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We study the implications of the experimental results on the � ! e� decay rate and the muon

anomalous magnetic moment on muonic lepton flavor violating processes, such as � ! 3e and

�N ! eN. We use a model-independent approach in this analysis, where these processes are considered

to be loop induced by exchanging spin-1=2 and spin-0 particles. We explore two complementary

cases—those with no cancellation mechanism in amplitudes and those with an internal (built-in)

cancellation mechanism. Our main results are as follows: (a) Bounds from rates are used to constrain

parameters, such as coupling constants and masses. These constraints can be easily updated by simple

scalings, if the experimental situations change. (b) The muon g� 2 data favors nonchiral interactions.

(c) In � ! 3e and �N ! eN processes, Z-penguin diagrams may play some role, while box diagram

contributions to � ! 3e are usually highly constrained. (d) In the first case (without any built-in

cancellation mechanism), using the recent � ! e� bound, we find that � ! 3e and �N ! eN rates are

usually bounded below the present experimental limits by two to three orders of magnitude in general.

Furthermore, by comparing �a� and Bð� ! e�Þ data, the couplings of � and e are found to be highly

hierarchical. Additional suppression mechanisms should be called for. (e) In the second case (with a

built-in cancellation mechanism), mixing angles can provide additional suppression factors to satisfy

the �a� and Bð� ! e�Þ bounds. While the � ! 3e rate remains suppressed, the bounds on �N ! eN

rates, implied from the latest � ! e� bound, can be relaxed significantly and can be just below the

present experimental limits.
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I. INTRODUCTION

Charge lepton flavor violating (LFV) processes are pro-
hibited in the Standard Model (SM) and, hence, are excel-
lent probes of New Physics (NP). Recently the search of
� ! e� decay was reported by the MEG Collaboration
giving [1]

Bð�þ ! eþ�Þ � 2:4� 10�12: (1)

The bound is several times lower than the previous one [2].
This result received a lot of attention (see, for example,
Refs. [3–5]). In many New Physics models, this decay
mode is closely related to other lepton flavor violating
processes, such as �þ ! eþeþe� decays and ��N !
e�N conversions [6]. The present limits and future experi-
mental sensitivities [1,2,7] of these LFV processes are
summarized in Table I. Note that present bounds on �
LFV rates are roughly of similar orders. It will be interest-
ing to see what the implications are of the newBð� ! e�Þ
bound on these LFV processes and the interplay between
them.

Since 2001, the muon anomalous magnetic moment
remains as a hint of a NP contribution (see, for a review,
Ref. [8]). Experimental data deviates from the Standard
Model (SM) expectation by more than 3� [2]:

�a� ¼ a
exp
� � aSM� ¼ ð287� 63� 49Þ � 10�11: (2)

Since NP contributes to �a� and Bð�þ ! eþ�Þ through
very similar loop diagrams [see Figs. 1(a) and 1(b)], it is
useful to compare them at the same time.
The Large Hadron Collider is working well. So far no

NP signal is found (see, for example Ref. [9]). Plenty of
well-studied NP models or scenarios are ruled out or
cornered. Therefore, it will be useful to study the low-
energy effect, when the NP scale is still beyond our reach.
Given the present status on NP models, we believe that it is
worthwhile to use a model-independent approach.
In this work we consider a class of models that induce

muon g� 2 and various muon lepton flavor violating
processes, such as � ! e�, � ! 3e, and � ! e conver-
sions, by exchanging spin-1=2 and spin-0 particles in loop
diagrams. We try to see where the present g� 2 and � !
e� experimental results lead us on estimating rates or
bounds on various LFV muonic decay modes and the
interplay between them. Two cases, which are complemen-
tary to each other, are considered. In the first case, there is
no built-in cancellation mechanism among amplitudes.
The second case is with some built-in mechanism, such as
Glashow-Iliopoulos-Maiani (GIM) or super GIM mecha-
nism. These two cases will be compared.
The layout of this paper is as follows. In the next section,

the framework is given. Numerical results are presented in
Sec. III, where bounds from rates are used to constrain
parameters, such as coupling constants and masses.
Correlations between different processes are investigated.
Discussion and conclusion are given in Secs. IV and V,
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respectively. Some formulas and additional information
are collected in the Appendixes.

II. FRAMEWORK

In this section, we begin with introducing the
Lagrangian of a generic interaction involving leptons,
exotic spin-1=2 fermions, and spin-0 bosons. Formulas of
processes of interest, discussions on subtleties on the cal-
culation of the Z-penguin amplitude, and explicit expres-
sions of Wilson coefficients will be given subsequently.
This section ends after the formulation of the two comple-
mentary cases as briefly mentioned in Sec. I.

A. The interacting Lagrangian and diagrams

The Lagrangian of a generic interaction involving lep-
tons (l), exotic spin-1=2 fermions (c n), and spin-0 bosons
(�i) is given by

Lint ¼ �c nðgnilLPL þ gnilRPRÞl��
i

þ �lðgni�lL PR þ gni�lR PLÞc n�i; (3)

where summation over indices is understood unless speci-
fied. The Lagrangian is given in the mass bases and is ready
to be used in calculations. However, it is important to make
sure that it transforms as a singlet under the SM gauge
transformation.
In the weak bases of c Lp, c Rp, �La, and �Ra, the

interacting Lagrangian is

Lint ¼ ðg0palL
�c RplL�

�
La þ g0palR

�c LplR�
�
RaÞ þ H:c:; (4)

where we denote �LðRÞ for the scalar fields that couple to

lLðRÞ and subscripts p and a are the labels of different weak

fields, which may have different SUð2Þ � Uð1Þ quantum
numbers. It is important to require thatLint transforms as a
singlet under the SM gauge groups and quantum numbers
of c and � are related (see Appendix A).
The mass bases are related to the weak bases through the

following transformations

�i ¼ UL
ia�La þUR

ia�Ra; c nLðRÞ ¼ VLðRÞ
np c LðRÞp; (5)

where i and n are labels of mass eigenstates and U and V
are the mixing matrices relating weak and mass eigen-
states. With

gnilLðRÞ ¼ g0palLðRÞV
RðLÞ
np ULðRÞ

ia (6)

the interacting Lagrangian is now brought into the form
shown in Eq. (3), which is more convenient and will be
used in later calculations.
These interactions will induce lepton flavor violating

processes at the one-loop level. Penguin diagrams contribut-
ing to the muon anomalous magnetic moment and �þ !
eþ� are shown in Figs. 1(a) and 1(b), while box diagrams
contributing to the�þ ! 3e process are shown in Figs. 1(c)
and 1(d). Note that (i) penguin diagrams shown in Figs. 1(a)
and 1(b) also contribute to �þ ! 3e and �N ! eN
processes by connecting the virtual photons or the Z bosons
to electron currents and quark currents, respectively,1

(ii) Fig. 1(d) takes place only when c m;n are Majorana

fermions.

