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A generalized inverse seesaw model, in which the 9� 9 neutrino mass matrix has vanishing (1,1) and

(1,3) submatrices, is proposed. This is similar to the universal two-zero texture which gives vanishing (1,1)

and (1,3) elements of the 3� 3 mass matrices in both the charged lepton and neutrino sectors. We

consider the Z6 � Z6 group to realize such texture zeros in the framework of the generalized inverse

seesaw model. We also analyze the universal two-zero texture in the general case and propose two Ansätze

to reduce the number of free parameters. Taking account of the new result of �13 from the Daya Bay

experiment, we constrain the parameter space of the universal two-zero texture in the general case and in

the two Ansätze, respectively. We find that one of the Ansätze works well.
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I. INTRODUCTION

The canonical seesaw mechanism [1] is successful in
generating small masses of left-handed neutrinos, but it
has no direct experimental testability and encounters a
potential hierarchy problem [2]. In the type-I seesawmodel
with heavy right-handed neutrinos NR, the left-handed
neutrinos �L can gain small masses M� � MDM

�1
R MT

D

thanks to the huge right-handed neutrino masses MR.
However, to obtain M� �Oð0:1Þ eV, one has to require
MR �Oð1014Þ GeV, if MD is assumed to be at the elec-
troweak scale (�Oð102Þ GeV). This makes the right-
handed neutrinos far beyond the detectability of any
colliders. The hierarchy problem is that a very high seesaw
scale will lead to large corrections to the Higgs mass, which
makes the Higgs mass of the order of the electroweak scale
unnatural. The inverse seesaw model [3] can solve these
problems. Moreover, it is possible to predict light sterile
neutrinos naturally [4] and provide rich phenomenology
such as the nonunitary effect and leptogenesis [5].

The generalized inverse seesaw model (GISM) is an
extension of the canonical seesaw mechanism by introduc-
ing three right-handed neutrinos NRi (for i ¼ 1, 2, 3), three
additional gauge-singlet neutrinos SRi, and a scalar � into
the standard model. The Lagrangian in the charged lepton
and neutrino sectors [6] is written as

�Ll ¼ �‘LYlHER þ �‘LYD
~HNR þ �Nc

RYS�SR

þ 1

2
�Nc
RMRNR þ 1

2
�ScRM�SR þ H:c:; (1)

in which H, ‘L, and ER stand for the Higgs doublet, three
lepton doublets, and three charged-lepton singlets, respec-
tively, in the standard model and ~H ¼ i�2H

�. Here Yl, YD,
and YS are 3� 3 Yukawa coupling matrices, and MR and
M� are 3� 3 symmetric Majorana mass matrices. After

spontaneous symmetry breaking (SSB), the scalars acquire
their vacuum expectation values (VEVs), and we gain the

3� 3 charged lepton mass matrix Ml ¼ YlvðHÞ= ffiffiffi
2

p
and

the 9� 9 neutrino mass matrix

M ¼
0 MD 0

MT
D MR MS

0 MT
S M�

0
BB@

1
CCA (2)

in the flavor basis, in which MD ¼ YDvðHÞ= ffiffiffi
2

p
and MS ¼

YSvð�Þ= ffiffiffi
2

p
. Here, vðHÞ and vð�Þ are the VEVs of H and

�, respectively. The GISM degrades to the original inverse
seesaw model (OISM) when MR ¼ 0 is taken. It can also
accommodate a larger range of the sterile neutrino masses
than the OISM [4].
If we regard each submatrix of M in Eq. (2) as a

complex number, we turn to a typical pattern of two-zero
textures [7]. Different from the models given in Ref. [7],
where Ml is chosen to be diagonal and only M� has the
two-zero texture, we propose the universal two-zero texture
(UTZT) [8], in which both Ml and M� have two-zero
textures. As the similar texture zeros of quark mass matrices
can interpret the smallness of flavor-mixing angles in the
quark sectors [9], we expect the UTZTwill give us a better
understanding of the lepton flavor mixing. We write out the
charged lepton and left-handed neutrino mass matrices as

Ml;� ¼
0 Al;� 0

Al;� Cl;� Bl;�

0 Bl;� Dl;�

0
BB@

1
CCA: (3)

Some work of this texture has been done in Refs. [10,11].
Generally, texture zeros can be obtained from Abelian sym-
metries [12]. Later we will see that by means of these
symmetries, the two-zero texture of Ml can be directly
derived. For the light left-handed neutrino matrix M�, if
MD,MR,MS, andM� all have the two-zero textures, which

will be a natural result from the symmetries, the seesaw
mechanism can guarantee that M� achieves the two-zero
texture [8,11].*zhouyeling@ihep.ac.cn
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Recently, the Daya Bay Collaboration reported a rela-
tively large �13 [13] with its best-fit (� 1� range) value
�13 ’ 8:8� � 0:8�. It is confirmed by the RENO experi-
ment [14]. The experimental results of large �13 give us
the following two motivations for the UTZT: (1) Two
phenomenological strategies toward understanding lepton
flavor mixing are outlined in Ref. [15]. The first one is to
start from a nearly constant flavor-mixing pattern, and the
second one is to associate the mixing angles with the lepton
mass ratios. While it is a nontrivial job to generate a large
�13 from the first strategy according to flavor symmetries,
one may pay more attention to the second strategy. To
implement the second strategy, one generally requires
some elements of Ml and M� to be zeros or sufficiently
small compared with their neighbors, and the two-zero
texture is a typical example of this kind. (2) As discussed
in Ref. [16], where Ml is diagonal and M� has a two-zero
texture, it is more likely to obtain a large �13 if M� has
texture zeros as in Eq. (3) compared with the other texture
zeros. Taking advantage of this kind of texture zeros, we
expand our discussion to the scenario that bothMl andM�

have such texture zeros. We expect that such texture can
also gain a large �13.

The rest of this paper is organized as follows. In Sec. II,
we propose a model to connect the GISM with the UTZT
under the discrete Abelian group Z6 � Z6. With this
model, we can realize the two-zero textures of Ml, MD,
MR,MS, andM�. However, the realization of the two-zero

texture of M� is a little nontrivial. Section III is devoted
to seeing how the two-zero texture of M� is realized. In
Sec. IV, the UTZT is used to explain the lepton flavor
mixing, especially for large �13. Both analytical and nu-
merical results are presented. The predictions for the ef-
fective masses in the tritium beta decay and neutrinoless
double beta (0�2�) decay are also given in this section.
Since the UTZT in the general case has several adjustable
parameters, it does not get stringent experimental con-
straints. In Sec. V, we consider two Ansätze of the UTZT
to constrain the parameter space. Ansatz (A) is a natural
approximation based on our model built in Sec. II, and
Ansatz (B) is a special case which has been considered in
Ref. [8]. Section VI is the conclusion of our paper.

