational invariance implies that 
ðVÞ becomes vol-

ume independent in the thermodynamic limit and that 
t �
limV!1
ðVÞ exists (after appropriate renormalization). In
fact, this V independence will develop already in finite

volumes whose linear dimensions�V1=4 sufficiently much
exceed the correlation length of the topological charge
density. In order to test how far this applies to our simula-
tion volumes and permits extrapolations of our 
ðVÞ to
V ! 1, we have calculated 
ðVÞ in a range of volumes in
which boundary effects remain controllable. (Numerical
efficiency is improved by varying only the temporal extent
of the evaluation volumes. All three spacial dimensions of
the boxes are kept fixed at 1.2 (chosen to limit boundary
artifacts, cf. Sec. III D) and remain centrally embedded).
The resulting volume dependence of the topological

susceptibility is shown in Fig. 14 for g2 ¼ 1 and 100.
In small volumes topological charge fluctuations are sup-
pressed and 
ðVÞ accordingly starts out close to zero.
Towards our largest reliably accessible volumes, on the
other hand, boundary effects may become relevant and
begin to reduce 
. (Hence Fig. 14 contains independent
information on the extent to which the boundary breaks
translational invariance.) Nevertheless, for both coupling
values 
ðVÞ shows a rather broad maximum towards the
end of the trustworthy V range. It is tempting to interpret
these maxima as the onset of the expected saturation
plateaus, and the corresponding 
 values as reliable
approximations to the infinite-volume predictions 
t.
However, from our data sets one cannot decide with con-
fidence whether the maxima do not instead underestimate

t by interpolating between the rise of 
ðVÞ at small V and
its boundary-induced decline at large V. We shall therefore

FIG. 14 (color online). The topological susceptibility 
 as a
function of the spacetime volume V for g2 ¼ 1 (red bullets,
dotted line) and g2 ¼ 100 (black squares, full line).
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interpret the maximal values 
̂ (in this and the following
sections a hat will indicate a dimensionful quantity given in
our numerical units) more conservatively as lower bounds
on the topological susceptibility.

In Table III the corresponding values of 
̂1=4 are listed
with statistical ( jackknife) error estimates for our five
standard g2 values. On a cautionary note, we recall that
the g2 ¼ 1 dimeron ensemble thermalizes very slowly and
that the autocorrelation for the topological charge becomes

correspondingly large. The error of 
̂1=4 as quoted in
Table III does not take this strong autocorrelation into
account and is therefore probably underestimated at least

for g2 ¼ 1. With this caveat in mind, we observe that 
̂1=4

stays inside our error estimates for 25 	 g2 	 100 practi-
cally constant (which becomes even more obvious when

expressing 
1=4 in physical units, cf. Table V). This weak
coupling dependence may be related to the similarly weak
temperature dependence of the topological susceptibility in
the confined phase of Yang-Mills theory up to the phase

transition [70]. For larger g2 our 
̂1=4 values grow too
strongly, on the other hand, which is at least in part due
to boundary artifacts. Indeed, from g2 * 1000 the dimer-
ons are on average as far dissociated as the boundary
allows. As discussed in Sec. III D, they then tend to accu-
mulate along the box diagonals, with their centers concen-
trating in the middle of the box. These distorted field
configurations break translational invariance almost every-
where in the simulation volume.

Our numerical results for the topological susceptibility
provide a first opportunity to set the distance scale a in

our box as a function of g2. To this end we write a
 ¼
âð
̂=
Þ1=4 in physical units, where â ¼ 0:1 and 
̂ are given
in our numerical units while 
 ¼ ð0:99Þ4 fm�4 is the
SU(2) Yang-Mills value obtained from the SU(2) lattice

result 
1=4=�1=2 ¼ 0:483� 0:006 [68] in combination
with the physical string tension � ’ 4:2 fm�2 [1]. The
resulting values of a
 in fm are listed in Table III. With

the help of these values, one may convert our data e.g., for
the string tension �̂ (cf. Table IV) via � ¼ ðâ=a
Þ2�̂ into

physical units, as done in the last column of Table III.
A quantitative comparison of our results with those of

other approaches in physical units will be postponed to
Sec. IVG. For a first orientation, however, one may
compare our ‘‘raw data’’ for 
̂ with their counterparts
from the regular-gauge instanton and meron ensembles of
Ref. [14] (which adopted g2 ¼ 32 and a size regulator
� 	 0:1) even though the physical distance scales might
not be straightforwardly related. (In the ensembles of
Ref. [14] about 90% of the topological susceptibility is
generated by the peaks in the topological charge density
associated with individual merons or regular-gauge in-
stantons, incidentally; the remaining, smoother back-
ground field contributes just the remaining 10%).
According to Table III, our ensembles with g2 ¼
25–100 give 
̂1=4 � 0:8–0:9 which is of the same order

as the meron-ensemble result 
̂1=4 ¼ 0:77 [14] for a
comparable meron density in physical units, correspond-
ing to NMþ �M ¼ 100 (see below). In fact, at the above
couplings g2 ¼ 25 and 100 our dimeron density reaches
about half of Ref. [14]’s meron density and therefore
yields a similar density of meron constituents. (The
regular-gauge instanton ensemble with an instanton den-
sity roughly equal to our dimeron density (corresponding
to NIþ �I ¼ 100), on the other hand, generates the signifi-

cantly larger value 
̂1=4 ’ 1:37 [14].) Within errors the
topological susceptibilities of meron and dimeron ensem-
bles in numerical units are therefore consistent. As a
consequence, setting scales by imposing a common
‘‘physical’’ value for 
 will lead to comparable physical
distance scales.

