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On the basis of perturbative QCD and the relativistic quark model, we calculate relativistic corrections
to the process of pair J/ ¢ production in proton-proton collisions at LHC energy VS =7 TeV. Relativistic
terms in the production amplitude connected with the relative motion of heavy quarks and the trans-
formation law of the bound state wave functions to the reference frame of moving J/ ¢ mesons are taken
into account. For the gluon and quark propagators entering the amplitude, we use a truncated expansion in
relative quark momenta up to the second order. Relativistic corrections to the quark bound state wave
functions are considered by means of the Breit-like potential. It turns out that the examined effects
decrease initial nonrelativistic cross section more than two times. The final result lies below the

experimental value measured by LHCb.
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I. INTRODUCTION

The production of heavy quarkonium states in different
reactions is the subject of considerable interest during last
years. The mechanism of heavy quarkonium production
represents the long-standing problem of quantum chromo-
dynamics [ 1-4]. Most current theoretical investigations are
performed on the basis of nonrelativistic quantum chromo-
dynamics (NRQCD) [5] and the quark models. According
to these approaches, the production of heavy quarkonium
is divided into two stages. On the first stage, one or several
quark-antiquark pairs are produced at small distances of
order 1/mg. This short-range part in the production is
associated with the basic interaction of free quarks and
gluons and can be evaluated by perturbation theory. The
subsequent nonperturbative transition from the intermedi-
ate states of quarks QQ... and antiquarks Q Q... to
physical quarkonium states, on the second stage, involves
long-distance scales of order of quarkonium size 1/ (va).
The formation of the quark bound states is parametrized by
nonperturbative matrix elements in NRQCD and calcu-
lated by means of the bound state wave functions in the
quark models. The finding of the correspondence between
parameters of the quark models and NRQCD opens the
way for better understanding of the quark-gluon dynamics.
Both approaches complement each other and can reveal
new aspects of the color dynamics of quarks and gluons.

One of the directions in this investigation is related with
the pair production of double heavy quarkonium. The
initial impulse to intensive investigations was given in
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this field several years ago by the measurement of the
pair charmonium production cross sections in electron-
positron annihilation. The experimental data obtained at
the Belle and BABAR detectors disagreed with the calcu-
lations based on NRQCD. The theoretical results were
improved and adjusted in correspondence with the experi-
ment after the account of one-loop perturbative corrections
and relativistic corrections to the nonrelativistic cross sec-
tion [6-8]. One of the learned lessons from this problem
consists in the understanding that only sequential account
of relativistic corrections in the heavy quarkonium produc-
tion processes can lead to reliable theoretical results.
It is necessary to point out that subsequent observation
of numerous charmonium-like states by the Belle and
BABAR collaborations with unclear nature demands further
continuation of the investigations in this direction [9].
Recently, the first experimental result of the LHCb col-
laboration on the pair charmonium production in proton-
proton interaction at a center-of-mass energy JS =17 TeV
was published [10]:

o =51+1.0% 1.1 nb, (1)

where the first uncertainty is statistical and the second
systematic. This production cross section for pairs with
both J/ i was obtained in the rapidity range 2 <y < 4.5.
There are several calculations of the pair charmonium pro-
duction cross section in pp interaction in Refs. [11-15].
Theoretical estimations of the total cross section (integrated
over all rapidities) are obtained in the leading order of
QCD where the process of the gluon fusion is the dominant
one: 18 nb [11], 22 nb [13]. In the framework of the
k,-factorization approach the prediction on the integral
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production cross section range is 10-27 nb [14]. These
calculations give the following total values of the cross
section for the pair charmonium production in the kinemati-
cal region of the LHCb experiment (the region of rapidities
2 <y<4.5): 3.1 nb [11], 46 nb (p, >3 GeV) [15]. The
theoretical uncertainty remains sufficiently large. To the
present the calculations of the pair charmonium production
in pp interaction were carried out in the leading order of
QCD without inclusion of relativistic corrections. In addi-
tion to these permanent theoretical errors known from the
experience of e e~ annihilation, we have in this task new
specific uncertainty caused by parton distribution func-
tions at small x values because the gluon contribution
from the region of small x is dominant. There appears
also another uncertainty related with the double parton
interaction [16]. In this work we study one aspect of the
improvement of the previous calculations connected with
the account of relativistic corrections. Using the methods
of the relativistic quark model [8,17-19], we perform new
calculation of the cross section o(pp — J/J/ i + X)
accounting for relativistic corrections to the production
amplitude and the bound state wave functions of heavy ¢
quarks. So, the aim of this study consists in the relativistic
description of the pair charmonium production at hadron
colliders. It is important to note that the interest to the
inclusive reactions p + p — 2J/ + X, pN—2J /¢y + X
is not limited only by the investigation of the production
mechanism. The study of the quarkonium production in
the nuclear matter leads to new data about QCD at high
density and temperature [20,21].

There exist different mechanisms for the pair charmo-
nium production in pp collisions. At the collider energies,
double quarkonium production occurs through the gluon-
gluon interaction channel. In the color singlet model a pair
of quark-antiquark (cc) is created at short distances in
color singlet state. Then it evolves nonperturbatively into
an observed meson J/i. At small transverse momenta
and small invariant masses of the J/¢ pair, the color
singlet mechanism gives the main contribution to the cross
section. Another possibility is to create a pair (cc) with
different color and angular momentum from that of the
final meson. Then the color octet pair evolves to the
color singlet charmonium emitting soft gluons. This color
octet mechanism plays significant role in the region of high
transverse momentum. Among the large number of
Feynman diagrams describing the production of a pair of
J/ i, it has been separated into a class in which the J/
pair production is related with the double gluon fragmen-
tation. In this study we analyze the total set of the produc-
tion amplitudes in the color singlet model making primary
emphasis upon relativistic effects.

