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We propose a simple extension of the electroweak standard model based on the discrete S3 symmetry

that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of

both charged leptons and neutrinos. This is achieved with the aid of additional Z5 and Z3 symmetries,

one of which can be embedded in Uð1ÞB�L. Five complex scalar singlet fields are introduced in addition to

the standard model with right-handed neutrinos. Although more general, the modified texture of the model

retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the

masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with

the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or

inverted hierarchy are allowed for neutrino masses.
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I. INTRODUCTION

As experimental efforts improve our knowledge about
the masses and the mixing pattern of neutrinos, the small
neutrino masses and the large mixing angles still await a
natural explanation. The former is successfully accommo-
dated by the seesaw mechanism but its testability is usually
out of reach of our present experiments. As for the mixing
angles, the puzzle is to explain the large angles and the great
difference from the Cabibbo-Kobayashi-Maskawa mixing
for quarks, which is governed by small mixing angles.

Concerning the quark sector, a scheme relating small
mass ratios with small mixing angles can be devised by
assuming a simple texture for the quark mass matrix [1].
More precisely, within two families, a Hermitian mass
matrix with a vanishing (1,1) element yields the correct

mixing angle �C � ðmd=msÞ1=2. An extension to three fam-
ilies was proposed by Fritzsch assuming a minimal texture
of the 3� 3 matrix, with vanishing (1,1), (1,3), (3,1), (2,2)
elements and a Hermitian form [2]. Such a texture deter-
mines the elements of the Cabibbo-Kobayashi-Maskawa
matrix as functions of the ratios of the quark masses. This
minimal texture, however, does not accommodate the
present data of quark masses and mixing structure.

For the lepton sector, it was shown that it is possible to
obtain the neutrino masses and mixing with the same
Fritzsch-type texture described above, with the Hermitian
form replaced by a symmetric form [3] (see also Ref. [4]).
The texture is applied to the Dirac mass matrices for
charged leptons and neutrinos, but light neutrino masses
arise from the seesaw mechanism. Consequently, light
neutrino masses depend quadratically on the Dirac mass
matrix. This quadratic dependence, in turn, determines that
the elements of the Pontercorvo-Maki-Nakagawa-Sakata

(PMNS) matrix depend on the ratio of charged lepton
masses but on the square root of the ratio of neutrino

masses. This property is what enables large mixing angles

to emerge from moderately hierarchical neutrino masses

within this Fritzsch-type texture [3].
More recently, using this minimal texture, Ref. [5] suc-

ceeded in predicting all observables in neutrino sector from

the known values of the squared-mass differences and

mixing angles. The recently observed �13 [6] was predicted
in Ref. [3]b in the right range. This information could then

be used in Ref. [5] to make more precise predictions for the

effective mass of double beta decay and the CP violation

measure. There is no ambiguity in hierarchy since the

texture only allows the normal hierarchy for the neutrino

masses, excluding either inverse hierarchy or quasidegen-

erate masses.
It is interesting to note that the Fritzsch-type texture pro-

posed in Ref. [3] is a particular example of textures with

vanishing matrix elements (texture zeros), which was exten-

sively studied in the context of neutrino mixing; e.g., see

Ref. [7] for a detailed study on two-zero textures. Usually,

these special textures are supposed to be apparent for the

neutrino mass matrix in the basis where the charged lepton

mass matrix is diagonal [8]. However, the case in Ref. [3] is

different, once the texture proposed is shared by the Dirac

mass matrices of both charged leptons and neutrinos.
On the other hand, from the theoretical point of view, the

phenomenologically successful textures should originate as

a consequence of an underlying exact or approximate flavor

symmetry acting at energies above the electroweak scale.

For example, Abelian symmetries can be systematically

used to justify texture zeros [9]. More specifically, one

can obtain the necessary texture zeros of the Fritzsch ansatz

for quarks from a Z4 symmetry within a 2-Higgs-doublet

model [10]. Some further relations between the nonzero

entries of the mass matrices may arise from an underlying

unifying gauge theory, which naturally accommodates a
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symmetric or Hermitian mass matrix such as in SUð5Þ
constructions [11] (symmetricMu) or the original left-right
proposal [2] (Hermitian Mu;d).

In contrast to Abelian symmetries, the use of discrete
non-Abelian symmetries is particularly appealing [12] to
generate mass-independent mixing patterns [13], the most
interesting of which is the tribimaximal mixing. In this
context, models using the simple S3 symmetry can be
found abundantly in the literature [14].