B. Formulas for various processes

To define our variables and to specify our convention,
we collect formulas for various precesses here. The rele-
vant effective Lagrangian in this study is

Leff ¼ Ll0l� þLl0lll þLl0lqq; (7)

with lð0Þ ¼ e, �, �, and q denoting quarks. Each term will
be specified below. For l0 � l, we have

Ll0l� ¼ �l0L���lRF
��AL0R þ �l0R���lLF

��AR0L þ H:c: (8)

andFIG. 1. (a) and (b): Penguin diagrams that contribute to muon
g� 2, �þ ! eþ�, �þ ! eþeþe�, and ��N ! e�N pro-
cesses. Note that diagrams involving self-energy parts are not
shown. (c) and (d): Box diagrams contributing to the �þ ! 3e
process. Figure (d) takes place only when c m;n are Majorana

fermions.

TABLE I. Current experimental upper limits and future sensi-
tivities on various muonic LFV processes [1,2,7].

Current limit Future sensitivity

Bð�þ ! eþ�Þ <2:4� 10�12 10�13

Bð�þ ! eþeþe�Þ <1:0� 10�12 10�14–10�16

Bð��Ti ! e�TiÞ <4:3� 10�12 10�18

Bð��Au ! e�AuÞ <7� 10�13 10�14–10�16

Bð��Al ! e�AlÞ . . . 10�16

1It is possible to have box diagrams with the electron line in
Figs. 1(c) and 1(d) replaced by a quark one and contribute to
�N ! eN conversions in some cases. We will discuss this
contribution in the Discussion section.
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ALR0 ¼ A�
R0L; ARL0 ¼ A�

L0R: (9)

Note that in the case of l0 ¼ l, we do not need the addi-
tional Hermitian conjugated terms in Eq. (8). These A0s are
from the so-called F2 photonic penguin and their explicit
forms will be given later.

The effective Lagrangians for �l0 ! 3l decays and l0 ! l
conversions are [6]

Ll0lll ¼ gR0LRLð�l0RlLÞð�lRlLÞ þ gL0RLRð�l0LlRÞð�lLlRÞ
þ gR0RRRð�l0R��lRÞð�lR��lRÞ þ gL0LLLð�l0L��lLÞ
� ð�lL��lLÞ þ gR0RLLð�l0R��lRÞð�lL��lLÞ
þ gL0LRRð�l0L��lLÞð�lR��lRÞ þ H:c:; (10)

Ll0lqq ¼
X

q¼u;d

½gLVðqÞ�l0L��lL þ gRVðqÞ�l0R��lR� �q��q

þ H:c:; (11)

where

gM0MNO � e2Qlg
P
M0M�NO þ gZM0Mg

Z
lN
�NO þ gBM0MNO;

gMVðqÞ ¼ eQ2
qg

P
M0M þ 1

2
gZM0MðgZqL þ gZqRÞ; (12)

for M, N, O ¼ L, R with gPM0M from the so-called F1

photonic penguin, gZM0M from the Z-penguin, and gBM0MNN

from box diagrams. More details and the explicit forms of
these Wilson coefficients will be given later. Note that
although the above Ll0lqq is not the most generic one, it

contains all the relevant parts that are closely related to
Ll0lll and Ll0l�.

We now collect the formulas for various processes ori-
ginated from the above Lagrangians. Comparing the effec-
tive Lagrangians of the lepton g� 2 and the electric dipole
moment (EDM),2

Lg�2 ¼ � eQ

4ml

�al �l���lF
��;

LEDM ¼ � i

2
dl �l����5lF

��;
(13)

to the generic expressions in Eq. (8), the anomalous mag-
netic moment and EDM of lepton l can be readily read off as

�al ¼ � 4ml

eQl

ReðARLÞ; dl ¼ 2 ImðARLÞ; (14)

respectively. The �l0 ! �l� and �l0 ! �l �l l decay rates are
given by

�ð�l0 ! �l�Þ ¼ ðm2
l0 �m2

l Þ3
4�m3

l0
ðjAL0Rj2 þ jAR0Lj2Þ (15)

and [6]

�ð�l0! �l �llÞ¼ m5
l0

3ð8�Þ3
�jgR0LRLj2

8
þjgR0RLLj2

þ32

��������
eAR0L

ml0

��������
2

log

�
m2

l0

m2
l

�11

4

�

þ16Re

�
eAR0Lg

�
L0LLL

ml0

�
þ8Re

�
eAR0Lg

�
L0LRR

ml0

��

þL$R; (16)

respectively. While the l0N ! lN conversion rate ratio is
governed by

Bl0N!eN ¼ !conv

!capt

; (17)

with

!conv ¼
��������
A�
R0LD

2ml0
þ 2½2g�LVðuÞ þ g�LVðdÞ�VðpÞ

þ 2½g�LVðuÞ þ 2g�LVðdÞ�VðnÞ
��������

2þL $ R: (18)

The numerical values of D, V, and !capt are taken from

Refs. [10,11] and are collected in Appendix B.

C. Z-penguin amplitudes

The calculation of the Z-penguin amplitude is quite
complicated and subtle. Some explanations are needed.
The interaction involving a Z boson is given by

LZ
int¼��l 6ZðgZlLPLþgZlRPRÞl� �c Lp 6ZgZc Lp

c Lp

� �c Rq 6ZgZc Rq
c Rq� igZ�La

ð��
La@

��La�@���
La�LaÞ

� igZ�Ra
ð��

Ra@
��Ra�@���

Ra�RaÞþ . . . ; (19)

with

gZX ¼ e

sin	W cos	W
ðT3 � sin2	WQÞX; (20)

for X ¼ lLðRÞ, c LðRÞp and �LðRÞa in the weak eigenstates.

Since Lint transforms as a singlet under the SM gauge
group, the gZX of various fields are related through

gZlLðRÞ � gZc RðLÞp � gZ�a ¼ 0; (21)

if the corresponding coupling g0palLðRÞ in Eq. (4) is

nonvanishing.
Although the couplings gZc LðRÞ;�LðRÞ are diagonal in the

weak bases, it may have off-diagonal terms in the mass
bases. In the mass bases, the interacting Lagrangian involv-
ing a Z boson is given by

LZ
int ¼��l 6ZðgZlLPLþgZlRPRÞl� �c m 6Z

�ðgZc LmnPLþgZc RmnPRÞc n

� igZ�ijð��
i @

��j�@���
i �jÞþ . . . ; (22)

with

gZ�ij ¼ UL
iag

Z
�La

UyL
aj þUR

iag
Z
�Ra

UyR
aj ;

gZc LðRÞmn ¼ VLðRÞ
mp gZc LðRÞpV

yLðRÞ
pn : (23)2Weuse the conventionwhereD�¼@�þieQA�withe ¼ þjej.
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The one-loop amplitude for l ! l0Z consists of two diagrams shown in Fig. 1 and two additional diagrams involving self-
energy diagrams with Z attached to external lines. The resulting amplitude is given by (neglecting ml, ml0 and q2)

iM ¼ i

16�2
�u0ðgmi�

l0L PR þ gmi�
l0R PLÞ6
�½ðgZlL�ij�mn � gZc Rmn�ij � gZ�ij�mnÞPL þ ðgZlR�ij�mn � gZc Lmn�ij � gZ�ij�mnÞPR�

� ðgnjlLPL þ gnjlRPRÞu
�
1

2

�
2

4� d
� �E þ ln

4�

M2

�
� FZðm2

c m
; m2

c n
; m2

�i
; m2

�j
;M2Þ

�

þ i

16�2
ðgZc Rmn � gZc LmnÞ �u0ðgmi�

l0L PR þ gmi�
l0R PLÞ6
�ðgnilLPL � gnilRPRÞuGZðm2

c m
; m2

c n
; m2

�i
Þ; (24)

where d is the number of the space-time dimension, �E is
the Eular number and FZ and GZ are the loop functions
whose explicit forms are shown in Appendix B. Note that
M is an arbitrary mass parameter introduced to balance
dimension. We will return to it later.