II. A MODEL CONNECTING THE UTZT
WITH THE GISM

In this section, we illustrate a way to connect the GISM
with the UTZT. We rewrite the Lagrangian in the charged
lepton and neutrino sectors as

�Ll ¼ �‘LiðYa
l ÞijHaERj þ �‘LiðYa

DÞij ~HaNRj

þ �Nc
RiðYa

S Þij�aSRj þ 1

2
�Nc
RiðYa

RÞij�aNRj

þ 1

2
�ScRiðYa

�Þij�aSRj þ H:c:; (4)

in which the repeated indices are summed. In our model,
we introduce three scalars into each term, so a ¼ 1, 2, 3.
Comparing Eq. (4) with Eq. (1), we can see that some
replacements have been done. YlH, YD

~H, YS� are
replaced by Ya

l H
a, Ya

D
~Ha, Ya

S�
a, respectively, and the

scalars �a, �a are introduced to give the Majorana masses
of NR, SR, respectively. The purpose of doing these
replacements has nothing to do with the GISM but is to
give the two-zero textures of the mass matrices Ml, MD,
MS, MR, and M�.

A model for connecting the GISMwith the UTZT can be
built based on a direct product of groupsG1q1 �G2q2 � G:

(i) Each fermion or scalar transforms under the group
G1 with a charge q1. This rule aims to realize the
GISM. Since it is flavor blind, different flavors in
the same multiplet (e.g., Ni and Nj with i � j) have

the same charges q1, and different scalars in the same
Yukawa coupling (e.g.,Ha andHb with a � b) have
the same charges q1, too.

(ii) Each fermion or scalar transforms under group
G2 with a charge q2. We chooseG2 to be an Abelian
group Zn to give the UTZT. In this case, different
flavors in the same multiplet should have different
charges q2, and different scalars in the same
Yukawa coupling term should also have different
charges q2.

Generally speaking, there are many opportunities to
choose G1 and G2, and it is essentially unnecessary to
require that they be equal to each other. Nevertheless, in
view of the similar structures of M and Ml;�, we assume

G1 ¼ G2 ¼ Zn.
In our model, we choose n ¼ 6 and G ¼ Z6q1 � Z6q2 .

The discrete Abelian group Z6 is given by Z6 �
f1; !;!2; !3; !4; !5g, where ! ¼ ei�=3. In Tables I and II
we list the charges q1 and q2 for each field, respectively.
The invariance of the Lagrangian under the Z6q1 � Z6q2

leads to the following textures of the Yukawa coupling
matrices:

Y1
A �

0 � 0

� 0 0

0 0 �

0
BB@

1
CCA; Y2

A �
0 0 0

0 0 �
0 � 0

0
BB@

1
CCA;

and Y3
A �

0 0 0

0 � 0

0 0 0

0
BB@

1
CCA; (5)

for Ya
A ¼ Ya

l , Y
a
D, Y

a
S , Y

a
R, and Ya

�. After SSB, the scalars

gain their VEVs, and we are left with the mass terms

TABLE I. The charges of the fermions and scalars under Z6q1 .

�‘Li ERi NRi SRi ~Ha �a �a �a

q1 0 4 2 1 4 3 2 4
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�L‘ ¼ �ELMlER þ ��LMDNR þ �Nc
RMSSR

þ 1

2
�Nc
RMRNR þ 1

2
�ScRM�SR þ H:c:

¼ �ELMlER þ 1

2
ð�L Nc

R ScR Þ
0 MD 0

MT
D MR MS

0 MT
S M�

0
BB@

1
CCA

�
�c
L

NR

SR

0
BB@

1
CCAþ H:c:; (6)

where Ml, MD, MS, MR, and M� are mass matrices orig-

inating from the Yukawa coupling matrices and VEVs of
the scalars. Taking MD, for example, we arrive at

MD ¼ 1ffiffiffi
2

p ½Y1
DvðH1Þ þ Y2

DvðH2Þ þ Y3
DvðH3Þ	; (7)

in which vðHaÞ is the VEV of Ha. All the mass matrices
Ml, MD, MS, MR, and M� have the same two-zero

textures as

0 � 0

� � �
0 � �

0
BB@

1
CCA: (8)

In the Appendix, we show that the mass matrix of light
left-handed neutrinos is given by a seesawlike formula in
the physical region:

M� ¼ �MDðMR �MSM
�1
� MT

S Þ�1MT
D: (9)

With this formula, one can prove that M� also follows the
two-zero texture as in Eq. (8) [11,17]. A detailed analysis
will be given in the next section.

We remark that besides Z6, lots of discrete Abelian
groups Zn can connect the GISM with the UTZT. Even
under the same discrete Abelian group, a different arrange-
ment of the charge q2 may cause different textures of the
Yukawa coupling matrices Y1

A, Y
2
A, and Y3

A, but it keeps the

textures of mass matrices as in Eq. (8) unchanged. In brief,
there are many possibilities to link the GISM with the
UTZT. However, if one requires that the Abalian discrete
symmetry be anomaly free, one must pay attention to the
arrangement for the charges q1 and q2 of each field to
guarantee the anomaly-free conditions [18]. Then, some
arrangements for the charges q1 and q2 will be ruled out.

