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We consider multiflavor QED on a finite lattice at a finite chemical potential and show that the partition

function only depends on the variables, ( �i

qi
� �1

q1
), for i ¼ 2; � � � , where qi, i ¼ 1 � � � are integer valued

charges of the various flavors and �i, i ¼ 1 � � � are the dimensionless chemical potentials of the various

flavors.
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Consider multiflavor QED regularized on the lattice. We
will assume that the continuum theory is defined by first
defining the theory on a finite periodic lattice and then
taking the limit where the extent in all directions goes off to
infinity. We will not be concerned in this paper as to
whether such a theory has a well-defined continuum limit.
For definiteness, we could think about two-dimensional
multiflavor QED which has a well-defined continuum
limit.

Let U�ðnÞ be the link variable connecting the sites n and
nþ �̂ on a d dimensional periodic lattice, L1 � � � �Ld.

Consider the class of gauge fields given by U�ðnÞei
2�h�
L�

with 0 � h� < 1 for � ¼ 1; � � �d. Gauge fields with differ-
ent choices of the dimensionless variables, h�, within this
class are not gauge equivalent but have the same gauge
action. The fermion determinant, on the other hand, depends
on the variables, h�, which we will refer to as the toron
variables. Consider a fermion with integer charge qi and a
dimensionless chemical potential �i. The chemical poten-
tial is introduced [1] by multiplying the parallel transporter

in the forward � ¼ d direction by e
2��i
Ld and in the backward

� ¼ d direction by e
�2��i

Ld . The factor of 2� is introduced for
convenience and we keep the dimensionless chemical
potential, �i, fixed as we take Ld ! 1.

The fermionic determinant is a function of U�ðnÞ,
�¼1;��� ;d; h� for � ¼ 1; � � � ; d� 1; and zi ¼ hd � i �i

qi
.

Since the gauge action does not depend on the toron
variables, we can integrate the fermion determinant over
these variables using the uniform measure. Consider, for
simplicity, a lattice fermion operator of the naı̈ve, Wilson
or staggered type. We will show later that our arguments
will also apply to the overlap Dirac operator under certain
mild assumptions. The lattice fermion operator is a finite
matrix on a finite lattice. Focusing on the dependence on hd
alone, we see that the fermion determinant is a finite

polynomial in e
i
2�qizi
Ld and e

�i
2�qizi
Ld . The fermion determinant

will be an analytic function of zi in the complex plane.
Since the fermion determinant is gauge invariant, it will
be periodic under zi ! zi þ 1. A contour integral in the

complex plane results in the integral over hd in the range
½0; 1� to be independent of �i. If we consider a theory with
many flavors, that all have the same value for �i

qi
, then again

the integral over hd will yield a result that is independent of
all the �i. In other words, a multiflavor theory of QED at a
finite chemical potential can only depend on the variables,
( �i

qi
� �1

q1
), for i ¼ 2; � � � . This result will also hold for an

anomaly free chiral QED as long as the lattice formulation
is gauge invariant, at least in the continuum limit. This is
the main observation in this paper.
Massless Schwinger model in the presence of a chemical

potential was first studied in Ref. [2]. The problem was

treated in the Hamiltonian formalism. In order to deal with

a finite problem, a uniform charge background was intro-

duced in a finite region of space. This causes an explicit

breaking of translational invariance. The ground state is a

classical Wigner crystal which is not destroyed by quantum

fluctuations. An explicit chemical potential term was in-

troduced in the Hamiltonian formalism in Ref. [3]. Their

formalism also had to break translational invariance and

they conclude that there is an inhomogeneous chiral con-

densate in the Schwinger model at finite density. A path

integral formulation of the problem, again with the intro-

duction of a chemical potential that breaks translational

invariance results in an inhomogeneous chiral condensate

[4]. References to a possible inhomogeneous chiral con-

densate in the Schwinger model are still being discussed in

the literature [5–7]. The problem is discussed in Ref. [8]

where the author argues that the inhomogeneous chiral

condensate in the Schwinger model at finite density is an

artifact of the explicit breaking of translational invariance

in the formalism. The generalized Thirring model was

analyzed in Ref. [9] and it has been explicitly shown that

the chiral condensate does not depend on the chemical

potential. Our observation in this paper clearly shows

that physics does not depend on the chemical potential in

the Schwinger model.
We now proceed to discuss the case of overlap fermions

in some detail when the chemical potential is introduced
as in Ref. [10]. Since the definition involves the sign
function of a complex matrix, it is not a priori clear if
the arguments presented above will apply. This problem is*rajamani.narayanan@fiu.edu
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addressed using a specific numerical example, namely,
the Schwinger model with a finite chemical potential, �.
Gauge fields are generated at a fixed coupling using
the gauge action described in Ref. [11] with zero and
unit topological charge. The determinant of both the
Wilson-Dirac operator and the overlap-Dirac operator
was computed in a fixed gauge field background that
has zero topological charge. The determinant of both
the Wilson-Dirac operator and the overlap-Dirac operator
(we exclude the zero mode in this case) was also com-
puted in a fixed gauge field background that has unit
topological charge. Averages of these two quantities
over all gauge fields for the overlap-Dirac operator enter
the computation of the chiral condensate in the massless
Schwinger model.

