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Introducing n right-handed neutrinos to the Standard Model yields, in general, massive active neutrinos.

We give explicit parametrizations for the involved mixing and coupling matrices in terms of physical

parameters for both the top-down and the bottom-up approach for arbitrary n. Bounds on the complex

mixing angles in the bottom-up approach from perturbativity of the Yukawa couplings to charged lepton

flavor violation are discussed. As a novel illustration of possible effects from n � 3, we extend the neutrino

anarchy framework to arbitrary n; we show that while the anarchic mixing angles are insensitive to the

number of singlets, the observed ratios of neutrino masses prefer small n for the simplest linear measure.
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I. INTRODUCTION

The (type-I) seesaw mechanism [1] is arguably the
simplest and best motivated framework not only to give
neutrinos mass but also to explain the smallness of said
masses compared to the electroweak scale. The necessary
right-handed neutrino partners are assumed to be heavy to
suppress the active neutrino masses, which also allows for
baryogenesis through leptogenesis [2] via the decay of the
heavy states, thus explaining the baryon asymmetry of the
Universe. While initially motivated in the context of grand
unified theories, the seesaw mechanism has since been
applied in its own right. The number of right-handed neu-
trinos, transforming as singlets of the StandardModel (SM)
gauge group, is then no longer constrained by anomaly
cancellations or the need to fill up an irreducible represen-
tation, but rather by a free parameter. At least two right-
handed neutrinos are necessary to reproduce the observed
neutrino mass-squared differences, as well as leptogenesis
[3]. There is, however, no upper bound, and models with
Oð102–103Þ singlets have been studied in the context of
leptogenesis [4], lepton flavor violation (LFV) [5] and as a
way to explain the large mixing angles of the active neu-
trinos [6]. Like for most things in life, there is also a
motivation from string theory [7]. The number of singlets
is formally infinite in extra-dimensional theories, as right-
handed neutrinos are not restricted to the SM-brane and
will thus lead to a tower of Kaluza-Klein excitations [8].

Still lacking, however, is a proper parametrization of the
arising mixing and coupling matrices in terms of physical
quantities, as needed, for example, for efficient parameter
scans (as the number of redundant parameters explodes for
large n). The goal of this work is to provide exactly these
parametrizations for arbitrary n, both for the most general
case (top-down approach, to some degree discussed in
Ref. [9]) and the seesaw limit (bottom-up).

The rest of this paper is organized as follows: we
first fix our notation in Sec. II, discuss the top-down

parametrization in Sec. III, and the bottom-up parametri-
zation in Sec. IV, deriving constraints on the involved
parameters from perturbativity and LFV. To illustrate pos-
sible effects of n singlets, we discuss basis independence
(neutrino anarchy) in this framework and present the
resulting distributions for the neutrino masses in Sec. V.
Appendix A gives a brief introduction to the group
UðNÞ and various representations of its elements, as
needed for our parametrizations. Appendix B collects and
extends basis-independent measures for miscellaneous ma-
trices necessary for the discussion of anarchy. Finally,
Appendix C is devoted to the somewhat special case
n ¼ 2, which would interrupt the flow if included in the
main text, which will only cover n � 3.

II. FRAMEWORK AND NOTATION

Introducing n SM singlet right-handed neutrinos Nj to

the Standard Model modifies the Lagrangian by the fol-
lowing terms:

L ¼ LSM þ i �Nj 6@Nj �
�
�NjðY�Þj� ~HyL�

þ 1

2
�NjðMRÞjkNc

k þ H:c:
�
; (1)

where a sum over � ¼ e, �, � (sometimes 1, 2, 3 in the
following) and j, k ¼ 1; 2; . . . n, is understood and will in
the following often be denoted in a vector notation (e.g., as
�NMRN

c). Without loss of generality, we work in a basis
where the charged lepton mass matrix is diagonal, which
can be accomplished by unitary transformations of the
lepton fields.MR can be diagonalized by an n� n unitary
matrix V like VTMRV ¼ diag. This merely redefines Y�,
so from now on we will work in a basis where MR is
diagonal, with positive real entries Mi.

1 After the Higgs
doublet H acquires its vacuum expectation value v, the

*julian.heeck@mpi-hd.mpg.de

1This is not only convenient but also necessary to eliminate
unphysical parameters. To this effect we note that a diagonal
MR can store OðnÞ parameters (together with Y�), while a
nondiagonal MR has Oðn2Þ independent entries.