Note that the divergent part contained in the first term
is indeed vanishing by requiring the l� c �� interaction
Lint in Eq. (4) be invariant under the SM gauge group,
i.e., we have

gmi�
l0LðRÞðgZlLðRÞ�ij�mn � gZc RðLÞmn�ij � gZ�ij�mnÞgnjlLðRÞ
¼ g0pa�

l0LðRÞðgZlLðRÞ � gZc RðLÞp � gZ�aÞg0palLðRÞ ¼ 0; (25)

where sum over indices are understood and Eq. (21) has
been used in the last step. The nondivergent part, namely
the one with FZ, survives. Note that by the same token the
dependence on the arbitrary mass parameter M cancels.
The resulting Wilson coefficients will be given later. It is
easy to see that in the non-mixing case (U ¼ V ¼ 1), the
whole first term (including the FZ term) is vanishing.

As a cross check, we note that the same expression of iM
can be use to obtain the lowest order�-penguin amplitude by

replacing each gZ by the corresponding eQ. Since under
these replacement ðgZlLðRÞ�ij�mn�gZc RðLÞmn�ij�gZ�ij�mnÞ!
eðQl�Qc �Q�Þ�ij�mn¼0 and ðgZc Lmn � gZc RmnÞ !
eðQc �Qc Þ�mn ¼ 0, the corresponding �u06
�u term is

vanishing as expected.

D. Wilson coefficients

Induced by the interaction given in Eq. (3) the Wilson
coefficients for the effective Lagrangian in Sec. II A are
calculated to be

AM0N ¼ e

32�2
½ðmlg

ni�
l0Mg

ni
lM þml0g

ni�
l0Ng

ni
lNÞ

� ðQ�i
F1ðm2

c n
; m2

�i
Þ �Qc n

F1ðm2
�i
; m2

c n
ÞÞ

þmc n
gni�l0Mg

ni
lNðQ�i

F3ðm2
c n
; m2

�i
Þ

�Qc n
F2ðm2

�i
; m2

c n
ÞÞ�; (26)

for M � N, but with M, N ¼ L, R, and Fi are loop
functions collected in Appendix B. TheWilson coefficients
in Eq. (12) are

gPR0R ¼
1

16�2
fgni�l0Rg

ni
lR½Qc n

G2ðm2
�i
;m2

c n
ÞþQ�i

G1ðm2
c n
;m2

�i
Þ�þmc n

ðmlg
ni�
l0Rg

ni
lLþml0g

ni�
l0Lg

ni
lRÞ½Qc n

G3ðm2
�i
;m2

c n
Þ

þQ�i
G3ðm2

c n
;m2

�i
Þ�g;

gZR0R ¼� 1

16�2m2
Z sin2	W

2�Rijmng
mi�
l0R gnjlRFZðm2

c m
;m2

c n
;m2

�i
;m2

�j
;m2

ZÞ

� e

16�2m2
Z sin2	W

2�T3cmng
mi�
l0R gnilRGZðm2

c m
;m2

c n
;m2

�i
Þ;

gZL0L ¼� 1

16�2m2
Z sin2	W

2�Lijmng
mi�
l0L gnjlLFZðm2

cm
;m2

c n
;m2

�i
;m2

�j
;m2

ZÞ

þ e

16�2m2
Z sin2	W

2�T3cmng
mi�
l0L gnilLGZðm2

c m
;m2

c n
;m2

�i
Þ;

gBR0LRL ¼
1

16�2
Fðm2

c m
;m2

c n
;m2

�i
;m2

�j
Þðgmi�

l0R g
mj
lL g

nj�
lR gnilL�2�gmi�

l0R g
mj�
lR gnilLg

nj
lLÞ;

gBR0RRR ¼
1

16�2

�
�

2
gmi�
l0R gmj�

lR gnilRg
nj
lRFðm2

c m
;m2

c n
;m2

�i
;m2

�j
Þ�1

4
gmi�
l0R gmj

lR g
nj�
lR gnilRGðm2

c m
;m2

c n
;m2

�i
;m2

�j
Þ
�
;

gBR0RLL ¼
1

16�2

�
�1

4
Gðm2

c m
;m2

c n
;m2

�i
;m2

�j
Þðgmi�

l0R g
mj
lR g

nj�
lL gnilLþ�gmi�

l0R g
mj�
lL gnilLg

nj
lRÞ�

1

2
gmi�
l0R gmj

lL g
nj�
lL gnilRFðm2

cm
;m2

c n
;m2

�i
;m2

�j
Þ

þ�

4
gmi�
l0R gmj�

lL gnilRg
nj
lLGðm2

cm
;m2

c n
;m2

�i
;m2

�j
Þ
�
; (27)
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with

�LðRÞijmn�sin2	WðgZlLðRÞ�ij�mn�gZc RðLÞmn�ij�gZ�ij�mnÞ=e;
�T3cmn�VR

mpT3c RpV
yL
pn �VL

mpT3c LpV
yR
pn ; (28)

loop functionsF andGðiÞ shown inAppendixB and�¼1ð0Þ
for Majorana (Dirac) fermionic c . Other g can be obtained
from the above ones by exchanging R and L. Note that for
definiteness we takeM ¼ mZ in FZ. As before, the summa-
tion on m, n, i, j is understood.

E. Two cases

We consider two complementary cases.

1. Case I

In the first case, namely case I, there is no built-in
cancellation mechanism. The amplitudes may contain N
different subamplitudes, each of which comes from one of
the loop diagrams as shown in Fig. 1,

A ¼ XN
j¼1

Aj: (29)

We will constrain parameters from data by switching on
various diagrams (subamplitudes) one at a time. The cor-
responding Wilson coefficients of a typical subamplitude
can be obtained by using formulas in Sec. II D, but with the
replacement,

gnilM ! glM; (30)

with all summation on n and l suspended. Since there is no
built-in cancellation in this case, different subamplitudes
are, in principle, independent from each other. Although it
is likely to have various amplitudes appear at the same time
in a realistic model calculation and interfere with each other,
the interference effects only become important if the ampli-
tudes are of similar size. Hence, our analysis is not only
valid when the sizes are different (hence, constraining the
most dominant amplitude) but also can provide information
on regions where interference may be important.

