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Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative

charged hadrons at midrapidity from pþ p collisions at
ffiffiffi
s

p ¼ 62:4 GeV are presented. The PHENIX

measurement of the cross sections for 1:0< pT < 4:5 GeV=c are consistent with perturbative QCD

calculations at next-to-leading order in the strong-coupling constant, �s. Resummed pQCD calculations

including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree

with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a

momentum-fraction range of 0:05 & xgluon & 0:2, is consistent with recent global parametrizations

disfavoring large gluon polarization.

DOI: 10.1103/PhysRevD.86.092006 PACS numbers: 13.85.�t, 13.88.+e, 14.20.Dh

I. INTRODUCTION

The comparison of cross-section predictions with
data on single-inclusive hadron production in hadronic
collisions, pþ p ! hþ X, is important for understanding
perturbative quantum chromodynamics (pQCD). For
hadrons produced with transverse momenta pT � �QCD,

the cross section factorizes into a convolution involving
long-distance and short-distance components [1,2]. Long-
distance components include universal parton distribution
functions (PDFs) describing the partonic structure of the
initial hadrons and fragmentation functions (FFs) for the
final-state hadron. The short-distance part describes
the hard scattering of partons. The long-distance components,
PDFs and FFs, can be extracted from other processes, such
as deep-inelastic scattering and hadron production in eþe�
colliders. This allows for a test of the short-distance part
of the convolution, which can be estimated using pQCD.
In particular, differences between data and predictions can
indicate the importance of neglected higher-order terms in the
expansion or power-suppressed contributions [3].

Next-to-leading-order (NLO) pQCD and collinear fac-
torization successfully describe cross-section measure-
ments at a center-of-mass energy (

ffiffiffi
s

p
) of 200 GeV for

midrapidity neutral pions [4,5], jets [6–8], and direct pho-
tons [9], as well as forward rapidity pions and kaons
[10,11]. However, at lower

ffiffiffi
s

p
, in particular, in fixed-target

experiments [12–15] with 20 &
ffiffiffi
s

p
& 40 GeV, NLO

pQCD calculations significantly underpredict hadron pro-
duction, by factors of three or more [3]. The consistency
between NLO estimations and data at low

ffiffiffi
s

p
was im-

proved [3,16,17] by including the resummation of large
logarithmic corrections to the partonic cross section to all
orders in the strong coupling �s. The corrections are of the

form �k
s ln

2kð1� x̂2TÞ for the kth-order term in the pertur-

bative expansion. Here x̂T � 2p̂T=
ffiffiffî
s

p
, where p̂T ¼ pT=z is

the transverse momentum of the parton fragmenting into

the observed hadron with a fraction z of the parton trans-

verse momentum, and
ffiffiffî
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
x1x2s

p
is the partonic center-

of-mass energy where x1, x2 are momentum fractions

carried by two interacting partons. The corrections are

especially relevant in the threshold regime x̂T ! 1 in

which the initial partons have just enough energy to pro-

duce a high-transverse-momentum parton fragmenting into

the observed hadron. In this regime gluon bremsstrahlung

is suppressed, and these corrections are large [16].

However, the addition of the resummed next-to-leading-

log (NLL) terms to an NLO calculation may not provide

the best means of describing data in a given kinematic

region, for example, when the (unknown) higher-order

terms that are omitted from the calculation have compa-

rable magnitude and opposite sign to the NLL terms. It is

therefore important to test pQCD calculations against data

in a region of intermediate
ffiffiffi
s

p
, to better define the kine-

matic ranges over which pQCD calculations can be applied

with confidence.
The data presented here from the PHENIX detector

at the Relativistic Heavy Ion Collider (RHIC) for the
production of nonidentified, long-lived charged hadrons
(��, K�, p�)—loosely termed as inclusive charged
hadrons–make use of approximately 5 times the geometric
detector acceptance and different detection techniques
compared to the identified-charged-hadron analysis [18],
which depended on the time-of-flight detector at PHENIX.
The new results allow tests of NLO and NLL predictions
based on a separate measurement in a wider pT range and
with higher statistics. In addition, the theoretical calcula-
tions make use of inclusive-charged-hadron fragmentation
functions [19], parametrized independently from those for
the identified charged hadrons [20]. Alternatively, assuming

*Deceased.
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the reliability of the short-distance aspects of the theory,
the data may be used to refine knowledge of fragmenta-
tion functions. The present measurements cover a greater
pT range than the identified charged-hadron cross sec-
tions, where the measured momentum ranges for pions,
kaons, and protons are 0:3–3 GeV=c, 0:4–2 GeV=c, and
0:5–4:5 GeV=c, respectively [18]. These cross-section
measurements of nonidentified charged hadrons are also
important as baselines for extracting nuclear modification
factors in high-pT hadron production in heavy ion colli-
sions at RHIC [21,22].