TABLE III. (Lower bounds on) the fourth root of the topologi-
cal susceptibility 
̂ in numerical units for five values of the
squared gauge coupling. The last columns contain the grid
constant a
 and the string tension � in physical units as obtained

when setting the scale with the SU(2) Yang-Mills value 
1=4 ¼
0:99 fm�1.

g2 
̂1=4 a
 [fm] �½fm�2�
1 0:75� 0:032 0:076� 0:0032 3:864� 0:0793
25 0:83� 0:043 0:084� 0:0045 9:832� 0:7271
100 0:94� 0:032 0:095� 0:0033 9:340� 0:4518
1000 2:42� 0:083 0:246� 0:0096 3:363� 0:1051
1 10:35� 0:503 1:043� 0:0508 0:1607� 0:0008514

TABLE IV. Results for the parameters !̂, �̂ and the string tension �̂, obtained from the fit of
fðAÞ to lnhWiðAÞ in the interval from Amin to Amax. (The reduced chi-square value 
2 character-
izes the statistical goodness of the fit and should not be confused with the square of the
topological susceptibility.)

g2 !̂ �̂ �̂ 
2 Amin Amax

1 �0:22� 0:09 0:27� 0:07 2:23� 0:22 0.22 0.20 1.60

25 �0:51� 0:04 0:81� 0:04 6:95� 0:21 0.32 0.10 0.90

100 �0:20� 0:01 0:55� 0:02 8:47� 0:18 0.44 0.03 0.51

1000 �0:02� 0:04 0:47� 0:08 20:08� 0:66 0.21 0.03 0.35

1 �0:63� 0:09 0:23� 0:20 17:57� 1:80 1.06 0.01 0.35
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F. Wilson loops, static-quark potentials
and string tension

The search for the conjectured transition of dimeron
ensembles into confining meron ensembles is one of the
central objectives of our study (cf. Sec. I). Our first quan-
titative evidence for the actual development of a meron-
dominated phase was discussed in Sec. IVB where we
found the dimerons to dissociate into their progressively
independent meron constituents when the coupling in-
creases. We are now proceeding to the crucial question
whether the gradually liberated merons indeed generate an
area law for largeWilson loops and thus linear confinement
with a finite string tension. More specifically, we are going
to evaluate ensemble averages (i.e., vacuum expectation
values) of path-ordered Wilson loops

W½CðR; TÞ� ¼ tr

�
P expi

I
C
A�dx�

�
(25)

along closed, rectangular paths C. The latter correspond to
the worldlines of fundamentally colored, static quark and
antiquark sources, separated by a spacial distance R and
evolving over the Euclidean time T > R. The static energy
required to introduce and separate these sources in the
vacuum is then given by the potential

VðRÞ ¼ � lim
T!1

1

T
lnhW½CðR; TÞ�i: (26)

Hence, a linear rise of VðRÞ for sufficiently large R signals
linear quark confinement by color-flux tube formation.

Since we are particularly interested in the behavior of
VðRÞ at the largest reliably calculable R values, our strat-
egy for computingW is designed to minimize the impact of
boundary effects (as identified in Sec. III D) while still
making efficient use of the ensemble configurations. This
is achieved by restricting the evaluation volume to several
subvolumina centered in the core box of Sec. III A.
Artifacts of the boundary are reduced by limiting the extent
of these volumina to 2.0 in the time direction, to 1.0 in the
spacial R direction and to 0.5 in the two remaining
spacial directions. The volumina generated by permuta-
tions of the spacial directions are included as well. As a
consequence, fields in regions in which we diagnosed the
main violations of translational invariance are excluded
from the evaluation.

Next, we compute the oriented links U½lðx ! x0Þ� ¼
trP expi

R
lðx!x0Þ A�dx� which connect neighboring grid

points x� and x0� in the evaluation volume by straight lines

lðx ! x0Þ. All rectangular Wilson loops with aspect ratio
R=T ¼ 1=2 are then constructed from combinations of
these color parallel transporters. (For small enough loops
we exploit Euclidean symmetry to assign the time direction
to the longer side, irrespective of its orientation in the core
box.) In order to obtain quantitative information about the
impact of boundary and resolution errors on the reliability
of the link calculation, we perform the latter both (i) on the

full subvolumina described above, with the R values pro-
gressing in steps of length 0.1, and (ii) just on the central
hyperplanes of these volumina, spanned by the longer
spacial direction (with length 1.0) and the temporal direc-
tion, in which the R values progress with step size 0.025.
The main challenge for our finite-grid resolution arises

from gauge fields along a link which develop unusually
large gradients by approaching a meron center, as already
alluded to in Sec. III D. Since this turns out to happen
relatively rarely, we decided to dynamically adapt the
resolution of the grid on which the gauge fields are sampled
along the link. The refined grid then increases the accuracy
of the numerical integration in the link exponent. We start
with a maximal grid-point distance of 0.01, i.e., on a grid
which is 10 times finer than the one on which the gauge-
field configurations were generated. This distance is re-
duced by half if the Frobenius norm of the difference
between a given link and the path-ordered product of two
links over half the distance exceeds one per mille, i.e., if

kU½lðx� ! x�þ1Þ� �U½lðx� ! x�þ1=2Þ�
�U½lðx�þ1=2 ! x�þ1Þ�k � 0:001: (27)