In this work, we take a different perspective and use
the non-Abelian S3 flavor symmetry, together with some
Abelian symmetries, to impose texture zeros, and at the
same time, relate some nonzero elements of the mass matri-
ces. The latter cannot be accomplished within the gauge
structure of the standard model (SM) if we only impose
Abelian symmetries. The resulting form for the mass matri-
ces is a modified form of the ansatz of Ref. [3]. The texture
for the mass matrices of charged leptons and neutrinos has in
fact a common origin according to our proposal.

Other approaches to the mass and mixing problem as we
deal with here can be found in the literature as, e.g., the use
of S3 symmetry aiming at explaining a Fritzsch-type tex-
ture [15]. The latter, however, is obtained only for the
neutrino mass matrix itself; videlicet, a seesaw mechanism
is not considered and the charged lepton mass matrix is
also not of the Fritzsch type but nearly diagonal.

The outline of the paper is the following. In Sec. II, we
review the minimal texture hypothesis of Ref. [3]. In
Sec. III, we present the model. We show in Sec. IV an
analysis of the modified form for the ansatz and some
numerical examples. The conclusions are shown in
Sec. V. In the Appendix, we discuss the scalar potential
and justify the necessary alignment for the vacuum expec-
tation values (VEVs) of some scalar fields.

II. THE MINIMALTEXTURE ANSATZ

The minimal texture hypothesis of Refs. [3,5] consists of
assuming that the mass matrix for charged leptons and the
Dirac mass matrix for neutrinos have the simple form [2]

M ¼
0 A 0

A 0 B

0 B C

0
BB@

1
CCA; (1)

where A, B, C are complex numbers.
With a rephasing of lepton fields we can transform (1) to

a real symmetric matrix

jMj ¼
0 jAj 0

jAj 0 jBj
0 jBj jCj

0
BB@

1
CCA: (2)

We will denote the matrix jMj in (2) as the real form of the
matrix M in (1). The matrix in the real form can be
diagonalized by a real orthogonal matrix. It follows that
M can be diagonalized by

Mdiag ¼ UTMU; (3)

where

U ¼ dyO; (4)

d is a diagonal rephasing matrix, and O a real orthogonal
matrix [the transformation in (3) is a special case of a
biunitary transformation]. The three parameters jAj, jBj,
jCj are completely determined by the three eigenvalues of
M, (m1, �m2, m3), where 0 � m1 <m2 <m3. When
m1 � m2 � m3, this ansatz implements the idea that
small mixing angles are consequences of large hierarchies
in mass.
Let us attribute the simple form (1) for the mass matrix

of charged leptons and for the Dirac mass matrix for
neutrinos,

Ml¼
0 Al 0

Al 0 Bl

0 Bl Cl

0
BB@

1
CCA; MD¼

0 A� 0

A� 0 B�

0 B� C�

0
BB@

1
CCA; (5)

with both being diagonalized by matrices of the form (4).
It is assumed here that the light neutrino masses are

generated through the seesaw mechanism from the mass
matrix

M� ¼ �MT
DM

�1
R MD; (6)

where MR is the right-handed Majorana neutrinos mass
matrix. For simplicity, it is further assumed thatMR, in the
basis where MD is diagonal, is proportional to the identity
[Ref. [3], b], i.e.,

UT
�MRU� ¼ M013: (7)

M0 is real, positive, and much larger than the Dirac
neutrino mass scale. This means that in the basis where
MD has the form (5),

MR ¼ M0d
2
�; (8)

where d� is the rephasing matrix for MD. In this case, the
mass matrix M� is still diagonalized by

U� ¼ dy�O�; (9)

M
diag
� ¼ � 1

M0

½Mdiag
D �2 ¼ UT

�M�U�; (10)

i.e., the same matrix that diagonalizesMD. This conclusion
is not significantly modified for anMR different from (8) if
the eigenvalues of MD are hierarchical [Ref. [3]b]; in
particular, the effects of additional phases in MR are only
minor [Ref. [3]a].
The PMNS matrix is then given by

VMNS ¼ Uy
l U� ¼ OT

l QO�; (11)

where Q ¼ diagð1; ei�; ei�Þ is a matrix of phases coming

from dld
y
� subtracting a global phase.
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With this minimal texture, Ref. [5] succeeds in predict-
ing all the relevant observables in the neutrino sector, such
as the Jarlskog invariant or the absolute mass scale, from
the presently known mass-squared differences and mixing
angles. Our main interest in this paper is to propose a
model realization of this ansatz.