We first consider two sample gauge fields, one with zero
topological charge and one with unit topological charge as
set by the gauge fields, on a 7� 7 lattice. The same gauge
field is used for several different values of the chemical
potential. Plots of the real part of the determinants [12]

for three sample values of the chemical potential, namely,
� ¼ 0, 0.5, 1.0 are shown in Figs. 1–3, respectively. In all
three cases, the determinant of the Wilson Dirac operator
with a specific choice for the mass term used in the
definition of the overlap Dirac operator kernel behaves
smoothly as a function of h2. The determinants do depend
on h2 and the variation increases as one increases the
chemical potential. Furthermore, the function even
changes sign for � ¼ 1:0. In spite of this, we explicitly
verified that the integral over h2 (which remains complex
for a fixed gauge field background) is independent of � as
expected by the analytical argument presented in the
beginning of the paper.
The sign function of the Wilson Dirac operator need not

be a smooth function of h2. This is due to the fact it
depends on the sign of the real part of the eigenvalue of
theWilson Dirac operator and this can change as a function
of h2. The trace of the sign function of the Wilson Dirac
operator is defined as twice the topological charge of
the gauge field. Whereas, the results are consistent with
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FIG. 1. The left top and bottom panels show the behavior of the determinant of the overlap Dirac operator in the zero and unit
topological sectors. The right top and bottom panels show the behavior of the determinant of the Wilson Dirac operator in the zero and
unit topological sectors. The results are on a 7� 7 lattice and the dimensionless chemical potential is set to 0 and the x axis shows the
value of h2.
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the topological charge of the constructed gauge field
background for small values of the chemical potential, it
does not remain consistent for large values of the chemical
potential as seen in the right panel of Fig. 3. The top panel
should have been consistent with zero and the bottom panel
should have been consistent with unity. Since this is not
the case for � ¼ 1, the determinant of the overlap Dirac
operator in the two different topological sectors is not a
smooth function of h2 as seen in the left panels of Fig. 3. As
a consequence the independence of the integral of the
determinant of the overlap Dirac operator on the chemical
potential breaks down beyond a certain value of the
chemical potential. This is due to the discretization of the
dimensional chemical potential, �, over a finite number of
slices, Ld, taken to be 7 in Fig. 3. If we increase the number
of slices, Ld, keeping the physical gauge coupling fixed,
we found that the value of the chemical potential where the
independence breakdown increases. For example, we
could only go up to � ¼ 0:7 on 7� 7 lattice at a given

coupling but we could go up to � ¼ 1:0 on a 9� 9 lattice
at the same physical coupling. This is illustrated in Fig. 4
for the case of � ¼ 1:0 on a 9� 9 lattice where the
behavior of the determinants of the overlap Dirac operator
are smooth as a function of h2. The problem with the
overlap Dirac operator in the presence of a chemical po-
tential was anticipated in Ref. [10] but is expected not to
affect the continuum limit.
We have presented an analytical argument in this

paper that there is no dependence on the chemical
potential in the path integral formalism of QED. This
result is valid within the lattice formulation and in the
continuum limit. Whereas, there is some justification to
the argument presented in Ref. [8] toward the problems
with breaking translation invariance in the Hamiltonian
formalism, we have shown that the main reason for
recovering the correct behavior in the presence of a
chemical potential is the integration over the toron vari-
able as emphasized in Ref. [9] and further emphasized in
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FIG. 2. The left top and bottom panels show the behavior of the determinant of the overlap Dirac operator in the zero and unit
topological sectors. The right top and bottom panels show the behavior of the determinant of the Wilson Dirac operator in the zero and
unit topological sectors. The results are on a 7� 7 lattice and the dimensionless chemical potential is set to 0:5 and the x axis shows the
value of h2.
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Ref. [13]. One does not see the toron variable, hd, in the
Hamiltonian formalism since one starts in the Coloumb
gauge. The realization of the toron variable in the
Hamiltonian formalism would be to integrate over all
boundary conditions for fermions in the Euclidean time
(temperature) direction [14].

We have not performed an analytic continuation in the

chemical potential in this paper. One could reproduce the

central argument in this paper by working with an imagi-

nary chemical potential [15]. Since there is no periodicity

when the chemical potential is real, we refrained from

using imaginary chemical potential—our results are valid

for all values of the real chemical potential. A nontrivial

dependence on the chemical potential will be seen in the

two flavor Schwinger model and finite density phase

transitions are expected in four-dimensional two-flavor

QED.

The continuous toron variable becomes a discrete ZN

variable in a SUðNÞ gauge theory and our argument of
independence on the chemical potential will not go
through [16] In the limit of N ! 1, we have a continuous
toron variable. Therefore, we expect the toron variable to
play a part in the analysis of the ’t Hooft model in the
presence of a chemical potential as discussed in Ref. [18].
The Gross-Neveu model [5,6] is different in this aspect
since one does not integrate over all possible fermionic
boundary conditions in the Euclidean time direction.
This will be the case even if we introduce a bosonic
variable to convert the four-fermi coupling into a fermion
bilinear since we will have a Gaussian term for the
bosonic field.

We would like to thank Philippe de Frocrand for making
us aware of Ref. [15]. R. N. acknowledges partial support
by the NSF under Grant No. PHY-0854744.
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FIG. 3. The left top and bottom panels show the behavior of the determinant of the overlap Dirac operator in the zero and unit
topological sectors with zero chemical potential. The middle top and bottom panels show the behavior of the determinant of the
Wilson Dirac operator in the zero and unit topological sectors. The right top and bottom panels show the topological charge
measured by the overlap Dirac operator in the presence of a chemical potential for the presumed zero and unit topological charge
configuration. The results are on a 7� 7 lattice and the dimensionless chemical potential is set to 1.0 and the x axis shows the
value of h2.
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FIG. 4. The left top and bottom panels show the behavior of the determinant of the overlap Dirac operator in the zero and unit
topological sectors with zero chemical potential. The right top and bottom panels show the behavior of the determinant of the Wilson
Dirac operator in the zero and unit topological sectors. The results are on a 9� 9 lattice and the dimensionless chemical potential is set
to 1.0 and the x axis shows the value of h2.
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