The criterion (27) is chosen such that about one third of the
links in an average Wilson loop has to be updated at least
once. (Two refinement updates of the subgrid for the
same link are almost never encountered with our regulator
�2 ¼ 0:3). Finally, we calculate the average over all
Wilson loops [72] with the same edge length R and
evaluate the logarithm lnhW½CðR; 2RÞ�i of their ensemble
average.
In Fig. 15 the resulting data are plotted as a function

of the loop area A ¼ 2R2 for our five square couplings

FIG. 15 (color online). The logarithm of the expectation value

of rectangular Wilson loops with area A (and side length R ¼
T=2 ¼ ffiffiffiffiffiffiffiffiffi

A=2
p Þ for the square coupling values g2 ¼ 1, 25, 100,

1000, and 1. (For increasing coupling the data lie below each
other.) The black squares (boxes) are obtained from the loops in
the full evaluation volume, the red dots (asterisks) from the loops
in the central hyperplanes. The fit curves to fðAÞ, as described in
the text, are drawn as full lines in their fit intervals.
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g2 ¼ 1, 25, 100, 1000 and 1. The figure includes the
points obtained from both the full subvolumina and their
central hyperplanes, which agree within errors [73]. It
further shows the best fits of the lnhWi data to the function

fðAÞ ¼ !̂þ �̂PðAÞ � �̂A; (28)

where PðAÞ ¼ 3
ffiffiffiffiffiffi
2A

p
is the perimeter of the rectangular

loops. The ansatz (28) may e.g., be motivated by a string
model which takes small, UV-regularized quantum fluctu-
ations into account [14,74]. All fit results are collected in
Table IV, together with their 
2 values per degree of free-
dom and the fit ranges A 2 ½Amin; Amax� in which the data
are probably reliable. The 
2 values indicate that the fits
indeed allow for a reliable determination of the parameters
!̂, �̂ and in particular of the string tension �̂. The central
lesson of these results is that dimeron ensembles indeed
generate finite string tensions which monotonically in-
crease with g2. Our findings in Secs. IVA, IVB, IVC,
and IVD explain this increase as a consequence of the
dimerons’ gradual release of their disordering meron tails.
In addition, our results provide evidence for dimeron dis-
sociation to trigger the transition from a nonconfining
regime to a confining phase. (In the thermodynamic limit
the analogy with Kosterlitz–Thouless-type transitions sug-
gests that the string tension will vanish exactly below some
critical value g2c. In finite volumes one expects a more
gradual transition, however, as seen in our data).

We have additionally applied a somewhat complemen-
tary method of computing the string tension. In this
approach the static quark-antiquark potential VðRÞ is ex-
tracted directly from the Wilson-loop behavior according
to Eq. (26). This allows us to include loops of multiple
aspect ratios, provides a useful cross check on our results
for �̂ in Table IV and makes it possible to obtain physical
information from the small-R behavior of V as well. To
implement this approach we evaluate rectangular loops of
all aspect ratios which fit into the subvolumina defined
above. The value of V at a given R is then extracted from a
fit of lnhWi=T to a constant inside the T * R ranges in
which lnhWi=T becomes approximately T independent.
The resulting potentials are plotted in Fig. 16 for g2 ¼ 1,
25 and 100. All VðRÞ curves indeed show an essentially
linear rise for R * 0:4. (Due to growing boundary effects,
the potentials cannot be reliably extracted beyond a
coupling-dependent Rmax * 0:7–1). It is reassuring, fur-
thermore, that fits to the linear region yield values for the
string tension (�̂ðg2 ¼ 1Þ ’ 1:6, �̂ðg2 ¼ 25Þ ’ 6:3 and
�ðg2 ¼ 100Þ ’ 9:3) which are within 10–20% of those
with better statistics given in Table IV.

Before setting scales and comparing to results of
other approaches in Sec. IVG, we may get a first idea of
the quantitative significance of our !̂, �̂ and especially
�̂ values by comparing them to their counterparts in the
meron and regular-gauge instanton ensembles of Ref. [14]
(which adopted g2 ¼ 32, � 	 0:1 and NIþ �I;Mþ �M ¼ 500).

The meron ensemble yields !̂ ¼ �0:5, �̂ ¼ 0:94 and �̂ ¼
12:8 which are overall closest to our g2 ¼ 25 and 100
results. However, the string tension in the meron ensemble
exceeds ours in the g2 ¼ 100 dimeron ensemble by about
50%. This is probably because our dimerons’ constituent
merons are not yet fully liberated at g2 ¼ 25–100
(cf. Table II) and because their density is somewhat lower
than the meron density in the NMþ �M ¼ 500 ensemble of
Ref. [14]. In any case, the ‘‘raw’’ data suggest that the
confinement properties of g2 ¼ 32 meron and g2 ¼
25–100 dimeron ensembles are at least qualitatively com-
patible. (Another indication may be that the string tensions
in both meron and dimeron ensembles roughly double in
the strongly coupling limit, boundary effects notwithstand-
ing. The results ! ¼ �0:1, � ¼ 0:58, � ¼ 20:5 for the
regular-gauge instanton ensemble [14], incidentally, turn
out to reproduce ours from the g2 ¼ 1000 dimeron en-
semble up to a few percent).
The above considerations indicate that fixing the string

