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We consider the expectation values of chiral primary operators in the presence of the interface in the

4-dimensional N ¼ 4 super Yang-Mills theory. This interface is derived from D3-D5 system in type IIB

string theory. These expectation values are computed classically in the gauge theory side. On the other

hand, this interface is a holographic dual to type IIB string theory on AdS5 � S5 spacetime with a probe

D5-brane. The expectation values are computed by the Gubser-Klebanov-Polyakov-Witten prescription in

the gravity side. We find nontrivial agreement of these two results: the gauge theory side and the gravity

side.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1] is an interesting dual-
ity between a gravity theory and a gauge theory. However it
is very difficult to check this duality since unprotected
quantities are calculable only in the small ’t Hooft coupling
� regime in the gauge theory side, while they are calculable
in the large � regime in the gravity side.

There are several ways to overcome this difficulty. One
of them is to introduce another large parameter as in
Ref. [2]. In Ref. [2], the R-charge J (the angular momen-
tum in the gravity side) has been taken to be large and the
effective expansion parameter has become �=J2. By virtue
of this change of the effective coupling, the conformal
dimension of such operators have been successfully com-
pared to the energy of the stringy excited states in the
pp-wave geometry. This result has given a nontrivial evi-
dence of the AdS/CFT correspondence. Other examples of
similar phenomena are found in surface operators [3] (see
also Ref. [4]) and the interface [5].

An interface is a wall in the spacetime which connects
two different (or the same) quantum field theories. A
partial list of related references are [6–20]. See also
Ref. [21] and references therein. The interface considered
in this paper is a so-called ‘‘Nahm pole’’ which connects
SUðNÞ gauge theory and SUðN � kÞ gauge theory. The
boundary condition is determined by the fuzzy funnel
solution [22]. In this interface a parameter k is introduced,
and taken to be large in this paper as done in Ref. [5]. This
interface is described by the intersecting D3-D5 system
where k D3-branes end on the D5-brane. Thus the gravity
dual is given by the near-horizon limit of the supergravity
solution for the D3-branes with the probe D5-brane with k
units of magnetic flux [9].

In this paper we study the expectation values of chiral
primary operators in the presence of the above interface. In
the gauge theory side the expectation values are evaluated

by just substituting the classical solution of the fuzzy
funnel solution. On the other hand they are calculated by
the GKPW prescription [23,24]. Usually these two results
cannot be compared to each other because the gauge theory
result is only valid in the small � regime, while the gravity
result is only valid in the large � regime. However in our
case we can take k ! 1 limit and make �=k2 small even if
� is large in the gravity side. In this limit we find perfect
agreement between the gauge theory result and the gravity
result. This is a quite nontrivial evidence of the AdS/CFT
correspondence.
The construction of this paper is as follows. In Sec. II,

we review the 4-dimensional N ¼ 4 SYM theory and the
interface, and show the calculation of the expectation
values of the chiral primary operators in the presence of
the interface. In Sec. III, we turn to the calculation in the
gravity side using the GKPW prescription. In Sec. IV, the
above two results are compared and the perfect agreement
is found in the leading order. The next-to-leading term is
predicted from the gravity side.

II. GAUGE THEORY SIDE

We consider the 4-dimensionalN ¼ 4 supersymmetric
Yang-Mills theory in this section. We review the action of
this theory and classical solutions. After that we calculate
the expectation values of the chiral primary operators in the
presence of the interface.

A. Fields and action

We consider here the N ¼ 4 super Yang-Mills theory
with the gauge group SUðNÞ. We use the same convention
as Ref. [5]. The action is given by

S¼ 2

g2

Z
d4xtr

�
�1

4
F��F

�� � 1

2
D��iD

��i

þ i

2
�c��D�c þ 1

2
�c�i½�i;c �þ 1

4
½�i;�j�½�i;�j�

�
;

(2.1)
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where F��, � ¼ 0; � � � ; 3, are the field strength of

the gauge field A�, which is expressed as F�� ¼ @�A� �
@�A� � i½A�; A��. While c is a fermion field and �i,

i ¼ 4; � � � ; 9, are scalar fields. All these fields are in the
adjoint representation of SUðNÞ, in other words, N � N
Hermitian traceless matrices. These scalar fields play a
crucial role in the one-point function we want to calculate
in this paper.