II. GENERAL FORMALISM

The differential cross section do for the inclu-
sive double charmonium production in proton-proton
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interaction can be presented in the form of the con-
volution of partonic cross section do(gg — J/&J /)
with the parton distribution functions in the initial
protons [1,2]:

dolp+p—J/y+J/¢y +X]

= fdxldXng/p(xl’ /-L)fg/p(XZ’ M)da-[gg - J/l//J/L//]’
()

where f,/,(x, u) is the partonic distribution function
for the gluon in the proton, x;, are longitudinal mo-
mentum fractions of gluons, and w is the factorization
scale. Neglecting the proton mass and taking the c.m.
reference frame of initial protons with the beam along
the z axis, we can present the gluon on mass-shell
momenta kj, =x1,2§(1,0, 0, =1). \/E is the center-
of-mass energy in proton-proton collision.

In the quasipotential approach the invariant transition
amplitude for the gluonic subprocess g +g—J/ ¢y +J/ ¢
can be presented as a convolution of a perturbative pro-
duction amplitude of two c-quark and c-antiquark pairs
T (p1, P2; 1, g») and the quasipotential wave functions of
the final mesons W, [8]:

d dq - _
- (2—:)3 —(2:)3‘1’(1?,1’)‘1’(61, Q)® T (p1, 2341, 92)
3)

where p; and p, are four-momenta of ¢ quark and ¢
antiquark in the pair forming the first J/¢ particle,
and ¢, and ¢, are appropriate momenta for quark and
antiquark in the second meson J/i. They are defined
in terms of total momenta P(Q) and relative momenta
p(q) as follows:

~
I+
=

(pP) = 0;

>
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I
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(gQ) = 0.
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©
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=

In Eq. (3) we integrate over the relative three-momenta of
quarks and antiquarks in the final state. The systematic
account of all terms depending on the relative quark
momenta p and ¢ in (2) is important for increasing the
accuracy of the calculation. p = Lp(0,p) and ¢ =
Ly(0,q) are the relative four-momenta obtained by the
Lorentz transformation of four-vectors (0, p) and (0, q) to
the reference frames moving with the four-momenta P
and Q. The parton-level differential cross section for
g+g—J/y+J/ is expressed further through the
Mandelstam variables s, ¢, and u:
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s =(ky + k)* = (P + 0)* = x5,
1= (P—k)*=(Q— k)

= M? — x,;/S(Py — |P| cos¢)

= M? — x;x,8 + x,3/S(Py + |P| cosep),
u=(P—k)*=(0—k)?

= M? — x,3/S(Py + |P| cos¢)

= M? — X258 + x,;/S(Py — |P| cosgb), (5)

where M is the charmonium mass, and ¢ is the angle
between P and the z axis. The transverse momentum Py
of J/ 4 and its energy P, can be written as

M2 — ¢ 2
P = |P|%sin’¢p = —t — —( ) ,
X1X,8
\/§ (6)
Py = ke 22 p| cose.

X1+ x xl—i— o)

At leading order of perturbation theory in strong
coupling constant «g, there are 31 Feynman diagrams
contributing to the amplitude of pair J/ production due
to gluon fusion. The typical diagrams from this set are
presented in Fig. 1. For the completeness, we show in
Figs. 2 and 3 also the Feynman diagrams from two
other subsets containing 5 and 8 Feynman diagrams
which do not contribute to the production amplitude.
Any Feynman amplitude shown in Fig. 2 has zero con-
tribution because its color factor is equal to zero. The
sum of four diagrams from the subset in Fig. 3 is equal
zero with the account of relativistic corrections studied
in this work. So, further we consider only the 31
Feynman amplitudes from Fig. 1.

Let us consider, for example, the transformation of the
first amplitude in Fig. 1 which takes the form in the
Feynman gauge:

R b _
s B

FIG. 1. The typical LO diagrams contributing to the partonic
process g + g — J/¢ + J/. The others can be obtained by
reversing the quark lines or interchanging the initial gluons.

=l3s
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H3 =4
74 7=

FIG. 2. The subset of LO diagrams which give zero contribu-
tion to g + g — J/¢ + J/ because their color factor is equal
zero.

T4 (py, P23 41, 42)
= 8772“%5‘1178{‘(/(1)85(](2)

2g/\,ugva' - g/\trgp,ll - g/\vg/.ur
E+g+p+q*E+5—p—q?

X [a(py)y7v(g)]ia(g2)y" v(pa)] (7

where &,(k;) and &,(k,) are the polarization vectors of
initial gluons. The amplitude (3) should be convoluted
with two wave functions of J/¢ mesons taking in the
reference frame moving with four momenta P and Q.
The transformation law of the bound state wave function
from the rest frame to the moving one with four momentum
P was derived in the Bethe-Salpeter approach in Ref. [22]
and in the quasipotential method in Ref. [23]. We use the
last one and write the necessary transformation as follows:

W5 (p) = Dy/>**(RY)Dy>*P(RY )W 5P (p),

’ ’ ®)
W7 (p) = Vg (p)Dy /> ARY DS TR,

where RV is the Wigner rotation, Lp is the Lorentz boost
from the meson rest frame to a moving one, and the

rotation matrix D'/2(R) is defined by

FIG. 3. The sum of LO diagrams from this subset gives zero

contribution to g + g — J/4 + J/¢ with the account of rela-
tivistic corrections.
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L0\ 1 |
0 1 D\ (R} ) =S (p12)S(P)S(p), )
where the explicit form for the Lorentz transformation matrix of the four-spinor is
cp) +tm(  (ap) )
S(p) = 1 . 10
) 2m\ e(p) + m (10)

Omitting a number of transformations which can be performed with (7) in (3) as in Refs. [8,18], we write the contribution

to the production amplitude in the form:

/v
M (ky, ky, P, Q) = 2M 5 7202 dp  V/'"(p)

dq V(g

3 m
e [

2m)3 [E(q) E(q)+m]

oy —1 p’ ] [ 1+ N p’ P ]
X T + +1 + + Ly
r{[ 2 Vi 2m(e(p) + m) 2m &0y ) Vi 2m(e(p) + m) 2m Y
-1 q’ q ] [U2+1 5 q’ @] }
X + L 1 — Ly
[ 2 v2 2m(e(g) + m) 2m Bol0n ) 2Zm(e(q) +m) 2m Y
g/\,ugvo' — 8rc8uv — 8Mv8uc
k k , 11
Ake ) T e+ 2 p— g (o

where v, = P/M, v, = Q/M; ep, are polarization
vectors of final J/¢ mesons with ep- P =0 and g -
0 =0; e(p) = Jm? + p>, M = 2m is the mass of J/ i
meson. The hat symbol means contraction of the four-
vector with the Dirac gamma matrices. The spin projec-
tors v(0)ii(0) = £*(1 + v,)/(2+/2) corresponding to J/ i
mesons are introduced as well as projectors &;;/ V3 onto a

color singlet states. We explicitly extracted in (11) the
|

normalization factors ~2M of quasipotential bound state
wave functions.

