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Loop quantum cosmology yields two kinds of quantum corrections to the effective equations of motion

for cosmological perturbations. Here we focus on the holonomy kind and we study the problem of the

closure of the resulting algebra of constraints when a scalar field is considered in the matter Hamiltonian.

Up to now, tensor, vector and scalar perturbations were studied independently, leading to different algebras

of constraints. The structures of the related algebras were imposed by the requirement of anomaly freedom.

In this article we show that the algebra can be modified by a very simple quantum correction, holding for all

types of perturbations. The Mukhanov-Sasaki equations of motion are similarly modified by a simple term.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a promising framework
for a background-invariant non-perturbative quantization
of general relativity—see Ref. [1] for introductory reviews.
The theory can be derived from different paths, going from
a formal quantization of geometry to covariant or canoni-
cal quantizations of general relativity, all yielding the same
theory. In the canonical formulation, the loop quantization
is obtained by choosing the holonomy of the gravitational
connection and the flux of the densitized triad as basic
variables. Loop quantum cosmology (LQC) is the symme-
try reduced version of LQG. Although a rigorous complete
derivation from the full theory is still missing, LQC utilizes
key elements of LQG for studying quantum corrections of
the cosmological dynamics. These corrections turn out to
be negligible at low curvature, and important where the
energy density approaches the Planck scale �P‘. They give
rise to a strong effective repulsive force which replaces the
big bang by a big bounce (see e.g., Ref. [2] for a review).

As for any tentative theory of quantum gravity, experi-
mental tests are still missing, and searching for observatio-
nal signatures is obviously a key challenge. Cosmological
perturbations, which are directly related to measurable
spectra, provide the best link to observation. Here we con-
sider the theory of linear cosmological perturbations in
the Hamiltonian framework [3]. The theoretical analysis
of these perturbations can be guided by a consistency
requirement: the absence of anomalies that would jeopard-
ize the closure of the effective constraint algebra. This
requirement has been so far separately analyzed for scalar,
vector, and tensor perturbations, leading to different cor-
rections to the constraints. This work focuses on the issue of
finding a unique self-consistent algebra of constraints mak-
ing the approach consistent for any kind of perturbation.We

present a consistent constraint structure suitable for all
types of perturbations, and leading to a simple modification
of the gauge-invariant Mukhanov-Sasaki equation of mo-
tion. This shows the overall consistency of the theory and
indicates that results of the analysis of the scalar perturba-
tions must be taken into account to study tensor modes.
LQC generates two main classes of effective corrections

to the constraints, called the inverse-volume corrections and
the holonomy corrections [2]. The closure of the algebra of
cosmological perturbations has been extensively studied for
inverse-volume corrections. It was explicitly shown that
closure can indeed be achieved. This was demonstrated
for scalar [4,5], vector [6] and tensor modes [7]. Using
the anomaly-free scalar perturbations, predictions for the
power spectrum were also obtained [8]. This allowed to put
constraints on some parameters of the model using obser-
vations of the cosmic microwave background radiation [9].
Here, we focus on the holonomy corrections—appearing

because of the use of the holonomy of the Ashtekar connec-
tion. It is worth emphasizing that for tensor modes, the
algebra is automatically anomaly-free. For this reason, sev-
eral works were devoted to the phenomenology of holonomy-
corrected tensor perturbations (see e.g., Ref. [10]). The
anomaly-free algebra for vector modes was studied in
Ref. [11] and recently fully derived, including matter, in
Ref. [12]. The scalar algebra was obtained in Ref. [13].

II. THEORETICAL FRAMEWORK

LQC is formulated in the canonical language. Because
of general covariance the canonical Hamiltonian is a com-
bination of constraints CI. Consistency requires that the
constraints are preserved under the evolution they gener-
ate. This is assured in the classical theory by the closure of
the Poisson algebra of the constraints
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fCI; CJg ¼ fKIJðAj
b; E

a
i ÞCK; (1)

where CI, I ¼ 1, 2, 3, are the Gauss, diffeomorphism and

Hamiltonian constraints and fKIJðAj
b; E

a
i Þ are structure

functions which, in general, depend on the phase space

(Ashtekar) variables ðAj
b; E

a
i Þ. In LQC, quantum correc-

tions can be studied as effective modifications of the
Hamiltonian constraint. In doing so, anomalies generically

appear: the modified constraints CQI do not form a closed
algebra anymore:

fCQI ; CQJ g ¼ fKIJðAj
b; E

a
i ÞCQK þAIJ: (2)

The anomalous term AIJ can be removed by carefully
adjusting the form of the quantum correction to the
Hamiltonian constraint. This is achieved by adding suitable
‘‘counterterms’’ that vanish in the classical limit. The
resulting deformed algebra can be phenomenologically
very rich.