This action is invariant under the following supersym-
metry transformation with the spinor parameter �:

�A� ¼ i ����c ; (2.2)

��i ¼ i ���ic ; (2.3)

�c ¼ 1

2
F���

���þD��i�
�i�� i

2
½�i;�j��ij�: (2.4)

B. Interface

We introduce here a wall-like object called an interface.
This object separates a whole space into two regions where
gauge theories with different gauge groups live. One has
gauge group SUðNÞ and the other has SUðN � kÞ. This
interface is defined by a classical solution known as a fuzzy
funnel solution [22]. This solution plays a crucial role in
our calculation. The interface is defined by a boundary
condition between two different gauge theories and leads
to a nontrivial classical vacuum solution

A� ¼ 0;

�i ¼ �iðx3Þ; ði ¼ 4; 5; 6Þ;
�i ¼ 0; ði ¼ 7; 8; 9Þ:

(2.5)

The solution �i ¼ �iðx3Þ, (i ¼ 4, 5, 6), is called a fuzzy
funnel solution [22]. The solution of scalar fields are
given by

�i ¼ � 1

x3
ti � 0ðN�kÞ�ðN�kÞ ðx3 > 0Þ; (2.6)

where ti, i ¼ 4, 5, 6, are k� k matrices which denote the
generators of SU(2) algebra of the k-dimensional irreduc-
ible representation. The following relation is useful for our
calculation:

�2
4 þ�2

5 þ�2
6 ¼

1

4x23
ðk2 � 1Þ1k�k � 0ðN�kÞ�ðN�kÞ: (2.7)

C. One-point function

In this section we consider the one-point functions of
chiral primary operators. The chiral primary operators are
defined as

O �ðxÞ :¼ ð8�2Þ�=2
��=2

ffiffiffiffi
�

p CI1I2���I�Trð�I1ðxÞ�I2ðxÞ � � ��I�ðxÞÞ;
(2.8)

where � denotes the conformal dimension and
CI1I2���I� is a traceless symmetric tensor normalized as
CI1I2���I�CI1I2���I� ¼ 1. The normalization of the operator
is determined so that the two-point function without an
interface becomes

hO�ðxÞO�ðyÞi ¼ 1

jx� yj2� : (2.9)

See Ref. [25] for the details.
We would like to calculate the one-point function of this

operator. Let us insert this operator at a point x3 ¼ � and
consider the expectation value hO�ð�Þi. For calculating the
classical expectation value of this operator we substitute
the fuzzy funnel solution introduced in the above Sec. II B.
Since our fuzzy funnel solution preserves SOð3Þ � SOð3Þ
symmetry, only SOð3Þ � SOð3Þ invariant chiral primary
operators can have nonvanishing expectation values. As
shown in Appendix A, � must be even and is denoted as
� ¼ 2‘. Moreover there is only one such chiral primary
operator for each � ¼ 2‘, ‘ ¼ 0; 1; 2; 3; � � � .
The traceless symmetric tensors CI1���I� are related to the

spherical harmonics (see Appendix A)

CI1I2���I�xI1 � � � xI� ¼ Y‘ðc Þ;
X6
i¼4

x2i ¼ sin2c ;

X9
j¼7

x2j ¼ cos2c :

(2.10)

Spherical harmonics is expressed as Eq. (A.9)

Y‘ðc Þ ¼ C‘F

�
�‘; ‘þ 2;