The same transformations can be carried out with all
31 Feynman amplitudes in Fig. 1. In view of the large
volume of calculations we have used the package
FEYNARTS [24] for the system MATHEMATICA and FORM
[25]. To make the entry of final amplitude more com-
pact, we introduce a number of vertex functions I';. Then
we can present the total amplitude (3) in the form:

d
Migg — 3/ 3/ W )ks o P, Q) = g Mad [ B [ mam,
_ _ BT . m—k2+f)1 — BT N m_lgl—i_ﬁl 1 BAT,
M=Dyyp¥, ol Vorr g S T Dayg Vol sV rdi g 5+ DV ol ey
B _ _ +k m+k, - q
+ DY, ,TPT +D,¥, [PF m—z + D, TP,y L s (12
Vo plsWoovp + Do olsWppyp = S 80+ DoV ol eV ryp—— S n 8 (12

where inverse denominators of gluon propagators
are defined as D} = (ky — p1, — ¢1,)* and Dy =
(P12 + q1.2)* Perturbative amplitude 7 (py, p2; gy, ¢2) in
Eq. (3) describes production of two c-quark and
c-antiquark pairs with the momenta p;, and g,
respectively. The formation of observable bound states
from quark—antiquark pairs is determined in the quark
model by the quasipotential wave functions W, (p, P)
and ¥,,,(q, Q). These wave functions are calculated
initially in the meson rest frame and then are transformed
to the reference frames moving with the four-momenta P
and Q. As a result we obtain in (12) the following ex-
pressions for relativistic bound state wave functions
which determine the transition of heavy quarks to the
bound state:

_ W' [ﬁ1—1+ﬁ P’ _g]
pP [%%] 2 om(e(p) + m) 2m

X Ep(P, S)(1 + 0y)

o1 p’ p ]
[ 2 ' 2mle(p) +m)  2m -
_ \i'j/¢(q) I:ﬁz —1 ‘b q’ + ﬁ]
9.0 [e(q) E(q)+m] 2 2 2m(e(g) + m)

X 85(0, S)(1 + ¥y)

Oy +1 q’ g ]
X + -— 14
[ 2 v2 2m(e(q) + m) 2m 14
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Leading order vertex functions in (12) are calculated in the Feynman gauge and can be presented as follows:

rfog Mk td g g mTkiP
(ky — %)2 —m? (ky _Pz)2 - m?
m i(\ +q2 m+/€2—ﬁ2
?=s 2 B_gyB_— = "= &,
z 2(k2_Q2)2_m2y i (kz—p2)2—m2 ?

) &
ky— py)? —m? (p1+p2+q)?—m?

ré =3, m_lgl"'é?zzl: B(m+]€2_152 5 82 m—pi—pr— 4 B:I

. m—k+4 B mtki—py o m—pi—pr—q B
T & 2 2 2 5€1 88 2 2
(ky —q2)> —m (ky = p2)*—m (P1+p2tq) —m

_gyP m+p+q,+4, I:Az m+ky — py 8+ 8, m+ky — py 9‘2]
(p1+aq1+q2)* —m?L " (ky — pa)* — m? (ky = pp)* —m?

m—k, + g, 8 m+k —py . Ba
+18'ya|:D1—8a'y ¢ lL(Fl""Ql)_DI—S ¢ (P1+611)
(kl—q2)2—m2 Prwee (kl_l’z)z_m2 2

m—ky+ g, o m+ky—pr . pa
+Dzm82’yﬂ@f#(m+Q1)_Dz(k2_p2)2_m282@f (P +aq)) |

ré=g, m—ky + p, [75 m+k,— 4, &, — 82, m—pys— 4= B:I
Yk —p)?mmlT (=)t m? (p2+ a1+ q)* —m?
e, m—ky+ p; [ g Mtk —q, 8 — 82, m=—prs =4, =4 B]
(ky—p)*—m*L" (ky—q1)* —m? (p2+q1+q2)* —m?
_gyP m+pitptgs I:é2 m+ki — 4§, 8 48 m+k, — 4§, §2]
(p1+ P2t qp)* —m*L " (k) — q,)* —m? (ky — q1)* —m?
m—k, + p o m+ki =4 . pa
+ISYQ[DZWSIYM@§M(p2+q2)_D2m81@§ (P2 +q2)
m—/€2+f91 B m+/€2—c?1 R B ]
+D sy, C (py+q,) — D &EP(p, +
1(k2_p1)2_m2 2Yu\l (p2+q2) 1(k2—q1)2—m2 227 (p2+aq2)

+18Dyy,[28,8,8"F — 81”(‘35 - 81582,, + Dy&"B(p1 + q1. 02+ q2) + DiFP (P2 + g2, p1 +q1)],

m+k —p, . . m—k +4,
T v R L
(ky = pp)*—m

where we introduce the following tensors:

m+k2—f72 N m—kz—i-@z 8

% —y8 BIrB—yp MT2 P o gy MTHTd g (45
57V 27 e y(kz_Pz)z_mzsz 82(k2_q2)2_m27 (15

(ky — 612)2 —-m

. |
@1,§(x) = 5(2x81,2g“5 — (k{gy2 + )C'B)s‘ff2 + (Zkf”2 — x“)sfz),
FP(x, y) = d(xe))(yer)g® + (ky + x)(ky + y)efeh + e1822k§ — x)(2Kk5 — yP) + 2x(e 85 — £,68)(2k5 — yP)
— 2y(818§ — szslﬁ)(Zk‘f‘ —x%) — xg,(x* + 4y"‘)8§ — ye,(4xP + yﬁ)sf‘. (16)

Our expressions for the amplitude (12) and vertex functions (15) contain relative momenta p and ¢ in exact form. In
order to take into account relativistic corrections of the second order in p and ¢ we expand all inverse denominators of the
quark and gluon propagators. Such expansions look as follows:

1 4 16
(p1+511)2 =;_S_2[(p+q)2+pQ+qP]+“.’