tension at a common physical value will result in compa-
rable confinement scales of both meron and dimeron en-
sembles in the g2 ¼ 25–100 coupling region. This is
reassuring because the linear rise of our VðRÞ should
then rather directly match on to the linear potential of the
meron ensemble even at R * 1, where the confining flux
tube is expected to develop fully but where we cannot
reliably extract it from our present data set. This expecta-
tion is supported by fits of the meron-ensemble result for
VðRÞ to a regularized string model in an extended R range
including R> 1 [14]. In fact, within errors those fits re-
produce the string tension obtained from fitting lnhWi to
Eq. (28) in an A range with a smaller Rmax ¼

ffiffiffiffiffiffiffiffiffi
A=2

p
than

ours. This indicates that our string tension can indeed be
reliably determined by fitting Eq. (28) in a region of

FIG. 16 (color online). The heavy-quark potentials VðRÞ for
the square coupling values g2 ¼ 1, 25 and 100. (The stronger
potentials correspond to larger couplings.)
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relatively small areas. It also adds considerably to the
evidence for dimeron ensembles to provide a viable path-
way towards confining meron ensembles.

We close this section with a few comments on the
small-R behavior of VðRÞ which is of physical interest in
its own right. For R & 0:4 our potentials exhibit to a good
approximation a quadratic R dependence which extends
farthest for g2 ¼ 1 and is little affected by boundary arti-
facts. In order to understand this behavior one should recall
that such a quadratic small-R potential [75] is generated
by sufficiently dilute instanton—anti-instanton ensembles
[25–27]. This indicates that for R & � our VðRÞ are domi-
nated by contributions from little dissociated dimeronswhich
behave essentially as singular-gauge instantons. (Table II and
the dimeron density estimates in Sec. IVG suggest that our
ensembles keep a substantial fraction of such instantonlike
dimerons even at larger couplings.) For a more quantitative
consistency check we recall that a dilute SU(2) instanton
ensemble generates the short-distance behavior VðRÞ ’
0:5��3R2 [25], i.e., VðRÞ ’ 2:8R2 for our size parameter
� ¼ 0:55. From a quadratic fit to our g2 ¼ 1 potential at
distances R & 0:4, on the other hand, we obtain VðRÞ ’
3:8R2 which is indeed of the same order.

G. Dimensionless amplitude ratios
and results in physical units

A quantitative comparison of the dimensionful ampli-
tudes and observables calculated above with those of other
approaches requires either to form dimensionless combi-
nations of our results or to rewrite them in physical units.
Both will be done in the present section. We start with the
discussion of three dimensionless ratios which can be
formed from our results and thus compared to other data
without scale-setting ambiguities.

Our first example is the ratio hŝi=�̂2 ¼ hsi=�2 of the
ensemble-averaged Yang-Mills action density hŝi (the hat
again indicates numerical units) and the appropriate power
of the string tension given in Table IV. The density g2hŝi is
(modulo renormalization issues) proportional to the gluon
condensate hF2i and therefore of considerable interest in
its own right. Our results for g2hŝi can be obtained from
the values computed in Sec. III D on diagonals through the
simulation volume by taking the average values of the
plateau fits in Figs. 3 and 4, i.e., g2hsiðg2 ¼ 1Þ ’ 210 and
g2hsiðg2 ¼ 25Þ ’ 425. With the results for �̂ in Table IV,

this yields hsi=�2ðg2 ¼ 1Þ ’ 94 and hsi=�2ðg2 ¼ 25Þ ’ 3.
The latter value corresponds to the coupling range g2 ’
25–100 in which the dimeron ensembles were estimated
above to best approximate the confining phase of the
Yang-Mills vacuum. Hence, this value should be compared
to the SU(2) lattice value hsi=�2 ’ 4:5 [78], the QCD
sum-rule values hsi=�2 ’ 4–10 [61] (which correspond to
Nc ¼ 3 and contain quark corrections, however) and the
value hsi=�2 ’ 8 [79] in the meron ensemble [14]. (The
regular-gauge instanton ensemble yields hsi=�2 ’ 10 [14]).
Of course, all these values should be taken with a grain of
salt since they involve large subtractions whose systematic
error cannot be reliably estimated. In any case, within
expected errors our result for g2 ¼ 25 is compatible with
the SU(2) lattice value and severalQCD sum-rule estimates.
A second useful dimensionless ratio to be assembled

from our results is 
=ðg2hsiÞ. In fact, there has been a
proposal for an approximate low-energy relation in Yang-
Mills theory, 
 ’ hF2i=ð66�2NcÞ [80], which would fix
this ratio as 
=ðg2hsiÞ ’ 1=ð33�2Þ ’ 3:07� 10�3 (for
Nc ¼ 2 and with g2hsi ¼ hF2i=4). A dilute-instanton-gas
estimate similarly yields 
=ðg2hsiÞ ’ 1=ð32�2Þ [81]. With

the SU(2) Yang-Mills lattice result 
1=4=�1=2 ¼ 0:483�
0:006 [68] and the ratio quoted above, one arrives at the
similar value 
=ðg2hsiÞ ’ 3:21� 10�3 while the range of
condensate results hF2i ’ 0:1–0:3 GeV4 [61] from QCD
sum-rule analyses (corresponding to Nc ¼ 3 and contain-
ing quark admixtures) together with the SU(2) Yang-Mills

value 
1=4 ’ 195 MeV (see below) yields 
=ðg2hsiÞ ’
ð1:2–3:6Þ � 10�3. From the data for 
̂ in Table III and
for hŝi as given above, finally, our dimeron ensemble
results are 
=ðg2hsiÞ ’ 1:9� 10�3 for g2 ¼ 1 and