The charged hadrons in these measurements were
produced from collisions of transversely- and longitudi-
nally polarized proton beams, a unique capability of RHIC
[23]. While the cross-section measurements discussed
above require averaging over the beam polarizations,
sorting the hadron yields by colliding proton helicities
(for longitudinal beam polarizations) provides sensitivity
to the helicity PDFs [24]. The ability to probe helicity
PDFs is essential for understanding the spin structure of
the proton [25].

The spin of the proton originates from the spin and
orbital angular momenta of its quark, antiquark, and gluon
constituents. The contribution carried by quark and anti-
quark spin, determined from polarized deep-inelastic scat-
tering (pDIS) experiments [26–36] using polarized leptons
and polarized nucleons, is�25%–35% [25,37–41]. This is
surprisingly small [25] and implies that the majority of the
spin of the proton must originate from gluon spin and/or
orbital angular momentum.

Colliding longitudinally polarized proton beams pro-
vides sensitivity to the gluon-helicity distribution function
at leading order. The helicity-dependent difference in
hadron production is defined as

d��

dpT

� 1

2

�
d�þþ

dpT

� d�þ�

dpT

�
;

where the superscriptsþþ andþ� refer to the same- and
opposite-helicity combinations of the colliding protons
[24]. Factorization allows this to be written as a convolu-
tion of the long- and short-distance terms summed over all
possible flavors for the partonic interaction aþ b ! cþ
X0, where c fragments into the detected hadron h:

d��

dpT

¼ X
abc

Z
dxadxbdzc�faðxa;�fÞ�fbðxb; �fÞ

� d��̂ab!cX0

dpT

ðxaPa; xbPb; P
h=zc;�f;�

0
f; �rÞ

�Dh
cðzc; �0

fÞ; (1)

where �fðx;�fÞ are the polarized PDFs of the colliding

partons carrying light-cone momentum fraction x eval-
uated at factorization scale�f. The fragmentation function

of scattered parton c into hadron h with fraction zc of the
scattered parton momentum isDh

cðzc; �0
fÞ at fragmentation

scale �0
f. The helicity-dependent difference in the cross

section of the hard partonic scattering aþ b ! cþ X0 is
denoted by d��̂ and is calculable in perturbative QCD.
Cross-section calculations to finite order in �s have a
dependence on factorization and renormalization scales
�f and �r.

Instead of directly measuring the helicity-dependent
cross-section difference d��=dpT , we extract the double-
longitudinal spin asymmetry defined as the ratio of the
polarized to unpolarized cross sections ALL � d��=d�.
Here, d� is the helicity-averaged (unpolarized) cross sec-
tion d� � ½d�þþ þ d�þ��=2. The ratio d��=d� has
smaller systematic uncertainties since some of the uncer-
tainties cancel.
At

ffiffiffi
s

p ¼ 62:4 GeV, the production of final-state
hadrons at midrapidity in a transverse-momentum range
1:5 � pT � 4:5 GeV=c is dominated by quark-gluon scat-
tering [42]. This makes the asymmetry reported here,
ALLðpþ p ! h� þ XÞ, sensitive to the polarized gluon
PDF �GðxÞ at leading order, and more sensitive to its
sign than processes dominated by gluon-gluon scattering
or that produce isospin-symmetric particles. For example,
preferential fragmentation of up quarks into positive pions
and down quarks into negative pions, combined with the
fact that the up quark helicity PDF is positive and the down
quark helicity PDF is negative, would lead to an ordering
of the asymmetries of pions (charged and neutral) directly
sensitive to the sign of the gluon-helicity PDF. Positive

�GðxÞ would lead to A�þ
LL 	 A�0

LL 	 A��
LL , whereas a nega-

tive �GðxÞ would imply an opposite ordering. These re-
sults can be combined with data from polarized-collider
and fixed-target experiments in a global analysis to reduce
uncertainties on the gluon-helicity distribution by de
Florian-Sassot-Stratmann-Vogelsang (DSSV) [43,44].

II. EXPERIMENTAL SETUP

This analysis uses the PHENIX central arm spectrom-
eters. Each arm has an acceptance covering a pseudora-
pidity range j�j< 0:35 and �� ¼ �

2 in azimuth [45,46].

The PHENIX central magnet creates an axial magnetic
field with

R
Bdl ¼ 0:78 T 
m at �

2 in this region.