III. THEMASS TEXTUREOFACTIVE NEUTRINOS

We have proposed a way to realize the two-zero textures
of Ml, MD, MR, MS, and M�. These textures can be

obtained immediately from flavor symmetries under the
direct product of discrete Abelian groups. However, a
realization of the two-zero texture ofM� is not so obvious.
To find its texture, we must turn to the matrices MD, MR,
MS, andM�, all of which have the same texture zeros. In a

way similar to the proof in Refs. [11,17], after giving the
two-zero textures of MD, MR, MS, and M�, we can prove

that the two-zero textures manifest themselves again in
M�, as a consequence of Eq. (9).
We express each matrix Ma (for a ¼ D, S, �) as

Ma ¼
0 Aa 0

Aa Ca Ba

0 Ba Da

0
BB@

1
CCA: (10)

It is easy to find that the inverse matrix of M� has another

type of texture zeros

M�1
� ¼ 1

A2
�D�

B2
��C�D� A�D� �A�B�

A�D� 0 0

�A�B� 0 A2
�

0
BB@

1
CCA: (11)

Then, using the seesaw formula MX � �MSM
�1
� MT

S , we

find MX has the two-zero texture as

MX ¼
0 AX 0

AX CX BX

0 BX DX

0
BB@

1
CCA (12)

with

AX ¼ � A2
S

A�

;

BX ¼ �ASBS

A�

þ ASB�DS

A�D�

� BSDS

D�

;

CX ¼ � 2ASCS

A�

þ A2
SC�

A2
�

� ðA�BS � ASB�Þ2
A2
�D�

;

DX ¼ � D2
S

D�

:

(13)

Thus, the two-zero texture is invariant under the seesaw
transformation.
Repeating the above process for M� ¼ �MDðMR þ

MXÞ�1MT
D, we finally obtain that M� has the two-zero

texture as in Eq. (3). The nonzero entries are given by

TABLE II. The charges of the fermions and scalars under Z6q2 .

�‘L1 �‘L2 �‘L3 eR �R 	R NR1 NR2 NR3 SR1 SR2 SR3
q2 0 2 1 0 2 1 0 2 1 0 2 1

~H1 ~H2 ~H3 �1 �2 �3 �1 �2 �3 �1 �2 �3

q2 4 3 2 4 3 2 4 3 2 4 3 2
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A� ¼ � A2
D

AR þ AX

;

B� ¼ � ADBD

AR þ AX

þ ADðBR þ BXÞDD

ðAR þ AXÞðDR þDXÞ �
BDDD

DR þDX

;

C� ¼ � 2ADCD

AR þ AX

þ A2
DðCR þ CXÞ
ðAR þ AXÞ2

� ½ðAR þ AXÞBD � ADðBR þ BXÞ	2
ðAR þ AXÞ2ðDR þDXÞ

;

D� ¼ � D2
D

DR þDX

: (14)

It is an exact consequence of the GISM and two-zero
textures of MD, MR, MS, and M�.

All the 3� 3 mass matrices Ml, M�, MD, MR, MS, and
M� have parallel structures with each other. And they are

all fractally similar to the 9� 9 GISM neutrino matrixM.
These similarities can be guaranteed in the framework of
flavor symmetries.

IV. FLAVOR MIXING IN THE UTZT

In this section we analyze the flavor mixing in the
general UTZT case. The renormalization-group effect
might in general modify the two-zero textures of Ml and
M�, but it is negligibly small in the inverse seesaw model
[19] because the TeV seesaw scale is so close to the
electroweak scale. Hence, we just discuss the UTZT at
the electroweak scale.

The charged lepton and left-handed neutrino mass ma-
trices with two-zero textures have been given in Eq. (3),
where Al;�, Bl;�, Cl;�, andDl;� are complex numbers. Some

works on this texture have been done in Refs. [8,10], but a
general analysis has been lacking in the literature.

As a symmetric matrix,Ml can be diagonalized asMl ¼
VlM̂lV

T
l . Here, M̂l ¼ Diagfme;m�;m	g, Vl ¼ QlUlPl,

Ql ¼ Diagfei
l ; ei�l ; 1g, Pl ¼ Diagfei�e ; ei�� ; ei�	g, and
Ul is given by

Ul ¼
1 0 0
0 ce se
0 �se ce

0
@

1
A c� 0 ŝ��

0 1 0
�ŝ� 0 c�

0
B@

1
CA

�
c	 s	 0
�s	 c	 0
0 0 1

0
@

1
A; (15)

in which c
 ¼ cos�
, s
 ¼ sin�
 (for 
 ¼ e, �, 	), and
ŝ� ¼ s�e

i�� .

Similarly, M� can be diagonalized as M� ¼ V�M̂�V
T
� .

Here, M̂� ¼ Diagfm1; m2; m3g, V� ¼ Q�U�P�, Q� ¼
Diagfei
� ; ei�� ; 1g, P� ¼ Diagfei�1 ; ei�2 ; ei�3g, and U� is
given by

U� ¼
1 0 0
0 c1 s1
0 �s1 c1

0
@

1
A c2 0 ŝ�2

0 1 0
�ŝ2 0 c2

0
@

1
A c3 s3 0

�s3 c3 0
0 0 1

0
@

1
A;

(16)

in which ci ¼ cos�i, si ¼ sin�i (for i ¼ 1, 2, 3), and
ŝ2 ¼ s2e

i�2 .
The Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix

[20] is defined by V � Vy
l V� ¼ Py

l U
y
l
�QU�P�, in which

�Q ¼ Diagfei
; ei�; 1g and 
, � are two combined parame-
ters defined as 
 � 
� � 
l, � � �� � �l, respectively.
V can be parametrized as V ¼ QUP. Here,

U ¼
1 0 0
0 c23 s23
0 �s23 c23

0
@

1
A c13 0 ŝ�13

0 1 0
�ŝ13 0 c13

0
@

1
A

�
c12 s12 0
�s12 c12 0
0 0 1

0
@

1
A; (17)

in which cij ¼ cos�ij, sij ¼ sin�ij (for ij ¼ 12, 23, 13),

and ŝ13 ¼ s13e
i�. P andQ are two diagonal phase matrices.

As the charged leptons are the Dirac fermions, Q is
unphysical and can be rotated away by the phase redefini-
tion of the charged lepton fields. But for the Majorana
neutrinos, only one overall phase in P can be rotated
away, and the other two phases are physical. In this case,
P can be parametrized as P ¼ Diagfei; ei�; 1g.