III. THE MODEL

We propose a model based on S3 symmetry that is
capable of naturally generating the simple form (1) for
the Dirac mass matrices for charged leptons and neutrinos.

We enlarge the symmetry group of the SM by including
a flavor group GF ¼ S3 � Z5 � Z3. The three families of
left-handed lepton doublets Li and right-handed singlets
liR and �iR, i ¼ 1, 2, 3 (or li ¼ e, �, �), transform non-
trivially under GF. The Higgs doublet � is a singlet of GF.
We also assume that the GF symmetry is valid only on a
scale above the electroweak scale, where new physics
effects can be described by some nonrenormalizable
GF-symmetric interactions which depend on five complex
scalars �, �, �0, and 	i, i ¼ 1, 2, that are complete singlets
of the SM.

We arrange the fields of the model on multiplets trans-
forming under irreducible representations of GF. There are
only three such representations of S3: two singlets and a
doublet, which are denoted as 1, 10, 2. We assign them as

2:LD�ðLe;L�Þ; ED�ðeR;�RÞ;
ND�ð�1R;�2RÞ; 	D�ð	1;	2Þ;

1:LS�L�; ES��R; NS��3R;

�;�0;

10:�: (12)

The complete assignment of representations of GF is
shown in Table I.

The relevant branching rule for S3 is 2 � 2 ¼ 1 	 10 	 2.
For two doublets x ¼ ðx1; x2ÞT and y ¼ ðy1; y2ÞT, the de-
composition can be performed explicitly as [12]

½x� y�1 ¼ x1y1 þ x2y2;

½x� y�10 ¼ x1y2 � x2y1;

½x� y�2 ¼
x2y2 � x1y1

x1y2 þ x2y1

 !
:

(13)

Notice the following products for three doublets x, y, z:

½x� y� z�1 � ½½x� y�2 � z�1 ¼ ½x� ½y� z�2�1;
½x� y� z�10 � ½½x� y�2 � z�10 ¼ �½x� ½y� z�2�10 ;

(14)

are uniquely defined.
We can now easily write the Yukawa Lagrangian for

charged leptons,

�LY
l ¼ a
l

�
½ �LD�ED�10�
 þ b0
l

�
�LS�½ED	D�1

þ b
l
�

½ �LD	D�1�ES þ c
l �LS�ES þ H:c:; (15)

where we have used (14) and only retained operators of
order up to 1=� [16]. Notice the tau lepton is the only one
that receives mass through renormalizable interactions,
hence its large mass. In the basis �liRljL, we obtain the

mass matrix

Ml ¼
0 �Al 0

Al 0 B0
l

0 Bl Cl

0
BB@

1
CCA; (16)

where the elements are

Al ¼ alv�

u�
�

; Bl ¼ blv�

u
2
�

;

B0
l ¼ b0lv�

u
2
�

; Cl ¼ clv�:
(17)

These elements depend on the VEVs of the neutral fields
which we assume have the form

h	Di ¼ ð0; u2ÞT; h�i ¼ u�; h�0i ¼ v�; (18)

where
ffiffiffi
2

p
v� ¼ v ¼ 246 GeV is the electroweak scale; u2

and u� may be complex a priori. Notice the minus sign in

the (1,2) entry of (16) can be eliminated by rephasing the
appropriate right-handed lepton field.
Analogously, the Dirac mass matrix for neutrinos is

generated by the effective Yukawa Lagrangian

�LY
� ¼ a
�

�
½ �LD

~�ND�10�
 þ b0
�
�

�LS
~�½ND	D�1

þ b
�
�

½ �LD	D�1 ~�NS þ c
� �LS
~�NS þ H:c: (19)

By assuming the same VEVs of (18), we obtain the same
form as (16),

MD ¼
0 �A� 0

A� 0 B0
�

0 B� C�

0
BB@

1
CCA; (20)

with the identification

TABLE I. Transformation properties under GF ¼
S3 � Z5 � Z3 where ! ¼ ei2
=3 and !5 ¼ ei2
=5.