Midrapidity charged hadrons are tracked in the
drift chambers (DC), which are located outside the mag-
netic field with an inner radius of 2.0 m and outer radius
of 2.4 m. The tracks are reconstructed as nearly straight
lines and yield the deflection in the axial magnetic field
to determine the transverse momentum with a resolution
dpT

pT
¼ 0:007 � 0:009pT ðGeV=cÞ [47]. The first term in the

resolution is dominated by multiple scattering in material
before the DC, while the second arises from the finite
angular resolution of the DC. The momentum scale is set
by requiring the proton mass reconstructed from the mea-
sured momentum and time of flight to match the known
proton mass.
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Track reconstruction also utilizes two layers of pad
chambers (PC), which are multiwire proportional cham-
bers with pad readouts [46]. The first layer, PC1, is located
after the DC, with an average radius of 2.49 m. PC1
information is used in conjunction with the DC hits and
vertex information to determine the polar angle for each
charged track. The outermost layer PC3 is at an average
radius of 4.98 m and is used for charged track selection
by matching PC3 hit positions with track projections on it
using information from the DC and PC1 and the measured
event vertex. Matching track projections with hit positions
in PC3 also helps in rejecting decay backgrounds from
primary hadrons.

Vertex and timing information is provided by two beam-
beam counters (BBCs) [45] placed around the beam pipe.
The BBCs are located 1.44 m forward and backward of the
nominal interaction point. Each BBC comprises an array of
64 phototubes fitted with 3 cm long quartz radiators. The
phototubes detect Čerenkov radiation from charged parti-
cles traversing the quartz. The detectors cover a pseudor-
apidity range of 3:0 � j�j � 3:9, and a full �� ¼ 2� in
azimuth. A coincidence of hits from the two BBCs forms
the minimum bias trigger, with timing information provid-
ing the location of the event vertex along the beam line
with a few cm precision.

To eliminate the e� background due to photon conversion
in material before the DC (primarily the beam pipe and DC
entrance window), the analysis uses information from a ring
imaging Čerenkov detector (RICH) [46] located after the
DC. The RICH uses CO2 at atmospheric pressure as a
radiator, with a momentum threshold of 17 MeV=c for e�
and 4:7 GeV=c for charged pions. ARICHveto (ensuring no
RICH hits) is used to reject e� and results in an upper
transverse-momentum limit ofpT < 4:5 GeV=c for charged
hadrons in the analysis.

Zero degree calorimeters (ZDC), which detect neutral
particles near the beam pipe (� < 2:5 mrad), are used in
conjunction with the BBC to estimate the systematic un-
certainty on the relative luminosity for the asymmetry
measurements [48]. The BBC and ZDC are also used to
determine the integrated luminosity measurement [49,50].

The stable spin direction of polarized protons in RHIC is
vertical. The spin direction can be rotated into the longi-
tudinal direction at the PHENIX interaction region using
pairs of spin rotators. The polarizations of the beams at
RHIC are measured every few hours by carbon target
polarimeters [51], which are normalized to an absolute
measurement with a hydrogen jet target polarimeter [52].

III. CROSS SECTION

The results presented here are the first measurements
of the cross section of inclusive charged-hadron produc-
tion at midrapidity in the transverse-momentum range
0:5 � pT � 4:5 GeV=c from pþ p collisions at

ffiffiffi
s

p ¼
62:4 GeV. The analysis techniques are similar to methods

described in Ref. [53] and are briefly explained in
Sec. III A. The cross-section results are presented and
discussed in Sec. III B.

A. Cross-section measurement

Approximately 2:14� 108 BBC-triggered events corre-
sponding to an integrated luminosity of 15:6 nb�1 from
polarization-averaged pþ p data taken in 2006 have been
analyzed. We calculate the midrapidity charged-hadron
production cross section using the following formula:

E

c

d3�

dp3
¼ �BBC

NBBC

d3NðpTÞ
d�pTdpTdy

RsmearCtrig

1

Eacc
eff

; (2)

where �BBCW is the pþ p cross section seen by the BBC
as measured in Ref. [48], NBBC is the total number of
BBC-triggered events analyzed, Rsmear is the correction
factor for the smearing of track pT owing to the momentum
resolution of the detectors as well as multiple scattering of
the hadron tracks, Ctrig is the correction factor for BBC

trigger bias, and Eacc
eff is the combined correction factor for

geometrical acceptance of the detectors and reconstruction
efficiency.
The reconstructed charged tracks in the transverse-

momentum range 0:5 � pT � 4:5 GeV=c from events
with vertices within �30 cm of the nominal interaction
point are matched to projected hit positions in PC3 in
azimuthal (�) and beam direction (z). Distributions of the
matching variables (difference between the projected track
position and actual hits on PC3, termed PC3d� and
PC3dz) are fit with the combination of a signal Gaussian
and a second Gaussian for background. Figure 1 demon-
strates the method for a sample pT bin. The width of the fit
to the signal distribution is used to impose a simultaneous
selection window of 2� for both matching variables.
The background to these measurements comes from