I 2
(ky = g)* —m* 1= M* (

4
t_Mz)z[q2+2qk2]+ Tt
(17)

where the Mandelstam variables for the gluonic subprocess s and ¢ are defined in (5). There are 16 quark and gluon
propagators in the amplitude (12) which have to be expanded in the same way as in (17). All denominators of these
propagators in the nonrelativistic limit take one of the following forms: (t — M?)/2, (M* — s — 1)/2, =s/4 or s/2. Then,
the inequalities
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am?
AM? < s, |z+5—M2 i [ (18)
2 2 s

mean that in the case of the most unfavorable values of the variables x;, and ¢, we can roughly estimate expansion
parameters in (17) as 2p?>/M? and 2¢g*/M?. Preserving in the expanded amplitude terms up to the second order in
the relative momenta p and ¢, we can perform angular integration using the following relations for S-wave
charmonium:

Wp)  dp 1 [ pRs(p)
[% E(];)’:'m] (2,”-)3 \/577_ 0 [@ 5(p)+m]

Vip)  dp
PuPv [% E(Z),:m] (277.)3

(2., — v ) f P*Rs(p) dp,
3\/_ pr = Viplly [E(p) E(p)+m]

19)

where Rg(p) is the radial charmonium wave function.
To illustrate the described transformations, we present here the result of the calculation of the first amplitude in Fig. 1:

32a28%% fm+ e(p) , [m+e(q)
7 Rp)p* | -~
9ms 2¢e(p) 2e(q)

—2ep-ep(e;Pey-Q+ey-QeyP)+2e,-0(e, - Pey-ep+ e, epe,  P) —
— &y ep(se; 8, — 28 Qe+ P)|(3(1 g~ Cp—Ca) e, ey X(6743c,+3c,)+3chcs

Qe "Pey-epte-epey P)+ep-Ple - Qey-ep+e1-eper- 0)](B(c, +¢,)

4(380—9¢, —9¢,))

Mgb = R(q)q*{3s*[e; - es(se) - gy —28p- Qe P)

e ep X (sey-8p — 285 Qe P)
—cp,—c
—64m>s[e}-
+c],cq(194—3c,,—3cq))+16m2s2[81-s}sz's*Q—i-sl-S*Qsz-s;‘,]x(9(cp+cq)+cpc
+192m258’;-8*Q[81-Psz-Q-i-sl-Qsz-P](cp+cq+cpcq(62—cp—cq))

+ 16m?se, '82(8;'82[32m2(3(c +¢,)+c,c,(329=3c,—3c,) —3sX(3—2¢c,—2c,—3c} —3c3)
+sc,c,(613+6¢, + 6 )+9sc ]+48P Qep- P[3(c +c,) +c¢,c,(202—3c, —3c,)])

+512m?c,c,(2ep- Qey P(e; - Qe P+e - Pey- Q) — m*ej - 8Q><[1064m g1 gyt P(125e,-Q — 8¢, P)
+81'Q(12582'P_882‘Q)]_m2[26681'828P'Q8Q'P+81‘SP(131S82'8Q+28Q‘P(482'P—12982'Q))

e ey X (13158, p + 265 0(dey - Q — 129, P)) +2¢, - P(dey - epeyy - P— 12985 - ejep - Q)

+2e,-0(dey-epep- 0 — 1298, epey, - P)])dpdy, (20)
where we introduce the relativistic parameter c, = Z gheh’ = viul — gt
-~ +i§p; Extracting relativistic factors (e + m)/2€ in the )
1ntegrals over both relative momenta p and q, we observe Q1)

LS Ay N Ay 1) 4
. . . o £pE vy vy — gt
that the amplitude M9 is a power-like expansion in % ere 202

relativistic parameters ¢, and c,. Due to the presence of
four different polarization vectors, which correspond to
incoming gluons and outcoming J/ ¢ particles, the result
(20) appears to be sufficiently lengthy. We have also
obtained analogous expressions for remained 30 dia-
grams, but due to the bulkiness of the total amplitude
they are not presented here.

To calculate the cross section, we have to sum the
squared modulus of the amplitude upon all polarizations
using the following relations for final J/¢ mesons and
initial gluons correspondingly:

KCkY + kY kY

P I S ) 12 _ v

281,281,2 =———" gk
X

kl ‘ k2

We find it useful to present the differential cross section
for double charmonium production in the proton-proton
interaction in the following form:

do
E[gg = J/ I/, s)

_mm’af

= 3002 |R(0)[* z w; FO(1, ),

(22)
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where the function F© describes the leading-order
(LO) contribution. It coincides with the nonrelativistic
analytical expression for the cross section obtained for
the studied process in Refs. [11,12,15,26]. The functions
FY (i=1, 2, 3) describe relativistic corrections. Explicit
expressions for all functions F) entering the cross sec-
tion (22) are written in the Appendix. A number of
specific parameters w; appeared in (22) are defined as

I L

wy =1, = — a)z—I, a)3=w%.
0

(23)

They comprise the nonperturbative parameters in the
relativistic quark model which determine the transi-
tion of quarks and antiquarks into the bound states.
The parameter R(0), which represents the relativistic
generalization of radial wave function at the origin, is
defined by the formula:

R(0) = ‘/%

2
_ CFas

darr

©m + €(p)

o 2e&(p) (4

R(p)p*dp.

