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Texture zeros and weak basis transformations in the quark sector of the standard model
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Stimulated by the recent attention given to the texture zeros found in the quark mass matrices sector
of the standard model, an analytical method for identifying (or excluding) texture zeros models will be
implemented here. Starting from arbitrary quark mass matrices and making a suitable weak basis
transformation, we are be able to find an equivalent quark mass matrix. It is shown that the number of
nonequivalent quark mass matrix representations is finite. We give exact numerical results for parallel and
nonparallel four-texture zeros models. We find that some five-texture zeros Ansdtze are in agreement with
all present experimental data, and we confirm definitively that six-texture zeros of Hermitian quark mass

matrices are not viable models anymore.
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L. INTRODUCTION

Although the gauge sector of the standard model (SM)
with the SU3)c ® SU(2);, ® U(1)y symmetry is very
successful, the Yukawa sector of the SM is still poorly
understood. The origin of the fermion masses, the mixing
angles, and the CP violation remain as open problems in
particle physics. There have been a lot of studies of pos-
sible fundamental symmetries in the Yukawa coupling
matrices of the SM [1-3]. In the absence of a more funda-
mental theory of interactions, an independent phenomeno-
logical model approach to search for possible textures or
symmetries in the fermion mass matrices is still playing an
important role.

In the SM, the mass term is given by

- -EM = I’_tRMuuL + d_RMddL + H.C., (11)

where the mass matrices M, and M, are three-dimensional
complex matrices. In the most general case, they contain
36 real parameters. A first simplification, without losing
generality, makes use of the polar decomposition theorem
of matrix algebra, by which one can always express a
general mass matrix as a product of a Hermitian and unitary
matrix. Therefore, we can consider quark mass matrices to
be Hermitian as the unitary matrix can be absorbed in the
right- handed quark fields. This immediately brings down
the number of free parameters from 36 to 18.

A simple and instructive Ansatz of Hermitian quark
mass matrices with six-texture zeros was first proposed
in Ref. [1]. An additional nonparallel six-texture zeros was
given in Ref. [4]. Both textures are currently ruled out [5]
because, among other things, they do not reproduce some
entries of the Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrix V. Specifically, in both cases, the magnitude
of |[V,,/ V.| predicted by /m,,/m,. is too low (V,;,/V,, =
0.06 or smaller for reasonable values of the quark
masses m, and m, [6,7]) to agree with the present experi-
mental result (|V,;,/V,plex = 0.09 [6]). Because of this,
some authors have highly recommended the use of
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four-texture zeros [5,8,9]. It is shown in this work that
four-texture zeros is readily feasible, and we can even
get five-texture zeros.

We would, therefore, present an analytical method to
calculate models containing various texture zeros in the
quark mass matrix sector, taking into account the latest
experimental data provided [6]. We use simultaneously in
our research two very common approaches: one approach,
which is used in conjunction with the second approach,
consists of placing zeros (called texture zeros) at certain
entries of quark mass matrices that can predict self-
consistent and experimentally favored relations between
quark masses and flavor mixing parameters [4,10,11]; the
second approach involves the WB transformation (weak
basis transformation), which transforms the quark mass
matrix representations into new equivalent ones [8].

This paper is organized as follows: in Sec. II we discuss
some issues related to the WB transformation method and
its utilities. Section III is dedicated to obtaining some
numerical parallel and nonparallel four-texture zeros quark
mass matrices using special techniques, which we then use
in Sec. IV to find five-texture zeros in quark mass matrices
compatible with the present experimental data. This con-
figuration is studied from an analytical point of view in
Sec. V, and our conclusions are presented in Sec. VI. The
method used extensively throughout this paper to find
texture zeros is verified in Appendix .

II. WB TRANSFORMATIONS

The most general WB transformation [8], that leaves the
physical content invariable and the mass matrices
Hermitian, is

M,— M, =U'M,U, M, — M), =UM,U, (2.1)

where U is an arbitrary unitary matrix. We say that the
two representations M, ; and M;y 4 are equivalent to each
other. Besides, it implies that the number of equivalent
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representations is infinity. This kind of transformation will
be used extensively in the calculations below.

First, let us show that the WB transformation is exhaus-
tive in generating all possible mass matrix representations.
Let us first consider the representation of Hermitian quark
mass matrices indicated by (M,,, M ;) and diagonalize them
as follows

Utm,u, =D, and U'M,U, =D, (2.2)
The CKM mixing matrix is given by
Vckm = UI Ud- (23)

On the other hand, the prime representation (M}, M) gives

UtM,U, =D, and UM,U,=D, (2.4)
and
Vem = Ud U, (2.5)

Equating the expressions (2.3) and (2.5) yields
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vtu, = uitu, = vut = vLul. (2.6)
And equating (2.2) and (2.4) gives, respectively,
UM, U, =UtM,U, and UM U =UIM,U,  (2.7)

where we find that the mass matrices M, and M, can be
expressed in terms of the mass matrices M, and M/ as
follows

M, = U U M,U,UY, (2.8)

M, = UU'TM,ULUT. (2.9)
Using (2.6) into (2.9), we have

M, = U, UM, ULUL, (2.10)

where U= U, Ul is a unitary matrix that allows us to
state,

/

“In the SM, any two pairs of Hermitian quark mass matrices, given by (M, M) and (M, M), with identical

(2.11)

eigenvalues and flavor mixing parameters, to a specific scale energy, are related through a WB transformation”,

i.e., there is no quark mass matrix representation outside
the set (2.1). In this reasoning, we have assumed that both
representations generate the same entries, including the
phases, for the CKM mixing matrix (V,,), something
validated by the fact that a WB transformation makes
them equal, as will be shown in Sec. 1T A.

The importance of the WB transformation as a calcu-
lation tool can be appreciated from the following results.

A. The preliminary matrix representation

In the quark-family basis, it is more convenient to use
the following quark mass matrix representation [8,12]

A, 00
M,=D,=| 0 A, 0 |, M,=VD,Vt, (2.12)
0 0 A3u

which comes from a WB transformation and we call the
“u-diagonal representation.” We call the other possibility

Ag 00
M,=VtD,Vv, M,=D,=| 0 Ay 0 | (2.13)
0 0 Ay

the “d-diagonal representation”. One advantage of using
representations (2.12) [or (2.13)] is to be able to use
simultaneously the CKM mixing matrix V and the quark
mass eigenvalues |A;, 4| (i = 1, 2, 3), where A;, ; may be
either positive or negative and satisfy the hierarchy

|)‘1u,d| < I)‘Zu,dl < |A3u,d|- (214)

It is usually said that the CKM matrix is an arbitrary
unitary matrix with five phases rotated away through the
phase redefinition of the left-handed up and down quark
fields [13]. This can be shown by using the following
unitary matrix

eV

in order to make a WB transformation on (2.12). The up

matrix

eix eix T

=D, (2.15)

remains equal, while the down matrix takes the form

eix eix T

M, = e (VD,vY) e , (2.16)
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1 eia3
eix eioq T
X Dd €iy \% €m2 ,
1 eioz3

(2.17)

where in the last step we have used the identity (2.15)
applied to the diagonal down mass matrix. The expression
into the square brackets is precisely the most general way
to write a unitary matrix [13].