A. Charged leptons

Here, we derive some relations of the mixing parameters
in the charged lepton sector. Since the (1,1) and (1,3)
elements of Ml are equal to zeros, we obtain

mee
2i�e

m	e
2i�	

¼ � ŝ��
c2�

�
ces	
sec	

þ ŝ��
�
;

m�e
2i��

m	e
2i�	

¼ þ ŝ��
c2�

�
cec	
ses	

� ŝ��
�
:

(18)

A straightforward calculation leads us to the relations of
the angles

cot2�e ¼ s2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2l y

2
l cot

4�� � sin2��

q
� cos��

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2l cot
4�� � sin2��

q
þ cos��

�
;

tan2�	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2l y

2
l cot

4�� � sin2��

q
� cos��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2l cot
4�� � sin2��

q
þ cos��

; (19)

and those of the phases

tanð2�e � 2�	 þ ��Þ ¼
sin��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2l y
2
l cot

4�� � sin2��

q ;

�� � �	 þ ��=2 ¼ 0;

(20)
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where xl ¼ me=m� and yl ¼ m�=m	. Taking me ¼
0:486 MeV, m� ¼ 102:7 MeV, and m	 ¼ 1746 MeV at

the electroweak scale [21] as inputs, we get xl ¼ 0:0047
and yl ¼ 0:059. To assure that Eq. (19) has a real and
positive solution, we require

0 
 �� 
 arctan
ffiffiffiffiffiffiffiffi
xlyl

p � 1�;

0 
 �	 
 arctan
ffiffiffiffiffiffiffi
2xl

p � 6�;

0 
 �e 
 90�:

(21)

In particular, �	 � arctan
ffiffiffiffi
xl

p � 4� for �� ¼ �90�, 0 

�	 < 4� for j��j< 90�, and 4� 
 �	 
 6� for j��j �
90�. Due to the large mass hierarchy of the charged lep-
tons, �� and �	 are very small. They can be regarded as

the corrections to the MNSP matrix. Suppressed by s�, the

phase �� has little influence in the MNSP matrix.

Particularly, we have three special cases:
(1) tan�e � 1=

ffiffiffiffi
yl

p
,

tan�� � ffiffiffiffi
xl

p
yl tan�e;

tan�	 � ffiffiffiffi
xl

p
;

�e � �� � 90�;

(22)

(2) tan�e  1=
ffiffiffiffi
yl

p
,

tan�� � ffiffiffiffiffiffiffiffi
xlyl

p
;

tan�	 �
ffiffiffiffi
xl
yl

s
cot�e;

�e � �� � ��=2� 90�;

(23)

and
(3) tan�e �Oð1= ffiffiffiffi

yl
p Þ,

where one can find tan�� �Oð ffiffiffiffiffiffiffiffi
xlyl

p Þ and tan�	 �Oð ffiffiffiffi
xl

p Þ
from Eq. (19). In the leading-order approximation of s�
and s	, we obtain

s2� � �xly
2
l cosð�e � ��Þ

xl þ yltan
2�e

;

s2	 �
�xl cosð�e � ��Þ
xl þ yltan

2�e
;

sin�� � xlyl sinð�e � ��Þ;

(24)

and �e � �� is arbitrary.

B. Neutrinos

For the left-handed neutrinos, since the (1,1) and (1,3)
elements of M� equal zeros, we obtain

m1e
2i�1

m3e
2i�3

¼ � ŝ�2
c22

�
c1s3
s1c3

þ ŝ�2
�
;

m2e
2i�2

m3e
2i�3

¼ þ ŝ�2
c22

�
c1c3
s1s3

� ŝ�2
�
:

(25)

Later in the numerical calculations, we will see that �2 is a
small angle, in the same order of magnitude as �13. In this
case, we find m1 <m3 from Eq. (25). Only the normal
hierarchy of neutrino masses is possible in this texture.
A straightforward calculation leads us to the relations of
the angles

cot2�1 ¼ s22

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y

2
�cot

4�2 � sin2�2

q
� cos�2

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2�cot
4�2 � sin2�2

q
þ cos�2

�
;

tan2�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y

2
�cot

4�2 � sin2�2

p � cos�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2�cot

4�2 � sin2�2

p þ cos�2

; (26)

and those of the phases

tanð2�1 � 2�3 þ �2Þ ¼ sin�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y

2
�cot

4�2 � sin2�2

p ;

tanð2�2 � 2�3 þ �2Þ ¼ � sin�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2�cot

4�2 � sin2�2

p ;
(27)

in which x� ¼ m1=m2, y� ¼ m2=m3 and x�, y� < 1. To
make Eq. (26) have a real and positive solution, we require

0 
 �2 
 arctan
ffiffiffiffiffiffiffiffiffiffi
x�y�

p
;

0 
 �3 
 arctan
ffiffiffiffiffiffiffiffi
2x�

p
;

0 
 �1 
 90�:

(28)

C. The MNSP matrix

We have obtained some relations of the mixing parame-
ters in both the charged lepton and left-handed neutrino
sectors. Using these parameters, we can calculate the mix-
ing angles in the MNSP matrix and some other physical
observables. And using the experimental constraints, we
may find the allowed ranges of the parameters and make
predictions for the observables.

The MNSP matrix V can be calculated through V ¼
Vy
l V�. Considering the smallness of s�, s	, and s2, we

obtain the approximate expressions of the mixing angles
�13, �12, and �23:

sin�13 � jŝ�2ei
 þ c1ðses	 � ceŝ
�
�Þ � s1ðces	 þ seŝ

�
�Þei�j;

tan�12 �
��������tan�3 � e�i


c23
½c1ðces	 þ seŝ

�
�Þei�

þ s1ðses	 � ceŝ
�
�Þ	

��������;
sin�23 � jces1ei� � c1sej: (29)
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These expressions hold to the first order in s�, s	, and s2.

We make some comments on the formulas of the mixing
angles in Eq. (29):

(i) Note that �13 is in the same order of magnitude as �2,

and �2 
 arctan
ffiffiffiffiffiffiffiffiffiffi
x�y�

p ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m3

p
. To gener-

ate a relatively large �13, m1 cannot be too small.
(ii) Since �� and �	 are small, �12 � �3 holds. The two-

zero texture in the charged lepton sector just has a
small contribution to �12.

(iii) �23 is an overall result of �1, �e, and �. The two-
zero textures in both the charged lepton and neu-
trino sectors may have large contributions to �23.

We conclude that except for �12, both �13 and �23 may
receive relatively large corrections from the charged lepton
sector. This is one of the features that make the UTZT
different from the texture zeros discussed in Ref. [7], in
which Ml is diagonal and only M� has texture zeros.