31

AU(r) = [2BoIn(ur) +a; +2yeBol,  a) = 3
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The parameters w; are determined by integrals
containing the bound state wave function in the
following form:

©m + €(p)

Iy = ————R(p)p*dp,
o 2&(p) 25)
_ [rm+ e(p) (m— e(p)\'2
= [ Gre) o

Our basic relations for the cross section (22) evi-
dently show that there exists another source of relativ-
istic corrections connected with the charmonium wave
functions. For their calculation with the desired accu-
racy, we suppose that the dynamics of a cc pair is
determined by the QCD generalization of the standard
Breit Hamiltonian [27], which in the c.m. reference
frame can be written as

H:H0+AU1+AU2+AU3,

Coi
Hy = 24/p* + m? — 2m — FraS+Ar+B,

(26)

2
_gi’lf, ,80=11—§nf,

3 2 2 4 2
AUL(r) = — Crag [p2 n r(l‘rl;)p] " W;Fas 5(r) + Cray (SL) — Crag [S_ _3 (Sr) _ ?77(252 _ 3)5(1.)] _ M

2 2m2r3

3A A(

2m2r

LS +
3m2r

A 8
AU3(}") :fv[m<l + gS]Sz) +

2m?r r

where L =[rXp], S=8,+8S,, n; is a number of
flavors, C4, = 3 and Cp = 4/3 are the color factors of
the SU(3) color group, and vy is the Euler constant. The
parameter fy, of vector-exchange confining potential
was set to be fy; = 0.7. The mass of heavy c¢ quark in
our model is equal to m = 1.55 GeV. For the dependence
of the QCD coupling constant &,(w) on the renormaliza-
tion point u in the pure Coulomb term in (26), we use the
three-loop result [28]

4 4wb L N 4
BoL (BoL)*  (BoL)
X [b3(n?L —InL — 1) + b,],
b — 64 _ 3863

1 9 ’ 2 54 B

(28)

ag(p) =

L =In(u?/A?),

whereas, in all other terms of the Hamiltonian (27)
we use the one-loop approximation for the coupling
constant «,. The typical momentum transfer scale in
a quarkonium is of order of the quark mass, so we

SEnEn-88,)| - 0= )55 LS,

2m? L3 P 2mr?

(27)

choose the renormalization scale u = m = 1.55 GeV
and A =0.168 GeV, which gives a; = 0.314 for the
charmonium states. The parameters of the linear poten-
tial A = 0.18 GeV? and B = —0.16 GeV have the usual
values of quark models. Starting with the Hamiltonian
(26), we construct the effective potential model based
on the Schrodinger equation and find its numerical
solutions for J/i¢ meson. Additional details of this
model are contained in Appendix C of Ref. [18]. Note
that the obtained charmonium wave function is strongly
decreasing in the region of relativistic momenta p = m.
Our numerical evaluation gives the following values of
S-wave charmonium masses: Mtjh = 3.072 GeV and
M%‘( = 2.988 GeV, which lie within the reasonable ac-
curacy in the comparison with their experimentally
measured results [29] M7, = 3.097 GeV and M7 =
2.980 GeV.

III. NUMERICAL RESULTS AND DISCUSSION

In this work we investigate the role of relativistic
effects in the production of a pair of charmonium mesons
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in proton-proton interaction in the relativistic quark
model. We have studied only the order a4 parton process
of gluon-gluon fusion in the color singlet model. At the
calculation of the production amplitude (12), we keep
relativistic corrections of two types. The first type is
determined by several functions depending on the
relative quark momenta p and q arising from the gluon
propagators, the quark propagators, and relativistic me-
son wave functions. The second type of corrections
originates from the perturbative and nonperturbative
treatment of the quark-antiquark interaction operator
(26) which leads to the essential modification of non-
relativistic wave functions.

For the calculation of relativistic corrections in the
bound state wave functions W(p), we take the Breit
potential (27) and construct the effective potential model
as in Refs. [18,30] by means of the rationalization of the
kinetic energy operator. Using the program of numerical
solution of the Schrédinger equation [31], we obtain the
following values of all relativistic parameters entering the
cross section (22): R(0) = 0.57 GeV3, w; = —0.051, and
w, = 0.0047.

As it is evident from Eq. (25), our definition of integral
parameters /;, describing relativistic contributions from
the production amplitude contains the cutoff at relativistic
momentum of order m. In spite of the convergence of
integrals I;,, our relativistic model can not provide a
reliable calculation of the wave functions in the region of
relativistic momenta p = m. So, we introduce a cutoff in
(25) in order to avoid possible errors caused by the men-
tioned uncertainty. It is obviously that in the quark model
we can calculate a number of nonperturbative parameters
(23) only with certain accuracy. The way of further im-
provements in the calculation is related in the first place
with more accurate construction of the bound state wave
function at relativistic momenta. In the approach of
NRQCD we encounter analogous difficulties connected
with the determination of numerous nonperturbative
matrix elements [6].

Let us note also that the cross section (22) contains
the fourth power of the modified wave function at the
origin R(0) and the strong coupling constant a,. Thus,
small changes of the bound state wave function can lead
to substantial changes in final results for the cross section.
The value R(0) is calculated with sufficiently high accu-
racy with the parameters and potential (26) of the relativ-
istic quark model. The parameter |R(0)|* undergoes
essential decrease in comparison with nonrelativistic
value. But other relativistic corrections connected with
the functions F® (i = 1, 2, 3) in (22) have the opposite
effect on the cross section value (22). Analytical expres-
sion of nonrelativistic contribution to the cross section
which is determined by F© coincides with previous
calculations in Refs. [11-13,15,26]. In the evaluation of
a, we set the renormalization scale to be the transverse

PHYSICAL REVIEW D 86, 094003 (2012)

mass g = my = 4/4m? + P}, which is the generally

accepted choice. For the running coupling constant
ag(u), we use the LO result with the initial value
a(uw =M, =0.118.