PHYSICAL REVIEW D 86, 093023 (2012)

1550-7998=2012=86(9)=093023(10) 093023-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.093023


Dirac mass matrix for the neutrinos mD ¼ vY� is gener-
ated, leading to a ð3þ nÞ � ð3þ nÞMajorana mass matrix
for the neutral fermions ð�L; N

cÞT :2

Mfull ¼
0 mT

D

mD MR

 !
: (2)

AssumingMR � mD gives the low-energy neutrino mass

matrix for the flavor neutrinos �f ’ �L �my
DM

�1
R Nc of

seesaw form,

M � ’ �mT
DM

�1
R mD ¼ �v2YT

�M�1
R Y�: (3)

Diagonalization of M� can be performed in the following
way:

M � ¼ U�
PMNSdiagðm1; m2; m3ÞUy

PMNS

� U�
PMNSdmU

y
PMNS; (4)

with the unitary Pontecorvo-Maki-Nakagawa-Sakata
matrix (PMNS matrix) in standard parametrization

UPMNS ¼ P0
c12c13 s12c13 s13e

�i�

�c23s12 � s23s13c12e
i� c23c12 � s23s13s12e

i� s23c13

s23s12 � c23s13c12e
i� �s23c12 � c23s13s12e

i� c23c13

0
BB@

1
CCAP; (5)

and the Majorana phase matrix P ¼ diagð1; ei�=2; ei�=2Þ.
Here we used the abbreviations sij � sin�ij and cij �
cos�ij for the three mixing angles. The phase matrix
P0 ¼ diagðeia=2; eib=2; eic=2Þ can be absorbed by the lepton
fields and is hence unphysical. The neutrino mass eigen-
states are then �m ¼ Uy

PMNS�f.
At low energies the nine complex entries of the sym-

metric Majorana matrix M� decompose into the three
eigenvalues mi (neutrinos masses), three mixing angles
�23, �12, �13 (atmospheric, solar, and reactor angle) and
three CP violating phases �, �, �, the latter two being
unobservable in neutrino oscillations (but in principle test-
able in 0��� experiments [12]).

III. TOP-DOWN PARAMETRIZATION

All the information about neutrino mixing is encoded in
Y�, the only nondiagonal matrix in the lepton sector. For
the general complex n� 3matrix Y�, we can write down a
singular value decomposition

Y� ¼ VR

diagðy1; y2; y3Þ
~03

..

.

~03

0
BBBBBB@

1
CCCCCCAV

y
L � VRDYV

y
L ; (6)

with positive singular values yi. Out of the 6n real parame-
ters in Y�, three phases can be absorbed in the lepton fields,
so only 6n� 3 are physical. We will confirm this with an
explicit parametrization of the unitary matrices VR;L below.

For the 3� 3 matrix VL, we take the PMNS parametriza-
tion from Eq. (5), while the n� n matrix VR can be
written as

VR ¼
 Yn
i¼1

Yn
j¼iþ1

�ijð�ij; �ijÞ
!
� diagðei	1 ; . . . ; ei	nÞ: (7)

Here, �ijð�ij; �ijÞ denotes matrices of the form

�ijð�ij; �ijÞ �

1
. .
.

cosð�ijÞ sinð�ijÞei�ij

. .
.

� sinð�ijÞe�i�ij cosð�ijÞ
. .
.

1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
; (8)

where sinð�ijÞei�ij sits at the ith row and jth column. See Appendix A for a derivation and a proof for the validity of this
form of VR. It is easy to check that VR (VL) has n

2 (32) real parameters, nðnþ 1Þ=2 (6) of which are phases. From the form
of Y� in Eq. (6), it is clear that the angles	j either act on zeros inDY or can be absorbed by the phase matrix Py

L in Vy
L . An

2Including a type-II seesaw contribution would fill the upper-left zero matrix. For explicit parametrizations of the unitary matrix that
diagonalizes Mfull (for n ¼ 3), see e.g., Refs. [10,11].
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overall phase and P0y
L can be absorbed by the lepton fields, so VL contains only three angles and three phases. The ordering

of the�ij in VR is, of course, arbitrary, which allows us to move all the rotations that act on the zeros inDY to the right, so
ðn� 3Þðn� 4Þ=2 matrices of the type (8) drop out, leaving nðn� 1Þ � ðn� 3Þðn� 4Þ ¼ 6n� 12 real parameters in VR,
half of which are phases. Consequently, we can restrict the product in Eq. (7) to

Q3
i¼1

Q
n
j¼iþ1 .

3 As expected, Y� contains
three (from yi) plus six (VL) plus 6n� 12 (VR) equals 6n� 3 real, physical parameters, 3ðn� 1Þ of which are phases. This
agrees with the parameter counting in Ref. [13].

The full mass matrix can then be written as

Mfull ¼
0 vV�

LD
T
YV

T
R

vVRDYV
y
L MR

 !
; (9)

with the explicit form for VL:

VL ¼
cL12c

L
13 sL12c

L
13 sL13e

�i�L
1

�cL23s
L
12 � sL23s

L
13c

L
12e

i�L
1 cL23c

L
12 � sL23s

L
13s

L
12e

i�L
1 sL23c

L
13

sL23s
L
12 � cL23s

L
13c

L
12e

i�L
1 �sL23c

L
12 � cL23s

L
13s

L
12e

i�L
1 cL23c

L
13

0
BBB@

1
CCCAdiagð1; ei�L

2
=2; ei�

L
3
=2Þ; (10)

and the shorthand notation sLij ¼ sin�Lij; etc. for the mixing
angles. In the seesaw limit, we thus find

M � ’ �v2V�
LD

T
YðVy

RMRV
�
RÞ�1DYV

y
L : (11)

Note that the occurring mass matrix Vy
RMRV

�
R is for n > 3

no longer the most general complex symmetric n� n
matrix, because we already restricted VR to the physical
angles.