several sources. One source is soft electrons from the
magnet pole faces, and another is decays in flight of ��
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FIG. 1 (color online). Difference between the track-
extrapolated and actual hit positions on PC3 in azimuth for a
sample pT bin. The histogram represents data; the dashed line
represents a two-Gaussian fit.
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and K�. Not all of these electrons are rejected by the
RICH cut. Off-vertex electrons and daughter particles
with a perpendicular momentum kick from the decay are
reconstructed as apparent high-pT tracks, but with wide
Gaussian track matching distributions. The background
fraction in each of the pT bins is determined by using the
distributions of the matching variables. Background frac-
tions, which are 2%–5% for pT � 2:75 GeV=c and�30%
in the highest pT bin, are subsequently subtracted from
hadron yields.

An additional source of background is the feed-down
background produced by weak decays of mostly � parti-
cles close to the event vertex with apparent momenta
close to their true momenta and matching distributions
peaked under the signal. The decays � ! p��, �þ !
p�0 and� production from�0,�0,�� are considered for
feed-down contribution to protons (and the corresponding
antiparticles for feed-down to antiprotons). Feed-down

contributions to the detected protons and antiprotons
from weak decays of �’s and heavier hyperons are esti-

mated using input � and �� spectra from pþ p measure-
ments at

ffiffiffi
s

p ¼ 63 GeV at the Intersecting Storage Rings
(ISR) [54,55] and at

ffiffiffi
s

p ¼ 62:4 GeV at PHENIX with a
GEANT3-based [56] simulation of the PHENIX detector.

Details of the feed-down calculations are described in
[48]. The fractional contributions of the feed-down protons
and antiprotons are independent of pT above pT ¼
2 GeV=c and are close to 7% and 15%, respectively.
Below pT ¼ 2 GeV=c the fractions increase with decreas-
ing pT and are roughly 25% and 60% for protons and
antiprotons, respectively, at pT ¼ 0:5 GeV=c.
Background-subtracted yields are corrected for angular

resolution of the DC and for smearing of the reconstructed
momenta resulting from multiple scattering of tracks,
which depends on hadron mass. To account for the accep-
tance of the PHENIX detector system and the varying
efficiency for different hadrons, single-particle Monte
Carlo simulations are performed and are verified by com-
paring the live detector area between data and Monte
Carlo simulation. Same hadron track selection criteria as
used for the data are applied to the simulations and the
appropriate correction factors are determined separately
for each hadron species.
Figure 2 shows the efficiencies for the three positive

hadron species. The small efficiency for kaons is due to
decays in flight. The large decrease in efficiency at low
pT is due to the fact that the fixed pseudorapidity acceptance
of the detector corresponds to a narrow range in rapidity
for smaller pT=m. The efficiencies are parametrized
(AeBpT þ C) as a function of pT . Table I shows the fit-
function parameters. The fit values are used for the calcu-
lation of cross sections. Uncertainties of the fit parameters
presented in Table I are not, however, used for determining
the systematic uncertainty of the cross sections. Variation of
the selectionmatchingwindow is used to estimate systematic
uncertainty of the cross sections due to these correction
factors. The species-dependent corrections are applied ac-
cording to their production fraction in the hadron mixture.
Figure 3 shows the production fractions, which were

determined from identified hadron spectra from PHENIX
[18], as well as from earlier data from the ISR [54]. The
relative fractions were compared to those obtained from
the NLO pQCD calculations described above and were
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FIG. 2 (color online). Combined acceptance þ detection effi-
ciencies for (a) positive and (b) negative hadron species.

TABLE I. Fit-function parameters for the efficiency curves for different hadron species. See text for details.

Hadron A �A B �B C �C

�þ �0:08 0.01 �1:8 0.2 0.145 0.001

Kþ �0:17 0.003 �0:97 0.03 0.128 0.001

p �0:21 0.007 �1:54 0.05 0.143 0.001

�� �0:07 0.01 �1:7 0.2 0.145 0.001

K� �0:17 0.003 �1:01 0.03 0.128 0.001

p� �0:21 0.007 �1:56 0.05 0.142 0.001
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found to be compatible within the uncertainty bands. The
dotted and dashed lines in Fig. 2 represent fits with indi-
vidual data sets. Parametrized fits of the form AeBpT þ C
(for positive pions and negative kaons) and AeBpT þ Cþ
DpT (for all other species) are performed under the con-
straint that the sum of the relative fractions is 1.

Table II gives the fit-function parameters. Relative frac-
tions from the fit to both data sets combined (solid line)
are used to apply the corrections for the measurements.