=ðg2hsiÞ ’ 1:2� 10�3 for g2 ¼ 25, within the range ob-
tained from the sum-rule values for the gluon condensate
but smaller than the lattice value.
The third dimensionless quantity that can be formed

from our results is 
1=4=�1=2. In contrast to the ratios
discussed above, it has the additional benefit of not involv-
ing the rather unreliably known and renormalization
scale—dependent expectation value of the action density.

Our 
1=4=�1=2 values for the five different g2 are listed in

Table V. The inverse ratio �1=2=
1=4 is plotted for the four
finite g2 values in Fig. 17. For g2 between 1 and 1000 our

values for 
1=4=�1=2 lie in the range from 0.3 to 0.55.
Hence they are indeed rather compatible with the SU(2)

TABLE V. Results in physical units set by the string tension � ¼ 4:2 fm�2.

g2 
1=4=�1=2 a [fm] � [fm] n½fm�4� 
1=4 [MeV]

1 0:52� 0:057 0:073� 0:004 0:040� 0:002 15:69� 3:44 209:02� 23:04
25 0:29� 0:022 0:129� 0:002 0:071� 0:001 1:71� 0:099 117:61� 8:90
100 0:32� 0:012 0:142� 0:002 0:078� 0:001 1:10� 0:062 127:24� 5:034
1000 0:54� 0:033 0:219� 0:004 0:121� 0:002 0:19� 0:014 218:66� 13:44
1 2:46� 0:13 0:205� 0:01 0:113� 0:006 0:25� 0:049 991:28� 51:42
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lattice value 
1=4=�1=2 ¼ 0:483� 0:006 [68]. Moreover,
for g2 ¼ 25–100 our results are practically identical to the

meron-ensemble value 
1=4=�1=2 ’ 0:31 [14] at g2 ¼ 32

(and somewhat smaller than the range 0:42 	 
1=4=�1=2 	
0:48 obtained from regular-gauge instanton ensembles [14]).

Since correlations among individual observables may be
hidden in the dimensionless ratios discussed above, it is
also important to directly compare dimensionful results in
physical units with those of other approaches. For this
purpose, we have considered two alternative scale-setting
procedures. The first was introduced in Sec. IVE and
prescribes a standard value for the topological susceptibil-
ity in SU(2) Yang-Mills theory. This allows us to rewrite
our results for the string tension in physical units, as given
in the last column of Table III. For g2 ¼ 25–100, they
are roughly twice as large as those obtained from
Regge phenomenology (see below), while for g2 ¼ 1000
our value is about 25% smaller. Continuing this trend, the
string tension becomes unnaturally small in the strong-
coupling limit, as a consequence of 
̂ growing too large
due to boundary artifacts (cf. Sec. IVE and below).

In the following, we therefore adopt a more standard
approach to scale setting which fixes the string tension at
its physical value� ’ 4:2 fm�2 (estimated from the almost
universal experimental Regge slopes [1]). This amounts to

writing our discretization scale in physical units as a ¼
âð�̂=�Þ1=2, with â ¼ 0:1 and �̂ (cf. Table IV) given in
numerical units. The resulting values in Table V show that
a increases with g2. Hence, the resolution of short-distance
features in the vacuum field population decreases moder-
ately with the coupling. This tendency is enhanced by the
gradual dissociation of the well-localized, singular-gauge
dimerons into broader merons (cf. Sec. IVA) which con-
tain fewer short-wavelength Fourier modes. As argued
above, we expect our ensembles to best reproduce observ-
ables in the confining Yang-Mills vacuum phase for g2 ¼
25–100. In contrast, our most weakly coupled ensemble
with g2 ¼ 1 underestimates the string tension while for
g2 � 100 the results increasingly suffer from boundary

artifacts. In those ensembles, fixing the string tension at its
physical value will therefore not yield dimensionful results
of the expected magnitude. With this caveat in mind, we
can now use a to express other dimensionful quantities in
physical units (cf. Table V).
An important dimensionful quantity is the meron-center

size regulator � which furnishes the characteristic input
scale of the dimeron ensembles (cf. Sec. II C). For g2 ¼
25–100 and �̂ ¼ 0:55, we find � ’ 0:07–0:08 fm, i.e.,
about a quarter of the typical instanton size ��I � 0:3 fm
in (singular-gauge) instanton-liquid models [24]. This in-
dicates that our regularization procedure deforms the clas-
sical dimeron solutions only moderately and should not
impede a potentially semiclassical behavior of their super-
positions. The average dissociation 2hjaji � ð1–1:6Þ� of
the dimerons at g2 ¼ 25–100 increases the effective
dimeron size, on the other hand, and brings it closer to
typical instanton sizes. Finally, it is useful to note that
�� ��1 ’ 2:5–2:8 GeV approximately sets the renormal-
ization scale of our ensembles. (Recall that � acts as an UV
regulator e.g., for the action density which diverges loga-
rithmically when � ! 0.) These � values are of the order
of typical lattice scales, which may help to explain why our
results for the scale-dependent action density are compat-
ible with lattice values.
We now turn to the dimeron density of our ensembles.