In this representation, the matrix M, in (2.16), contains
two free parameters x and y, which play an important role
in obtaining texture zeros, as we shall see later.

B. A unique negative eigenvalue

The result (2.11) permits us to use the u-diagonal rep-
resentation (2.12) [or the d-diagonal representation (2.13)]
as the starting point to generate any other representation.
If they exist, by this method, important texture zeros in the
mass matrix can be found.

Because some texture zeros must lie along its diagonal
entries of both up and down Hermitian quark mass matri-
ces, it implies that at least one, and at most two, of its
eigenvalues must be negative [8]. Furthermore, for the case
of two negative eigenvalues, these mass matrices can be
reduced to having only one negative eigenvalue, by factor-
ing out a minus sign that can be included, for instance,
into the mass matrix basis (2.12). Thus, without loss of
generality, the texture zeros models can be deduced con-
sidering that

C12€13
_1 _ _ is
V= S12€23 — €C12823513€
_ is
S12823 = C12€23513€
where s;; = sinf;;, ¢;; = cos6;;, and J is the phase respon-

sible for all CP-violating phenomena in flavor-changing
processes in the SM. The angles 6;; can be chosen to lie in
the first quadrant, so s;;, ¢;; = 0.

It is known experimentally that 53 <K s53 <K 515 <K 1,
and it is convenient to exhibit this hierarchy using the
Wolfenstein parametrization. We define [18,19]

S$723 = A)\z,
AN (p + in)V1 — A%A%
V=201 - A2M4(p + in)]

S12 = A,
3.3)

S13€¢ " =
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“each one of the quark mass matrices M, and M,

contains exactly one negative eigenvalue.” (2.18)

III. NUMERICAL FOUR-TEXTURE ZEROS

There is a wide variety of four-texture zeros representa-
tions. Using a specific approach, some nonparallel textures
are easy to obtain, but more laborious methods are required
in parallel cases. In our analysis we will use the next
physical quantities.

A. Quark masses and CKM

For quark mass matrix phenomenology, values of m,(u)
at u = my are useful because the observed CKM matrix
parameters |V;;| are given at u = mz. We summarize
quark masses at u = my [7,12,14]

m, = 1.387542 m. = 638%%
m, = 172100 =+ 1200, my = 2.82 + 0.48,

my=57718,  m;, = 28601160,

(3.1)

given in units of MeV.
The CKM matrix [7,15,16] is a 3 X 3 unitary matrix,

Vud Vus Vub
V= Vcd Vcs Vcb ’
Via Vis Vu

which can be parametrized by three mixing angles
and the CP-violating Kobayashi-Maskawa phase [16].
Of the many possible conventions, a standard choice has
become [17]

$12€13 size”!
_ i
C12€23 — S12823813€" s3¢13 ) (3.2)
_ _ is
C12823 = 812€23513€ C€23C13

The constraints implied by the unitarity of the three-
generation CKM matrix significantly reduce the allowed
range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (3.3) gives

A = 0.22535 =+ 0.00065, A=081173%2

3.4
F=01317036 5= 03451000

These values are obtained using the method of
Refs. [18,20]. The fit results for the values of all nine
CKM elements are.
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0.974272 0.225349 0.00351322¢11:20849
V= 0.225209¢ 314101 () 97344i3.13212x107 0.0411845 (3.5)
0.00867944¢ 10377339 0.0404125¢ 312329 0.999145
with magnitudes
0.97427 = 0.00015  0.22534 = 0.00065  0.00351*399013
[V] = | 0.22520 = 0.00065 0.97344 +0.00016  0.041273:%1L |, (3.6)
0.008679:00022 0.0404 90011 0.999146§ 900021
f
and the Jarlskog invariant is A, = —my, Ay, = my, Ay, = my, 3.8)
J = (296131 x 1075 (3.7)
Aig = my, Ayg = —mg, Ayg = my,. 3.9

B. Nonparallel four-texture zeros

Then, for this case, the numerical values in the u-diagonal
representation (2.12) are

It is the most simple case. For instance, let us take the

eigenvalues signs pattern as follow
|

[ —1.38
M, = 638 MeV,
\ 172100
( -02=08 —12.9758 — 0.386978i  4.09941 — 9.38819i
M, = | —12.9758 + 0.386978i —49.0183 119.924 — 0.043146i | MeV, (3.10)
\ 4.09941 +9.38819i  119.924 + 0.043146i 2855.02 /
0 —12.9758 — 0.386978i  4.09941 — 9.38819i \
= | —12.9758 + 0.386978i —49.0183 119.924 — 0.043146i | MeV,
4.09941 +9.38819i  119.924 + 0.043146i 2855.02 /

I
with tanf = 1/"”11— the matrices (3.10) transform into a form,
t

where the entries (1, 1), (1, 2) and (2, 3) of matrix M,
become zero. Then, we have

where we have used the numerical CKM matrix (3.5) and
errors of (3.6). In the second mass matrix above, in the
entry M,(1,1) = —0.2 = 0.8 calculated, since the uncer-
tainty ( = 0.8) in determining this element exceeds the
value of 0.2 it is obviously reasonable to call the (1, 1)

entry zero (My(1,1) = 0). Something pointed out in 0 0  487.338
Ref. [12]. '
Making a WB transformation on (3.10) using the follow- M, = UM, U = 0 638 0 MeV
ing unitary matrix 487.338 0 172099
cosé 0 sinf (3.12)
U= 0 1 0 |1 (3.11)
—sin@ 0 cosf and
|
0 —12.6361 — 0.386854i 12.1844 — 9.38819i
M), = UM, Ut = | —12.6361 + 0.386854i —49.0183 119.96 — 0.0442417i | MeV, (3.13)

12.1844 + 9.38819i 119.96 + 0.0442417i 2854.97

where the element M/,(1, 1) is zero for the same reason given in (3.10). We finally obtain a nonparallel four-texture zeros
mass matrix representation.
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[ O 0 487.338
M, = 0 638 0
\487.338 0 172099
( 0
M, = | 12.6421¢>110%i

12.6421¢ 31109
—49.0183
\ 15.38 1760.6564981' 1 19.9660'000368804i

PHYSICAL REVIEW D 86, 093021 (2012)

MeV,

15.3817 ¢~ 0-656498i (3.14)
119,96 0000368804 | MeV.