The variation in the fit values for individual data sets
(dotted and dashed lines), rather than the fit parameter
uncertainties from Table II, are used to estimate systematic
uncertainty of the cross-section measurements due to this
quantity. The corrected yields are scaled by the BBC
trigger bias, as described in Ref. [48].
Acceptance and efficiency factors are determined by gen-

erating single-particle events with uniform transverse mo-
mentum and rapidity distributions with a vertex distribution
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FIG. 3 (color online). Relative fraction of each species for (a) positive and (b) negative hadrons. The error bars on the data points are
combined statistical and systematic uncertainties. The solid line represents a fit to both the PHENIX and ISR data. The dashed (dotted)
line represents a fit to only the PHENIX (ISR) data.

TABLE II. Fit-function parameters for relative fractions of different species in the hadron mix. See text for details.

Hadron A �A B �B C �C D �D

�þ 1.02 0.56 �2:39 0.41 0.57 0.26 
 
 
 
 
 

Kþ �0:53 0.56 �2:39 0.41 0.20 0.23 0.009 0.001

p �0:49 1.12 �2:39 0.41 0.23 0.49 �0:009 0.001

�� 1.17 0.56 �2:49 0.41 0.61 0.26 0.012 0.001

K� �0:61 0.56 �2:49 0.41 0.20 0.23 
 
 
 
 
 

p� �0:56 1.12 �2:49 0.41 0.18 0.49 �0:012 0.001
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closely resembling that in the data. The effect of
the smearing of detected hadron spectra due to momentum
resolution of the detector is determined separately. Identified
hadron spectra from the ISR [54], as a function of pT , are
converted into yields in bins of bending angle � (� ¼ 	

pT
,

where K ¼ 101 mradGeV=c) in the DC. The resulting dis-
tributions are smeared with the angular resolution �� ¼
0:9þ 0:007�, where the first term is the angular resolution
of the DC and the �-dependent term incorporates the effects
of multiple scattering. Smeared distributions are converted
back to cross sections as functions of pT , and the ratio of
smeared to original spectra is used as the correction factor
due to momentum smearing. Variation of angular resolution
is used to determine the systematic uncertainty of the cross
section due to this correction factor.

The integrated luminosityLint ¼ NBBC

�BBC
, required for nor-

malization of the invariant cross section, is calculated

using the count of BBC-triggered events and the BBC
normalization parameter �BBC. The parameter �BBC is
the pþ p cross section seen by the BBC and is measured
by the Van der Meer (Vernier) scan technique [50]. The
quantity �BBC ¼ 13:7� 1:5 ðsystÞ mb for the relevant
data set has been measured for previous PHENIX results
and was discussed in detail in Ref. [48].
Table III shows the systematic uncertainties of cross-

section measurements from various sources. The largest
contribution (11%–24%) to the pT-dependent systematic
uncertainty comes from the correction for the acceptance
and detection efficiencies. The uncertainty on the cross
section due to this correction factor is determined by
varying the selection parameters in the MC simulations.
The trigger bias introduces a 2.5% uncertainty in the over-
all normalization, in addition to the 11% uncertainty on
�BBC. Determination of the background fraction and the
production fraction of separate hadron species each intro-
duces a 1%–5% pT-dependent systematic uncertainty.
Uncertainties from other sources, for example, the correc-
tion for momentum resolution, the correction for the active
area of the detector in experiment and Monte Carlo simu-
lation, are �1%–2%.

B. Cross-section results

Figure 4 and Table IV show the inclusive charged-hadron
cross sections from pþ p collisions at

ffiffiffi
s

p ¼ 62:4 GeV as
a function of pT . A combined pT-independent normaliza-
tion uncertainty of 11.2% (uncertainties in the measure-
ments of �BBC and BBC trigger bias) is not shown.

TABLE III. Systematic uncertainties of cross-section measure-
ments from various sources.

Source Systematic uncertainty

Acceptance and efficiency correction 11%–24%

�BBC 11%

Trigger bias 2.5%

Monte Carlo/data scale factor 2%

PID fraction 1%–5%

Background fraction 1%–5%

Momentum smearing correction 1%–2%
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FIG. 4 (color online). Cross section of inclusive-charged-hadron production at midrapidity in pþ p at 62.4 GeV for (a) positive and
(b) negative hadrons. NLO and NLL theoretical predictions [57] at midrapidity, using MRST2002 parton distribution functions [58]
and DSS fragmentation functions [19], at factorization, renormalization, and fragmentation scale � ¼ pT are shown as curves. The
lower panels show the scale dependence of the NLO and NLL results.
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In the overlapping pT range, the results were found to
be consistent with the species-combined (pionþ kaonþ
ðantiÞproton) cross sections from identified results at
PHENIX [18] as well as ISR results at