Recalling the grid-point distribution from Secs. III A and
III E, the four-volume of our ensemble box is given by
Vens ¼ ð1:15� 25Þ3 � ð1:15� 40Þa4. The corresponding
values of the dimeron density n ¼ ðND þ N �DÞ=Vens ¼
487=Vens in physical units are listed in Table V. In the
preferred coupling region g2 ¼ 25–100 they are about
20–80% larger than the typical instanton densities nIþ �I ’
1 fm�4 of instanton liquid models [24]. The physical sig-
nificance of this result will be discussed below. Moreover,
it is interesting to note that the density nMþ �M ’ 3:2 fm�4

of merons in the NM ¼ 200 ensemble of Ref. [14] is
similar to the density of our meron constituents, i.e.,
approximately twice as large as our dimeron densities
n� 1:2–1:8. This adds to our earlier evidence for an
increasingly dynamical role of the largely independent
meron constituents from the farthest dissociated dimerons.
It remains to put our results for the topological

susceptibility in the last column of Table V into a quanti-
tative perspective. The dimeron ensemble predictions for


1=4 in the coupling region g2 ¼ 25–100 are about 50%

smaller than the ‘‘physical’’ value 
1=4 ¼ 195:03 MeV
(i.e., the SU(2) lattice value with the scale set by � ¼
4:2 fm�2, cf. Sec. IVE). Similarly small values 
1=4 ’
118–132 MeV were encountered in the meron ensembles
of Ref. [14] while regular-gauge instanton ensembles

yield 
1=4 ’ 162–190 MeV. Hence, our relatively small


1=4 values are consistent with previous indications
for the meron centers, which carry only half of the dimer-
ons’ topological charge, to increasingly determine the

FIG. 17. The dimensionless ratio �1=2=
1=4 as a function of
the square coupling g2.
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topological-charge fluctuations for g2 * 25. (One should
also keep in mind, however, that we consider our values for

̂ as lower bounds, cf. Sec. IVE.) Another suggestive
pattern in our data is the weak bare-coupling dependence

of the 
1=4 values for g2 ¼ 25–100. As already alluded to,
this behavior may reflect the well-known temperature in-
dependence of the topological susceptibility in the con-
fined Yang-Mills phase [70] which in turn indicates that


1=4 is relatively insensitive to temperature-induced varia-
tions of the coupling g2YMðTÞ up to the critical temperature

Tc. (For T > Tc, on the other hand, 
 drops very rapidly.)

The unusually large value of 
1=4 in our g2 ¼ 1
ensemble was already noted above in the raw data
(cf. Table III). Of course this result raises suspicion. In a
random distribution of merons, into which the dimerons
dissociate for g2 ! 1 as far as our limited field configu-
ration space and the boundary allows, one would expect the
topological susceptibility to be an incoherent sum of
single-pseudoparticle contributions and thus to have a
value of the order of the pseudoparticle density. This
expectation was verified explicitly in random singular-
gauge instanton [24], regular-gauge instanton and single-
meron [14] ensembles [82]. The fact that our for g2 ! 1
strongly increasing 
 values fail to scale with the density is
therefore probably another manifestation of the residual
correlations between the dimerons’ meron partners and the
related g2 ! 1 boundary artifacts. We recall that in
Secs. IVA and IVE these artifacts were found to impede
the development of a genuine random meron ensemble
and to strongly contaminate the topology distributions.
Fortunately, in the physically relevant coupling region
g2 ¼ 25–100 these effects are much weaker and under
far better control.

Our above results suggest a remarkably comprehensive
role for dimerons in the Yang-Mills vacuum. A key
feature of the emerging picture is the rather distinct
division of labour between almost fully contracted, in-
stantonlike dimerons and their far dissociated, meronlike
counterparts. In dynamical equilibrium at intermediate,
i.e., physical couplings both of these components coexist
at fairly high densities [83]. In particular, our overall
dimeron densities significantly exceed the instanton den-
sity in instanton liquid models. Hence the instantonlike
dimeron component should be sufficiently populated to
perform essentially all established tasks of instantons in
the Yang-Mills vacuum [24,30]. The strongly quadratic
rise of our heavy-quark potentials at small interquark
separations provides additional evidence in this direction
(cf. Sec. IV F). The meronlike component, on the other
hand, seems to be mainly responsible for the longest-
distance vacuum physics including, most importantly,
linear quark confinement as established in Sec. IV F and
in single-meron ensembles.