3

2
; cos2c

�

¼ C‘ð1þ cos2cPðcos2c ÞÞ; (2.11)

where Pðcos2c Þ is an inhomogeneous polynomial of
cos2c . The normalization C‘ is determined so that
CI1I2���I�CI1I2���I� ¼ 1 is satisfied, or equivalently
Eq. (A.10). We can express this spherical harmonics by a
homogeneous polynomial of sin2c and cos2c . This is
because if we have an inhomogeneous term, we can replace
1 by some power of sin2c þ cos2c . In particular we can
replace the first term 1 in the paren in Eq. (2.11) by
ðsin2c þ cos2c Þ‘ and get the homogeneous expression

Y‘ ¼ C‘ðsin2‘c þ cos2cQðsin2c ; cos2c ÞÞ; (2.12)

where Qðsin2c ; cos2c Þ is a homogeneous polynomial of
sin2c and cos2c . Then replacing sin2c by

P
6
i¼4 �

2
i and

cos2c by
P9

j¼7 �
2
j , we obtain the relation1

1Precisely speaking the right-hand side is a symmetrized
product.
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CI1���I��I1 � � ��I� ¼ C‘

��X6
i¼4

�2
i

�
‘

þ
�X9
j¼7

�2
j

�
Q

�X6
i¼4

�2
i ;
X9
j¼7

�2
j

��
:

(2.13)

Substituting the solution (2.5), all terms except the first one
vanish since �7 ¼ �8 ¼ �9 ¼ 0. Using the relations (2.7)
we obtain the following result:

hO2‘ð�Þiclassical ¼ ð8�2Þ�=2
��=2

ffiffiffiffi
�

p C‘Tr

��
1

4�2
ðk2 � 1Þ

�
‘
1k�k

�

¼ C‘

ð2�2Þ‘ffiffiffiffiffiffi
2‘

p
�‘

ðk2 � 1Þ‘k 1

�2‘
: (2.14)

The behavior 1=�2‘ is determined by the conformal
symmetry and does not change by the quantum correction.
The nontrivial part is the coefficient, which will change by
the quantum correction. We compare this result with the
gravity-side calculation.

III. GRAVITY SIDE

In this section we calculate the expectation values of the
chiral primary operators in the gravity side. The AdS/CFT
correspondence is a duality between the N ¼ 4 super
Yang-Mills theory we discussed in the previous section
and type IIB superstring theory on AdS5 � S5. How is this
gravity side modified when the interface is inserted? The
object which corresponds to our interface is a probe
D5-brane with k units of magnetic flux [9]. This gravity
dual is obtained by the following way. We consider a
D5-brane where k D3-branes end. Then SUðNÞ gauge
theory is realized in the side where there are N D3 branes
and SUðN � kÞ gauge theory is realized in the other side as
low-energy effective theories. This D5-brane is pulled by k
D3-branes which end on it and become funnel shape with k
units of magnetic flux. If we consider the supergravity
solution of D3-branes and take the near-horizon limit, we
obtain the gravity dual mentioned above.

Here we make a remark on the value k. Although we take
k large, it is still much smaller than N in order not to
modify the supergravity background.

A. The Gubser-Klebanov-Polyakov-Witten relation

The correlation functions in the AdS/CFT correspon-
dence are calculated by the GKPW prescription [23,24].
Because of GKPW there is one-to-one correspondence
between local operators in the gauge theory and fields in
the gravity theory. Let O be a scalar operator in the gauge
theory, and s be the scalar field in the gravity theory which
corresponds to O. GKPW claims that the relation

he
R

d4xs0ðxÞOðxÞiCFT ¼ e�Sclðs0Þ; (3.1)

is satisfied in the classical gravity limit. In this equation s0
is a boundary condition of s up to a certain factor, Sclðs0Þ is
the action evaluated by the classical solution with the
boundary condition given by s0. Using this relation the
one-point function is calculated as follows:

hOðxÞi ¼ ��Sclðs0Þ
�s0ðxÞ

��������s0¼0
: (3.2)

We employ the normalization h1i ¼ 1.
If no interface or other defects are inserted, this one-

point function vanishes due to the conformal invariance. In
terms of the gravity theory, this one-point function van-
ishes since the background is a solution of the equation of
motion and thus any variation of the action vanishes at this
background. In our case this one-point function does not
vanish in general because the interface is inserted as we
have seen in the previous section. In the gravity side, this
one-point function does not vanish because we have, in
addition to the supergravity, a probe D5-brane which gives
a nonvanishing contribution.