2. Case II

In case II, there is a built-in cancellation such as a GIM
or a super-GIM mechanism in the NP sector. This case is
complementary to the previous one. Some of the subam-
plitudes in Eq. (29) are intimately related. We have to
group them to allow the cancellation mechanism to do
its job first. The grouped amplitudes should be viewed
as new sub-amplitudes and we will turn them on one at a
time to constrain their sizes from data. To be specify, we
consider

gnilM ! gilM ¼ glM�
il
M; (31)

where we have M ¼ L, R and glM is real as the phase is
absorbed into �. Note that the matrix � is similar and
related to the mixing matrix U, but is not identical to it.
These � satisfy the following relations:

�yli
M m2

i�
il0
N ¼ ðm2

�Þll0MN; �yli
M �il0

N ¼ �ll0�MN: (32)

A typical expression of Wilson coefficients given in
Sec. II D is transformed in the following way:

X
i

gi��Mfðm2
c ; m

2
�i
ÞgieN

! m2
�

@

@m2
�

fðm2
c ; m

2
�Þg�MgeN�

MN
�e ; (33)

where m2
� is the average mass squared of �i, and the

mixing angle �MN
�e is defined in the usual way to be [12]

�MN
�e � 1

m2
�

�My
�i ðm2

�i
�m2

�Þ�N
ie ¼

ðm2MN
� Þ�e

m2
�

: (34)

The Wilson coefficients in this case can be obtained read-
ily by applying the above replacements to the generic
formulas collected in Sec. II D.
Note that in the Z-penguin amplitude, the zeroth and first-

order terms in the �LðRÞFZ part are vanishing. The leading

order contribution is at the level of �LR�RL, which is beyond
the accuracy of the present analysis and is neglected.

III. RESULTS

Numerical results in cases I and II are given in this
section. Unless specified explicitly, experimental inputs
are taken from Table I and Ref. [2].

A. Case I

In Fig. 2 we show the allowed parameter space for
Q�;c jg�LðRÞj2=m2

c and Q�;cReðg��Rg�LÞ=mc constrained

by the measured �a� with exclusion of jg�LðRÞj2,
jg�Lg�Rj> 4� and mc ;� < 100 GeV.3 The latter

requirements are to ensure perturbativity and to satisfy
the experimental bounds on the masses of exotic particles
[2]. Bands denoted with � or c are allowed regions
obtained through contributions from diagrams with � or
c interacting with a photon [see Figs. 1(a) and 1(b)].

3It is easy to see that jg�LðRÞj2 > 4� and mc<100GeV im-
plies jg�LðRÞj2=m2

c > 4�=ð100Þ2 GeV�2 and jg�Lg�Rj2=mc>

4�=100GeV�1, while jg�LðRÞj2 > 4� and m� < 100 GeV
implies jg�LðRÞj2=m2

c ¼ ðjg�LðRÞj2=m2
�Þ � ðm�=mc Þ2 > 4�=

ð100Þ2 � ðm�=mc Þ2 GeV�2 and jg�Lg�Rj2=mc > ð4�=100Þ �
ðm�=mc Þ GeV�1. These excluded regions are shown by shaded
areas with horizontal or inclined boundaries.
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Excluded parameter space of jQ�;c Imðg��Rg�LÞj=mc con-

fronting the muon electric dipole moment (EDM) bound
[2] is also shown in Fig. 2(b).

From Fig. 2(a), we see that the allowed regions on
Q�jg�LðRÞj2=m2

c and �Qc jg�LðRÞj2=m2
c are similar and

the signs of Q�;c are constrained by data. Note that the

allowed parameter space is quite limited. Indeed, it is
almost closed by the bounds from jg�LðRÞj2 < 4� and

mc > 100 GeV and m� > 100 GeV. The allowed region

is around �Q�;c jg�LðRÞj2=m2
c ’ 10�4 � 10�3 GeV�2

and m�=mc ’ 0:3� 3, which implies that for m�;c of a

few hundred GeV, the couplingsQ�;c jg�LðRÞj2 are required
to be of order Oð1Þ �Oð10Þ, which are rather large, and
are even larger for heavierm�;c . To see it in another way, if

we take the size of g�LðRÞ to be similar to that of the electric

coupling e, we need m�;c to be as light as 10 to 30 GeV

to reproduce the experimental result on �a�. Thus, it is

unlikely to use a chiral-type interaction (g�L � g�R ¼ 0)

to generate the measured �a�.

From Fig. 2(b), we see that the allowed parameter space
is substantially larger. To reproduce the measured �a�,

the mass ratio has to be in the range of Oð10�5Þ &
m�=mc & Oð102;3Þ, which is much wider than the one in

Fig. 2(a). We note that the bands of the allowed parameter
space behave rather differently in two regions roughly
separated by m�=mc ¼ 0:1. (i) For m�=mc & 0:1, the

horizontal bands denoting the allowed parameter region
for �Q�;cReðg��Rg�LÞ=mc are around 4� 10�6 GeV�1.

They are insensitive to m�=mc , since the chiral enhance-

ment factor mc =m� compensates for the suppression from

the heavy c mass. Note that m�=mc can be as low as

3� 10�5, which implies thatmc up to 3� 103 TeV is still

capable of reproducing the measured �a� in the extreme

case, where we have a light � [m� ¼ Oð100Þ GeV] and
large couplings [jg�Lg�Rj ¼ Oð4�Þ]. (ii) For m�=mc *

0:1, the allowed bands rise with the mass ratio. The muon
g� 2 is more sensitive to the diagram with c interacting
with a photon [as depicted in Fig. 1(b)] than to the other
diagram; hence, the constraint on �QcReðg��Rg�LÞ=mc

is more severe than the one on þQ�Reðg��Rg�LÞ=mc .

Indeed, in the large m�=mc region, the suppressions from

a large � mass should be larger in diagrams with � inter-
acting with a photon and, hence, require larger couplings to
compensate for the effect. We see that the mass ratio
m�=mc can go up to 200 (1000) along the � (c ) band,

which corresponds to allowing m� to be as large as

20 (100) TeV in the extreme situation.
As noted previously, in Fig. 2(b) we also show the

excluded region of jQ�;c Imðg��Rg�LÞj=mc from the muon

EDMbound.We see that the bound is three orders of magni-
tude higher than that in the allowed�Q�;cReðg��Rg�LÞ=mc

bands. To constrain the former to the level of the latter, the
EDM sensitivity needs to be improved. In fact, some pro-
posed EDM searches (see, for example Ref. [13]) are aimed
at a four to five orders of magnitude improvement on the
sensitivity and may be able to probe the imaginary part
of g��Rg�L better than its real part.