LD LS ED ES ND NS � 	D � � �0

S3 2 1 2 1 2 1 1 2 10 1 1

Z5 !4
5 1 !5 1 !5 1 1 !4

5 !2
5 1 !3

5

Z3 ! ! ! ! ! ! 1 1 1 ! !
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A� ¼ a�v�

u�
�

; B� ¼ b�v�

u
2
�

;

B0
� ¼ b0�v�

u
2
�

; C� ¼ c�v�:
(21)

The Majorana mass terms are generated by

�LM
� ¼ 1

2
�1½ �NDN

c
D�1�0
 þ 1

2
�2

�NSN
c
S�


 þ H:c: (22)

These terms generate the Majorana mass matrix

MR ¼ diagð�1; �1; �2Þ; (23)

where �1 ¼ �1u
0

S , �2 ¼ �2u



S, and

h�0i ¼ u0S; h�i ¼ uS: (24)

The VEVs uS, u
0
S may be complex.

The mass matrix for light neutrinos is given by the
seesaw formula (6), which leads to

M� ¼ �

A2
�

�1
0 A�B

0
�

�1

0 A2
�

�1
þ B2

�

�2

B�C�

�2

A�B
0
�

�1

B�C�

�2

B02
�

�1
þ C2

�

�2

0
BBBB@

1
CCCCA: (25)

From Eqs. (16), (20), and (23), we recover the minimal
texture of Ref. [3] if (i) j�1j ¼ j�2j ¼ M0 in MR [and
MR ¼ M013 in the basis where MD has the real form (2)],
(ii) B0

l ¼ Bl inMl, and (iii) B� ¼ B0
� inMD. It is argued in

Ref. [3] that (i) is not essential as long as MD has hier-
archical eigenvalues. We can confirm this by applying a
rephasing transformation to (25) to obtain

dy�M�d
y
� ¼

a2e�i2�2 0 ab0

0 a2ei2�1 þ b2 bc

ab0 bc b02ei2�2 þ c2

0
BB@

1
CCA:
(26)

We have used the shorthands for the positive real
numbers a2 ¼ jA2

�=�1j, b2 ¼ jB2
�=�2j, b02 ¼ jB02

� =�1j,
c2¼jC2

�=�2j, and for the phases �1¼argðA�B


�=

ffiffiffiffiffiffiffiffiffiffiffiffi
�1�



2

p Þ,
�2 ¼ argðB0

�C


�=

ffiffiffiffiffiffiffiffiffiffiffiffi
�1�



2

p Þ. Given the hierarchy c � b,

b0 � a, we can see that each element ofMy
�M�, calculated

from (26), does not depend on the phases �1, �2 in the
leading terms. Thus, we can consider M� to be real in the
first approximation.

We will show in the next section how (ii) and (iii) affect
the relations between the parameters of Ml, M�, and the
masses.

IV. DEVIATIONS FROM THE MINIMALTEXTURE

Let us analyze the consequences of the deviation of
Ml and MD from the minimal texture (1).

The texture obtained for Ml and MD in our model,
Eqs. (16) and (20), has the modified form

M0 ¼
0 �A 0

A 0 B0

0 B C

0
BB@

1
CCA: (27)

It generalizes the minimal texture (1) in that B0 and B are
not necessarily equal. We expect, however, that jBj � jB0j
such that the hierarchy jAj � jBj, jB0j � jCj is main-
tained in conformity to the hierarchy of masses m1 �
m2 � m3. If we also had the elements (1,2) and (2,1)
distinct in (27), we would obtain the nearest-neighbor
interaction form [17], which is always achievable by a
weak basis change.
Since M0 in (27) is no longer symmetric, even if we

eliminate the minus sign in the (1,2) entry, the relevant
mass matrix that furnishes the (squared) masses is M0yM0.
This matrix can still be transformed to the real form

jM0yM0j ¼
a2 0 b0a
0 a2 þ b2 bc

b0a bc b02 þ c2

0
BB@

1
CCA (28)

by rephasing the appropriate fields. We have also used the
shorthands a � jAj, b � jBj, b0 � jB0j, c � jCj. Note that
(26) has the same form as (28) when the phases are
neglected.
The characteristic equation for (28) is

�3 � ð2a2 þ b2 þ b02 þ c2Þ�2

þ ½ða2 þ b2Þða2 þ b02Þ þ 2a2c2��� a4c2 ¼ 0: (29)

This equation should be compared to the characteristic
equation for jMj2 which is obtained from (29) when
b0 ¼ b. We know jMj2 has eigenvalues ðm2

1; m
2
2; m

2
3Þ and

the same eigenvectors of jMj in (2). If we also identify
the eigenvalues of jM0yM0j as ðm2