B. Background

We consider here type IIB superstring theory as the
gravity theory. The near-horizon limit of the supergravity
solution of N coincident D3-branes is AdS5 � S5. The
coordinates of AdS5 are denoted by y, x�, � ¼ 0, 1, 2, 3.
The metric on this space is given by

ds2
AdS5�S5

¼ 1

y2
ðdy2 þ 	��dx

�dx�Þ þ ds2
S5
: (3.3)

In this paper we choose the unit in which the radius of
AdS5 is 1. Thus the string coupling constant gs and the
slope parameter 
0 are related as

� :¼ 4�gsN ¼ 
0�2: (3.4)

Furthermore the RR 4-form is also excited

C4 ¼ � 1

y4
dx0dx1dx2dx3 þ � � � : (3.5)

In addition to the D3-brane configuration discussed ear-
lier, we introduce a D5-brane in order to study the corre-
sponding theory of the interface CFT. The D5-brane action
is the usual DBIþWZ action,

S ¼ T5

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþF Þ

p
þ iT5

Z
F ^ C4; (3.6)

where T5 ¼ ð2�Þ�5
0�2g�1
s is the tension of the D5-brane,

�’s are the world-volume coordinates, G and F denote the
induced metric and the field strength of the world-volume
gauge field respectively.
The AdS4 � S2 solution is obtained by Ref. [9]. We use

the convention of Ref. [5]. AdS4 part is embedded in AdS5
and expressed by the equation

x3 ¼ �y; (3.7)
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with a constant parameter �. S2 is embedded in S5 as a
great sphere. We denote world-volume coordinates of D5
by ðy; x0; x1; x2; ; �Þ; ðy; x0; x1; x2Þ are coordinates of
AdS4 and ð;�Þ are ones of S2. The induced metric and
the gauge field are summarized by a matrix H ¼ GþF .
H takes the following form in this solution:

H¼

ð1þ�2Þy�2

y�2

y�2

y�2

1 �� sin

� sin sin2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(3.8)

Actually the parameter � is related with k as � ¼ �ffiffiffi
�

p k.

C. One-point function from gravity theory

Now let us turn to the calculation of the one-point
function. The scalar fields which correspond to the chiral
primary operators are identified in Refs. [25,26]. These
scalar fields come from the fluctuation of the metric and the
RR 4-form as

hAdS�� ¼ � 2�ð�� 1Þ
�þ 1

sg�� þ 4

�þ 1
r�r�s; (3.9)

hS
� ¼ 2�sg
�; (3.10)

aAdS���� ¼ 4i
ffiffiffiffiffiffiffiffiffiffi
gAdS

q
�����	r	s; (3.11)

where hAdS�� , hS
� and aAdS���� are the fluctuation ofAdS5 part

of the metric, S5 part of the metric and AdS5 part of the RR
4-form, respectively.� ¼ 2‘ corresponds to the conformal
dimension of the operator in the gauge theory.

The classical solution of s with the boundary condition
can be written as

sðy; x; ;�; c ; � � �Þ ¼
Z

d4x0c�
y�

Kðy; x; x0Þ� s0ðx0ÞY�=2ðc Þ;

Kðy; x; x0Þ :¼ jx� x0j2 þ y2;

c� ¼ �þ 1

22��=2N
ffiffiffiffi
�

p ; (3.12)

where Y�=2 is the spherical harmonics obtained in

Appendix A. The normalization factor c� is the correct
one obtained in Refs. [25,27]. It is determined so that the
coefficient of the two-point function is unity.