We now turn to � LFV processes, including � ! e�,
� ! 3e, �Ti ! eTi, and �AuðAlÞ ! eAuðAlÞ transi-
tions. In Figs. 3 and 4, we show the parameter space
excluded by various bounds and the one corresponding
to projections from the expected sensitivities on these �
LFV processes, through contributions from photonic and

FIG. 2 (color online). (a) Allowed parameter space for �Q�;c jg�LðRÞj2=m2
c constrained by �a� (bands with solid or dashed lines)

with exclusion of jg�LðRÞj2 > 4� and mc ;� < 100 GeV (shaded regions with dot-dashed lines). (b) Allowed parameter space for

�Q�;cReðg��Rg�LÞ=mc constrained by�a� with exclusion of jg�Lg�Rj> 4� andmc ;� > 100 GeV. Excluded parameter space (shaded

regions with solid or dashed lines) of jQ�;c Imðg��Rg�LÞj=mc from the muon EDM bound and the expected sensitivity are also shown.
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Z-penguin diagrams. To be specific, for the proposed sen-
sitivities, the conservative values of the future sensitivities

quoted in Table I are used. Note that the photonic penguins

contribute to � ! 3e and �N ! eN through the so-called

F2 penguin, which is similar to those contributing to �a�
and � ! e�, and the F1 penguin, while the Z penguins

only contribute to � ! 3e and �N ! eN decays. Note

that the Z-penguin amplitudes contribute through the

jg�RðLÞgeRðLÞ�T3c j and jg�RðLÞgeRðLÞ�RðLÞj parts. The for-

mer contribution is a function of the mass ratio m�=mc ,

while the latter one depends on both � and c masses. The
resulting constraints are plotted in Figs. 3(e), 3(f), and 4.
It should be noted that Figs. 3 and 4 can still be useful if the
experimental bounds change. For example, if a bound is
reduced by a factor of k, the new plot can be easily updated

by reducing the present plot by a factor of
ffiffiffi
k

p
.

FIG. 3 (color online). (a)-(d): Parameter space excluded (projected) by various bounds (expecting sensitivities) on � LFV processes
through contributions from photonic penguins. Note that solid, dashed, dot-dashed, and short-dashed lines denote results from
� ! e�, � ! 3e, �Ti ! eTi, and �AuðAlÞ ! eAuðAlÞ processes, respectively. (e) and (f): Same as (a)-(d), but through contribu-
tions from Z penguins.
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Note that the combinations of couplings jQ�;cg�RðLÞ
geRðLÞj, jQ�;c g�RðLÞgeLðRÞj (from photonic penguin) and

jg�RðLÞgeRðLÞ�T3c j, jg�RðLÞgeRðLÞ�LðRÞj (from Z penguin)

have different sensitivities on the experimental constraints,
and the sensitivities changewithmc ;�. For heavierm�;c , the

contributions from the photonic penguins decrease and the
Z-penguin contributions, where the nondecoupling effect is
working, dominate. By comparing Figs. 3(a) and 3(b) to
Figs. 3(e), 3(f), and 4,4 we find that (i) in the range ofmc &

Oð100Þ GeV the photonic penguin contributions dominate
over the Z-penguin ones, (ii) in the range of the
Oð100Þ GeV & mc & Oð100Þ TeV, the photonic penguin

contributions from the Q�;c g�RðLÞgeLðRÞ terms dominate

over the Z-penguin contributions, which are, however, still
larger than the photonic penguin contributions from the
Q�;cg�RðLÞgeRðLÞ part, and for (iii) mc * Oð100Þ TeV,

the Z-penguin contributions dominate. The role that Z pen-
guin plays is emphasized in Ref. [14].
Since NP contributions to �a� and the �þ ! eþ�

decay are from similar diagrams, it will be useful to
compare them. Using Figs. 2(b), 3(c), and 3(d), the present
data on �a� and Bð�þ ! eþ�Þ lead to

g�RðLÞgeLðRÞ
g�Rg�L

¼ geLðRÞ
g�LðRÞ

� 6:1� 10�5 ’ 6; (35)

wherewe define � 0:2. This ratio ismuch smaller than any
known coupling ratio and mixing angle among the first and
second generations. For example, the mass ratio me=m� �
3�4, quark mixing in Cabibbo-Kobayashi-Maskawa matrix

Vud ¼ sin	c � , and neutrino mixing sin	�12 �
ffiffiffiffi


p
are all

larger than the estimated geLðRÞ=g�LðRÞ coupling ratio. It

seems that the present case is unnatural.
We see from Figs. 3(a)–3(d) that the present bound from

� ! e� surpasses all other bounds. In particular, even the
parameter space to be probed by the proposed � ! 3e
sensitivity is mostly excluded by the present� ! e� bound.

FIG. 4 (color online). (a)-(d): Parameter space excluded (projected) by various bounds (expecting sensitivities) on � LFV processes
through contributions from Z penguins with different choices of mass ratios. Note that dashed, dot-dashed, and short-dashed lines
denote results from � ! 3e, �Ti ! eTi, and �AuðAlÞ ! eAuðAlÞ processes, respectively. Note that these plots also apply to the
R $ L cases.

4Note that the plotted quantities in these figures have different
powers of mc .
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This can be understood by using Fig. 5, where rate ratios of
various modes through photonic penguins are given. We see
that the ratios of LFV rates with respect to the � ! e� rate
are all less than unity. Furthermore, we recall that the present
experimental bounds on LFV rates are of similar orders of
magnitude (see Table I). Therefore, the present bound on the
� ! e� rate provides the most severe constraint.

Taking a closer look at Fig. 5, we see that, from Figs. 5(a)
and 5(b), the jQ�;c g�RðLÞgeRðLÞj terms give Bð� ! e�Þ>
Bð�N ! eNÞ * Bð� ! 3eÞ and, from Figs. 5(c) and 5(d),
the jQ�;c g�RðLÞgeLðRÞj terms give Bð� ! 3eÞ=Bð� !
e�Þ ’ 0:006, Bð�Ti ! eTiÞ=Bð� ! e�Þ ’ 0:004 and
Bð�Al ! eAlÞ=Bð� ! e�Þ ’ 0:003, where the first ratio
is consistent with Ref. [6]. Hence, for g�RðLÞgeLðRÞ domi-

nating models, the latest MEG bound implies

Bð�þ!eþeþe�Þ’0:006�Bð�þ!eþ�Þ&1:4�10�14;

Bð�N!eNÞ’Oð10�3Þ�Bð�þ!eþ�Þ&Oð10�15Þ;
(36)

for N ¼ Au, Al and Ti. The above expecting limits are
about two to three orders of magnitudes below the present

experimental sensitivities (see Table I) and make the

searches on LFV in the muon sector challenging in this

case.
As noted in Sec. II A, it is possible to have box diagrams

with the electron line in Figs. 1(c) and 1(d) replaced by a
quark one and contribute to �N ! eN conversions in
some cases. The correlation to the � ! 3e rate will be
modified. We will discuss more on this situation in the
discussion section.
Note that Z penguins give different rate ratios (not

shown in Fig. 5), with Bð�Al ! eAlÞ=Bð� ! 3eÞ ’ 10,
Bð�Ti ! eTiÞ=Bð� ! 3eÞ ’ 20, and Bð�Au ! eAuÞ=
Bð� ! 3eÞ ’ 40 roughly independent of the masses
m�;c . This pattern is different from the photonic penguin

case as shown in Fig. 5. These rate ratios will be useful for
identifying the underlying NP contributions.
In Fig. 6, we show the constraints on parameters that

contribute through box diagrams, as depicted in Figs. 1(c)
and 1(d), to the �þ ! 3e process. Both Dirac and
Majorana cases are shown. We see in Fig. 6(a) that there
is cancellation in the Majorana case and the sensitivity on
the parameters is relaxed.