ffiffiffi
s

p ¼ 63 GeV [54].
On the upper panels of both plots in Fig. 4, cross sections are
compared to NLO and NLL calculations at a factorization,
renormalization, and fragmentation scale of � ¼ pT [57].
The calculations were performed using Martin-Roberts-
Stirling-Thorne (MRST2002) PDFs [58] and de Florian-
Sassot-Stratmann (DSS) fragmentation functions [19].
The NLO predictions have been shown to describe midra-
pidity cross-section results for neutral pions [59,60] and
charged hadrons [53] at

ffiffiffi
s

p ¼ 200 GeV within �20% for
a scale choice of � ¼ pT . For the present results at

ffiffiffi
s

p ¼
62:4 GeV, the NLO calculations underpredict the data by as
much as�80% in the case of positive hadrons and�60% in
the case of negative hadrons for the same scale choice.
However, the NLO calculations have a large scale depen-
dence and are consistent with the data after taking the scale
uncertainties into account. The lower two panels in the Fig. 4
plots show the dependence of the theoretical calculations on
the choice of the factorization, renormalization, and frag-
mentation scale (�) for three different values (pT , pT=2, and
2pT). The inclusion of higher-order terms in the NLL cal-
culations leads to a considerably smaller scale dependence.

These new data at an energy intermediate to typical
fixed-target and collider energies are timely, as the details
of how to work with resummation techniques in diffe-
rent kinematic regimes are currently being explored by
the theoretical community (see, for example, [3,16,17]).
Comparison of the present results to the calculations at
NLO with and without NLL terms included indicates that
in the measured kinematic range, NLL terms make relevant
contributions to the cross section. However, the tendency
of the NLL calculations to overpredict the data, by as much
as �40% in the case of positive hadrons and �50% in the
case of negative hadrons for a scale choice of pT , may
indicate that there are terms in the full next-to-next-to-
leading-order (NNLO) expansion that are of comparable
magnitude and opposite sign to those in the NLL calcu-
lation. These measurements corroborate similar indica-
tions from neutral pion cross-section results [48] and
identified hadron cross-section results [18] at PHENIX.
The present measurements can also be useful in a future
determination of inclusive charged-hadron fragmentation
functions, as progress in pQCD has allowed inclusion of
pþ p cross-section measurements and semi-inclusive
deep-inelastic lepton-nucleon scattering data in FF pa-
rametrizations along with the traditionally used eþe�
data since 2007 [19,20,61].

TABLE IV. Cross section of midrapidity charged-hadron production from pþ p collisions at
ffiffiffi
s

p ¼ 62:4 GeV as a function of
pT . The errors represent the statistical (first) and systematic uncertainties. The data are corrected for the contribution of feed-down
protons and antiprotons. A normalization uncertainty of 11.2% is not included.