The first-order fluctuation of the action is

Sð1Þ ¼ T5

2

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffi
detH

p ðH�1
symÞab@aXM@bX

NhMN

þ iT5

Z
F ^ a4; (3.13)

where h�� and a4 are the fluctuation of the metric and the

RR 4-form given in Eqs. (3.9), (3.10), and (3.11). H�1
sym

denotes the symmetric part of the inverse matrix of H.
The one-point function can be calculated by using

Eq. (3.2). The classical action Scl in Eq. (3.2) can be

replaced by Sð1Þ in Eq. (3.13)

hOðxÞi ¼ ��Sð1Þðs0Þ
�s0ðxÞ : (3.14)

The detailed calculation of the fluctuation Sð1Þ is shown in
Appendix B. The final result of gravity side is given by
Eq. (B.22)

� �Scl
�s0ð�Þ ¼ C‘

ffiffiffiffi
�

p
2‘�ð2‘þ 1=2Þ

�3=2
ffiffiffiffiffiffi
2‘

p
�ð2‘Þ

1

�2‘

�
Z 1

0
du

u2‘�2

½ð1� �uÞ2 þ u2�2‘þ1=2
: (3.15)

Here � is the distance between the interface and the point
where the chiral primary operator is inserted.
In Eq. (3.15), the dependence of � is 1=�2‘ and this is

determined by the conformal symmetry. We will compare
the coefficient with the gauge theory side in the next
section.

IV. DISCUSSION

In the previous Secs. II and III, we calculated the one-
point function in the gauge theory side and the gravity side.
Our goal is to confirm the correspondence between the
gauge theory and the gravity theory. Let us compare these
results in this section. We consider the limit k � 1 and
�=k2 � 1, and compare the leading terms.

A. Gauge theory

Since we consider the limit k � 1 the gauge theory
result (2.14) becomes

hO2‘iclassical ¼ C‘

ð2�2Þ‘ffiffiffiffiffiffi
2‘

p
�‘

ðk2 � 1Þ‘k 1

�2‘

� C‘

ð2�2Þ‘ffiffiffiffiffiffi
2‘

p
�‘

k2‘þ1 1

�2‘
: (4.1)

This result is compared with the gravity side.
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B. Gravity theory

We consider the behavior of the gravity side result in
the limit � :¼ 1

�2þ1
! 0, � ¼ �ffiffiffi

�
p k � 1. The following

expression of the Dirac delta function is convenient2:

�ðxÞ ¼ lim
�!0

1ffiffiffiffi
�

p �ðnÞ
�ðn� 1=2Þ

�2n�1

ðx2 þ �2Þn : (4.2)

Using this formula the integrand of the Eq. (3.15) can be
approximated by the Dirac delta function

1

ðð1� �uÞ2 þ u2Þ2‘þ1=2
! 1

�4‘
�ð2‘Þ�ð12Þ
�ð2‘þ 1

2Þ
�ðu� ��Þ:

(4.3)

After integration we obtain the result

� �Sð1Þ

�s0ð�Þ ¼ C‘

ð2�2Þ‘
�‘

ffiffiffiffiffiffi
2‘

p k2‘þ1 1

�2‘
: (4.4)

Comparing (4.1) and (4.4), we can conclude that these
two quantities completely agree in the leading order of
�=k2 series.