FIG. 5 (color online). Ratios of rates contributed from photonic penguins.
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Note that constraints on the same combinations of
parameters can be obtained from penguin processes,
including � ! e�, �ae, EDM, and the perturbative
bounds, as well. They are also shown in Fig. 6. We see
that these constraints are usually much stronger than the
ones from the box diagrams, except for jg�RðLÞgeRðLÞ
geRðLÞgeRðLÞj=m2

c in the low m�=mc region. In particular,

the � ! e�, �ae and the electron EDM constrain
ðQ�;c jg�RðLÞgeLðRÞj=mc ÞðQ�;c geRðLÞgeLðRÞj=mc Þ much

deeper than jg�RðLÞgeRðLÞgeLðRÞgeLðRÞj=m2
c from the box

diagrams. Hence, in general, these box diagrams do not
play a major role in the �þ ! 3e decay.

B. Case II

We now turn to case II. In Fig. 7, the allowed regions for
	Q�;c g�Rg�LReð�RLÞ��=mc constrained by the mea-

sured �a�, with exclusions of jg�Lg�R�RLj> 4� and

mc ;� < 100 GeV, are shown. Excluded and projected pa-

rameter space of jQ�;cg�Rg�LImð�RLÞ��j=mc from the

muon EDM bound and the expected sensitivity are also
given on the same plot. For the plots of the allowed regions
for �Q�;c jg�LðRÞj2=m2

c , one is referred to Fig. 2(a), as

they are common in both cases.
Comparing Fig. 7 to Fig. 2(b), we see that the allowed

parameters in the upper m�=mc region are similar. In

contrast, they are relaxed substantially in the lower
m�=mc region in the present case. To reproduce the mea-

sured �a�, we need to have Oð10�2Þ & m�=mc &

Oð102;3Þ, where the minimum of the mass ratio is much
higher than the one in the previous case. Recall that in case
I, for m�=mc & 0:1, the allowed parameter region for

�Q�;cReðg��Rg�LÞ=mc are horizontal bands around

4� 10�6 GeV�1 and m�=mc can be as low as Oð10�5Þ.
From Fig. 7, we see that as we move downward along the
m�=mc axis, the bands for the allowed regions for

	Q�;c g�Rg�LReð�RLÞ��=mc bend upward in the low

mass ratio region (m�=mc < 1) and the above parameters

can be as large as 10�3 GeV�1, which is three orders of
magnitude higher than those in case I. We also note
that the mass ratio m�=mc cannot be smaller than 10�2

as the bands quickly run into the shaded regions, which
correspond to the excluded m� < 100 GeV and

jg�Rg�LReð�RLÞ��j> 4� regions. In the present case,

the mass of c cannot be larger than a few tens of TeV,
while in case I it can be as high as a few thousand TeV in
the extreme situation. The built-in cancellation mechanism
reduces the amplitudes effectively and a too heavy c is
incapable to produce a large enough �a�. The effect of

the cancellation is important in the low m�=mc region

and, consequently, relaxes the constraints on parameters.

FIG. 6 (color online). Constraints on parameters that contribute through box diagrams to the �þ ! 3e process. Solid lines denote
the � ! 3e constraint or expectation in the Dirac case, while the dashed lines denote the Majorana case. Note that these plots also
apply to the R $ L cases.

FIG. 7 (color online). Allowed parameter space for	Q�;c g�R

g�LReð�RLÞ��=mc constrained by �a� with exclusion of

jg�Lg�R�RLj> 4� and mc ;� > 100 GeV. Excluded parameter

space (shaded regions with solid or dashed lines) of
jQ�;c g�Rg�LImð�RLÞ��=mc j from the muon EDM bound is

also shown.
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In fact, we expect to see the very feature in other penguin
contributing channels as well.

In Fig. 8, we show the constrained and projected parame-
ter space through penguin contributions by considering
the experimental bounds and the proposed sensitivities.5

We note that the photonic penguin contributions via the
�RL term dominate over other contributions for mc

below Oð103Þ TeV. For mc beyond that, the Z-penguin

contribution takes over. However, from the previous discus-
sion on the muon anomalous magnetic moment, we see that
to account for the measured �a�, mc cannot be heavier

than a few tens of TeV. Hence, the Z-penguin contribution
will be subdominant in this case.
By comparing the constraints from�a� andBð� ! e�Þ

as shown in Figs. 7, 8(c), and 8(d), we obtain

g�RðLÞgeLðRÞRe½ð�RLðLRÞÞ�e�
g�Rg�LRe½ð�RLÞ��� ¼ geLðRÞ

g�LðRÞ

Re½ð�RLðLRÞÞ�e�
Re½ð�RLÞ���

� 4:2� 10�5 ’ 6: (37)

FIG. 8 (color online). Same as Fig. 3, but now in case II.

5For Z-penguin contributions, only those from �T3c are
shown, since the �LðRÞ ones are highly suppressed.
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If we estimate geLðRÞ=g�LðRÞ by using the lepton mass ratio

me=m� � 3�4, we see that a mixing angle ratio of

Re½ð�RLðLRÞÞ�e�=Re½ð�RLÞ��� & 2�3, which is not un-

natural, can easily satisfy the above bound. In this respect,
case II is more reasonable and natural than case I, where the
coupling ratio is highly hierarchical [see, Eq. (35)].

It is interesting to see from Fig. 8 that the� ! e� bound
is not always the most stringent one. The bounds from
� ! 3e and �N ! eN in Fig. 8(a) are almost the same as
those in case I [see Fig. 3(a)], but the bound from � ! e�
is relaxed up to more than two orders of magnitude in the
low m�=mc region and becomes less severe than other

bounds. Similarly, comparing Fig. 8(c) with Fig. 3(c), we
see that in the low m�=mc region, both bounds from

� ! e� and � ! 3e are relaxed up to three orders of
magnitude, while the changes on those from �N ! eN
are mild. We can infer that, similar to the �a� case, the F2

(photonic) penguin amplitudes exhibit cancellations in
amplitudes in the low m�=mc region and relax the con-

straints from� ! e� significantly, while the cancellations
in the F1 penguin contributions in � ! 3e and �N ! eN
processes are mild. As a result, the bounds from�N ! eN

approach the � ! e� bound in this case, while in the
previous case these two bounds are always apart.
The ratios of photonic-penguin contributing rates plot-

ted in Fig. 9 show that Bð�N ! eNÞ=Bð� ! e�Þ and
Bð� ! 3eÞ=Bð� ! e�Þ are enhanced compared with
those in Fig. 5. In Fig. 9(a) we see that the ratios can be
enhanced up to three orders of magnitude. In Fig. 9(c) the
Bð�N ! eNÞ=Bð� ! e�Þ ratio is enhanced by one order
of magnitude, while the Bð� ! 3eÞ=Bð� ! e�Þ ratio
does not change much. It is very interesting that the rate
ratio Bð�N ! eNÞ=Bð� ! e�Þ from the g�RðLÞgeLðRÞ
term is enhanced and different from case I.
We see in Fig. 8 that parameters with �RL [as shown in

(c) and (d)] are most constrained by data. It is likely that
these parameters give dominant contributions to LFV
processes. Using Figs. 9(c) and 9(d) we find that the
present bound on � ! e� allows

Bð�N ! eNÞ & 10�13; (38)

which is close to the present bounds (see Table I).
Therefore, the search on these processes could be very
interesting.