In the case of a flat Friedmann-Lemaı̂tre-Robertson-
Walker background, the Ashtekar variables can be decom-
posed as follows:

Ai
a ¼ � �k�i

a þ �Ai
a and Ea

i ¼ �p�a
i þ �Ea

i ; (3)

where �k and �p parametrize the background phase space,
and � is the Barbero-Immirzi parameter. The variation
of the connection receives contributions from the fluctua-
tions of both the intrinsic and extrinsic curvature:
�Ai

a ¼ ��i
a þ ��Ki

a.

III. PERTURBATIONS

Taking into account the form of the perturbed variables
(3), we introduce a general expression for the variation of
the spin connection as

��i
a ¼ 1

2 �p
Xijb
ca @b�E

c
j þ

1

2 �p2
Yijkl
abc�E

b
j @k�E

c
l ; (4)

where

Xijb
ca ¼ �ijc �b

a � �ibc �
j
a þ �ijb�ca þ �iba �

j
c: (5)

Yijkl
abc has an expression similar to Xijb

ca , but more compli-

cated: it is not needed here explicitly, because it appears
only as a boundary term in the second-order term of the
Hamiltonian constraint (16) in a way that does not affect
the equations of motion. The information about what kind
of perturbations we consider (scalar, vector or tensor per-

turbations) is coded in the term 1
2 �p X

ijb
ca @b�E

c
j .

The variation of the densitized triad can be decomposed
as follows:

�Ea
i ¼ �p

�
�2c�a

i þ ð�a
i @

d@d � @a@iÞE� c1@
aFi

� c2@iF
a � 1

2
hai

�
; (6)

where the first two terms c and E correspond to scalar
modes, the terms with Fi and Fa to vector modes and the
term with hai to the tensor mode. Vector modes are trans-
verse, and tensor modes are transverse and traceless. These
conditions constrain �Ea

i and �K
i
a, as well as the lapse �N

and the shift vector �Na. In particular, vanishing trace
implies

�i
a�E

a
i ¼ �a

i �K
i
a ¼ 0: (7)

Tensor and vector perturbations satisfy this condition, so
that in these cases the terms containing these expressions
disappear from the constraints. The form of themetric in the
case of vector and tensor modes implies that the variation of
the lapse is zero: �N ¼ 0. Therefore, some first-order con-
straints do not influence the perturbed dynamics.
For vector modes, the variation of the shift corresponds

to one of the two degrees of freedom indicated with Sa and
Fa: �N

a ¼ Sa. For tensor modes instead, the transverse-
ness, i.e., null divergence, implies

@i�Ea
i ¼ @a�E

a
i ¼ 0: (8)

As above, the form of the metric for tensor modes implies
�Na ¼ 0 for the shift, so that some further first-order terms
do not contribute to the dynamics.
Scalar perturbations are the more general: no term dis-

appears and all the constraints contribute to define the
perturbed dynamics. We have

�N ¼ �N� and �Na ¼ @aB; (9)

where �N is the unperturbed part of the lapse N ¼ �N þ �N
and � and B are scalar fields.
If we turn on the quantum corrections by modifying the

Hamiltonian constraint, anomalies appear and we have to
add counterterms in order to make the Poisson algebra
closed. In previous works, these counterterms were found
considering separately the case of each kind of modes. The
tensor and vector cases were simpler because of the vanish-
ing of several terms in the constraints, as observed. The
scalar case, on the other hand, is from this perspective the
most general one, since all the constraint terms are present. It
is indeed easy to see that the counterterms that adjust the
Hamiltonian for the scalar case [13] work also for the vector
and tensor cases, thus providing a general solution to the
closure of the algebra. Therefore starting from the scalar case
it is possible to define a unique closed algebra of modified
constraints, with the most general counterterms, giving back
correct counterterms for scalar and tensor perturbations
when imposing transverseness and vanishing trace.

IV. CONSTRAINTS

We consider the algebra of the diffeomorphism and
Hamiltonian constraints (see Ref. [2] for the expression
of the constraints in terms of the variables (3)). In each
constraint, gravity and matter—here modeled by a single
scalar field with canonical variables ð’;�Þ—contribute.
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A. Diffeomorphism constraint

The diffeomorphism constraint can be decomposed as

D½Na� ¼
Z
�
d3x½ �NaðDð0Þ þDð2ÞÞ þ �NaDð1Þ�: (10)

Since we are considering an FLRW background metric, the
shift Na ¼ �Na þ �Na has zero �Na. This implies that the
diffeomorphism constraint can be considered at the first
order.