The strength of CP violation in the neutrino oscillation
experiments is measured by the Jarlskog invariant J ¼
ImðVe1V�2V

�
e2V

�
�1Þ ¼ c12s12c23s23c

2
13s13 sin� [22]. For

current experimental data of �13, one may expect a
relatively large J if the CP-violating phase � is not
suppressed. In the leading-order approximation of s�, s	,

and s2,

J � s�J� þ s	J	 þ s2J2; (30)

in which

J� ¼ �s3c3½s1ce sinð
þ ��Þ � c1se sinð
þ �� � �Þ	
� ðc21c2e þ s21s

2
e þ 2c1s1cese cos�Þ;

J	 ¼ �s3c3½s1se sin
þ c1ce sinð
� �Þ	
� ðc21s2e þ s21c

2
e � 2c1s1cese cos�Þ;

J2 ¼ s3c3ðcese sin� cos�2 þ c1s1 sin�2 cos2�e

� cese cos� sin�2 cos2�1Þ: (31)

One can see that the first term s�J� is in general the

smallest one because of the smallness of s�, and the last

two terms s	J	 and s2J2 may have comparable contribu-
tions to J .

The 0�2� decay experiments are important for
examining if neutrinos are the Majorana fermions. One
key parameter in such experiments is the effective mass

hmiee�ðVM̂�V
TÞ11¼ðVy

l M�V
�
l Þ11. The pattern in which

M� has the two-zero texture in Eq. (8) and Ml is diagonal
gives hmiee ¼ 0. Different from such a pattern, the
0UTZT that we are considering here yields a nonzero
hmiee. In the leading-order approximation of s�, s	, and

s2, hmiee reads

hmiee � 2jðUlÞ�21ðM�Þ21j � 2jces	 þ seŝ�jjA�j; (32)

in which

jA�j � jm3s1s
�
2e

2i�3 �m1c1c3s3e
2i�1 þm2c1c3s3e

2i�2 j:
(33)

In comparison, the effective mass hmie in the tritium beta
decay is given by

hmie �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVM̂2

�V
yÞ11

q
� jA�j: (34)

Then, we arrive at

hmiee
hmie

� 2jces	 þ seŝ�j: (35)

If we assume �	 ¼ 4� and ignore the smallness of ��,

then we obtain hmiee=hmie ’ 0:1.

D. Numerical results

In the numerical calculations, we choose seven free pa-
rameters �e, �2, ��, �2, 
, �, and m1 as inputs. The values

of the charged lepton masses have been given in Sec. IVB.
To be compatible with the experimental results, we choose
�m2

21 ’ ð7:4� 7:8Þ � 10�5 eV2, �m2
31 ’ ð2:4� 2:7Þ �

10�3 eV2, �23 ’ ð42�–49�Þ, �12 ’ ð33�–35�Þ and the new
data �13 ’ ð8:0�–9:6�Þ from the Daya Bay experiment as
constraints. With the help of these data, we can obtain the
allowed ranges of the input parameters and calculate the
observables.
In Fig. 1, we show the comparison of the values between

�1 and �e and that of the values between �2 and �	. The
first two angles are dominant parameters in the expression
of �23, while the last two angles are dominant parameters
in the expression of �13 [see Eq. (29)]. Numerically, we
obtain �1 ’ ð24�–72�Þ versus �e ’ ð0–90�Þ for �23, and
�2 ’ ð4�–13�Þ versus �	 ’ ð0–6�Þ for �13. A lot of points
are located around �	 ¼ 4�, indicating that �� � �90� is

favored.
In Fig. 2, we show the parameter space and some phe-

nomenological predictions in the general case. We plot the
allowed regions of ð�13; m1Þ and ð�12; �23Þ parameters first

0 45 90
0

45

90

θ
1
 [°]

θ e [°
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FIG. 1 (color online). The comparison of the values between
�1 and �e (left) and that of the values between �2 and �	 (right).
The free parameters �e, �3, ��, �2, 
, �, and m1 are used as

inputs. The constraints are given by �m2
21 ’ ð7:4–7:8Þ �

10�5 eV2, �m2
31 ’ ð2:4–2:7Þ � 10�3 eV2, �23 ’ ð42�–49�Þ,

�12 ’ ð33�–35�Þ, and �13 ’ ð8:0�–9:6�Þ.

YE-LING ZHOU PHYSICAL REVIEW D 86, 093011 (2012)

093011-6



in the figure. The lightest neutrino mass m1 is constrained
in the range (0.001–0.015) eV. The points of the mixing
angles �12, �23, and �13 are nearly evenly distributed in the
full parameter space. Predictions for parameters related to
CP violation are shown then. There is little restriction on
the combined input parameters 
 and � except that � is
more likely to approach �90�. For the Majorana phases 
and �, the relation  ’ �� 90� holds roughly. The nu-
merical result of the Jarlskog invariant J is also shown in
Fig. 2. Due to the largeness of �13, jJ j can reach several
percent. Concretely, it can maximally reach 0.03 at �13 ¼
8� and 0.04 at �13 ¼ 9:6�. The effective masses in the
tritium beta decay and 0�2� decay are shown at the end
of Fig. 2. One can see that the ratio hmiee=hmie is ofOð0:1Þ
in most cases. Since hmie ’ 0:01 eV is referred in Fig. 2,
hmiee can maximally reach 10�3 eV. However, this is still
below the sensitivity of the near-future experiments, which
is expected to be hmiee ’ ð1� 5Þ � 10�2 eV [23].

One can reconstruct the charged lepton and left-handed
neutrino mass matrices with the help of the experimental
constraints. Considering that there are cancellations in
some special cases, leading to vanishing values of Al;�,

Bl;�, Cl;� or Dl;�, the positive lower bounds may not exist.

But one can expect that there are some ranges in which
most of the points are located. In our calculation, we find
that 95% of the points are located in the following ranges:

jAlj ’ ð7:4� 31Þ MeV; jBlj ’ ð0:046� 0:94Þ GeV;
jClj ’ ð0:96� 1:8Þ GeV; jDlj ’ ð0:11� 1:8Þ GeV;

(36)

and

jA�j ’ ð0:0073� 0:018Þ eV; jB�j ’ ð0:019� 0:028Þ eV;
jC�j ’ ð0:011� 0:040Þ eV; jD�j ’ ð0:010� 0:048Þ eV:

(37)

In the neutrino sector, all the elements of M� are in the
Oð0:01Þ eV order. But in the charged lepton sector, the
elements of Ml vary within some wide ranges because of
the uncertainty of �e.