FIG. 9 (color online). Same as Fig. 5, but in case II.
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In Fig. 10, we show the constraints on parameters that
contribute through box diagrams to the�þ ! 3e process in
this case. Although we also see some relaxations on parame-
ters, the main conclusion remains similar to that in case I.

IV. DISCUSSION

A. Flavor violating Z decays

Lepton flavor violating Z ! �	e� decays are highly
related to � ! 3e, � ! e� and �N ! eN processes via
the Z-penguin contributions. The Z ! l0 �l decay rate is
given by

�ðZ ! l0 �lÞ ¼ m5
Z

24�
ðjgZL0Lj2 þ jgZR0Rj2Þ; (39)

where the dimensionful coefficient gZM0M is the same one

used inEq. (12).UsingEq. (39) and the results in the previous
section, we find that the present bounds from � ! 3e,
�Ti ! eTi, and�Au ! eAu processes constrain

BðZ!�	e�Þ � 4� 10�13; 7� 10�14; 6� 10�15;

(40)

respectively.Note that the above equationholds in both case I
and II. In any case, these constraints are far below the present
limit,BðZ ! �	e�Þ � 1:7� 10�6.

B. Box diagrams involving quarks

From the explicit assignment of gauge quantum numbers
of c and� as shown inAppendixA,we see that it is possible
to have � couples to quarks [see Eq. (A5)]. These interac-
tions can generate additional contributions to �N ! eN
conversion precesses through box diagrams similar to those
in the� ! 3e ones as shown in Figs. 1(c) and 1(d), but with
the (lower) electron line replaced by a quark line.

To have interaction with quarks, only rather specific
choices of c and � gauge quantum numbers are allowed
(see Appendix A). In particular, the case of c R: ð1; 1; 1Þ

and�L: ð1; 2;�1=2Þ are of interest, for the fermion field is
a SM singlet. Below, we will use this case to illustrate the
contributions from the additional box diagrams.
The interacting Lagrangian in this case is

Lint ¼ glL �c RLLi
��

Li þ gu �QLiuR�Li

þ gd �QLidR
ij�
�
Lj þ H:c:; (41)

where QL and LL are the quark and lepton doublets,
respectively. Note that only the lower components of LL

and�L are relevant to this analysis. The box diagrams give

gRVðqÞ ¼ 0; gLVðdÞ ¼ 0 (42)

and

gLVðuÞ
¼ 1

16�2

�
�1

8
Gðm2

c ;0;m
2
�;m

2
�Þðg�eLg�LÞ�ðg�uguþg�dgdÞ

�
;

(43)

where quark masses have been neglected. Note that the
box diagrams also give the so-called gLPðuÞ term, which,
however, does not contribute to conversion rates [10]. The
resulting �N ! eN conversion rates can be calculated
using Eq. (18).
Experimental limits on conversion rates are used to con-

strain couplings and masses. The result is shown in Fig. 11.
The correlation between �N ! eN conversions and the
�þ ! 3e decay are lost. In fact, we see that the constraints
on jg�LgeLjðjguj2 þ jgdj2Þ=m2

c from present limits on

� ! e conversion rates are similar to the constraints on
jg�LgeLjjgeLgeLj=m2

c from the �þ ! 3e bound (see

Fig. 6). Therefore, we may be able to see �N ! eN con-
versions sooner than the�þ ! 3e decay, ifgu;d is larger than
geL and vice versa. The �N ! eN conversion rates need
not be highly suppressed as noted in Sec. IIIA.

FIG. 10 (color online). Same as Fig. 6, but in case II.
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C. Some other cases

A similar analysis can be preformed by replacing the
spin-0 particle with a spin-1 particle in the loops. It will be
interesting to compare it to the present work. However,
gauge-invariant and triplet vector couplings will compli-
cate the analysis. The study will be given elsewhere.

We expect to find results similar to those in case II,
but with cancellation at work in the low mc region if we

introduce the built-in cancellation mechanism in the c
sector instead of in the � sector.

V. CONCLUSIONS

In conclusion, we use a model-independent approach in
this analysis, where these processes are considered to be
loop induced by exchanging spin-1=2 and spin-0 particles.
We explore two complementary cases, which have no can-
cellation mechanism in amplitudes or an internal (built-in)
cancellation mechanism. Our main results are as follows:

(a) Bounds from rates are used to constrain parameters,
such as coupling constants and masses. These con-
straints can be easily updated by simple scalings,
if the experimental situations change.

(b) The muon g� 2 data favor nonchiral interactions.
(c) In �þ ! eþe�e� and ��N ! e�N processes, the

Z-penguin diagrams may play some role, while the
box diagram contributions to the �þ ! eþe�e�
rate are usual highly constrained.

(d) Z-penguin contributions can be constrained from
�þ ! eþ� and ��N ! e�N bounds. It can then
be used to constrain the Z ! e	�� rate by seven to
eight orders of magnitude lower than the present
experimental bound.

(e) In the first case (without any built-in cancellation
mechanism), using the recent �þ ! eþ� bound, we
find that �þ ! eþe�e� and ��N ! e�N rates are

bounded below the present experimental limits by two
to three orders ofmagnitude in general. In some cases,
the above expectation on low ��N ! e�N rates
can be relaxed, as additional box diagrams involving
quarks contribute to��N ! e�N processes.

(f) Furthermore, by comparing �a� and Bð� ! e�Þ
data, the couplings of g� and ge are found to be

highly hierarchical [see Eq. (35)]. Additional sup-
pression mechanisms should be called for.

(g) In the second case (with a built-in cancellationmecha-
nism), mixing angles can provide additional suppres-
sion factors to satisfy the �a� and Bð� ! e�Þ
bounds without relay only on highly hierarchical ge
and g� couplings.