From Eq. (9) or Eq. (11) one can now extract the
physical masses and mixing angles in terms of the parame-
ters yi, �ij, �ij, �

L
ij and �L

i .

For completeness, let us count the total number of
parameters in the lepton sector. We have three charged
lepton masses, n heavy neutrino masses and 6n� 3 real
parameters in Y�, summing up to 7n real parameters.

IV. BOTTOM-UP PARAMETRIZATION

Seeing as the seesaw formula (11) contains more
parameters than measureable observables, it proves conve-
nient to parametrize our ignorance of the high-energy
sector of the seesaw model. In other words, there are
infinitely many different Y� and MR that lead to the
same low-energy neutrino parameters via the seesaw for-
mula M� ’ �mT

DM
�1
R mD. The parametrization of this

ambiguity is the goal of the Casas-Ibarra-parametrization
[14] of the Yukawa coupling,

Y � ¼ i

v

ffiffiffiffiffiffiffiffiffi
MR

p
R

ffiffiffiffiffiffi
dm

p
Uy

PMNS: (12)

This Y� solves

� v2YT
�M�1

R Y� ’ M� ¼ U�
PMNSdmU

y
PMNS; (13)

as long as the complex n� 3 matrix R satisfies RTR ¼
13�3. Correspondingly, any values of MR and R in
Eq. (12) lead to the same low-energy model, which means
we can fix the PMNS mixing angles and masses to the
observed ones and study Y� independently in other
processes.
We will now give an explicit parametrization of R,

which has 3n complex entries obeying 12 real constraints
(RTR ¼ 1 is symmetric); we, therefore, expect to find
6ðn� 2Þ real physical parameters. This agrees, of course,
with the parameter counting in the last section, as we also
have three charged lepton masses, three light neutrino
masses, n heavy neutrino masses, and six parameters in
the PMNS matrix, summing up to 7n input parameters.
Since we only need three orthonormal complex vectors 2
Cn to define R, we can write

R ¼ On�n

13�3

~03

..

.

~03

0
BBBBBB@

1
CCCCCCA � On�n1n�3; (14)

with a complex orthogonal n� n matrix On�n 2 Oðn;CÞ.
Similar to the UðnÞ parametrization used for VR in the
previous section, we can write On�n as a product of the
�ijð
ij; �

0
ijÞ matrices from Eq. (8), but with the arguments

�0
ij ¼ 0 and 
ij 2 C in order for On�n to be complex

orthogonal,

On�n ¼ S�Yn
i¼1

Yn
j¼iþ1

�ijð
ij; 0Þ: (15)3In other words, the Uðn� 3Þ subgroup of UðnÞ, acting on the
lower right parts, can be modded out.
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Here, S is a diagonal matrix with entries�1, which decides
the determinant of On�n and, therefore, whether it
describes a rotation or a reflection. We can once again
mod out the Oðn� 3;CÞ subgroup that acts on the zeros
in 1n�3 by reordering the rotations, so the product in
Eq. (15) can be restricted to

Q
3
i¼1

Q
n
j¼iþ1 . Generally

speaking, R is an element of the quotient space
Oðn;CÞ=Oðn� 3;CÞ. For real angles 
ij, R is an element

of the compact Stiefel manifold V3ðRnÞ ffi Oðn;RÞ=
Oðn� 3;RÞ, which admits a Haar measure and could
thus be used for statistical considerations.

Note that the case n ¼ 4 is special in the sense that there
are no superfluous rotations that need to be modded out.
One can, therefore, take any complete parametrization
for O4�4 without having to worry about unphysical
parameters.

For complex angles, On�n and therefore R and Y� can
have arbitrarily large elements, because the entries cosix ¼
coshx grow exponentially with x. As a result, the Yukawa
couplings Y� can be very large even for small MR, which
is somewhat counterintuitive to the seesaw formula and
relies on cancellations in the matrix product YT

�M�1
R Y�.

Even though these cancellations suggest fine-tuning of
parameters, this is a viable possibility and deserves dis-
cussion, especially because a low MR with large Yukawa
couplings makes an LHC discovery (direct or indirect)
possible [15]. Popular models to obtain this fine-tuning in
a natural way are for example inverse [16] and linear
seesaw [17], usually based on the case n ¼ 6 with an
imposed structure in MR and Y� by some symmetry.

A useful constraint on the complex mixing angles 
ij

comes from the perturbativity of Y�, on which many
calculations involving Y� rely. For this, we propose yet
another, slightly different parametrization of R, which we
obtain by noting that �ijð
ij; 0Þ ¼ �ijðReð
ijÞ; 0Þ �
�ijði Imð
ijÞ; 0Þ, and that the ordering of the �ij is

arbitrary,

R ¼ S�
 Y3
i¼1

Yn
j¼iþ1

�ijð�ij; 0Þ
!