1; m
2
2; m

2
3Þ, we can still

write a, c, and �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðb2 þ b02Þ

q
as functions of the

masses and one remaining degree of freedom, quantified by
�b2 � b2 � b02. We assume m3 >m2 >m1 � 0 for the
expressions below.
Let us analyze the relations of a, c, �b with the masses

and�b2. The relation between a and c is the same as in the
minimal texture; i.e.,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3

c

r
; (30)

which follows from detðjM0yM0jÞ ¼ m2
1m

2
2m

2
3. The relation

between �b and c is given by

ð �bÞ2 ¼ 1

2
ðm2

1 þm2
2 þm2

3 � c2Þ �m1m2m3

c
; (31)

which follows from TrðjM0yM0jÞ ¼ m2
1 þm2

2 þm2
3. At

last, the parameter c can be obtained as a root of
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ðc2 �m2
1 �m2

2 �m2
3Þ2 � ð�b2Þ2

¼ 4ðm2
1m

2
2 þm2

2m
2
3 þm2

1m
2
3Þ � 8m1m2m3c: (32)

Once c is fixed by (32), a and �b are known for a given�b2.
To obtain c, we should analyze Eq. (32). Among the

possible multiple roots, we identify the physical root as the
one that reduces to the known expression [2]

c0 � m1 �m2 þm3; (33)

in the limit �b2 ! 0. In general, we should write

c ¼ c0 þ �c: (34)

To quantify the deviation �c, we should rewrite Eq. (32) in
terms of the relative deviation �c=c0, which gives

1

4

�
�c

c0

�
4 þ

�
�c

c0

�
3 þ2

�
�c

c0

�
2 þ1

�
�c

c0

�
¼
�
�b2

2c20

�
2
: (35)

We have used the shorthands

1 ¼ �2
b20
c20

;

2 ¼ m2
1 þm2

2 þm2
3 þ 3½m1m3 �m2ðm1 þm3Þ�

c20
;

(36)

and

b0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 �m1Þðm1 þm3Þðm3 �m2Þ

m1 �m2 þm3

s
: (37)

The latter corresponds to b ¼ b0 in the minimal texture and
can be obtained from (31) in the limit c ¼ c0. We can
confirm from expression (37) that indeed the negative
eigenvalue of (2) should be associated to the intermediate
mass.

Equation (35) can be solved numerically, but we can
seek an approximate solution that goes to zero as�b2 ! 0.
To quantify �b2 better, we can parametrize �b2 by either

�b2 ¼ 2 �b2� or �b2 ¼ 2b20�0; (38)

depending on the choice of using the parameters fa; �b; cg or
the masses fmig as input parameters. Since b, b0 approach
b0 in the limit �b2 ! 0, �  �0 for small values. For
large values, � strictly obeys j�j � 1 by definition,
whereas j�0j can assume values larger than unity, but we
still need j�j & 1 to ensure b� b0 [18]. By noting from
(36) that j1j � 1, whereas 2 �Oð1Þ, we can drop the
cubic and quartic terms in (35) and write an approximate
solution as

�c

c0
 � b20

c20
fð�0Þ; (39)

where

fð�0Þ � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

2
0

q
� 1

�
: (40)

For a hierarchical spectrum b20=c
2
0  m2=m3, and the error

for (39) is of the order of�6
0b

6
0=c

6
0 � �6

0m
3
2=m

3
3. We can see

that the relative deviation �c=c0 is small, and �c is at most
of the order of m2 as long as b� b0. We can also see from
(30) that the relative deviation �a=a0 is small and of the
order of (39).
As b, b0 are expected to be of the same order, they vary

significantly with �0 (or �) in (38). We can write b, b0 as
functions of the masses and �0. Thus, for a given �0 and
masses fmig, the matrix (28) is fixed.
We should also comment on the dependence of the ei-

genvectors of (28) on �0 as it deviates from 0. Let us denote
by O the matrix of eigenvectors of (28), with eigenvectors
associated to m2

1, m
2
2, m

2
3 arranged in the columns 1,2,3,

respectively. For the minimal texture (�0 ¼ 0), O is fixed
[3]. With hierarchical masses, the diagonal elements O11,
O22, O33 are the largest in modulus, and we use the
convention that they are positive; O31, O12, O32 are thus
negative. As �0 varies for j�0j & 1, one can check that the
elementsO21, O12, O13 are approximately constant with �0