2854.97

New equivalent four-texture zeros representations can be obtained using the former representation. For example, if we use

unitary matrices looking like

1 00
u=10 0 1] (3.15)
010
and apply them to (3.14), it allows us to obtain new nonparallel four-texture zeros representations. For the case (3.15),
we have
/ 0 487.338 0
M, =] 487338 172099 0 | MeV,
\ © 0 638 (3.16)
[ 0 15.3817¢ 700564980 12,6421 ¢ 31109
M, = | 15.3817¢0656498i 2854.97 119.960-000368804i | MeV,
\ 12.642131109%7 119,96 ~0-000368804i —49.0183
|
where some of their entries have been permuted. 0o [cl o
We have found typical nonparallel four-texture zeros M,=11C,l B” B,| |, (3.17)
quark mass matrix representations. The WB was applied 0 IB| 4

by using simple unitary matrices like (3.11). The process is
more difficult if we want to find parallel texture zeros in
quark mass matrices.

C. Parallel four-texture zeros

Let us begin implementing a method that we shall apply
later to special cases. Let us start by giving the following
structure for the up matrix elements’

ix A Az (A —Ay,) iy
SR V7w v v T ey v B

_ ,ix _
SR/ A VA vy Vi [ vy v

etxn A (A= Ao )(Ay = Ay
Ay = A1) (A3, = Ayy)

where 7 = Ay,/m, = +1or —1 and p = A3,/m, = +1
or —1 corresponding to the possibility (A;,, Ay, Azy) =
(_mw me, mt)’ (Alw /\Zw /\314) = (mw —mg, mt)’ or
(A Ao A3,) = (my, m,, —m,). The imaginary phases in
(3.19) were included, in order that given them appropriated

'Tt is sufficient to consider that the mass matrix be real and
symmetric, since the phases may be included later by means of a
WB process.

where B, and A, are real numbers. The mass matrix M,
can be diagonalized using the transformation

A, —Ay) iy
()‘214 7)‘114)(/\314 7/\214)

Aty
oim,0, = Ao ) (3.18)
A3y
where the exact analytical result of O, is [5]
R e R e e
u\"\2u lu 3u 2u u\ " 3u lu 3u 2u
Ay (A—Ay) ) (3.19)

(A3 = A1) (A3, = A2y)

Ao (A=A (A3, —Ay)

Az (A=A (A, —Ay,)

__,ly
€ PVA, M=) sy — A2

JAII(A3H =) (Asy = Aay)

values, the generated CKM matrix becomes compatible
with the chosen convention (3.2).> Note that B,, |B,|,
and |C,| can be expressed in terms of A, (i =1, 2, 3)
and A, using invariant matrix functions as follows

trMu = éu = Alu + /\Zu + /\3u - Au’ (320)

21t is not necessary to include an imaginary phase in the third
column of O, since we can factor it out.
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_ (Au B /\lu)(Au B )t2u)()l3u _Au)

trM2=|B,| , (3.21)
A,
— A, Ay, A
detM, = |C, | = ,|——=2u3 (3.22)
A,
where “tr’” and “‘det” are the trace and the determinant,

respectively. The matrix O, can be seen as the unitary
matrix such that the WB transformation transforms the
representation (2.12) into the form

ALy o |c,l o
M. =0, A, ot=|lc,| B, IB,l| (3.23)
/\314 O |Bu| Au

Xauxy Ca Ya,ny
Mm,=o,vbp,vhHhotl=| ¢, B, B, |

Yo,xy Ba Ad

(3.24)

where the elements of M/, depend on three parameters A,
x, and y. To complete the analysis, we must obtain ne-
glected values at the entries (1, 1) and (1, 3) compared with
the remaining elements of the matrix M/,. Then we have to
solve three equations

X(wa,y) = 0, Re[Y(Au,x,y)] = 0, and Im[Y(wa,y)] = 0,
(3.25)

where “Re” refers to the real part and “Im,” the imaginary

part of the function. In the process, the following details
must be taken into account:

(1) The formulas (3.20) through (3.22) must be real

numbers. Therefore, the parameter A, is restricted

to lie into an interval. Let us see the different possi-

bilities, where the hierarchy (2.14) was considered.
|

138 0 0
M,=| 0 638 0 |Mev,
0 0 172100
0.253114
M, =VD,vt = | 13.2691 + 0.386919i

3.01706 + 9.38676i

Making a WB transformation on (3.32), using the unitary
matrix O, (Eq. (3.19)), the following conditions

lei(l,l)(Au’xl’ X2, Y1, ¥2) = 0,
Re[Mﬁi(1,3)(Au’ X1, X2, ¥1, ¥2)] = 0,
Im[Mﬁz(1,3)(Aw X1, %, 1, ¥2)] =0

(3.33)

13.2691 — 0.386919i

115.45 — 0.043146i

PHYSICAL REVIEW D 86, 093021 (2012)
(a) If Ay, = —m,, Ay, = m,. and A3, = m, then

m, <A, <m,. (3.26)

(b) If Ay, = m,, Ay, = —m, and A3, = m, then

m, <A, <m, (3.27)
(c) If Ay, = m,, Ay, = m, and A3, = —m, then
m, <A, <m,. (3.28)

(2) The phases given in (3.19) could have been included
initially in the transformation (2.16), instead of writ-
ing them explicitly in the matrix O,. The validity of
this point of view is checked by observing that the
matrix (3.19) can be decomposed as the product of
two matrices, where the right-hand side contains the
imaginary phases as follows

eix
Ou = Ou(x—O,y—O)( ev )r (3.29)
1

such that, after replacing this decomposition into
(3.24) and comparing with (2.16), we conclude that
both points of view concur.
In Appendix , we will work a case previously studied in
Ref. [8] and replicate the results presented there by using
the techniques implemented here.

1. Example 1: parallel four-texture zeros

We are mainly concerned to find four-texture zeros with
the recent data given in Sec. III A. Let us take the following
case

/\lu = —my /\Zu = m, )‘314 =m (330)

Ag = —my, Arg = my, Asg = my. (3.31)

We have, in the u-diagonal representation, the following
mass matrix representation.