V. LARGE �13 AND TWO ANSÄTZE OF THE UTZT

In the previous section, we have considered the UTZT in
the general case. Since there are seven free parameters as
inputs, it does not get stringent experimental constraints.
We shall consider some special cases of the UTZT to
simplify its texture.
First, we assume that the condition [8]

argðCl;�Þ þ argðDl;�Þ ¼ 2 argðBl;�Þ (38)

is satisfied. ThenMl andM� are, respectively, decomposed
into

Ml ¼ PT
l
�MlPle

2i�	 and M� ¼ PT
�
�M�P�e

2i�3 ; (39)

in which

�Ml;� ¼
0 jAl;�j 0

jAl;�j jCl;�j jBl;�j
0 jBl;�j jDl;�j

0
BB@

1
CCA: (40)

In the following discussions, we turn to two different
Ansätze: Ansatz (A), jAl;�j ¼ jDl;�j and Ansatz (B), jClj ¼
jBlj and jC�j ¼ jD�j.

A. Ansatz (A)

We propose to consider this new Ansatz, in which both
jAlj ¼ jDlj and jA�j ¼ jD�j hold. Our motivations are
based on the model which we built in Sec. II:
(i) In the charged lepton sector, the (1,2) and (3,3)

entries of the Yukawa coupling matrix Y1
l are non-

zero. It is natural to assume that they have the same
magnitude: jðY1

l Þ12j ¼ jðY1
l Þ33j. After SSB, we arrive

at jðMlÞ12j ¼ jðMlÞ33j, or equivalently, jAlj ¼ jDlj.
In this assumption, we can reduce the number of free
input parameters. This equality can be realized in the
non-Abelian discrete group A5 [24] with suitable
arrangements of the particle contents1
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FIG. 2 (color online). The parameter space and phenomeno-
logical predictions in the general case. The inputs and constraints
are the same as in Fig. 1.

1We may arrange ‘L and ER as the triplets, H1 as a singlet, and
embed H2 and H3 to a 5-plet in A5. After H

1 gains its vacuum
expectation value, we are led to Al ¼ Dl. With a suitable vacuum
alignment for the 5-plet, no additional mass term will be intro-
duced and the two-zero texture is preserved.

NEUTRINO MASSES AND FLAVOR MIXING IN A . . . PHYSICAL REVIEW D 86, 093011 (2012)

093011-7



(ii) Applying the above discussion to the neutrino sec-
tor, we are led to

jðMDÞ12j ¼ jðMDÞ33j; jðMSÞ12j ¼ jðMSÞ33j;
jðMRÞ12j ¼ jðMRÞ33j; jðM�Þ12j ¼ jðM�Þ33j:

(41)

Then, using the inverse seesaw formula in Eq. (9),
we arrive at

jðM�Þ12j ¼ jðM�Þ33j

¼ jðMDÞ12j2jðM�Þ12j
jðMSÞ12j2 � jðM�Þ12jjðMRÞ12j

; (42)

or equivalently, jA�j ¼ jD�j.
In Ansatz (A), the mass matrices in both the charged

lepton and left-handed neutrino sectors can be solved
exactly in terms of their mass eigenvalues. In the left-
handed neutrino sector, we have the expression of �M� in
terms of its three mass eigenvalues

jA�j ¼ ðm1m2m3Þ1=3;
jB�j ¼ ½ðm1m2m3Þ1=3ðm1 �m2 þm3Þ � 2ðm1m2m3Þ2=3

þm1m2 �m1m3 þm2m3	1=2;
jC�j ¼ m1 �m2 þm3 � ðm1m2m3Þ1=3; (43)

and that of U� in terms of the ratios of the eigenvalues

U�¼
k�1ðx�y��a�Þa� k�2ðy�þa�Þa� k�3ð1�a�Þa�
k�1ðx�y��a�Þx�y��k�2ðy�þa�Þy� k�3ð1�a�Þ

k�1b�x�y� k�2b�y� k�3b�

0
BB@

1
CCA;

(44)

where a� ¼ jA�j=m3, b� ¼ jB�j=m3, c� ¼ jC�j=m3 and

k�1 ¼ ½ða2� þ x2�y
2
�Þðx�y� � a�Þ2 þ x2�y

2
�b

2
�	�1=2;

k�2 ¼ ½ða2� þ y2�Þðy� þ aÞ2 þ y2�b
2
�	�1=2;

k�3 ¼ ½ða2� þ 1Þð1� a�Þ2 þ b2�	�1=2:

(45)

In the charged lepton sector, after replacing the index
� ! l and the masses ðm1; m2; m3Þ ! ðme;m�;m	Þ, we
arrive at the expressions of �Ml and Ul. The relations

�e;1 ¼ ��;2 � 90� ¼ �	;3 (46)

must be required in the phase matrices Pl;�, while Ql;� are

arbitrary.
The mixing angles �12, �23, �13 and the CP phases �, ,

� can be obtained from V � Vy
l V� ¼ Py

l U
y
l
�QU�P�.

The numerical results of the parameter space and phe-
nomenological predictions in Ansatz (A) are shown in
Fig. 3. Only three free parameters, m1, 
, and �, are taken

as inputs. The experimental constraints are the same as
those in the general case. The constraint on m1 in this
Ansatz is much stronger than that in the general case.
One can get m1 ’ ð0:002–0:003Þ eV in Fig. 3. Although
the number of free parameters has decreased to three, the
numerical results of the mixing angles �12, �23, and �13
still fit the experimental constraints very well. Among
them, �12 and �13 are still nearly evenly distributed in the
parameter space, and �23 has a very slight preference for
being larger than 45�. The CP-violating parameters are
constrained more stringently. The allowed region of the
ð
;�Þ parameters is much smaller: j
j ’ ð45�–90�Þ and
j�j ’ ð120�–180�Þ. jJ j can maximally reach 0.02 at
�13 ¼ 8� and 0.03 at �13 ¼ 9:6�. The relation  � ��
90� is a good approximation. The ratio hmiee=hmie is
more likely to get a small value than that in the general
case. It is only allowed in the range (0.002–0.04). Taking
hmie ’ 10�2 eV, we obtain hmiee ’ ð0:24Þ � 10�4 eV.
This is far beyond the sensitivity of the future experiments.