pT (GeV=c) hþ mb GeV�2 c2 h� mb GeV�2 c2

0.55 7:80� 1:2� 10�03 � 1:1 6:87� 1:1� 10�03 � 9:3� 10�01

0.65 4:78� 8:7� 10�04 � 5:9� 10�01 4:10� 8:0� 10�04 � 5:0� 10�01

0.75 2:87� 6:3� 10�04 � 3:5� 10�01 2:45� 5:7� 10�04 � 2:9� 10�01

0.85 1:73� 4:6� 10�04 � 2:1� 10�01 1:46� 4:2� 10�04 � 1:7� 10�01

0.95 1:06� 3:4� 10�04 � 1:3� 10�01 8:83� 10�01 � 3:1� 10�04 � 1:1� 10�01

1.05 6:55� 10�01 � 2:5� 10�04 � 8:2� 10�02 5:43� 10�01 � 2:3� 10�04 � 6:6� 10�02

1.15 4:18� 10�01 � 1:9� 10�04 � 5:2� 10�02 3:40� 10�01 � 1:7� 10�04 � 4:1� 10�02

1.25 2:67� 10�01 � 1:5� 10�04 � 3:4� 10�02 2:16� 10�01 � 1:3� 10�04 � 2:6� 10�02

1.35 1:73� 10�01 � 1:2� 10�04 � 2:2� 10�02 1:41� 10�01 � 1:0� 10�04 � 1:6� 10�02

1.45 1:14� 10�01 � 9:0� 10�05 � 1:4� 10�02 9:21� 10�02 � 8:0� 10�05 � 1:1� 10�02

1.55 7:73� 10�02 � 7:2� 10�05 � 9:3� 10�03 6:11� 10�02 � 6:3� 10�05 � 7:2� 10�03

1.65 5:25� 10�02 � 5:7� 10�05 � 6:4� 10�03 4:11� 10�02 � 5:0� 10�05 � 4:7� 10�03

1.75 3:59� 10�02 � 4:6� 10�05 � 4:4� 10�03 2:79� 10�02 � 4:0� 10�05 � 3:3� 10�03

1.85 2:46� 10�02 � 3:7� 10�05 � 3:1� 10�03 1:90� 10�02 � 3:2� 10�05 � 2:2� 10�03

1.95 1:74� 10�02 � 3:0� 10�05 � 2:0� 10�03 1:31� 10�02 � 2:6� 10�05 � 1:5� 10�03

2.11 9:61� 10�03 � 1:4� 10�05 � 1:1� 10�03 7:32� 10�03 � 1:2� 10�05 � 8:3� 10�04

2.36 4:19� 10�03 � 8:5� 10�06 � 5:0� 10�04 3:14� 10�03 � 7:3� 10�06 � 3:5� 10�04

2.61 1:89� 10�03 � 5:5� 10�06 � 2:4� 10�04 1:38� 10�03 � 4:6� 10�06 � 1:6� 10�04

2.86 8:80� 10�04 � 3:6� 10�06 � 1:2� 10�04 6:36� 10�04 � 3:0� 10�06 � 7:5� 10�05

3.11 4:33� 10�04 � 2:4� 10�06 � 5:4� 10�05 3:12� 10�04 � 2:0� 10�06 � 3:8� 10�05

3.37 2:20� 10�04 � 1:6� 10�06 � 2:9� 10�05 1:67� 10�04 � 1:4� 10�06 � 2:5� 10�05

3.62 1:09� 10�04 � 1:1� 10�06 � 1:7� 10�05 7:41� 10�05 � 9:1� 10�07 � 1:1� 10�05

3.87 6:03� 10�05 � 8:1� 10�07 � 9:0� 10�06 4:02� 10�05 � 6:4� 10�07 � 5:5� 10�06

4.22 2:46� 10�05 � 3:5� 10�07 � 6:0� 10�06 1:88� 10�05 � 2:9� 10�07 � 5:3� 10�06
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IV. DOUBLE-HELICITYASYMMETRY

We measured the double-helicity asymmetries, ALL, of
inclusive positive and negative hadron production in the
transverse-momentum range of 0:5 � pT � 4:5 GeV=c at
midrapidity from longitudinally polarized pþ p collisions
at

ffiffiffi
s

p ¼ 62:4 GeV.

A. ALL measurement

The double-helicity asymmetry of charged hadrons is
defined as the relative difference between hadron produc-
tion cross sections from collisions of the same- and
opposite-helicity state protons. Experimentally, the asym-
metry is measured as

ALL ¼ 1

PB 
 PY

Nþþ � R 
 Nþ�
Nþþ þ R 
 Nþ�

; (3)

where PB, PY are polarizations of the two colliding beams
in RHIC (termed ‘‘blue’’ and ‘‘yellow’’), Nþþ, Nþ� are
the midrapidity hadron yields from collisions of the same-
and opposite-helicity protons, and relative luminosity

R ¼ Lþþ
Lþ�

is the ratio of luminosity of the same-helicity

collisions to that of opposite-helicity collisions.
For the 2006 pþ p data set at

ffiffiffi
s

p ¼ 62:4 GeV, the
luminosity-weighted average beam polarizations for both
beams are measured to be hPi ¼ 0:48, and the average
magnitude of the product of polarization of the two beams
is hPB 
 PYi ¼ 0:23 with a relative uncertainty of 13.9%.
The colliding proton bunches at RHIC are assigned preset
spin patterns repeated every four crossings. For consecu-
tive fills with 120 bunches in the RHIC ring, four such
different spin patterns are alternated in order to reduce
false asymmetries and systematic effects of possible cor-
relations between the detector response and the RHIC
bunch structures.

Hadron counts are obtained under similar criteria as
described for the cross-section measurements from the
reconstructed tracks in Sec. III A. Approximately 1:63�
108 BBC-triggered events with longitudinal beam polar-
ization, corresponding to an integrated luminosity of
11:9 nb�1, were analyzed for the asymmetry measure-
ments. Luminosities for the same- and opposite-helicity
events were obtained from crossing-by-crossing informa-
tion of BBC trigger counts. The systematic uncertainty
of the relative luminosity R, determined by comparing
BBC-triggered events with events triggered by the ZDCs,
was found to be 1:4� 10�3.
The asymmetry of the charged-hadron mixture is deter-

mined on a fill-by-fill basis and later combined statistically
(luminosity-weighted average) to obtain the final results.
No corrections were performed for the relative species
fractions in the asymmetry analysis since asymmetries
for the individual hadron species are not measured. The
asymmetry of backgrounds from decays in flight, selected
from the tail ends of the distribution of the matching
variables (in beam direction z and azimuthal angle �), is

measured. The background asymmetry Abkg
LL and back-

ground fraction are used to calculate the signal asymmetry
and its statistical uncertainty. The feed-down from decays
of�’s and heavier hyperons, however, cannot be separated
from hadron yields. The backgrounds from feed-down
protons and antiprotons are a small contribution (1%–
2.5%) to the total hadron yields given that pions dominate
the hadron mixture, especially at low pT . The asymmetry
results are not corrected since the asymmetries of the feed-
down backgrounds are unknown.