3.01706 — 9.38676i (3.32)

115.45 + 0.043146i
2855.21

58.7203 MeV.

are established in order to find zero entries (1, 1), (1, 3),
and (3, 1) of the resulting matrix M/, = OMMdO:E, where
the imaginary phases given in O, have been defined as
e™ = cosx + isinx = x; + ix, and e” = cosy + isiny =
vy + iy,, such that
X+ =1

and y2 +y2 = 1. (3.34)
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Equations (3.33) and (3.34) give the following exact solution:

A,=153231MeV, x;=0.883194, x,=-0.469007, y,=0.202996, y,=0.97918. (3.35)
Finally, we obtain an exact parallel four-texture zeros mass matrix representation.
0 31.4461 0
Ml = 0,M,0} = | 31.4461 19505.7 53659.2 | MeV, (3.36)
0 53659.2 153231
0 —1.43578 — 13.3956i 0
M, =0,M,0},=| —1.43578 + 13.3956i 381.367 893.365+ 113.383i | MeV. (3.37)
0 893.365 — 113.383i 2532.81

In the same way, we can find other nonequivalent parallel four-texture zeros representations. Let us look at another case.

2. Example 2: another parallel four-texture zeros model
Another possibility that works well is
)\lu =my,

)‘2u =m, /\3u = —my (3.38)

(3.39)

from which, we have A, = 7.34102 MeV, x; = 0.998393, x, = —0.0566637, y; = 0.999664, and y, = 0.0259074.
Thus, the corresponding parallel four-texture zeros mass matrix representation is

Ag = my, Ayg = my, A3g = —my,

0 4543.2 0
M, = OMMMOI = | 4543.2 —171468. 9388.13 | MeV, (3.40)
0 9388.13  7.34102
0 123.93 + 10.0184i 0
M), = 0,M,05 = | 123.93 — 10.0184i —2829.92 267.035 + 1.39152i | MeV. (3.41)

0 267.035 — 1.39152i

IV. NUMERICAL FIVE-TEXTURE ZEROS

Now, let us try to find five-texture zeros for the quark
mass matrix sector. If this cannot be achieved, we can
conclude that five- and six-texture zeros are not viable
models. For that, we will use the mathematical tools pre-
viously implemented in Sec. III C. We shall begin as usual
by proposing a texture-zeros configuration. In this case
with three zeros for the up/down quark mass matrix,” we
will see how many zeros can be reached for the down/up
quark mass matrix. In principle, there are many possibil-
ities, but many of them are equivalent ones. In total, there
are two nonequivalent cases, depending on the number of
zeros included in their diagonal entries. Therefore, we have
only two possibilities: one-zero or two-zero in diagonal
entries. Let us name them as one-zero family and two-zero

? A model with four zeros in the up/down quark mass matrix is
not realistic.

29.738

Jfamily, respectively. With an appropriated unitary matrix
and performing the corresponding WB transformation, the
other possibilities are obtained. In Table I both families are
indicated, which summarizes the equivalent possibilities
for each case. Let us study each family.

A. Two-zero family

In what follows, we work the u-diagonal and d-diagonal
cases simultaneously. The standard representation for the
two-zero family is

0 ICu,dI 0
|Cu,d| O |Bu,d| )
0 |Bu,d| Au,d

M, .= 4.1)

and its diagonalization matrix satisfies the following
relation
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(4.10)

0.0000104863
0.0607083
0.998156
@.11)

0.000682127
0.147267

TABLE I. One- and two-zero family.
Unitary matrix Two-zero family (p;M,, 4pT) One-zero family (p;M,, 4pT)
1 0 [C,.al 0 0 [B,al 0
P = ( 1 |Cu,d| 0 |Bu,d| (lBudI Cud 0
0 |Bu,d| Au,d Aud
1 0 0 |Cu,d| 0 |Bu dl
P2 = 0 Aua 1Byl ( Aya 0
1 |Cud| |Bu,d| 0 |Bud| O ud
Au d IBu,dI 0 u d 0
p3 = 1 [Bal 0 IC,l Cud By, ql
1 0 |Cu,d| 0 IBu dl 0
1 0 |Cu,d| |Bu,d| udl |Bud| 0
P4 = 1 |Cu,d| 0 0 u dl 0
1 |Bu,d| O Au,d Au d
1 Au,d 0 |Bu,d| Au d 0
Ps5 = 1 0 0 |Cu,d| ( 0 0 |Bud|)
1 |Bu,d| |Cu,d| 0 0 IBudl Cud
1 0 |Bu,d| |Cu,d| C d O |Bud|
Pe = 1 |Bu,d| Au,d O u 0
1 |Cu,d| 0 0 u, dl 0 0
Alud Mud> Asua >0 and Ay, 4 <O0.
1 — . . . .
0,,aMuaOua = Aud » (42)  For the u-diagonal case, the diagonalization matrix (3.19)
A3y becomes
where one and only one A;, ; is assumed to be a negative 0.99892¢™ —0.0464583¢"
number. The invariant quantities “det” and ‘“‘trace” 0,= 0.0463719¢™ 0.997078¢"
applied on (4.1) and (4.2) —0.00283086¢™* —0.0606422¢"
trMyq=Aua = Aa + Aoua + 30 (4.3)
5 ) ) 5 and for the d-diagonal case, the diagonalization matrix is
trM; , = A, , + 2|B, 4% +2IC,4l given by
= /\fu’d + A%M,d + /\%M, 4.4 0.980856¢* —0.194731¢"
0O, = 0.19251e™* 0.970182¢™
detM, g = =AyalCual’ = Auaronatsua - (45) ~0.0293392¢"  —0.144316¢"

allow us to express the parameters of (4.1) in terms of its
eigenvalues

Aua = Mua T Asua + A3 a (4.6)
B | — .- (Mg T Ao ) Ara + A3,0) (A a + Asya)
M,d Au,d 1}
4.7
Ay g Ay aA
|Cu,d| — ‘/_ lu,d” 2u,d 3u,d. (48)
Au,d

From expression (4.8), together with (2.18), we have that
A,q.>0, 4.9

and using (4.7) and the hierarchy (2.14), we found that only
one possibility is permitted

0.989097
(4.12)

As you can see, in both cases, we are using quasidiagonal
matrices.

Performing the WB transformation using the unitary
matrix O, 4, we have

and
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where the matrices

M,=VvD,Vt and M,=ViD,V (4.16)

depend on whether we work with the u-diagonal or the
d-diagonal case.