�
 Y3
i¼1

Yn
j¼iþ1

�ijði�ij; 0Þ
!
1n�3: (16)

The 6ðn� 2Þ parameters that make up R are thus equally
divided among the new real parameters �ij and �ij. The

product involving �ij is just an orthogonal matrix, so we

can restrict �ij 2 ½0; 2	 or ½�;	.4
The parametrization (16) can be more useful than (14)

and (15) because the �ij drop out of the expression RyR,

which arises from (the often occurring) Yy
�Y� for degener-

ate MR.

A. Perturbativity

Perturbativity of the Yukawa couplings gives constraints
of the form [19]

tr ðYy
�Y�Þ ¼ 1

v2

Xn
i¼1

X3
j¼1

jRijj2Mimj & Oð1Þ: (17)

This inequality is satisfied if

jRijj & vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3nMimj

p ’ 106

ffiffiffi
3

n

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 TeV

Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2 eV

mj

vuut ; (18)

which constrains each entry in R. Note that the upper
bound goes down for increasing n. Once the smallest
masses are specified, the above equation can be used
to give a total upper bound on the parameters �ij. For

example, the largest entry in R can be estimated as

cosh�max if just one �ij is large and ðcosh�maxÞ3ðn�2Þ if
all �ij are large. This typically leads to upper bounds on

j�ijj of Oð1–10Þ.

B. Lepton flavor violation

In the seesaw limit, the neutrino states �L that couple
to the charged current are approximately given by [20]

�L’ð1� 1
2m

y
DM

�2
R mDÞUPMNS�mþmy

DM
�1
R Nc, with the

mass eigenstates �m and Nc. This leads to lepton flavor
violating decays ‘ ! ‘0
 [21], of which � ! e
 gives the
strongest constraint,

BRð�!e
Þ
’ 3�

8

��������ðmy
DM

�1
R AM�1

R mDÞ�e

�1

2
ðmy

DM
�2
R mDUPMNSBU

y
PMNSþH:c:Þ�e

��������
2

; (19)

with the diagonal matrices Aij � �ijgðM2
j =M

2
WÞ and

Bij � �ijgðm2
j=M

2
WÞ and the monotonic decreasing loop

function

gðxÞ¼10�43xþ78x2�49x3þ4x4þ18x3 logx

6ðx�1Þ4 ;

gð0Þ¼5

3
; gð1Þ¼17

12
; gðx!1Þ¼2

3
:

(20)

Here we already omitted the contribution from the light

neutrinos, as the corresponding term ðUPMNSBU
y
PMNSÞ�e is

suppressed by the tiny mass-squared differences of the
active neutrinos [21]. The remaining contributions are
naively of order ðmD=MRÞ2 but can be enhanced via R.
In the approximationMj � MW � mk, we have A/1/B,

so Eq. (19) simplifies to

4The parameter space of the angles can be further reduced
using discrete field redefinitions like in Refs. [10,18], which
however lies outside the scope of this paper.
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BRð�!e
Þ
’ 3�

8
jðmy

DM
�2
R mDÞ�ej2

’ 3�

8
jðUPMNS

ffiffiffiffiffiffi
dm

p
RyM�1

R R
ffiffiffiffiffiffi
dm

p
Uy

PMNSÞ�ej2: (21)

Since this branching ratio can easily exceed the current
limit BRð� ! e
Þ< 2:4� 10�12 [22]—for perturbative
couplings—it gives constraints on the �ij. Naively, the

relevant product in Eq. (21) is jRj2m=M, so the LFV
constraints have a different structure than the perturbativity
bound (18). Note that this constraint is connected to the
unitarity of the lepton mixing matrix [23], because the

relevant matrix ð1� 1
2m

y
DM

�2
R mDÞUPMNS is no longer

unitary at this order. Consequently, the above bound also
ensures the validity of our parametrization for Y� from
Eq. (12), as the matrixUPMNS in Y� only corresponds to the

lepton mixing matrix if ðmy
DM

�2
R mDÞij 
 1.

While not particularly nice to look at analytically, the
constraints given here should be useful in numerical scans
involving Y� for arbitrary many right-handed neutrinos,
extending, for example, the analysis of Ref. [19].