Using the symmetry properties of (5) we can write the
constraint for the gravitational part as

�Dg ¼ �p@a�K
d
d � �p@d�K

d
a � �k@d�E

d
a; (11)

and for the matter part as

D m ¼ ��@a�’: (12)

Recall that for tensor modes �Na ¼ 0, therefore Dg and

Dm play a role only for scalar and vector perturbations.

B. Hamiltonian constraint

We consider the gravitational part of the Hamiltonian
constraint up to the second order

H½N� ¼
Z
�
d3x½ �NðH ð0Þ þH ð2ÞÞ þ �NH ð1Þ�: (13)

Using again the symmetry properties of (5), the expansion
of the constraint given in Ref. [2] gives

2�H ð0Þ ¼ �6
ffiffiffiffi
�p

p
�k2; (14)

at zeroth order and

2�H ð1Þ ¼ �4
ffiffiffiffi
�p

p
�Kd

d �
�k2ffiffiffiffi
�p

p �Ed
d þ

2ffiffiffiffi
�p

p @j@c�E
c
j ; (15)

at first order, for all kinds of perturbations. On the other
hand, the second order turns out to be

2�H ð2Þ ¼ �2
�kffiffiffiffi
�p

p �Ki
a�E

a
i

þ ffiffiffiffi
�p

p ð�b
i �K

i
a�

a
j�K

j
b � �a

i �K
i
a�

b
j�K

j
bÞ

þ 1

4

�k2

�p
3
2

ð�i
a�E

a
i �

j
b�E

b
j � 2�j

a�Ea
i �

i
b�E

b
j Þ

þ 1

�p
3
2

Ykjil
bdc�

ab
k @að�Ed

j@i�E
c
l Þ

þ 1

�p
3
2

Zcidj
ab ð@c�Ea

i Þð@d�Eb
j Þ (16)

and is different depending on the mode considered. The

difference is only in the term Zcidj
ab . Its explicit form reads

Zcidj
ab ¼ 1

4
�efk �kmnX

mjd
be Xnic

af � �iek X
kjd
be �c

a � �cik X
kjd
ba

þ 1

2
�i
a�

ce
k Xkjd

be : (17)

Imposing the conditions that define each mode and using

(5), we obtain that the term Zcidj
ab ð@c�Ea

i Þð@d�Eb
j Þ in (16) is

respectively

�ab�
ij�cd � ð@c�Ea

i Þð@d�Eb
j Þ for tensor modes; (18)

0 for vector modes; (19)

� 1

2
�c
a�

d
b�

ij � ð@c�Ea
i Þð@d�Eb

j Þ for scalar modes: (20)

This term is the only one that takes different forms when
restricted to perturbations of the scalar, vector or tensor
types. It follows that only the counterterms originating
from this term will differ from one another for different
types of perturbations.

V. QUANTUM CORRECTIONS

In the classical case, the algebra is closed

fDðmþgÞ½Na
1 �; DðmþgÞ½Na

2 �g ¼ 0; (21)

fHðmþgÞ½N�; DðmþgÞ½Na�g ¼ �HðmþgÞ½�Na@a�N�; (22)

fHðmþgÞ½N1�; HðmþgÞ½N2�g ¼ DðmþgÞ
� �N

�p
@að�N2 � �N1Þ

�
:

(23)

Dg does not undergo corrections from quantum effects

[14]. We add quantum corrections at an effective level by
replacing in the Hamiltonian constraint

�k ! sinð ��� �kÞ
���

(24)

as a result of the quantization of the holonomies [15]. The
parameter ��, proportional to the ratio between the Planck
length and the scale factor, carries the information on the
scale at which quantum corrections become relevant. This
yields the quantum-corrected Friedmann equations

H2 ¼ �

3
�

�
1� �

�c

�
¼ H 2

�p
; (25)

whereH andH are the Hubble rate respectively in cosmic
time and in conformal time, � is the energy density and
�c � 0:4�P‘ is the energy density at which a repulsive
quantum-gravity force appears, removing the classical ini-
tial singularity [2]. The appearance of anomalies in the
Poisson brackets when applying the holonomy correction,
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�
H

�
N;

sinð ��� �kÞ
���

�
; H

�
N;

sinð ��� �kÞ
���

��
¼ D½@aN� þAi;