The basic expression (2) for the calculation of the
differential cross section contains the gluon distribution
functions in the proton because the leading contribution
comes from a gluon fusion process. When the energy of
colliding beams increases, the initial parton momentum
fraction x; needed to produce heavy quarkonium de-
creases. It reaches the region in x where the number of
the gluons becomes much larger than the number of
quarks. The gluon distribution function determines the
probability to find a gluon in the proton with some
momentum fraction. There exists a number of the pa-
rametrizations for partonic distribution functions [32].
We use the gluon parton distribution functions from the
set CTEQ5L as in Ref. [11]. The total numerical value of
the cross section obtained from (2) at the center-of-mass
energy +/S = 7 TeV is equal to

O = 9.6 nb. (29)

Due to law-x behavior of gluon distribution functions,
the main contribution to the integral cross section (29)
results from the region x;, ~ 1073. To be more precise,
this region is determined by the condition: 7.8 X 1077 <
x1x, < 7.8 X 107%. In the frequently used nonrelativistic
limit when (0) = 0.21 GeV2 and R(0) = 0.74 GeV: the
total value of the cross section amounts oy, = 18.3 nb
and agrees with the calculation in Ref. [11]. In the non-
relativistic limit of our quark model based on Egs. (26)
and (27) we obtain slightly greater values R(0) =
0.79 GeV: and Tnonrel = 23.1 nb. To obtain (29) the
factorization scale in the parton distribution functions,
fo/p(x, u) is taken equal to the transverse mass, too:
M= my.

To compare the results of our calculation with the
measured value of the cross section in Ref. [10], it is

necessary to write the differential cross section in terms
Py+Py
Po=P)
ing charmonia with momenta P and Q can be obtained in
the form

of the rapidity yp = % In . The rapidities of outcom-

1 Xl 1
S Wl R
Yro =5 2“[

- 1]. (30)
—1
The differential cross section do/dyp for the reaction
pp — 2J/¢ + X is shown in Fig. 4. It is clear from
this plot that relativistic effects strongly influence on
the rapidity distribution of the final charmonium. In the
LHCb experiment [10] the rapidity lies in the range
2<ypo <45, so we should integrate the differential
cross section (2) over rapidities from such interval in
order to obtain the value corresponding to the experiment
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do
— ., nb
dyp

3.0

2.5
2.0
1.5
1.0
0.5

0.0

FIG. 4. The differential cross sections for pp — 2J/¢ + X at
VS =17TeV as functions of rapidity yp. Solid and dashed
curves represent total and nonrelativistic results, respectively.

at the LHCb detector. Then we obtain at the center-of-
mass energy JS =17 TeV

o2 <ypy<4.5) =16 nb. 31)

The result (31) is significantly smaller than the experi-
mental value of the cross section (1). Different sources of
relativistic corrections in (2) are differently directed.
But we observe that combined action of all relativistic
effects leads to essential decreasing of the production
cross section. In this work we carry out the investigation
only of one important source of corrections to the non-
relativistic cross section. Decreasing behavior of the
cross section o(pp — 2J/¢ + X) due to the account of
relativistic contributions is noticeable clearly in spite
of existing theoretical errors occurred in our calculation.
In our analysis of the production amplitudes we correctly
take into account relativistic contributions of order
O(v?). Therefore, the first basic theoretical uncertainty

do
TF’T N nb/GeV

P’]‘, GeV

PHYSICAL REVIEW D 86, 094003 (2012)

of our calculation is related with the omitted terms of
order O(v*). Since the calculation of the charmonium
mass is sufficiently accurate in our model (the error is
less then 1%), we suppose that the uncertainty in the
cross section calculation due to omitted relativistic cor-
rections of order O(v*) in the quark interaction operator
(the Breit Hamiltonian) is also very small. Taking into
account that the average value of the heavy quark veloc-
ity squared in the charmonium is (v?) = 0.3, we expect
that relativistic corrections of order O(v*) to the cross
section (31) coming from the production amplitude
should not exceed 30% of the obtained relativistic result.
As we mentioned above in the quasipotential approach,
we cannot find precisely the bound state wave functions
in the region of relativistic momenta p = m. Using in-
direct arguments related with the mass spectrum calcu-
lation, we estimate in 10% the uncertainty in the wave
function determination. Larger value of the error will
lead to the essential discrepancy between the experiment
and theory in the calculation of the charmonium mass
spectrum. Then the corresponding error in the cross
section (31) is not exceeding 20%. We do not consider
a part of theoretical error related with radiative correc-
tions of order &, because these corrections are omitted in
our analysis. So, our total theoretical error is not exceed-
ing 36%. To obtain this estimate, we add the above
mentioned uncertainties in quadrature.

We show in Fig. 5 the distribution over transverse
momentum of the J/¢ mesons integrated over all
rapidities at \/§ =7 TeV (left) and \/E = 14 TeV
(right). Previous investigations [11,13,15] of the pair
charmonium production in pp interaction showed that
the color singlet channel prevails in the differential cross
section do/dP;(pp — 2J/¢ + X) at small Py, but the
color octet channel dominates at large Py. It can be
seen in Fig. 5 at \/E = 7 TeV that the account of rela-
tivistic corrections leads to the ratio of relativistic and

do
P nb/GeV

T
20F

PT, GeV

FIG. 5. The differential cross sections for pp — 2J/¢ + X at JS =7 Tev (left) and S = 14 Tev (right) as functions of
transverse momentum Py of the J/¢ pair integrated over the rapidity. Solid and dashed curves represent total and nonrelativistic

results, respectively.
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nonrelativistic cross sections o /o, = 0.4 near the
peak. This trend remains unchanged in the region of
high transverse momenta. So, the color-octet contribution
retains the dominance at large Pr. We investigate also
the relative value of relativistic corrections in the pro-
duction rate with the growth of the energy ~/S. Our
calculation show that at \/._S'_ = 14 TeV (see the right
plot in Fig. 5) the ratio of relativistic and nonrelativistic
cross sections is retained without essential modifications.
The cross section increases with the growth of the energy
and reaches the value o™(2 < Ypo <45) =298 nb at