V. APPLICATION TO NEUTRINO ANARCHY

The idea that the large lepton mixing angles and small
neutrino hierarchy are not due to some flavor symmetry but
rather the absence of any distinction between the neutrino
generations has been around for over a decade [24,25].
The basis independence of the neutrino mass and mixing
matrices leads to a distribution of the mixing angles
according to the Haar measure of the Lie group G that
diagonalizes M� [so G ¼ Uð3Þ for complex, G ¼ Oð3Þ
for realM�]. Since these distributions prefer large mixing
angles, this ansatz seems to fit well to the observed large
leptonic mixing angles (see also, however, a critique of the
anarchy approach in Refs. [26,27]). While the distribution
of the mixing angles is uniquely given by the Haar mea-
sure, the distributions of the masses and Yukawa couplings

are not unique, and usually the simplest (linear) measure is
used (listed in Appendix B).
Let us now discuss neutrino anarchy, i.e., basis indepen-

dence, with n right-handed neutrinos. In the seesaw limit,
we have the low-energy mass matrix for the active neutri-
nos from Eq. (11),

M � ’ �v2V�
LD

T
YV

T
RM

�1
R VRDYV

y
L ; (22)

where VL and VR are now assumed to be distributed
according to the Haar measure of Uð3Þ and UðnÞ, respec-
tively, while we take the simplest linear measure for the
eigenvalues of MR [25]

dMR / Yn
i<j

jM2
j �M2

i j
Yn
k¼1

MkdMk: (23)

We employ the invariant boundary trðMy
RMRÞ ¼P

M2
i � M2

0 for the scanning region; see Fig. 1 for a

visualization of the distribution. For the singular values
of DY , we use the linear measure (see Appendix B for the
derivation)

dDY / Y3
m¼1

ðy2mÞn�3
Y3
i<j

ðy2i � y2j Þ2
Y3
k¼1

ykdyk; (24)

with a similar boundary trðYy
�Y�Þ¼trðDy

YDYÞ¼
P

3
j y

2
j�y20.

The effect of large n will be a reduced hierarchy in the
singular values yi (see Fig. 2). Note that Eq. (24) is only
valid for n � 3; see Appendix C for the used measure
for n ¼ 2.
We will now briefly describe how the random matrices

in this paper are generated. The random unitary matrices
VL and VR in Eq. (22)—following the Haar distribution—
can efficiently be obtained from a QR decomposition, as
described in Refs. [28]. Drawing eigenvalues from Eq. (23)
is a bit more complicated. The procedure usually employed
in the literature is the creation of a symmetric matrixMR,
where ReðMRÞij and ImðMRÞij are uniformly distributed

in ½�M0;M0	. To stay rotationally invariant, only matrices

with trðMy
RMRÞ � M2

0 are then used and diagonalized

n 3

0.0 0.2 0.4 0.6 0.8 1.0

Mk M0

ar
bi

tr
ar

y 
sc

al
e

n 20

0.0 0.1 0.2 0.3 0.4 0.5

Mk M0

ar
bi

tr
ar

y 
sc

al
e

FIG. 1 (color online). Distribution of the MR eigenvalues Mk, according to the linear measure from Eq. (23) with the boundary
constraint

P
n
k¼1 M

2
k � M2

0 .
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(roughly speaking, we change the scanning region from a
hypercube to a hypersphere). This method works well for
n � 3, but becomes virtually unusable for n � 4, because
the volume of the hypercube increases sharply with n
compared to the hypersphere, making it hard to accumulate
statistics. For this reason, we draw the eigenvalues directly
out of the probability distribution (23) using a multivariate
Metropolis algorithm [29]. This Markov chain Monte
Carlo method is sufficiently fast even for large n and
conveniently works without knowing the normalization
factor of the distribution. We use a multivariate Gaussian
proposal distribution to generate the next steps in the chain
and pick only every hundredth (tenth for n ¼ 40) valid
point to reduce correlations in the samples.

The value v2y20=M0 will fix the overall light neutrino

mass scale and can be used to fix one of the mass-squared
differences �m2

ij. The PMNS mixing angles and phases do

not change with n and are given by the Haar measure for
Uð3Þ [25] (ignoring unphysical phases),

dUPMNS / ds212ds
2
23dc

4
13d�d�d�; (25)

so the only effect of n � 3 is a change of the three
eigenvalues of M�, i.e., the ratio R� � ðm2

2 �m2
1Þ=ðm2

3 �m2
1Þ, where we sorted the masses like m1 � m2 �

m3. In this notation, R� < 1=2 corresponds to normal
hierarchy (NH) and R� > 1=2 to inverted hierarchy (IH),
with best-fit values RNH

� ¼ 0:03 and RIH
� ¼ 0:97, respec-

tively, taken from a recent global fit [30].
We observe from Fig. 3 that for increasing n, the distri-

bution for R� shifts to larger values, while the width
decreases. This reduction of hierarchy can be tracked
back mainly to the Yukawa couplings, as the factorQ

3
m¼1ðy2mÞn�3 in dDY pulls the yi tightly together. An

analysis without this factor shows that the behavior of R�

goes in the opposite direction, i.e., the maximum shifts
toward small values for large n while being diluted.
However, the distribution then quickly converges as the
only n-dependent change comes from VT

RM
�1
R VR, for

which only the first dozen or so Mi are relevant, due to
the hierarchy in MR. Correspondingly, to shift the maxi-
mum of R� to its observed value, one has not only to omit
the factor

Q3
m¼1ðy2mÞn�3 in dDY but also to increase the

hierarchy by inserting something like
Q

i<jðy2i � y2j Þ2, i.e.,
using a nonlinear measure (see Ref. [6] for other yi dis-
tributions that accomplish this task). We conclude that the
large n limit in the anarchy approach worsens the agree-
ment with data. While the one data point nature provides
can obviously not be used to find the overlying distribution,
it should be fair to say that anarchy works best for small n.
Let us finally comment on the limit n ! 1. As the

Yukawa couplings yi become quasidegenerate for very
large n, the neutrino masses are simply given by the upper
left 3� 3 submatrix of VT

RM
�1
R VR (times a prefactor).