(h) In addition, although the �þ ! eþe�e� rate
remains suppressed, the bounds on ��N ! e�N
rates, implicated from the MEG �þ ! eþ� bound,
can be relaxed significantly in the second case and
can be just below the present experimental limits.
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APPENDIX A: GAUGE QUANTUM
NUMBERS OF �AND c

The c ��� l Lagrangian,

Lint ¼ g0Lð �c R�
�
LÞiðLLÞi þ g0R �c L�

�
RlR þ H:c:; (A1)

where i is the weak isospin index, is gauge invariant under
the SM gauge transformation. Recall that the lepton quan-
tum numbers under SUð3Þ � SUð2Þ � Uð1Þ are given by

LL:

�
1; 2;� 1

2

�
; lR: ð1; 1;�1Þ: (A2)

The gauge-invariant requirement implies that we must
have the following quantum number assignments for these
combinations:

�c R�
�
L:

�
1; 2;

1

2

�
; �c L�

�
R: ð1; 1; 1Þ: (A3)

Consequently, the gauge quantum numbers of c and � are
related as follows:

c R: ðcR; 2IR þ 1; YRÞ;
�L:

�
�cR; 2

�
IR � 1

2

�
þ 1; YR � 1

2

�
;

c L: ðcL; 2IL þ 1; YLÞ; �R: ð �cL; 2IL þ 1; YR � 1Þ:

(A4)

Some examples for the assignments of the quantum num-
bers of c L;R and �L;R are given in Table II.

Note that in the cases of IR ¼ 0, YR ¼ 0 and IL ¼ 1=2,
YL ¼ 1=2, �L and �R can couple to quarks, respectively,
through

Ti e Ti,
Au e Au, excluded

Al e Al,
Ti e Ti proposed

0.01 0.1 1 10 100

10 12

10 10

10 8

10 6

10 4

m m

g L geL gu
2 gd

2 m 2 GeV 2

FIG. 11 (color online). Allowed parameter space for
jg�LgeLj2ðjguj2 þ jgdj2Þ=m2

c constrained by � ! e conversion

data. Note that dot-dashed and short-dashed lines denote con-
straints from �Ti ! eTi and �AuðAlÞ ! eAuðAlÞ conversion
bounds, respectively.
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�QLiuR�Li; �QLidR�Ri; �QLi
uR
ij�

y
Rj;

�QLi
dR
ij�

y
Lj;

(A5)

where 
ij is the antisymmetric tensor. It is easy to see that the above terms are indeed gauge invariant by using
�QLqR: ð1; 2;�1=6þQqÞ and Eq. (A4).

APPENDIX B: LOOP FUNCTIONS AND INPUT PARAMETERS

The loop functions used in this work are defined as

F1ða; bÞ ¼ 1

12ða� bÞ4
�
2a3 þ 3a2b� 6ab2 þ b3 þ 6a2b ln

b

a

�
;

F2ða; bÞ ¼ 1

2ða� bÞ3
�
�3a2 þ 4ab� b2 � 2a2 ln

b

a

�
;

F3ða; bÞ ¼ 1

2ða� bÞ3
�
a2 � b2 þ 2ab ln

b

a

�
;

G1ða; bÞ ¼ 1

36ða� bÞ4
�
�ða� bÞð11a2 � 7abþ 2b2Þ � 6a3 ln

b

a

�
;

G2ða; bÞ ¼ 1

36ða� bÞ4
�
�ða� bÞð16a2 � 29abþ 7b2Þ � 6a2ð2a� 3bÞ lnb

a

�
;

G3ða; bÞ ¼ 1

36ða� bÞ5
�
�ða� bÞð17a2 þ 8ab� b2Þ � 6a2ðaþ 3bÞ lnb

a

�
;

FZða1; a2; b; b; cÞ ¼ � a1ð2 ffiffiffiffiffiffiffiffiffiffi
a1a2

p � a1Þ
2ða1 � a2Þða1 � bÞ ln

a1
c
þ a2ð2 ffiffiffiffiffiffiffiffiffiffi

a1a2
p � a2Þ

2ða1 � a2Þða2 � bÞ ln
a2
c
� bð2 ffiffiffiffiffiffiffiffiffiffi

a1a2
p � bÞ

2ða1 � bÞða2 � bÞ ln
b

c

FZða; a; b1; b2; cÞ ¼ � 3

4
þ a2

2ða� b1Þða� b2Þ ln
a

c
� b21

2ða� b1Þðb1 � b2Þ ln
b1
c
þ b22

2ða� b2Þðb1 � b2Þ ln
b2
c
;

GZða1; a2; bÞ ¼
a1

ffiffiffiffiffiffiffiffiffiffi
a1a2

p
ða1 � a2Þða1 � bÞ ln

a1
b
� a2

ffiffiffiffiffiffiffiffiffiffi
a1a2

p
ða1 � a2Þða2 � bÞ ln

a2
b
;

Fða; b; c; dÞ ¼ b
ffiffiffiffiffiffi
ab

p
ða� bÞðb� cÞðb� dÞ ln

b

a
� c

ffiffiffiffiffiffi
ab

p
ða� cÞðb� cÞðc� dÞ ln

c

a
þ d

ffiffiffiffiffiffi
ab

p
ða� dÞðb� dÞðc� dÞ ln

d

a
;

Gða; b; c; dÞ ¼ � b2

ða� bÞðb� cÞðb� dÞ ln
b

a
þ c2

ða� cÞðb� cÞðc� dÞ ln
c

a
� d2

ða� dÞðb� dÞðc� dÞ ln
d

a
: (B1)

Note that these loop functions are dimensionful, and the dimension of G3 is different from others. We do not have the
expression of FZða1; a2; b1; b2; cÞ, since in Sec. II C only a1 ¼ a2 ¼ a and/or b1 ¼ b2 ¼ b are needed. Both expressions
of FZ give identical results in the a1 ¼ a2 ¼ a and b1 ¼ b2 ¼ b cases.

The numerical values of D, V, and !capt used in Eq. (18) are collected in Table III.

TABLE III. Parameters of overlap integrates and total capture
rates !capt taken from Refs. [10,11].

Dðm5=2
� Þ VðpÞðm5=2

� Þ VðnÞðm5=2
� Þ !captð106 s�1Þ

27
13Al 0.0362 0.0161 0.0173 0.7054

48
22Ti 0.0864 0.0396 0.0468 2.59
197
79 Au 0.189 0.0974 0.146 13.07

205
81 Tl 0.161 0.0834 0.128 13.90

TABLE II. Some examples for the assignment of the quantum
numbers of c L;R and �L;R.

c R �L c L �R

ð1; 1; YRÞ ð1; 2; YR � 1
2Þ ð1; 1; YLÞ ð1; 1; YL � 1Þ

ð1; 2; YRÞ ð1; 1; YR � 1
2Þ ð1; 2; YLÞ ð1; 2; YL � 1Þ

ð3ð�3Þ; 1; YRÞ ð�3ð3Þ; 2; YR � 1
2Þ ð3ð�3Þ; 1; YLÞ ð�3ð3Þ; 1; YL � 1Þ

ð3ð�3Þ; 2; YRÞ ð�3ð3Þ; 1; YR � 1
2Þ ð3ð�3Þ; 2; YLÞ ð�3ð3Þ; 2; YL � 1Þ
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