(jO12j increases mildly and jO13j decreases mildly with�0).
On the other hand, jO31j, jO32j, jO23j increase significantly
with �0. The diagonal elements decrease accordingly. We
can see that the mixing angles can be significantly modified.
If we extend this discussion to Ml and MD of Eqs. (16)

and (20), their modified texture (27) introduces two more
degrees of freedom that we can parametrize as�0l and�0�.
Given that the charged lepton masses have large hierarchy,
one can check that the elements (1,2), (1,3), (2,1), and (3,1)
of Ol are small and do not change significantly for j�0j &
1; jðOlÞ23j, jðOlÞ32j increase substantially with �0l. We can
conclude that the space of solutions found in Ref. [5] is
significantly broadened, as �0l, �0� can be varied in the
range j�0j & 1,  ¼ l, �. Besides the solutions close to
�0l ¼ �0� ¼ 0, which are necessarily present, one can
easily find solutions away from that point.
As an example, we make a numerical comparison be-

tween two cases: (a) the minimal texture (�0l ¼ �� ¼ 0)
and (b) ð�0l; ��Þ ¼ ð1;�0:418Þ; the latter is substantially
different from the minimal case. It is appropriate to use ��

instead of �0� because we use the parameters a, �b, c as
input parameters instead of the neutrino masses. The com-
parison is shown in two figures. In Fig. 1, we show sin2�13
as a function of sin2�23. We can see the two cases are
indistinguishable. Figure 2 shows sin2�12 as a function of
the lightest neutrino mass m1 where the two cases (a) and
(b) can be almost completely separated. We also note that
m1 is in general nearly twice as heavy for case (b) com-
pared to case (a).
To generate our points for the scatter plots, we employ

the following procedure. We use as inputs for the charged
lepton sector, the central values of the masses ðme;m�;m�Þ
[19] and �0l, which determine the mass matrix squared
(28). For the neutrino sector, we use fa; �b; c; ��g as inputs
to fix the neutrino mass matrix (26), with �1 ¼ �2 ¼ 0.
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The two phases �, � in (11) complete the list of free
parameters. Then, for fixed values of ð�0l; ��Þ, we vary
the parameters fa; �b; c; �; �g randomly and select only the
points compatible, within 2-�, with the values of the mix-
ing angles, �12, �13, �23, and mass-squared differences
�m2

21, �m
2
31 of Ref. [20]. No analytical approximations

are employed in the diagonalization process. Although we

use slightly different data, we can see our points are
compatible with the predictions of Ref. [5] for the minimal
texture. For the nonminimal case, we assume normal hier-
archy, and only points with parameters fa; �b; cg close to the
minimal case are sought.
For completeness, we list some typical values for the

parameters for the two cases:

ðaÞ a ¼ 0:07 eV; �b ¼ 0:105 eV; c ¼ 0:170 eV; � ¼ 1:5; � ¼ �1:78;

ðbÞ a ¼ 0:0783 eV; �b ¼ 0:0984 eV; c ¼ 0:175 eV; � ¼ 2:4; � ¼ �0:65:
(41)

They are compatible within 1-� of Ref. [20]. While for case (a), the phases in (20) are really typical, together with their
opposite signs (� ! �� and � ! ��), the phase � for case (b) is well distributed in the whole range ð�
;
�.

For an even larger departure from the minimal texture, one can find solutions which were not possible for the minimal
texture [3], namely, neutrino masses with quasidegenerate spectrum (QD) or inverted hierarchy (IH). One example of
solutions have parameters

ðQDÞ �0l¼2:5; ��¼�0:41; a¼0:225 eV; �b¼0:0115 eV; c¼0:265 eV; �¼1:6; �¼�1:8;

ðIHÞ �0l¼5:2; ��¼0:107; a¼0:220 eV; �b¼0:0349 eV; c¼0:0608 eV; �¼1:6; �¼�1:8;
(42)

which lead to the neutrino masses

ðm1; m2; m3ÞQD ¼ ð49:92; 50:68; 71:14Þ meV;

ðm1; m2; m3ÞIH ¼ ð49:33; 50:10; 3:50Þ meV:
(43)

In particular, these examples agree with the values of
Ref. [20] within 1-�. The large departure from the minimal
texture for the charged lepton mass matrix can be seen
from the fact that these points correspond �l  0:928 and
�l  0:982 for the QD and IH cases, respectively.
Therefore, jBlj � jB0

lj in (16). In this case, we lose some
naturality in view of the structure (15). For the case of IH,

although �� is small, it cannot be much larger [e.g.,Oð1Þ],
otherwise we lose the appropriate root of (35) or (32). It

should be emphasized that a large set of solutions with

parameters f�0l; ��; a; �b; cg similar to (42) can be easily

found, and (42) is not special in this regard. It is also

evident that very different predictions arise from the ex-

treme cases (42). For example, the effective mass that

enters the neutrinoless double beta decay experiments is

quite large for the following cases:

ðQDÞ mee50:1meV; ðIHÞ mee48:1meV: (44)

As a remark, we should also note some similar analysis
has been performed by Ref. [21] on the non-Hermitian
departure from the Fritzsch form, although it considers
Dirac neutrinos. Our modified form (27) is a particular
case of the nearest-neighbor interaction form considered
in Ref. [21] but the latter only analyzes the deviations

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.29

0.30

0.31

0.32

0.33

0.34

0.35

FIG. 2 (color online). sin2�12 as a function of the lightest
neutrino mass; the symbols � correspond to �0l ¼ �� ¼ 0
while dots correspond to ð�0l; ��Þ ¼ ð1;�0:418Þ.
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FIG. 1 (color online). sin2�13 as a function of sin2�23; the
symbols � correspond to �0l ¼ �� ¼ 0 while dots correspond
to ð�0l; ��Þ ¼ ð1;�0:418Þ.
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perturbatively. The approximation (39) is better than the
perturbative first-order approximation. Also, in our case we
have Majorana neutrinos.

V. CONCLUSIONS

We have presented here a simple extension of SM
based on the flavor group S3, which is capable of gen-
erating the minimal texture proposed in Ref. [3] with
three additional degrees of freedom: (i) MR has two
independent diagonal elements instead of one (we also
have more phases), (ii) the (2,3) and (3,2) elements of Ml

are independent, and (iii) the (2,3) and (3,2) elements of
MD are independent as well. If we equate the parameters
in (i), (ii), and (iii) [and adjust the phases for (i)], we
reproduce exactly the ansatz of Ref. [3].

The model possesses an additional flavor symmetry
GF ¼ S3 � Z5 � Z3 and five additional complex scalars
	D ¼ ð	1; 	2Þ, �, �, �0. The scalars �, �0 only couple to
right-handed neutrinos through lepton number violating
interactions. In fact, Z3 in GF can be extended to
Uð1ÞB�L in the lepton sector if we assign B� L ¼ 2 to
both �, �0. This symmetry, however, is softly broken to Z3

(factoring out the group f�1g for leptons) by the term �3 in
the scalar potential. Therefore, our flavor group could be a
discrete remnant of a larger symmetry containing Uð1ÞB�L

at higher energies. We should emphasize that the symmetry
Z5 � Z3 highly constrains the model, naturally providing
both a rationale for large tau mass and the necessary
vacuum alignment.

On the phenomenological side, the freedom (i) does not
lead to large deviations from the minimal texture. The free-
doms (ii) and (iii), on the other hand, canmodify significantly
the mixing angles in the orthogonal matricesOl andO� that
diagonalize the respective squared mass matrices in the
real form. The freedoms (ii) and (iii) were parametrized by
two parameters �0 (38),  ¼ l, �, that may vary in the
range j�0j & 1. The values�0l¼�0�¼0 correspond to the
minimal texture. Since the dependence of the PMNS matrix
on �0l, �0� is smooth, the solutions for �0l ¼ �0� ¼ 0 [5]
are not disrupted as we relax �0l  �0�  0. However, as
we deviate from the minimal texture, very different solu-
tions are possible. This was shown through various ex-
amples. In the first example, we have shown in Fig. 2
that the minimal case can be distinguished from the case
ð�0l; ��Þ ¼ ð1;�0:418Þ with similar values for the rest of
the parameters. For even larger deviations from the mini-
mal texture, we have shown that both quasidegenerate
spectrum and inverted hierarchy are possible. This con-
trasts sharply with the minimal texture where neither of
them is possible [5].

In summary, the modified texture (27) arising from our
model for the Dirac mass matrices of charged leptons and
neutrinos easily accommodates the present data on the
neutrinos sector but still allows a wide range of possibilities
if we permit large deviations from the minimal texture.

ACKNOWLEDGMENTS

The work of A.G.D. and C. C. N. is partially supported
by the Brazilian FAPESP and CNPq. The work of
A. C. B.M. is supported by CAPES.