Since there is no preferred direction in the VR rotations,
the entries ðVRÞij have the same mean magnitude for a

given n. The mean entries hðVT
RM

�1
R VRÞjki then take the
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FIG. 2 (color online). Distribution of the singular values yk of
the Yukawa matrix, according to the linear measure from
Eq. (24) for n ¼ 3 (black) and n ¼ 20 (red/dashed) with the
boundary constraint

P
3
k¼1 y

2
k � y20.
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FIG. 3 (color online). log10½R�	 � log10½ðm2
2 �m2

1Þ=ðm2
3 �m2

1Þ	 for various n. The purple/dashed vertical lines indicate the 3�
range for R� ’ 0:03 [30] (for NH). The black vertical line divides the NH and IH solutions.
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form of a random walk with decreasing step-sizeP
n
m ei�m=Mm, and due to the hierarchy in the singlet masses

Mk, only the first couple of steps are relevant. The mean
magnitudes are again the same for all entries, so the only
structure in the neutrino mass matrix comes from random

phases ~�jk: hðVT
RM

�1
R VRÞjki / ei

~�jk . So, if the number n is

high enough, anarchy eventually leads to democracy. It is
easy to show that a matrix of this type predominantly yields
NH solutions, so even though IH becomes more and more
probable for large n, it will never dominate.

VI. CONCLUSION

One of the simplest ways to explain the masses of the
active neutrinos is the introduction of right-handed part-
ners. As the number n of these SM singlets is in principle
unconstrained, it is interesting to study implications of
varying n. We have given explicit parametrizations for
the mixing and coupling matrices connecting the n right-
handed neutrinos to the SM in terms of physical parame-
ters, both in the top-down and the bottom-up approach
(Casas-Ibarra-parametrization). For the latter, constraints
on the involved parameters from perturbativity of the
Yukawa couplings as well as charged lepton flavor viola-
tion have been discussed.

As a novel application of the n singlet framework, we
studied basis independence in the neutrino sector, i.e., anarchy.
Of the low-energy neutrino parameters, only the neutrinomass
distribution changes with n, and we showed that anarchy—
with the simplest linear measure—seems to prefer small n in
view of the observed mass-squared differences.
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APPENDIX A: THE GROUP UðNÞ
For convenience we provide a short and rather colloquial

review of the group UðN;CÞ � UðNÞ. Formally, one can

define it as the set of complex N � N matrices that
leave the inner product of CN invariant, i.e., UðNÞ ¼
fV 2 CN�NjVyV ¼ 1g. With a little effort one can further
show that the entries of UðNÞ form a group under matrix
multiplication, actually even a compact connected Lie
group. Counting the number of entries in V 2 UðNÞ and
constraints, we find that UðNÞ has N2 real parameters. One
can show that every element in UðNÞ can be written as
V ¼ expðAÞ with skew-Hermitian A ¼ �Ay. We can
choose a basis for A ¼ P

!jXj such that the N2 linearly

independent Xj satisfy Lie algebra relations ½Xk; Xl	 ¼
ifklmXm with structure constants fklm.
The N2 generators Xj can be further separated into

NðN þ 1Þ=2 symmetric generators Xs ¼ iY ¼ iYT and
NðN � 1Þ=2 antisymmetric real generators Xa ¼ �XT

a . It
also proves convenient to treat the N diagonal (symmetric)
generators Yd separately, as they are especially easy to
exponentiate. To fix the normalization, we chose ðYk

dÞij ¼
�ij�jk, while the NðN � 1Þ=2 nondiagonal Ys and Xa have

just two nonvanishing entries, namely þ1 in the upper
right half and �1 in the lower left (plus sign for Ys, minus
sign for Xa). Note that this normalization—and therefore
also fklm—differs from the common convention but is
of no importance in the following (see also Ref. [9]).
A general element of UðNÞ can then be written as the
product of all rotations,

UðNÞ 3 V ¼ YN
j¼1

expði�jY
j
dÞ

YNðN�1Þ=2

k¼1

expði�kY
k
s Þ

� YNðN�1Þ=2

m¼1

expð
mX
m
a Þ: (A1)

The equivalence of this parametrization to the initial V ¼
expðAÞ can be proven using the Baker-Campbell-Hausdorff
formula and the fact that the generators satisfy a Lie
algebra. The order of the rotations in Eq. (A1) is, of course,
arbitrary [31] and should be chosen to simplify given
expressions. The three different types of rotations take
the form

ei�Ys ¼

1

. .
.

cosð�Þ i sinð�Þ
. .
.

i sinð�Þ cosð�Þ
. .
.