B. ALL results

Figure 5 and Table V show the pT dependence of the
measured double-helicity asymmetries for inclusive-
charged-hadron production at midrapidity in polarized
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FIG. 5 (color online). Double-helicity asymmetry (ALL) of (a) positive and (b) negative charged-hadron production from polarized
pþ p collisions at

ffiffiffi
s

p ¼ 62:4 GeV. The results are compared to NLO and NLL pQCD predictions using several parametrizations of
the helicity PDFs (see text for details).
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pþ p collisions at
ffiffiffi
s

p ¼ 62:4 GeV. The asymmetries are
compared to NLO pQCD predictions1 based on two differ-
ent parametrizations of polarized PDFs at scale � ¼ pT .

The curves in Fig. 5 labeled ‘‘DSSV NLO’’ and ‘‘DSSV
NLL’’ refer to calculations using DSSV parametrizations
of the helicity PDFs [43]. The curves labeled ‘‘BB NLO’’
refer to calculations with Blümlein-Böttcher parametriza-
tions of the helicity PDFs [38], and the ‘‘GRSV-max’’
curve refers to NLO pQCD calculations using Glück-Reya-
Stratmann-Vogelsang parametrizations of the helicity
PDFs assuming maximal saturation of the gluon polariza-
tion [�Gðx;�2Þ ¼ Gðx;�2Þ] [37]. DSSV calculations use
MRST2002 unpolarized PDFs [58] whereas GRSV
and BB calculations use unpolarized PDFs from the
coordinated-theoretical-experimental project on QCD-6
[62]. However, within the present uncertainties, the effect
due to different unpolarized PDFs is negligible. All of
these pQCD calculations are performed using DSS frag-
mentation functions [19,20]. Polarized PDFs use fits to the
pDIS data to extract parameters of the functional forms of
PDFs. DSSV [43] parametrizations use RHIC data along
with the available pDIS data to constrain the polarized
PDFs. The asymmetries are also compared to the NLL
estimations with the DSSV PDFs [57].

For the purpose of comparison with the experimental
results, pQCD calculations were obtained for separate
hadron species [pions, kaons, and (anti)protons] and were
combined using their relative fractions (from pQCD
calculations) in the hadron mixture and corresponding
experimentally determined efficiency-acceptance factors
(Fig. 2). Weighted averages of the calculated asymmetries
of pions, kaons, and protons/antiprotons, with the
product of the corresponding relative fraction and the
efficiency-acceptance factor as the weight, are compared
to the measurements. The measured asymmetries are small
and consistent with zero. The results are also consistent
with the predictions from the recent parametrizations
within statistical limitations. The comparisons corroborate
previous PHENIX measurements [4,48] that disfavor very
large gluon polarization. The presented asymmetry mea-
surements probe a range of approximately 0:05 � xgluon �
0:2 [16] of the interacting gluons.

V. SUMMARYAND CONCLUSIONS

Cross sections and double-helicity asymmetries for the
midrapidity production of positive and negative inclusive
charged hadrons at

ffiffiffi
s

p ¼ 62:4 GeV are measured as a
function of transverse momentum. The comparison of
pQCD calculations with the measurements shows that the
NLO estimations are consistent with cross-section results
within a large scale uncertainty. NLL calculations with
their reduced scale dependence are also consistent with
the data, indicating that the threshold resummation of
logarithmic terms is relevant in the kinematic region mea-
sured; however, the overprediction of the data by up to
�50% if the NLL terms are included suggests that
contributions from NNLO terms may also be important.
This corroborates other recent results from PHENIX
[18,48] with similar indications. The asymmetry results
are the first measurements for charged hadron production
in polarized pþ p collisions at

ffiffiffi
s

p ¼ 62:4 GeV and
are consistent with the asymmetries found using several
other probes at different collision energies at RHIC
[4,5,8,10,48,60]. Experimental measurements of a variety
of processes covering a broad kinematic range are essential
to advancing our understanding of QCD in hadronic inter-
actions and nucleon structure, and the present measure-
ments contribute towards that end.
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