VS =14 TeV. It is appropriate to mention here one result
regarding to the study of relativistic effects in single J/
production at hadron collisions [33]. It was shown in that
paper that relativistic corrections to the color-singlet J/
hadroproduction of order O(v?) are at a level of about 1%
for sufficiently large Pr: 5 = Py = 50 GeV. Our calcu-
lation demonstrates that in the region of transverse mo-
menta S5 = P; =50 GeV the value of relativistic
corrections in the cross section of the pair charmonium
production reaches 60%. Relativistic corrections which we
study in this work include not only the terms of order
O(v?) in the production amplitude but also the same order
effects in the long-distance matrix elements. In spite of
the difference between (1) and (31), we consider that at
present it is difficult to state that there is the discrepancy
between the theory and experiment in double charmonium

PHYSICAL REVIEW D 86, 094003 (2012)

production. Indeed, it is known that next-to-leading order
(NLO) in «a, contributions have large value in inclusive
single-quarkonium  production at hadron colliders
[4,34,35]. The example is found in the inclusive J/ i
production where the NLO corrections to the color-singlet
contribution increase the total cross section by a factor of
about 2 and the production rate of J/¢ is much increased
for larger transverse momentum Ppr. Therefore, one can
expect that the NLO corrections to the double charmo-
nium production in proton-proton interaction can smooth
the appeared difference between (1) and (31). Moreover,
as we mentioned above there exists a new mechanism
through the double parton scattering which gives the
contribution comparable with the standard nonrelativistic
result: opps(pp — 2J/4 + X) = 2 nb [16]. Accounting
for this result and our value of the cross section (31), we
obtain the summary value o(pp — 2J/¢ + X) = 3.6 nb.
Then, taking into account the experimental error, the
difference with the LHCb experiment does not look so
significant.
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APPENDIX: THE COEFFICIENTS F¥) ENTERING THE DIFFERENTIAL CROSS SECTION (22)

16384

FO =
OMAsO(M? — t)*(M?* — s —

B [7776M>* — 432M?%(73s + 216t) + 6M?° X (9085s% + 603365t + 855361%)

— 16M'8(3629s% + 3768652t + 117855st> + 1069207%) + 2¢*(s + 1)*(349s* + 230453t + 61925212

+ 777658 + 38881*) + 4M'0(11927s* + 151588531 + 7456745%1> + 1470960s1° + 9622801)

— 4M'"™(77615° + 109608s*t + 6994675312 + 2173908521 + 3055320s1* + 1539648¢°)

+ 2M'2(69525° + 1178935t + 897043s*> + 374198053 + 8278410s2t* + 8872416s1° + 35925121°)

— 4M?*12(s + 1)?(9s” + 6495%¢ + 6460512 + 29630s*1> + 74435531* + 105156521° + 77868s1° + 23328¢7)
— 2M'0(1899s7 + 43398s°1 + 4056185°72 + 21135685*F + 639409053 1* + 107625845

+ 918993651° + 307929617 + M®(587s3 + 1971057t + 244772s%> + 16034685513 + 62299625*1*

+ 1447830453 + 193598165%1° + 13582080517 + 38491201%) — 2M°(20s° + 118558 + 221535712

+ 193780s°1% + 96535857 1* + 2928368s*r5 + 54317865°1° + 59495285%17 + 3508920s1% + 8553607)

+ M*(s'0 + 765t + 37565812 + 52062571 + 35347250* + 1398834571 + 34217545*1° + 52109685317

+ 47846225218 + 2414880s1° + 513216¢19)],

(AD)

094003-10



RELATIVISTIC CORRECTIONS TO DOUBLE CHARMONIUM ... PHYSICAL REVIEW D 86, 094003 (2012)
16384
2TMAs8(M? — 1)’ (M? — s — 1)}

— 48M26(2430895° + 2289552521 + 661248052 + 580608073) + 12M>*(1090607s* + 1389923253

+ 62988960522 + 117411840s2> + 754790401*) — 8M?2(1392130s> + 222557455*t + 1369760405 1>

+ 3990637445213 + 540933120s1* + 2717245441%) + 815 (s + 1)3 (18675 + 18256571 + 77728s5*12

+ 1811525313 4 246096521* + 186624515 + 622081°) + 4M?(18003385° + 35626541571 + 276305481 5% 1

+ 1095702384513 + 2313080352s52¢* + 243545702451° + 9963233281°) — M'8(3514643s7 + 86600280s°t

+ 8250130645712 + 4139468480s*1> + 1190979576053 1* + 19466599680s%1° + 1660538880050 + 569327616017)
+ 2M'0(659715s% + 19899554571 + 231809132512 + 14262017845° 1> + 5209721940s*t* + 1161286675251
+ 1533350649652 + 109121126405t + 32024678401%) — M?£3 (s + 1)3(664s° + 7385758t + 9698975712

+ 60066405°73 + 21622120st* + 490333925*1% + 716967845 1° + 659381765217 + 34725888518 + 79626241°)
— M'%(380999s° + 1378263458t + 1952505545712 + 1459312784s°1% + 65435902405°¢* + 185712787685*1°
+ 3344916556853 1° + 36752348160s21" + 22298664960s1° + 56932761607%) + 2M'2(39553s'0

+ 17541205°1 4+ 303054325812 + 2751738365712 + 14974565205°1* + 5228976572555 + 1201892706051

+ 1801398816057 + 1683688723251 + 885620736051 + 19926466561'°) — 4M'0 X (2658s"!