B. Ansatz (B)

In Ansatz (B), the requirements jClj ¼ jBlj and jC�j ¼
jD�j are imposed. This Ansatz was first proposed in
Ref. [8]. It is motivated by the mass hierarchy of the
charged leptons and the experimental fact that the mixing
angle �23 in the MNSP matrix is about 45�. The relation

8 8.4 8.8 9.2 9.6
1

5

10

20

m
1 [1

0−
3  e

V
]

θ
13

 [°]
33 34 35

42

44

46

48

θ
12

 [°]

θ 23
 [°

]

−180 0 180
−180

0

180

α [°]

β 
[°

]

−90 0 90
−90

0

90

ρ [°]

σ 
[ °

]

8 8.4 8.8 9.2 9.6
−0.04

0

0.04

θ
13

 [°]

J

0 0.01 0.02
0

0.1

0.2

〈m〉
e
 [eV]

〈m
〉 ee

/〈m
〉 e

FIG. 3 (color online). The parameter space and phenomeno-
logical predictions ofAnsatz (A). Only three free parameters
,�,
and m1 are adjustable. The constraints are the same as in Fig. 1.

YE-LING ZHOU PHYSICAL REVIEW D 86, 093011 (2012)

093011-8



jClj ¼ jBlj will lead to jClj � jm�j, which is compatible

with the fact that charged leptons have a large mass
hierarchy. And the requirement jC�j ¼ jD�j can lead to
�23 ¼ 45� easily. A detailed interpretation for this Ansatz
can be found therein. Here, we reanalyze it by using the
latest experimental data.

The solutions for diagonalizing Ml and M� in terms
of the mass eigenvalues and their ratios have been give
in Ref. [8]. We use them for our numerical calculation
and show the relevant results in Fig. 4. The same inputs
and constraints in Ansatz (A) are applied to this Ansatz.
The lightest neutrino mass m1 is given by m1 ’
ð0:004–0:008Þ eV, bigger than that in Ansatz (A). For the
mixing angles �13 > 8:8� and �12 < 33:8� hold, and �23 is
easier to gain a value smaller than 45�. As shown in Fig. 4,
two thirds of the ð�12; �23Þ parameter space is excluded.
The constraint on the ð
;�Þ parameter space is still loose,
and the relation  � �� 90� is also valid. jJ j in this
Ansatz can maximally reach 0.02 at �13 ¼ 9:6�, smaller
than the maximal value in Ansatz (A). The prediction for
the effective mass of the 0�2� decay is totally different
from that in Ansatz (A). It gives hmiee=hmie ’ 0:1. Since
hmie ’ 0:01 eV also holds in this Ansatz, we arrive at
hmiee ’ 0:001 eV. We can compare the new results with
the old ones presented in Ref. [8]. Since the mixing

parameters are measured more precisely, most parts of
the parameter space are excluded. Ansatz (B) now is not
as favored as before.
In this section, we have analyzed the UTZT in two

Ansätze. They have two main features distinguishing
themselves from each other. One is the difference of the
parameter space of the mixing angles. Ansatz (A) is
favored in the full ð�12; �23Þ parameter space, while
Ansatz (B) is just partly favored. This feature makes
Ansatz (A), which is a natural assumption of our model
in Sec. II, more interesting than Ansatz (B). The other
feature is the prediction for hmiee. The value of hmiee in
Ansatz (B) is much larger than that in Ansatz (A),
although both are below the sensitivity of the near-future
experiments.

VI. CONCLUSION

The GISM gives vanishing (1,1) and (1,3) submatrices
of the 9� 9 neutrino mass matrixM. This is similar to the
UTZT, which gives vanishing (1,1) and (1,3) elements of
the 3� 3 mass matrices Ml;�. We have pointed out their

similarity and considered their several aspects. The main
points are listed in the following:
(1) We have proposed a model based on the discrete

Abelian group Z6 � Z6 to realize both the GISM
and the UTZT.We reiterate that besides Z6, there are
many discrete Abelian groups whose direct products
can realize both of them.

(2) We have calculated the UTZT in the general case.
Only the normal hierarchy of the neutrino masses is
allowed by this texture. We obtain the lightest neu-
trino mass m1 ’ ð0:001–0:015Þ eV. The Jarlskog
invariant J can maximally reach 0.04 in view of
the new experimental results of �13. The effective
mass hmiee in the 0�2� decay can maximally reach
0.001 eV.

(3) We have compared two Ansätze of the UTZT.
Ansatz (A) is a natural approximation of our model
built in Sec. II, and Ansatz (B) is a special case
which has been considered in Ref. [8]. The mixing
angles in Ansatz (A) fit the experimental constraints
quite well, while in Ansatz (B), �13 > 8:8� and
�12 < 33:8� are allowed, and �23 < 45� is preferred.
Ansatz (B) predicts the effective mass hmiee ’
0:001 eV in the 0�2� decay experiments, while
Ansatz (A) can only predict hmiee one or two orders
of magnitude smaller than that in Ansatz (B).

Finally, we stress that the GISM can avoid the hierarchy
problem and is testable in collider experiments, and the
UTZT agrees very well with current neutrino oscillation
data. Both the GISM and UTZT can be realized from the
same Abelian symmetry due to their similar structures,
although their uniqueness cannot easily be verified in the
bottom-up approach of model building. Except for the
above discussions, there are some other interesting aspects
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FIG. 4 (color online). The parameter space and phenomeno-
logical predictions of Ansatz (B). The inputs and constraints are
the same as in Fig. 3.
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of the GISM and UTZT in neutrino phenomenology. One is
to discuss possible collider signatures of the TeV-scale
right-handed, or additional gauge-singlet neutrinos in the
GISM, which could be explored by the Large Hadron
Collider. Another aspect is related to the baryogenesis
via leptogenesis, so as to account for the cosmological
matter-antimatter asymmetry. The two-zero textures of the
Yukawa coupling matrices and the uncertainty of the scales
ofMR andM� may affect how the leptogenesis mechanism

works in the early Universe. A detailed analysis of these
aspects will be done elsewhere.
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APPENDIX A: SIMPLIFICATION OF THE
NEUTRINO MASS MATRIX IN THE GISM

1. General analysis

The neutrino mass matrix in the GISM is described by a
9� 9 matrixM given in Eq. (2), whereMD,MS,MR, and
M� are 3� 3 complex submatrices. For physical condi-

tions, one can naturally assume that the scale of MD is the
electroweak scale and the scale of MS is several orders
larger than that of MD. To some extent, the scales of MR

andM� are more arbitrary. They can be either very high or

very small due to different mechanisms. Large mass scales
can be regarded as the breaking of a certain symmetry at
a very high energy scale, similar to the Majorana mass
matrix of the right-handed neutrinos in the type-I seesaw
model. And small mass scales may be generated from
higher-dimensional operators after integrating out some
unknown heavy fields [25]. Small mass scales are also
consistent with the ’t Hooft’s naturalness criterion [26],
because the conservation of the lepton number is recovered
when MR and M� reduce to zeros.