In order to facilitate the calculus, we define the follow-
ing new variables

e = x| +ix,, with x?+x3=1,

' 4.17)
e =y, + iy, with y% + y% =1,
where their norms satisfy
lxil Il =1, and |y, [yl = 1. (4.18)

With the former definitions, the elements of the matrix
M/, defined in (4.15) now have a polynomial form in

each case considered: Aj; = —my, Ayy = —mg, Or Ay =
—my, for the u-digonal case (or Ay, = —my, Ay, = —my,
or A3, = —m, for the d-diagonal case). The results are

summarized in Tables II and III.

1. Analysis of “down’ mass matrix

Table II summarizes the components of M/ for the
u-diagonal case. By simple inspection, using (4.18) shows

PHYSICAL REVIEW D 86, 093021 (2012)
Re[M/(1,2)] =0,
or Re[M/(1,3)]=0,

Im[M'(1,2)] = 0,
Im[M',(1,3)] = 0,

equations. Therefore, it is impossible to find two-texture
zeros in the down quark mass matrix coming from an
u-diagonal representation for the two-zero family case.

2. Analysis of “up’ mass matrix and a model
with five-texture zeros

Let us consider the d-diagonal case. The entries of
matrix M, after the WB transformation is made, are given
in Table III. According to the Table, only entries (1, 2) and
(1, 3) deserve some attention, and of these only the cases

A, = —m, and A,, = —m, give an acceptable solution.
For the first case, with A, = —m,, we have
M (1,2) =0, 4.19)
M, (1,1) =0, (4.20)
where
x; = 0.706984, y1 = —0.540778,
4.2
x, = 0.70723, vy, = —0.841165.

that it is not possible to find zeros at entries (2, 2), (2,3),  The corresponding five-texture zeros representation
and (3, 3), and no solutions were found for either obtained is
|
0 —92.3618 + 157.694i
M, = 0 5748.17 28555.1 + 5911.83i | MeV, (4.22a)
—92.3618 — 157.694i 28555.1 — 5911.83i 166988
0 13.9899 0
M), =] 13.9899 0 424.808 | MeV. (4.22b)
0 424.808 2796.9

The other possibility that works well is the following numerical five-texture zeros in the two-zero family case.

0 123.038 — 285.496i
M, = 0 1430.03 18632.8 — 2336.25i | MeV, (4.23a)
123.038 + 285.496i 18632.8 + 2336.25i 170033
0 13.2473 0
M! = 13.2473 0 425.817 | MeV, (4.23b)
0 425.817 2796.6

with A,, = —m,.

093021-9
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TABLE II.

The u-diagonal representation: the “down’ mass matrix entries for the two-zero family case.

M) Negative mass eigenvalue
entries Case 1. Aj; = —m,; (MeV) Case 2. Ayy = —m, (MeV) Case 3. A3, = —my, (MeV)
Mi(1,1)  0.758616 + 0.0000632072x; + 0.000196652x, —0.575839 + 0.0000858823x; + 0.000196682x, 11.261 — 0.0000849534x; — 0.00019705x,
—0.000112489y; — 1.23159x;y; — 0.0359124x,y, —0.000116848y, + 1.20436x,y; — 0.0359178x,y, +0.000116858y; — 1.0895x,y; + 0.0359851x,y,
+0.0359124x,y, — 1.23159x,y, +0.0359178x,y, + 1.20436x,y, —0.0359851x;y, — 1.0895x,y,
M!(1,2) —5.41488 + 0.182964x; + 0.569243x, 4.52621 + 0.248601x; + 0.56933x, —4.05674 — 0.245913x; — 0.570396x,
—0.324408y; + 13.1875x;y; + 0.384538x,y, —0.336979y, — 12.8959x,y; + 0.384597x,y, +0.337008y; + 11.6661x,y; — 0.385317x,y,
+0.000121238y, — 0.384538x,y, + 13.1875x,y, —0.000121238y, — 0.384597x,y, — 12.8959%x,y, +0.000109807y, + 0.385317x,y, + 11.6661x,y,
+i(—0.569234x; + 0.182961x, — 0.00012214y, +i(—0.569321x; + 0.248597x, + 0.00012214y, +i(0.570386x; — 0.245909x, — 0.000110625y,
—0.386206x,y; + 13.2447x,y, — 0.326823y, —0.386264x,y; — 12.9519x,y,; — 0.339487y, +0.386987x,y; + 11.7166x,y, + 0.339516y,
—13.2447x,y, — 0.386206x,y,) +12.9519x,y, — 0.386264x,y,) —11.7166x,y, + 0.386987x,y,)
M(1,3) 0.359323 + 3.00824x; + 9.35933x, —0.245286 + 4.08743x; + 9.36075x, 0.216621 — 4.04322x; — 9.37828x,
—5.35379y; — 0.802056x;y; — 0.0233874x,y, —5.56125y; + 0.784325x;y; — 0.023391x,y; +5.56172y, — 0.709524x,y, + 0.0234348x,y,
+0.00200082y, + 0.0233874x;y, — 0.802056x,y, —0.00200082y, + 0.023391x,y, + 0.784325x,y, +0.00181218y, — 0.0234348x,y, — 0.709524x,y,
+i(=9.35933x; + 3.00824x, — 0.00200077y, +i(—9.36075x; + 4.08743x, + 0.00200077y, +i(9.37828x; — 4.04322x, — 0.00181213y,
+0.0234892x,y; — 0.805546x,y, — 5.35364y, +0.0234928x,y, + 0.787738x,y; — 5.56109y, —0.0235368x,y; — 0.712611x,y, + 5.56157y,
+0.805546x,y, + 0.0234892x,y,) —0.787738x,y, + 0.0234928x,y,) +0.712611x,y, — 0.0235368x,y,)
M (2,2) 127.279 + 0.016987x; + 0.0528505x, + 13.9766y, —86.9431 + 0.023081x; + 0.0528585x, 87.5349 — 0.0228314x; — 0.0529575x,
+1.22703x,y; + 0.0357795x,y, — 0.00522333y, +14.5182y; — 1.19991x;y; + 0.035785x,y; —14.5194y, + 1.08547x,;y; — 0.035852x,y,
—0.0357795x,y, + 1.22703x,y, +0.00522333y, — 0.035785x;y, — 1.19991x,y, —0.00473086y, + 0.035852x,y, + 1.08547x,y,
M(2,3) 165.914 + 0.13913x; + 0.432866x, 178.932 + 0.189042x; + 0.432932x, —178.968 — 0.186998x; — 0.433742x,
+114.475y, — 0.0747673x,y, +118.911y; + 0.0731144x,y; — 0.0021805x,y, —118.921y; — 0.0661415x;y,; + 0.00218458x,y,
—0.00218017x,y; — 0.0427818y, + 0.00218017x;y,  +0.0427818y, + 0.0021805x;y, + 0.0731144x,y, —0.0387482y, — 0.00218458x;y, — 0.0661415x,y,
—0.0747673x,y, + i(—0.436093x; +i(—0.436159x; + 0.190451x, — 0.0430994y, +i(0.436975x, — 0.188392x, + 0.0390359y,
+0.140167x, + 0.0430994y, —0.000136068x,y, + 119.794y, + 0.000136068x,y,) +0.000123091x,y, — 119.804y, — 0.000123091x,y,)
+0.000139144x,y, + 115.325y, — 0.000139144x,y,)
M} (3, 3) 2845.12 — 0.0170502x; — 0.0530471x, 2844.14 — 0.0231669x; — 0.0530552.x, —2844.14 + 0.0229163x, + 0.0531545x,