+ 152991507 + 33300285%12 + 372425545813 + 24671784557 * + 10474139605°15 + 297037960455 1°

+ 56924799125*t7 4+ 7256996388518 + 5868903744527 + 2712213504s1'° + 543449088¢'")

+ 2M*1(s + 1)(85'2 + 94351 + 732355012 + 124389251 + 1050173453 * + 53251684571

+ 1762080525°1° + 396112960s°17 + 612104570s*1® + 641021472531° + 4343011205210

+ 171417600st'" + 29859840¢'2) + 2M3(267s'> + 31089s' 1 + 94812451072 + 136789465° 13

+ 112700707s%¢* + 584919678s"#> + 20233019605°1° + 47981391925°¢7 + 78344286905s*18

+ 8641058880517 + 6129541440510 + 251596800051 + 4528742401'%) — MO(8s'3

+ 177252t + 139013s'1£2 + 30249125'°7 4 33019131s%#* + 215628282587 + 9173477105715
+26645321445°17 + 5399964368551 + 7640313480s*1° + 73911976325 1'0 + 4650333696521

FO) = — [497664M3% — 221184M3 (135 + 36¢) + 5760M>8(1285s2 + 76805t + 1036872)

+ 1710858240s1' + 278691840¢'%)], (A2)
F® = 40O,
O — 4096

STV SO — 15— 5 — o3 1 850496M 0 — 995328M(2195 + 6401

+ 27648M3%(335415% + 1534325t + 21888072)

—9216M3*(3130315s> + 1832460521 + 4240836512 + 39398407°)

+ 768M32(82449595* + 6327434453t + 189539568521% + 29505254451> + 2009318401*)
—192M3°(52201757s° 4+ 519109072s*¢ + 20126504165 1> + 4109435136523

+ 4827651840s1* + 2571927552¢%) + 16M>8(7601089135° + 92600811445

+ 46005056832s*12 + 1204576796165 % + 188334270720s%1* + 1776406671361

+ 771578265601°) — 8M?°(1475952353s7 + 208993437445%¢ + 1275985241845
+4235374210565* 1> + 8443088398085 ¢* + 1076247502848521°

+ 846934050816s1° + 308631306240¢7)
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+ 161%(s + 1)°(1173075% + 841072571 4+ 29607045°7> + 70109765°13 + 124254245%* + 1627776051

+ 147156485210 + 7962624517 + 19906561%) + 4M>* X (226917416958 + 3703589533657 1 + 2668233106485
+ 10877873324165° 13 + 27224349811205*t* + 44140633205765% 1> + 47679857971205%1° + 3212405194752
+10030517452801%) — M?2(52739456435° + 1026749245848t + 8635953644485 > + 41913879268485°1

+ 128440482776965°t* + 25933611095040s* £ + 35654616990720s°° + 334833245061125217

+ 1967433206169651° + 53496093081607°) + 2M2°(11083002755'% + 269701631135 + 2702743833465 1

+ 1544514084352s7 1> + 5656684280280s°¢* + 13921443451712571 + 236908316789765*1% + 28410755383296s3 1
+23612613792768s%1% + 12267586805760s1° + 2942285119488¢'0) — M?1*(s + 1)*(82320s'! + 1052665950t
+ 1227426835°1% + 663347888583 + 219978735257 t* + 513783238451 + 9050135872510 + 1218317107251’
+ 1211443200053 + 825823641652¢° + 340302643251'% + 6370099207'1) — M'8(658318562s!!

+ 2077413691157 + 2561967800795°1% + 1742958116720s% 13 + 755019493044057t* + 222152428343685°1
+ 458506267524485°1° + 67807235088384s*17 + 723557399685125% ¢ + 53902515363840s21°
+25023941369856s1'° + 5349609308160¢' 1) + 4M'0(341944465'% + 14322730395 + 2238356411250

+ 185308892030s° 1% + 9544761698865 1* + 3325907679280s7 7 + 8190596683920s°1° + 146242796885765°1
+192200739920645*3 + 1851029903923253 1% + 124751699804165%¢'0 + 52185086853125¢'!

+ 1003051745280¢'2) — M'4(19246515s'3 + 1103736798521 + 224782760845 12 + 2320943341165'°73

+ 1443234697510s°t* + 59680973226725%1> + 1738679461337657° + 369257211014405°¢

+ 583958737841285° 18 + 69341740385280s*1° + 60881635077120s3¢'0 + 37374891540480s2¢'!

+ 14182623756288s1'2 + 2469050449920¢'3) + 2M* (s + £)> X (1024s'* + 151570531 + 129692655212

+ 2127274875 3 + 16441351475'0t* + 76518991255°1> 4 2422992453058 1° + 5624225528057 ¢

+ 1000015844885°1% + 1383596848005 1" + 1469962844165*1'0 + 1151154432005 ¢'! + 619472931845%1'2
+20275826688s1' + 3025797120¢'4) + 2M'2(824111s5'* + 70166611s'3¢ + 1952942482521

+ 2596224407851 + 1992076011825'0#* + 9886577958945°1> + 3408779823892581° + 854231202924857 1

+ 160164816974645°18 + 2284723706937655 + 248085439134725%1'0 + 1999634505523253 ¢!

+ 112385321717765%t'2 + 3890175787008s1'3 + 6172626124801'*) — MOt(s + 1)(2176s"> + 41436854+

+ 345290905312 + 7361754755213 + 743026542351 * + 4433518668550 + 1758632012555
+4991766504405%¢" + 106456959286457 3 + 17566400773125°¢° + 226268974905657¢'0 + 2242313957376t
+ 1643405663232531'2 + 8314219192323 + 2569409372165 + 36309565440¢'5)

— M'0(48840s'5 + 1019272354+ + 4355180655312 + 7912226162523 + 7754506535251 t*

+ 4713370980425'08 + 19407767575425°1° + 57364712743045%¢7 + 1265116752975257¢8
+213427660102405°1° + 278468732216965°'0 + 27881390733312s*'! +2072637916876853 12

+ 1070543919513652¢'3 + 3395959603200s¢'* + 4938100899841'5) + 4M8(245'0 + 601175t + 648010454 1>
+ 187031341533 + 250904058452 * + 193709408055 > + 971052555365'°1° + 3411506000065 ¢

+ 8840705849258 18 + 1749157202600s7#° + 2695987058680s°710 + 32498483551365° 1!
+30160591495685*'2 + 207368401766453'3 + 987205294080s21'* + 288123568128s1'° + 38578913280¢'°)].
(A3)
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