On a structural level, the above reinterpretation of
the instanton component in the Yang-Mills vacuum as

mainly consisting of hardly dissociated dimerons is
compatible with the existing instanton phenomenology as
well. Indeed, due to the destructive interference between
their meron-center tails the instantonlike dimerons
experience much weaker long-range interactions than the
almost liberated merons of the meronlike component
(cf. Secs. IVB, IVC, and IVD). Similar to singular-gauge
instantons in sufficiently dilute superpositions they overlap
less with each other, furthermore, and thus retain more of
the classical solutions’ shapes and semiclassical behavior.
Hence, the instantonlike dimeron component indeed re-
sembles a rather weakly interacting ‘‘liquid.’’ On the other
hand, this raises the question why cooling studies, designed
to detect semiclassical solutions in equilibrated lattice
configurations, have reported clear evidence for instantons
or calorons with nontrivial holonomy but none for dimer-
ons [16,30]. Closer inspection reveals, however, that these
findings are not in conflict with our above scenario. In fact,
the finite-resolution algorithms used to identify these so-
lutions by their shapes may have counted small dimerons
as instantons. Moreover, under cooling the logarithmic
attraction between the dimerons’ (smoothed) meron cen-
ters can no longer be counterbalanced by their decreasing
entropy. Hence the dimerons will shrink and at least par-
tially coalesce into instantons [85] as which they are iden-
tified afterwards.
As established in Sec. IV F, the effectively released

meron centers of the meronlike dimeron component
develop the strong long-range correlations required to
generate confinement. Although these color correlations
produce a more complex long-distance structure than
encountered in fully disordered random ensembles, they
still generate enough entropy for a string tension of the
physically expected magnitude to develop (cf. Sec. IV F).
Moreover, it seems likely that our above scenario can
be extended to an at least qualitatively realistic description
of the QCD vacuum. The instantonlike component of
dimeron ensembles, in particular, should adapt to the pres-
ence of light quarks in essentially the same manner as in
instanton liquid models. This is because most instanton
effects in the light-quark sector, including the induced
quark interactions which spontaneously break chiral sym-
metry, originate from the characteristic quark zero-modes
arising in the instanton background. Since these zeromodes
are of topological origin, their existence and bulk properties
[86] are little affected by moderate deformations of the
instantons into dimerons. Hence, the ensuing phenomenol-
ogy should be similarly robust under such deformations.

V. SUMMARYAND CONCLUSIONS

We have studied the extent to which the Yang-Mills
vacuum can be described by restricting its gauge-field
content to superpositions of regularized SU(2) (anti-)
dimeron solutions. Our set-up and analysis of the corre-
sponding effective theory focused mainly on structural
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changes in dimeron ensembles as a function of the bare
gauge coupling and traced their impact on topological and
confinement properties. The underlying quantum super-
positions of dimerons, with their dynamics governed by
the Yang-Mills action, were generated without recourse to
weak-coupling or low-density approximations by Monte-
Carlo simulations in a wide range of bare coupling values.
The localization of the individual dimerons was enhanced
by transforming them into a singular gauge, which simul-
taneously improves numerical efficiency, the vacuum de-
scription at shorter distances and the compatibility with
semiclassically motivated instanton liquid models.

Our initial survey of dimeron ensemble properties and
their coupling dependence concentrated on the spacial
distribution of the dimerons, their local degree of self-
duality and their meron substructure. To understand rele-
vant aspects of the underlying interdimeron dynamics, we
further studied short- and intermediate-range correlations
between positions, topological charges and color orienta-
tions of neighboring dimerons and of their meron centers.
The resulting structural patterns turned out to be multi-
faceted and revealing. A strong repulsion up to distances of
the meron center sizes governs the short-range interactions
between dimerons of both topological charges and at all
couplings. In our minimally coupled and thus most ordered
ensemble, we additionally find a striking (about sevenfold)
preference for nearest-neighbor dimerons to carry opposite
topological charges, indicating a strong intermediate-
range attraction (repulsion) between dimerons of opposite
(equal) topological charge. A less pronounced but still
significant majority of next-to-nearest neighbors is found
to carry identical topological charges. The resulting short-
to mid-range order among the topological charges is remi-
niscent of Debye screening clouds in a plasma. These
ordering patterns can be traced to the dependence of the
underlying interactions on the relative color orientations
between neighboring dimerons. Ensemble and configura-
tion averages of these color orientations indicate, on the
other hand, that in the mean the intermediate-range
attraction between neighboring dimerons and antidimerons
is almost completely compensated by their shorter- and
longer-range repulsion and by the ensemble entropy. In any
case, with increasing coupling and hence entropy the ob-
served topological order weakens rather rapidly, together
with the underlying color correlations.

The most far-reaching impact of the increasing bare
coupling, however, manifests itself in the structural
changes which it induces in the individual dimerons. In
particular, we found the first robust evidence, established in
fully interacting ensembles, for the dimerons to gradually
dissociate into their meron constituents when the coupling
grows. This process is driven by a competition between the
coupling-dependent interactions and the entropy. Several
complementary pieces of evidence further indicate that the
meron constituents continuously replace the dimerons as

the dynamically relevant degrees of freedom. With grow-
ing coupling the interactions between merons belonging to
different dimerons therefore increasingly determine the
ensemble properties. This renders the dimerons’ meron
partners more and more independent (except for their
frozen relative color orientation) and allows our field con-
figurations to approximate more closely those of meron
ensembles. In particular, however, the changing nature of
the dynamically active topological-charge carriers and of
their coupling-dependent correlations leaves various re-
vealing imprints on bulk ensemble properties.
Among the latter, the topological susceptibility is par-