—13.9765y, + 0.00455581x,y; + 0.000132844x,y,

—14.5181y, — 0.00445509x,y, + 0.000132865x,y,

+14.5193y, + 0.00403021x,y; — 0.000133113x,y,

+0.00522329y, — 0.000132844x,y, + 0.00455581x,y, —0.00522329y, — 0.000132865x,y, — 0.00445509x,y, +0.00473083y, + 0.000133113x,y, + 0.00403021x,y,

odTviID AHdSHIIA
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TABLE III. The d-diagonal representation: the ““‘up” mass matrix entries for the two-zero family case.

M, Negative mass eigenvalue

entries Case 1. Ay, = —m,, (MeV) Case 2. Ay, = —m. (MeV) Case 3. A3, = —m; MeV)

M (1,1) 151.93 + 1.84869x; — 0.735842x, —59.245 + 1.86453x; — 0.735821x, 64.2966 — 1.86453x; + 0.735833x,
+1.839y, + 74.8244x,y, — 8.85442x,y, +1.85259y, — 32.2673x,y; — 8.92032x,y, —1.85259y, + 32.0358x;y; + 8.92032x,y,

+0.0337901y, + 8.85442x,y, + 74.8244x,y, +0.0337892y, + 8.92032x,y, — 32.2673x,, —0.0337897y, — 8.92032x,y, + 32.0358x,y,

M (1,2) —300.727 + 199.742x; — 79.504x, 132.633 + 201.453x; — 79.5017x, —131.697 — 201.453x; + 79.503x,

+193.933y; — 179.051x,y; + 21.1882x,y, +195.366y, + 77.2138x,y; + 21.3458x,y, —195.366y, — 76.6599x,y; — 21.3458x,y,
+3.56336y, — 21.1882x,y, — 179.051x,y, +3.56326y, — 21.3458x,y, + 77.2138x,y, —3.56332y, + 21.3458x,y, — 76.6599x,y,
+i(79.3596x, + 199.379x, — 3.73171y, +i(79.3573x; + 201.087x, — 3.7316y, +i(—79.3586x; — 201.087x, + 3.73166y,
—22.926x,y; — 193.736x,y; + 203.095y, —23.0966x,y; + 83.5468x,y; + 204.596y, +23.0966x,y; — 82.9474x,y,; — 204.596y,
+193.736x,y, — 22.926x,y,) —83.5468x,y, — 23.0966x,y,) +82.9474x,y, + 23.0966x,y,)

M (1,3) 163.157 + 1340.29x; — 533.481x, 98.7777 + 1351.77x; — 533.466x, —98.9206 — 1351.77x; + 533.475x,
+1333.97y; + 26.6073x,y; — 3.1486x,y; +1343.83y; — 11.4741x,y; — 3.17203x,y, —1343.83y, + 11.3918x,y; + 3.17203x,y,
+24.5107y, + 3.1486x,y, + 26.6073x,y, +24.51y, + 3.17203x,y, — 11.4741x,y, —24.5103y, — 3.17203x,y, + 11.3918x,y,
+i(533.503x; + 1340.34x, — 24.4856y, +i(533.488x; + 1351.83x, — 24.4849y, +i(—533.497x; — 1351.83x, + 24.4853y,

+3.41346x,y, + 28.8455x,y; + 1332.61y, +3.43886x,y; — 12.4393x,y, —3.43886x,y; + 12.3501x,y, — 1342.46y,
—28.8455x,y, + 3.41346x,y,) +1342.46y, + 12.4393x,y, + 3.43886x,y,) —12.3501x,y, — 3.43886x,y,)

M, (2,2) 5396.4 + 78.3341x; — 31.1797x, 3115.84 + 79.0053x; — 31.1788x, —3115.38 — 79.0051x; + 31.1793x,
—1978.06y; — 73.1657x,y; + 8.65814x,y, —1992.67y, + 31.552x,y, + 8.72257x,y, +1992.67y, — 31.3256x,y; — 8.72257x,y,
—36.3452y, — 8.65814x,y, — 73.1657x,y, —36.3441y, — 8.72257x1y, + 31.552x,y, +36.3447y, + 8.72257x,y, — 31.3256x,y,

M, (2,3) 24777.1 + 257.091x; — 102.331x, 25116.1 + 259.294x; — 102.328x, —25116.1 — 259.293x; + 102.33x,
—6495.55y; + 11.0171x;y; — 1.30373x,y, —6543.55y; — 4.75103x,y; — 1.31343x,y, +6543.55y, + 4.71695x,y; + 1.31343x,y,
—119.35y, + 1.30373x,y, + 11.0171x,y, —119.347y, + 1.31343x,y, — 4.75103x,y, +119.349y, — 1.31343x,y, + 4.71695x,y,
+i(107.083x; + 269.029x, + 124.757y, +i(107.08x; + 271.334x, + 124.753y, +i(—107.081x; — 271.334x, — 124.755y,

—0.0158108x;y; — 0.13361x,y; — 6789.79y, —0.0159285x;y; + 0.0576178x,y; — 6839.96y, +0.0159285x,y; — 0.0572044x,y, + 6839.96y,

+0.13361x,y, — 0.0158108x,y,) —0.0576178x,y, — 0.0159285x,y,) +0.0572044x,y, + 0.0159285x,y,)

M. (3,3) 168118 — 80.1828x; + 31.9155x, 168065. — 80.8698x; + 31.9146x, —168065. + 80.8696x; — 31.9151x,

+1976.22y, — 1.6587x,y, + 0.196283x,y,
+36.3114y, — 0.196283x,y, — 1.6587x,,

+1990.82y, + 0.715295x,y, + 0.197744x,y,
+36.3103y, — 0.197744x,y, + 0.715295x,y,