1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; e
Xa ¼

1

. .
.

cosð
Þ sinð
Þ
. .
.

� sinð
Þ cosð
Þ
. .
.

1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (A2)
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and

expði�YdÞ ¼ diagð1; . . . ; 1; expði�Þ; 1; . . . ; 1Þ; (A3)

with real angles �, �, 
. Another useful parametrization for a general unitary matrix along the same lines as above is
given by

UðNÞ 3 V ¼ YN
j¼1

expði�0
jY

j
dÞ

YNðN�1Þ=2

k¼1

expði�0
kY

k
s þ 
0

kX
k
aÞ; (A4)

where we combined the generators Xa and Ys that have the same vanishing entries. This yields a product of matrices of the
type

expði�0
jY

j
s þ 
0

jX
j
aÞ ¼

1

. .
.

cosðzjÞ sinðzjÞei�j

. .
.

� sinðzjÞe�i�j cosðzjÞ
. .
.

1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (A5)

with the real parameters zj ¼ jujj, �j ¼ argðujÞ and
uj ¼ i�0

j � 
0
j in our chosen normalization. Once again,

the ordering of the matrices in Eq. (A4) is arbitrary.

APPENDIX B: MEASURES FOR ANARCHY

This appendix provides the necessary measures for the
anarchy approach in Sec. V. We refer to Ref. [25] for a
detailed derivation of the known measures and simply
quote the result for real and complex Majorana N � N
matrices,

dMreal /
YN
i<j

jDi �Djj
YN
k¼1

dDkdO;

dMcomplex /
YN
i<j

jD2
i �D2

j j
YN
k¼1

DkdDkdU;

(B1)

where the decompositions Mreal ¼ ODOT and
Mcomplex ¼ UDUT were used. dO and dU denote the usual

Haar measure for OðNÞ and UðNÞ, respectively, while the
diagonal matrix D contains the eigenvalues ofM. We will
omit the calculation of the normalization factor for all
measures in this Appendix, as they are irrelevant for our
considerations. It can in principle be calculated by integra-

tion over some volume, e.g., trðMy
complexMcomplexÞ � M2

0,

up to the arbitrary overall mass scale M0.

For Dirac matrices, the measures read [25]

dmreal /
YN
i<j

jD2
i �D2

j j
YN
k¼1

dDkdOLdOR;

dmcomplex /
YN
i<j

ðD2
i �D2

j Þ2
YN
k¼1

DkdDkdULdUR;

(B2)

with mreal ¼ ORDOT
L, mcomplex ¼ URDUy

L, and the Haar

measures for OðNÞ dOL;R and UðNÞ dUL;R; respectively.

For dmcomplex, unphysical phases in the overlap of dUL and

dUR should be modded out, once a parametrization is
specified.
These invariant measures are, of course, not unique but

rather the simplest consistent ansatz that give the right
mass dimension.5 With the above equations, one can
easily write down the measure for an Hermitian matrix
H ¼ UhUy ¼ Hy under UðNÞ:

dH / YN
i<j

ðhi � hjÞ2
YN
k¼1

dhkdU: (B3)

5For example, Mcomplex contains NðN þ 1Þ independent real
parameters, so the measure dMij has mass dimension NðN þ 1Þ.
Rewriting dMij in the form (B1) matches this mass dimension,
as can be easily verified.
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As a cross-check, one can plug the Hermitian matrix

my
complexmcomplex into Eq. (B3) to rederive Eq. (B2). We

can now give a measure for a nonquadratic n� 3 complex

Dirac matrix MSVD ¼ URDYU
y
L with UR 2 UðnÞ, UL 2

Uð3Þ. ConsideringMy
SVDMSVD shows that dMSVD should at

least contain a factor

Y3
i<j

ðy2i � y2j Þ2
Y3
k¼1

ykdyk; (B4)

which however has too small of a mass dimension. The

same procedure for the n� n Hermitian MSVDM
y
SVD runs

into problems, because n� 3 of the eigenvalues are zero
and would give a vanishing measure. Taking the product
only over the nonvanishing factors, however, yields

dMSVD / Y3
m¼1

ðy2mÞn�3
Y3
i<j

ðy2i � y2j Þ2
Y3
k¼1

ykdykdULdUR;

(B5)

which has the right mass dimension (6n) and can, there-
fore, be viewed as the linear measure for MSVD. The over-
lap of dUL and dUR—this time including angles, see
Sec. III—should again be modded out in a given parame-
trization to avoid overcounting of physically equivalent
configurations (similar to gauge-fixing, as pointed out in
Ref. [27]).