ticularly relevant in our context. When calculated in a
sequence of growing evaluation volumes up to the largest
accessible ones, it is found to level off towards the end of
the sequence. This indicates or at least foreshadows the
expected saturation of the topological-charge fluctuations
in the thermodynamic limit. Moreover, the resulting values
of the susceptibility in the intermediate, physical coupling
range remain within errors practically constant. This be-
havior may be related to the similarly weak temperature
dependence of the topological susceptibility in Yang-
Mills theory below the deconfinement temperature. Our
intermediate-coupling results reproduce those of compa-
rable single-meron ensembles rather closely, furthermore,
which seems to indicate that (on average relatively loosely
bound) meron centers of dimerons and single merons
produce topological charge fluctuations of roughly equal
strength. On the other hand, our results for the topological
susceptibility underestimate lattice and instanton ensemble
values by about 50%, perhaps due to insufficient saturation
in our evaluation volumes and the underlying boundary
effects. In any case, the dimeron ensemble predictions for
the susceptibility could be straightforwardly adjusted by
increasing the dimeron density.
Since the long-range color tails of less bound meron

centers disorder the vacuum more strongly, we have payed
particular attention to the confinement properties of the
dimeron ensembles. The latter were monitored by evaluat-
ing ensemble averages of rectangular Wilson loops and by
extracting the associated static quark-antiquark potentials
for a wide range of coupling values. Initially, the resulting
potentials are found to rise quadratically with the inter-
quark separation. This behavior is typical for (sufficiently
dilute) instanton ensembles and indicates that our short-
distance potentials are dominated by contributions from
moderately dissociated dimerons which act essentially as
singular-gauge instantons. For quark-antiquark separations
beyond about half a fermi, on the other hand, the Wilson
loops indeed develop an area-law behavior, and the poten-
tials consequently show the linear distance dependence
characteristic of quark confinement. The associated string
tension is found to grow with the coupling and to reach
values of the experimentally expected order of the magni-
tude in the physical coupling range.
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Hence we have shown—without reliance on weak-
coupling or low-density approximations—that sufficiently
strongly coupled and therefore on average far enough
dissociated dimeron ensembles indeed produce confining
long-range correlations of about the physically required
strength. Since the latter originate from the meron tails of
the more strongly dissociated dimerons, these results
also provide complementary evidence for single-meron
ensembles to confine (even though our finite simulation
volume and our limited field configuration space prevent
the dimerons from breaking up completely). Moreover,
both dimeron and single-meron ensembles are found to
generate confining static-quark potentials of comparable
strengths at our largest accessible interquark distances.
Since the linear rise of the meron-induced potential turns
out to continue beyond these distances, furthermore, our
above reasoning indicates that the same should happen in
dimeron ensembles. Hence, we expect an ongoing linear
rise of the dimeron-induced potentials into the distance
region where the underlying color flux tubes are fully
developed.

While dimeron ensembles thus share with single-meron
ensembles the main features of the confinement mecha-
nism, they also provide a more complete description of
the Yang-Mills vacuum. Indeed, our results additionally
establish how a confining meron component in the vac-
uum can robustly emerge from instanton and dimeron
dissociation. This quantitatively confirms a key ingredient
of the meron-induced confinement scenario envisioned
more than three decades ago on the basis of qualitative
arguments. In addition, our results on the coupling de-
pendence of dimeron ensemble properties should contain
useful information on the ensembles’ temperature depen-
dence and, in particular, on the impact of temperature-
induced variations of the gauge coupling (although we did
not pursue this issue in the present paper).

Furthermore, we found evidence for the physical di-
meron density to be about twice as large as typical instan-
ton densities. This allows confining dimeron ensembles to
retain a phenomenologically relevant fraction of con-
tracted and thus more weakly interacting, ‘‘instantonlike’’
dimerons. An independent indication for the considerable
residual instanton density provides the strong quadratic
rise of our heavy-quark potentials at short interquark dis-
tances. The instanton-like component should adapt to the
presence of light quarks in essentially the same fashion as
in phenomenologically successful instanton vacuum mod-
els, furthermore, since the underlying quark zero-modes in
the instanton background are of topological origin and,
therefore, little affected by deformations of instantons
into contracted dimerons. Since the role of the temperature
of the statistical analog ensemble is played by the effective
coupling, our results further indicate that the dimeron
system can be in different phases depending on the scale
of distances being probed. At short distances the merons
are tightly bound and their (nonconfining) effect on quarks
is similar to that of instantons. For widely separated
quarks, on the other hand, the merons behave as a plasma
which controls the confining long-range properties of the
system. Hence, in addition to confining color, dimeron
ensembles should be able to reproduce much of the suc-
cessful vacuum and hadron phenomenology predicted by
singular-gauge instanton ensembles.
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Lüscher, Phys. Lett. B 593, 296 (2004).
[66] Even for ND ¼ N �D strict CP invariance would hold only

in the infinite-volume limit and/or with infinite ensemble

statistics, incidentally, since the topological charge density

of the dimerons is not fully contained in our evaluation

volumes. However, this boundary artifact is mitigated

already in relatively small volumes by the short-range

anticorrelations among the dimerons’ topological charges

(cf. Sec. IVB).
[67] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U.-J.

Wiese, Nucl. Phys. B292, 330 (1987); A. S. Kronfeld,

M. L. Laursen, G. Schierholz, C. Schleidermacher, and

U.-J. Wiese, Nucl. Phys. B305, 661 (1988); T. A. deGrand

and A. Hasenfratz, Nucl. Phys. B 520, 301 (1998); E.

Vicari and H. Panagopoulos, Phys. Rep. 470, 93 (2009).
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