—1990.82y; — 0.710164x,y, — 0.197744x,y,
—36.3109y, + 0.197744x,y, — 0.710164x,y,

" SNOILVINJOASNV YL SISVI JVAM ANV SOYdZ HINLXHL
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B. One-zero family

A typical representation of this family is given by

0 B, O
Mu,d = |Bu,d| Cu,d 0 (424)
0 0 Aug
The mass matrix M, ;4 is diagonalized as follows
0 B, O
O MyaOua = Ol 4| 1Bual  Cua 0 |Oua (4.25)
0 0 Aug
Alu,d
= Aud (4.26)
)‘3u,d

The following matricial functions allow us to write the
elements of M, ; in terms of its eigenvalues A;, ;. They are

trMu,d = Au,d + Cu,d = /\lu,d + )‘Zu,d + )‘3u,d’ (427)

2 _ 42 2 2 _ 2 2 2
trM, , = A, + 2|B,,ql* + Coow=Mya T Mya T Mya

(4.28)
detM, s = —A, 41B.al* = Muarowarsua (4.29)
from which we have various solutions
(a)
Au,d = /\lu,dr |Bu,d| = \/_/\2u,d/\3u,d’ (4.30)
Cua = Aoua + A0
(b)
Au,d = )‘2u,d’ |Bu,d| = \/ _/\lu,d)‘i’)u,d’ (431)
Cu,d = )\lu,d + /\3u,dr
©
Au = /\ u,a» BM = _/\ u /\ u,a»
d 3u,d |B,,.4l \/ lu,d \2u,d (4.32)

Cu,d = Alu,d + )‘2u,d‘

Each one of these former cases was analyzed. Both repre-
sentations u-diagonal and d-diagonal were worked. The

PHYSICAL REVIEW D 86, 093021 (2012)

Egs. (4.30), (4.31), and (4.32) give two possibilities for
each case (a), (b), and (c), depending of which eigenvalue
is negative. In turn, each one of these cases contains three
possibilities depending of the negative eigenvalue assigned
for the down (up) mass matrix. In total, there are 36
possibilities. Neither of these cases was able to give models
with five-texture or six-texture zeros.

V. ANALYTICAL FIVE-TEXTURE ZEROS AND
THE CKM MATRIX

The five-texture zeros form of Eq. (4.23), derived under
the conditions given in Sec. IVA 2, is especially interesting
because the latest low-energy data shows that it is a viable
model, something not considered or ruled out in
Refs. [5,8,21]. Therefore, let us assume the following
five-texture zeros model

0o 0 |c,l
M,=P[ 0o A, IB,|P,
IC.l IB. B,
0 Ic, 0 (5.1)
My;=1IC,// 0 [Byl |
0 B, Ay

where up and down quark mass matrices are given in the
most general way, P = diag(e™"%«, e=%n, 1) with ¢, =
arg(B,) and ¢ = arg(C,), where the phases for M, were
not considered because they can be absorbed, through a

WB transformation, into P. Considering A,, = —m,., we
have from (3.20) through (3.22) that
B,=m, +m, —m,— A,
A, + —A,A, —
|Bu| — \/ u mC\/mt Ll\/ u mM (5‘2)

VA, ’
| — PN
’ VA,

where (3.27) was considered.
Taking into account (4.9) and (4.10), for the down mass
matrix we have that

Ad=md+mb—ms,
mg + my, fmy = mg fmg = my
Jmg F my, — m; ’
|C | — \/mb‘\/md\/ms
d Jmg Fmy, — my

|Bd| =

(5.3)

The unitary matrix U,,, which diagonalizes M,,, is given by
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[Au—m, e txu) _ /Au +mm/m—uei(d>(-u +yu) NI m,—A, \/rn_uei(¢‘u +zu)
AM \( All‘\/ln(' Allmf
Uu = P-[- ° p2 . OM = _ VN Au+mc’\/ mriAu \/’n_uei(d)b“ ) A\ mtiAu \/A147n114ei(¢bL‘ o) ‘\/Au+mr'\/Au7muei(¢b“ o y (5.4)
ARy Vi JA, i JA,
JA —my e A+ meen Jm—A, e
where an additional imaginary phase iz, in the third column [Vl = V.| =V, =1, (5.6a)

of O, [Eq. (3.19)] was added in order to reproduce all

phases present in the CKM matrix. The 3 X 3 matrix V. |~ |V~ A, +m, Mu | e=i(bs,~be,) nq
> =1[(1,0,0),(0,0,1),(0,1,0)] and the hierarchy (2.14) s cd A, m, m, |’
together with (3.27) were considered. (5.6b)
The unitary matrix U ,, which diagonalizes M, is given by '
ix iged mgmy m b A, + m
e T L Vgl = 1Vl ~ 1/}ﬂ—; - (q/T L 660
ixg .
U, =~ J% eV % . (5.5 T e, [iTm
. . |Vub| my ny € ! A, Jm_b
mdelxd _ \/m_xel)'d 1 |V | = _ . s (56d)
N N cb me /A% - e—zmu‘/’fnn:;
where, in the process, an imaginary phase in the third column
was not necessary to be included. Now, we can easily find the Vial ~ [Md (5.6¢)
CKMmatrix V = Ul U 4- In particular, using the matrix form Vil g

(5.4) and (5.5) for U,, U,, respectively, can survive current
experimental tests. To leading order, we obtain.
|

where we assume that m, < A, < m,. The sign “+” for V,,, V., and “—" for V.4, V,,. Note that if A, > m_, then
Vil ~
[Vepl

It is obvious that Egs. (5.6a), (5.6b), and (5.6¢), are consistent with the previous results [5,22]. A good fit of Egs. (5.6) and
the CKM to the experimental data suggests

. but this is not our case.
3

A, =1430.03 MeV, ¢, =—0.124733, ¢ =

Y. = —2.68335, z, = 0.00200664, xg = —3.00697,

1.16389, x, = —1.83392,

5.7
y, = 0.344676, SR

which differ from the values given in Refs. [5,22], ¢ = /3 ~ (¢, — ¢, ), such that it is an important contribution term
of CP violation in the context of present mass matrices, and ¢, =~ 7/25 ~ —¢,, — 0. The numerical analysis shows that
by plugging for the quark masses the values given in (3.1) and the input parameters in (5.7), we obtain the following
absolute values for the mixing matrix:

0.993 0.255 = 0.030 0.00334 = 0.00094
[Vaml =] 0.255 = 0.030 1.004 0.034 = 0.014 (5.8)
0.0079 = 0.0020 0.035 = 0.014 1.011

in good agreement with the experimental measured values presented in (3.6). For the Wolfenstein parameters we find that

N =0247%£0.027, A'=055"0%,  p'=0.117 £0.061, 7' = 0.361 + 0.070, (5.9)

which is in quite good agreement with the fit experimental values (3.4). The inner angles of the CKM unitarity triangle,
ViaVip + VedViy, + ViiVy, = 0, are

Ve
M) = 24.4114°,

v,V
B = arg(— < id ’b) = 82.6294°,
thVth

ViV
L M) = 72.9592°, (5.10)
VMquh

a= arg(— y = arg(— t
VCchh
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which are in the constraint established by [7]. The Jarlskog
invariant obtained is

T =1Im(V, V*,V5V,,) = 2.8322 X 1075, (5.11)

which can be found in the interval given in (3.7).