Since different scales of MR andM� may lead to differ-

ent phenomenological consequences, it is necessary to do a
general analysis of how M can be simplified in different
cases. We denote

M0
D ¼ ðMD 0 Þ and M0

R ¼ MR MS

MT
S M�

 !
: (A1)

Obviously, the scale of M0
D is several orders smaller than

that of M0
S, and M0

R yields the masses of the right-handed

and additional gauge-singlet neutrinos. One can obtain
the mass matrix of light left-handed neutrinos through a
seesawlike formula,

M� � �M0
DM

0�1
R M0T

D ¼ �MDðMR �MSM
�1
� MT

S Þ�1MT
D:

(A2)

The mass formula in Eq. (A2) is the main result in the
GISM. It can be further simplified in some special cases.
However, since Eq. (A2) is only valid for MD � MR �
MSM

�1
� MT

S , the exception should also be considered

especially.

2. Special cases

For different mass scales of MR and M�, the expression

of M� in Eq. (A2) can be simplified. For the sake of
convenience in the following dicussions, we denote M0

R

to be block diagonalized by a 6� 6 unitary matrix W as

WyM0
RW

� � Mm 0

0 Mh

 !
; (A3)

in which Mm and Mh are 3� 3 matrices standing for
the medium and heaviest neutrino masses, respectively.
Here, we consider three typical cases to simplify the mass
matrices M� and M0

R.
Case (A): 0 
 MR � MS and 0 
 M� � MS.

Equation (A2) can be simplified to [27]

M� � MDM
�T
S M�M

�1
S MT

D; (A4)

and M0
R is simplified to

M0
R � MR MS

MT
S M�

 !
: (A5)

This case has been discussed in Ref. [28]. Since M� and

MR are much smaller than MS, the right-handed and addi-
tional gauge-singlet neutrinos have nearly degenerate
masses and are combined to form the pseudo-Dirac
particles. Their masses can be not huge and may be testable
by the collider. For instance, assuming M� � 0:1 eV,
M� � 1 keV, andMD � 10 GeV, we obtainMS � 1 TeV.

Another aspect of this case is the nonunitary effects. Such
effects in the mixing matrix are approximate to MDM

�1
S .

Experimental data show that they are smaller than Oð1Þ
[29]. Due to present accuracies for measuring mixing
angles, we do not have to consider the nonunitary effects
in the mixing matrix. Wewill ignore them in the main body
of this paper.
Case (B): M� � MS � MR. M

0
R can be simplified to

Mm � M� �MT
SM

�1
R MS;

Mh � MR: (A6)

This case accommodates a large range of the masses of
sterile neutrinos and provides a possibility for low-scale
leptogenesis [4]. One can further discuss the case (B1):
MR � MSM

�1
� MT

S and case (B2): MR  MSM
�1
� MT

S . In

case (B1), M� can be simplified to Eq. (A4); while in case
(B2), M� can be simplified to [4]
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M� � �MDM
�1
R MT

D: (A7)

To derive the tiny left-handed neutrino masses in case (B2),
the scale of MR should, in general, be very high, which is
similar to the type-I seesaw model.

Case (C): MR  MS and M�  MS. In this case we

obtain Eq. (A7) and

Mm � maxðMR;M�Þ;
Mh � minðMR;M�Þ: (A8)

The choice of the mass scale of M� is a little arbitrary

except forM�  MS. There is only small mixing between

the right-handed and additional gauge-singlet neutrinos.
Since Eqs. (A4) and (A7) are the typical formulas of

left-handed neutrino mass matrices in the OISM and type-I
seesaw model, respectively, these two models can be
regarded as two special cases of the GISM to some extent.

3. Exception

Note that Eq. (A2) does not hold forMR �MSM
�1
� MT

S &

MD. This exception should be considered in particular. It
can be further divided into two cases: case (D), MR & MD

and MSM
�1
� MT

S & MD; and case (E), MR  MD and

MSM
�1
� MT

S  MD, but there is a cancellation that leads

to MR �MSM
�1
� MT

S & MD.

Case (D): SinceMS is several orders higher thanMD, we
are led to MR � MS � M�. M can be simplified by a

congruent transformation with a 9� 9 unitary matrix W .

One can write out W and W yMW � as

W �
1 0 0

0 1 �MSM
�1
�

0 ðMSM
�1
� Þy 1

0
BB@

1
CCA;

W yMW � �
0 MD 0

MT
D MR �MT

SM
�1
R MS 0

0 0 M�

0
BB@

1
CCA; (A9)

respectively. Finally, we obtain M� � MD, which is too
heavy to be the left-handed neutrino mass matrix. Thus,
this case is not interesting.

Case (E): W and W yMW � are given by

W �
1 0 0

0 1 MT
SM

�1
�

0 ðMT
SM

�1
� Þy 1

0
BB@

1
CCA;

W yMW � �
0 0 MDM

�1
R MS

0 MR 0

MT
SM

�1
R MT

D 0 0

0
BB@

1
CCA;

(A10)

respectively. One can further derive that the left-handed
and additional gauge-singlet neutrinos have nearly degen-
erate massesM� �MDM

�1
R MS and form the pseudo-Dirac

particles. However, since MS  MD, one has to require
that the scale ofMR in the GISM be even higher than that in
the type-I seesaw model, which is unnatural.
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on Recent Developments in Gauge Theories, edited by
G. ’t Hooft et al. (Plenum Press, New York, 1980), p. 135.

[27] M.K. Parida and A. Raychaudhuri, Phys. Rev. D 82,
093017 (2010).

[28] E. Ma, Mod. Phys. Lett. A 24, 2491 (2009).
[29] S. Antusch, C. Biggio, E. Fernández-Martı́nez, M.B. Gavela,
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