APPENDIX: ALIGNMENT OF h�Di
We justify here the alignment h	Di ¼ ð0; u2ÞT assumed in

(18) [22]. For this alignment, the existence of the scalar �
transforming as 10 of S3 and its coupling to 	D are essential.
It is exactly h�i � 0 that breaks S3 to Z3, whereas h	Di
breaks this remaining symmetry. To be explicit, we can
write the generators a, b of S3 acting on 	D as [12]

DðaÞ ¼ diagð1;�1Þ; DðbÞ ¼ � 1
2

ffiffi
3

p
2

�
ffiffi
3

p
2 � 1

2

0
@

1
A: (A1)

Both are contained in Oð2Þ: DðaÞ is a reflection in the 	2
direction and DðbÞ is a 2
=3 rotation in the plane. The
VEV h�i � 0 breaks the Z2 generated by DðaÞ, and S3 is
broken to the Z3 generated by DðbÞ.
To analyze the alignment of 	D, we consider only the

relevant terms that depend on 	D, which are

V	D ¼ �2
d	

y
D	D þ �1ð	yD	DÞ2 þ �2ð½	
D	D�10 Þ2

þ f�3½	D	D	D�10�
 þ �0
3½	D	D�1��0
 þ H:c:g;

(A2)

where we assume for our purposes that �3, �
0
3 are real; the

coefficient �2
d effectively includes terms depending on

other GF invariant combination of fields such as �y� or
�
�. The term ð½	
D	D�2Þ2 does not introduce new terms.
We note that the first two terms of the potential (A2) are
Uð2Þ invariant, and we obviously need �2

d < 0 to obtain

nontrivial h	Di. The third, fourth, and fifth terms break the
Uð2Þ invariance because

ð½	
D	D�10 Þ2 ¼ �4Im2ð	
1	2Þ; (A3)

½	D	D	D�10 ¼ 	2ð	22 � 3	21 Þ; (A4)

½	D	D�1 ¼ 	21 þ 	22 : (A5)

The term(A3) is still invariant by Oð2Þ and global rephas-
ing. The Oð2Þ symmetry is reduced to S3 by the term
proportional to (A4), which is further reduced to Z3

when � acquires a nonzero VEV.
To ensure the term proportional to (A3) is positive semi-

definite, we choose �2 < 0. This choice tends to align the
phases of h	1i and h	2i, or otherwise make either h	1i ¼ 0
or h	2i ¼ 0. The term(A4) tends to make h	1i ¼ 0. One can
then check that the direction h	Di ¼ ð0; u2ÞT is a local

minimum in the shell (orbit) where 	yD	D is constant,
provided that h�i � 0. This check is most easily performed
for the case where all the coefficients of the scalar potential
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are real and the VEVs of �, �, �0 are real as well. Then, we
can choose the sign of the coefficients of (A2) such that

�3h�i< 0; �0
3h��0
i< 0: (A6)

In this case, the u2 corresponding to the deepest minimum
in this direction will be real and positive.

We should remark that due to the discreteGF symmetry, the
potential (A2) possessesmultiple degenerateminima.After�,
�, �0 have acquired nonzero VEVs, the Z3�S3 symmetry
guarantee that if h	Di¼ð0;u2ÞT is a minimum, then

DðbÞh	Di; D2ðbÞh	Di; (A7)

are also degenerate minima. These minima are not aligned as
ð0; u2Þ but they induce equivalent mass matrices since the
form (16) is recovered after we apply D�1ðbÞ or D�2ðbÞ
transformations on the fermions transforming as 2 of S3.

Besides the last two terms in (A2), there is still one last
non-Hermitian term invariant under GF, which is con-
tained in the potential involving only �,

V� ¼ �2
��

y�þ ��ð�y�Þ2 þ fm�3 þ H:c:g: (A8)

The remaining renormalizable terms in the total potential
are all Hermitian. We can see there are parameter ranges of
the potential that guarantee nonzero and arbitrary VEVs;
we keep h�i in the electroweak value and the rest of the
VEVs may be pushed to higher energies.
It must be noted that we have a rephasing transformation

	D ! ei	D, � ! ei3�, �0 ! ei2�0, with� and � trans-
forming trivially, resulting in a Uð1Þ continuous acciden-
tal symmetry, which contains Z5 of GF. This generates a
Goldstone boson after scalar fields acquire VEVs. The
Goldstone boson is given by the following combination:

G ¼ u2Im	2 þ 3u�Im�þ 2u0sIm�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22 þ 9u2� þ 4u02s

q : (A9)

G would couple with the SM fields through nonrenorma-
lizable interactions in (15), and they are suppressed by the
scale �. Also, the coupling could be even suppressed if u2,
u� � u0s. The main interaction is with ND in Eq. (22) and

so G is harmless.
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