The measure (B5) can, of course, be easily extended to a
general measure over OðNÞ �OðMÞ or UðNÞ �UðMÞ
with M � N,

dMreal/
YM
i<j

jy2i �y2j j
YM
k¼1

yN�M
k dykdOLdOR;

dMcomplex/
YM
i<j

ðy2i �y2j Þ2
YM
k¼1

y1þ2ðN�MÞ
k dykdULdUR;

(B6)

with the N �M matrices Mreal ¼ ORDYO
T
L and

Mcomplex ¼ URDYU
y
L. Unphysical rotations need to be

modded out again. A simple check shows that the mass
dimensions are right and N ¼ M indeed leads back to
Eq. (B2). Equation (B6) can actually be obtained from
exactly these requirements, without the need to use
Hermitian matrices in the derivation. For example,
dMcomplex should contain the known N ¼ M factorQ

M
i<jðy2i � y2j Þ2

Q
M
k¼1 dyk, which leaves some factor of

mass dimension 2M to the power of N �M. Since a factorQ
M
i<jðyki � ykjÞm—which would increase the hierarchy in

the yi—has mass dimension MðM� 1Þkm=2, it can only
be used in special cases, not for general M (at least for
integer k and m). Thus, for generalM, the only factor with
mass dimension 2M is

Q
M
i y2i , leading back to Eq. (B6).

APPENDIX C: THE CASE n¼2

In this Appendix we collect the formulas for the case
n ¼ 2 (see also Refs. [3,32]), which is a little different than
the n � 3 cases and would interrupt the flow if included in
the main text. With the 2� 2 diagonal matrixMR, we find
the top-down parametrization in the singular value decom-
position for the Yukawa coupling,

Y� ¼ VR

y1 0 0

0 y2 0

 !
Vy
L: (C1)

Two phases of VR can be absorbed by V
y
L , three of VL in the

lepton fields. Since one of the diagonal phase rotations of
VL acts on the zeros, there are only two phases in VL left, so
we can write

VR ¼ cosð�12Þ sinð�12Þei�12

� sinð�12Þe�i�12 cosð�12Þ

 !
; (C2)

VL ¼
cL12c

L
13 sL12c

L
13 sL13e

�i�L
1

�cL23s
L
12 � sL23s

L
13c

L
12e

i�L
1 cL23c

L
12 � sL23s

L
13s

L
12e

i�L
1 sL23c

L
13

sL23s
L
12 � cL23s

L
13c

L
12e

i�L
1 �sL23c

L
12 � cL23s

L
13s

L
12e

i�L
1 cL23c

L
13

0
BBB@

1
CCCAdiagð1; ei�L

2
=2; 1Þ; (C3)

with the shorthand notation sLij ¼ sin�Lij etc., for the mixing angles. The linear measure for y1;2 for the anarchy framework
can be derived along the same lines as in Appendix B, with the result

dDY / ðy21 � y22Þ2y31y32dy1dy2: (C4)

Finally, the bottom-up parametrization is given by Eq. (12) with two different R matrices depending on the low-energy
neutrino hierarchy (
 2 C) [33],

RNH ¼ 0 cos
 � sin


0 sin
 cos


 !
; RIH ¼ cos
 � sin
 0

sin
 cos
 0

 !
: (C5)
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912 (1980).

[2] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45
(1986).

[3] See, for example, S. F. King, Nucl. Phys. B576, 85 (2000);
P. H. Frampton, S. L. Glashow, and T. Yanagida, Phys.
Lett. B 548, 119 (2002); S. Antusch, P. Di Bari, D. A.
Jones, and S. F. King, Phys. Rev. D 86, 023516 (2012);
K. Harigaya, M. Ibe, and T. T. Yanagida, Phys. Rev. D 86,
013002 (2012).

[4] M. T. Eisele, Phys. Rev. D 77, 043510 (2008).
[5] J. R. Ellis and O. Lebedev, Phys. Lett. B 653, 411

(2007).
[6] B. Feldstein and W. Klemm, Phys. Rev. D 85, 053007

(2012).
[7] W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-

Sánchez and M. Ratz, Phys. Rev. Lett. 99, 021601 (2007).
[8] K. R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys.

B557, 25 (1999); G. R. Dvali and A.Y. Smirnov, Nucl.
Phys. B563, 63 (1999); N. Arkani-Hamed, S. Dimopoulos,
G. R. Dvali, and J. March-Russell, Phys. Rev. D 65,
024032 (2001).

[9] J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980);
G.C. Branco, L. Lavoura, and M.N. Rebelo, Phys. Lett. B
180, 264 (1986); Y. Liao, Nucl. Phys. B749, 153 (2006).

[10] M. Blennow and E. Fernández-Martı́nez, Phys. Lett. B
704, 223 (2011).

[11] Z. Z. Xing, Phys. Lett. B 660, 515 (2008); Phys. Rev. D
85, 013008 (2012).

[12] For recent reviews, see W. Rodejohann, Int. J. Mod. Phys.
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J. High Energy Phys. 09 (2011) 142.

[24] L. J. Hall, H. Murayama, and N. Weiner, Phys. Rev. Lett.
84, 2572 (2000); G. Altarelli, F. Feruglio, and I. Masina,
J. High Energy Phys. 01 (2003) 035; A. de Gouvêa and
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