(26)

is contrasted by inserting counterterms 	i in H ð1Þ and

H ð2Þ such that, for instance, (15) becomes in our case

H ð1Þ
G ¼ �4

ffiffiffiffi
�p

p �
sinðs1 ��� �kÞ

s1 ���
þ 	1

�
�c
j�K

j
c

� 1ffiffiffiffi
�p

p
��
sinð ��� �kÞ

���

�
2 þ 	2

�
�j
c�Ec

j þ
2ffiffiffiffi
�p

p @j@c�E
c
j :

(27)

RequiringAi ¼ 0 therefore leads to a system of equations
which allows to find the expressions of the counter-terms.
Fortunately, when taking into account all the other con-
straints, there is a unique solution in the case of holonomy
corrections. For the explicit form of the resulting constraints,
we refer the reader to the literature (see Ref. [13]). The same
modified constraints have been found in Ref. [16], where the
counterterms of Ref. [13] appear naturally after a Taylor
expansion of the holonomies of the perturbed Ashtekar
connection.

We are here interested in the structure of the resulting
closed algebra.

VI. RESULTS

Remarkably, the resulting quantum-corrected algebra
valid for all different kind of perturbations is obtained
with a single structure modification (21)–(23). This appears
in the last Eq. (23), which becomes

fHðmþgÞ½N1�; HðmþgÞ½N2�g

¼ �DðmþgÞ
� �N

�p
@að�N2 � �N1Þ

�
; (28)

where

� ¼ cosð2 ��� �kÞ ¼ 1� 2
�

�c

: (29)

The single � factor represents the quantum correction. It
goes to 1 in the classical limit. This simple correction
appears also in the definition of the evolution of the pertur-
bations using gauge-invariant observables.

A. Mukhanov-Sasaki equations of motion

Whatever the kind of perturbations, due to the modified
constraints, the Poisson brackets

d

d

ð�XÞ _¼f�X;Hmodified½N� þD½Na�g; (30)

therefore lead to a modified evolution in time or under
small transformations, and so is the definition of gauge-
invariant variables. Finally, using the Hamilton-Jacobi

equation [13,17], or merging the equations of motion for
the different perturbations [13], the correction to the
Mukhanov-Sasaki [18] equation of motion for gauge-
invariant perturbations of scalar and tensor type vSðTÞ can
be derived. In conformal time, this is given by

v00
SðTÞ ��r2vSðTÞ �

z00SðTÞ
zSðTÞ

vSðTÞ ¼ 0; (31)

which reduces to the classical equation when� ! 1. This
equation holds for both scalar and tensor perturbations.
Since we have considered the simple case of a scalar field,
there is no vorticity and therefore there is no physical
solution corresponding to vector perturbations.
For scalar perturbations, the Mukhanov variables in the

quantum case are given by

vS ¼ ffiffiffiffi
�p

p �
�’þ �’0

H
�

�
and zS ¼

ffiffiffiffi
�p

p �’0

H
: (32)

If we impose the divergence and the trace to be zero, we
obtain for tensor modes

vT ¼
ffiffiffiffiffi
�p

�

r
h and zT ¼

ffiffiffiffiffi
�p

�

r
; (33)

where h represents the two degrees of freedom of hia.
Inserting (33) into (31) we obtain the following form of
the equations of motion for tensor perturbations:

hia
00 þ hia

0
�
2H ��0

�

�
��r2hia ¼ 0: (34)

This equation is clearly different from what has been used
in previous works because of the general expression for the
effective constraints. It is not only obviously different from
standard cosmology but also from first results obtained in
LQC. This� term deforms the algebra and will inevitably
lead to different observational consequences. The closure
requirements modifies the equation of motion for all types
of perturbations.

VII. CONCLUSIONS

We have presented a consistent framework for the study
of perturbations in loop quantum cosmology. It is possible
to write down a unique quantum-corrected algebra. This
has a simple form, and the same quantum correction holds
for all the different kinds of perturbations.
This simple correction also appears in the Mukhanov-

Sasaki equation, and consists in the insertion of the single
factor (29), which becomes relevant only when the matter
energy density approaches the Planck scale.
We notice that there exist a small region in the strong

quantum regime where � becomes negative. This yields a
change of signature of the effective metric [13,19] associ-
ated to the appearance of divergences in the equation of
motion of cosmological perturbations. As a consequence,
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new observable features could appear since the value of
tensor modes would be higher than in the classical case.
This have to be further investigated, possibly going beyond
the effective treatment.

The existence of a single deformed closed algebra of
constraints for all kind of perturbations, as exhibited in this
work, is a strong case for the self-consistency of effective
LQC.
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