VI. CONCLUSIONS

Within the standard model framework, we have
investigated texture zeros for quark mass matrices that
reproduce the quark masses and experimental mixing
parameters. To simplify the problem, without loss of
generality, we consider that the quark mass matrices are
Hermitian, since the right chirality fields are singlets under
the gauge symmetry SU(2). So, for any model where the
fields are right chiral singlet under the local gauge sym-
metry, we may consider that their mass matrices are
Hermitian. Specific six-texture zeros in quark mass matri-
ces, including the Fritzsch model [1] and others like
Ref. [4], have already been discarded because they cannot
adjust their results to the experimental data known at
present. In Sec. II, together with the definition of WB
transformation, it is shown that the number of nonequiva-
lent representations for the quark mass matrices is finite,
which greatly simplifies the problem. Through WB trans-
formations, it was relatively easy to find nonparallel four-
texture zeros mass matrices. More difficult, but feasible,
was the case for parallel four-texture zeros mass matrices,
which were found in an exact way. Significant was the
consistent five-texture zeros quark mass matrix found by
us. Similarly, we show the impossibility, under any circum-
stances, to find mass matrices with six-texture zeros con-
sistent with experimental data. This is a generalization of
six-texture zeros mass matrices discarded by Fritzsch et al.

Throughout this letter, into the SM, we have used the
fact that all WB are equivalent. The opposite case is valid
too, i.e., two quark mass matrices representations giving
the same physical quantities must be related through a WB
transformation, which is condensed in statement (2.11).

0.036195 + 0.97493i
—0.21247 + 0.054471i
0.0043605 + 0.0083871i

Vv

We assume the following case:

Alu = —my A2u

Alg = —my, Aoy =

Then, the quark mass matrices (2.12) are

“In the case A, = —m,, similar results can be found.

—0.057798 + 0.21177i
0.97351 + 0.050582i
0.0086356 — 0.038067i
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By making appropriated WB transformations, numerical
parallel and nonparallel four-texture zeros were found. An
exhaustive deduction process allows us to find a five-
texture zeros numerical structure compatible with the ex-
perimental data, Eqs. (4.22) and (4.23). This representation
was found in the two-zero family case. Equivalent repre-
sentations are given in Table 1.

We have determined the impossibility of finding quark
mass matrices having a total of six-texture zeros which are
consistent with the measured values of the quark masses
and mixing angles, although a consistent model with five-
texture zeros was successful. The five-texture zeros Ansatz
of Eq. (5.1) (with A,, = —m,), together with some as-
sumptions that include appropriated values for A,, ¢, ,
be,» Xus Yus Zus Xq» and y, does lead to successful predic-
tions for Vcky, such as those of Egs. (5.6), (5.8), (5.9),
(5.10), and (5.11).* One nice thing about five-texture zeros
quark mass matrices (5.1) is that no hierarchies on quark
masses need to be imposed to make correct predictions,
although expressions (5.6) come in a more complex
notation.
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APPENDIX: VERIFICATION OF THE METHOD

Reference [8] uses the following quark mass data:

m, = 2.50 MeV, m, = 600 MeV,
(A1)
m,; = 174000 MeV,
myg = 4.00 MeV, m, = 80 MeV,
(A2)
my = 3000 MeV,
and the numerical CKM matrix used is
0.00037188 — 0.0035669i
—0.0044010 — 0.039760i (A3)
0.99836 + 0.040693i
= m, A3y, = my, (A4)
mg, A3q = my, (A5)
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—2.5
M, = 600 MeV, (A6)
174000
0.086447 —3.4055 + 17.655i —0.039835 — 10.774i
M, = —3.4055 — 17.655i 80.631 —17.515 — 115.56i | MeV. (A7)
—0.039835 + 10.774i —17.515 + 115.56i 2995.3

Let us use the diagonalization matrix (3.19) with x = 7 and y = 1,

—997.92 —64.527 /%2_600 0.22297 (174020*/4,,
0, =107 0.15442A, —2.3965./A, =600 2.4014/T74000 — A, |, (A8)

—0.15442,/% 2.3965/T74000 — A,  2.4014./A, — 600

where the approximation A, >> m, was assumed because of the restriction (3.26). The matrix O, now plays the role of
a unitary matrix to make the WB transformation on (A6) and (A7). The entries, in the new representation, depend on A,,.
In order to have texture zeros at the entry (1, 3), we need to solve

M,(1,3) = Y(A,) = (8144.2 — 42221i)A,/174000 — A, + (95.463 + 25819i)A,+/A, — 600 — (10852)
X \/AM(AH — 600)(174000 — A,) — (9.3588 — 61.745i)(174000 — A, )\A, + (2714.0 + 17906i)(A, — 600)

X /A&, + (0.0013716 — 0.37097i)(174000 — A,)\/A, — 600 — (33.934 + 175.92i)(A, — 600)

X /174000 — A, ~ 0, (A9)

whose solution is A, = 84621 MeV, which agrees perfectly with the value given in the aforementioned paper. The quark
mass matrices (A6) and (A7) take the form

0 55537 0
M, =0,M,07 = | 55537 89977 86660 | MeV, (A10)
0 86660 84621

M, = 0,M,0" (A1)
0 2.5792 + 25.325i 0
~ | 2.5792 — 25.325i 1600.5 1456.0 + 114.63i | MeV. (A12)
0 1456.0 — 114.63i 1475.5

At the present stage we have not yet obtained the matrices given in (25) and (26) of paper [8]. But we can make an
additional WB transformation using the following imaginary phase unitary matrix

1
— ( ei4.4984 ) (A13)
e*i0‘063300

We finally get the desired matrices
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