We can go to next-to-leading order in the gravity side.
Actually the integral in Eq. (3.15) can be rewritten as

I :¼
Z 1

0
du

u2‘�2

½ð1� �uÞ2 þ u2�2‘þ1=2
;

¼ �2‘þ1

�
1þ 1

�2

�
3=2 Z �=2

� arctan�
dðcosÞ4‘�1

�
�
1þ 1

�
tan

�
2‘�2

; (4.5)

by the change of variable as tan ¼ ð1þ �2Þu� �. This
function can expanded around � ! 1 as3

I ¼ �2‘þ1 �ð2‘Þ�ð1=2Þ
�ð2‘þ 1=2Þ

�
1þ 1

�2
I1 þO

�
1

�4

��
; (4.6)

I1 ¼ 3

2
þ ð2‘� 2Þð2‘� 3Þ

4ð2‘� 1Þ : (4.7)

Using this I1 the gravity result up to next-to-leading
order is

� �Sð1Þ

�s0ðxÞ ¼ C‘

ð2�2Þ‘
�‘

ffiffiffiffiffiffi
2‘

p k2‘þ1 1

�2‘

�
1þ �

�2k2
I1 þ � � �

�
:

(4.8)

These corrections are formally a positive power series of
�=k2. The expansion Eq. (4.8) indicates the reason why we
can compare the gravity side and the gauge theory side. In
the gravity side �=k2 can be small even though � is large
because k2 can be larger. Thus one can suppress the sub-
leading terms by sending �=k2 ! 0which has superficially

the same effects as � ! 0. A heuristic argument of �=k2

scaling in the gauge theory side is given in the discussion
section of Ref. [5].
An interesting future work is to compare the prediction

of the 1-loop correction in Eq. (4.8) from the gravity side to
the 1-loop calculation in the gauge theory side.
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APPENDIX A: SPHERICAL HARMONICS

1. SOð3Þ � SOð3Þ invariant ansatz
The interface in this paper preserves SOð3Þ � SOð3Þ

symmetry out of SO(6) R-symmetry. Thus only SOð3Þ �
SOð3Þ invariant operators can have nonvanishing expecta-
tion values. We would like to introduce SOð3Þ � SOð3Þ
invariant spherical harmonics on S5. S5 is described as a
hypersurface in 6-dimensional Euclidean space whose
coordinates are ðx4; . . . ; x9Þ. S5 is defined by the equation

x24 þ . . .þ x29 ¼ 1: (A.1)

We introduce a parameter c , 0 	 c 	 �
2 and reexpress

this S5 as the following way:

x24 þ x25 þ x26 ¼ sin2c ; x27 þ x28 þ x29 ¼ cos2c :

(A.2)

Then the metric is written as

ds2 ¼ dc 2 þ cos2c d ~�2
2 þ sin2c d�2

2; (A.3)

where d ~�2
2 and d�2

2 are line elements of unit S2.
The SOð3Þ � SOð3Þ invariant spherical harmonics only

depend on the coordinate c . Let Y be such a function of c ;
Y ¼ Yðc Þ. The Laplacian operating on this Y is written as

hY ¼ 1ffiffiffi
g

p @i
ffiffiffi
g

p
gij@jY

¼ 1

cos2c sin2c

d

dc
cos2c sin2c

d

dc
Yðc Þ: (A.4)

After changing the variable z :¼ cos2c , the Laplacian is
rewritten as

hY ¼ 4zð1� zÞ@2zY þ ð6� 12zÞ@zY: (A.5)

Then the eigenvalue equation, hY ¼ �EY, reads

zð1� zÞ@2zY þ
�
3

2
� 3z

�
@zY þ E

4
Y ¼ 0: (A.6)

This is a hypergeometric differential equation.
In general a hypergeometric differential equation is

given by

2The case n ¼ 1 is well known.
3This expansion is correct for ‘ 
 2.
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zð1� zÞ@2zFþ ðc� ðaþ bþ 1ÞzÞ@zF� abF ¼ 0;

(A.7)

where a, b, c are real parameters. The solution which is
regular at z ¼ 0 is the hypergeometric function given by an
infinite power series

Fða; b; c; zÞ ¼ X1
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
: (A.8)

Here the Pochhammer symbol ðaÞn ¼ �ðaþ nÞ=�ðaÞ is
used.

Since we need the smooth solution on the whole S5, the
solution of Eq. (A.6) must be regular not only at z ¼ 0 but
z ¼ 1. Then the solution must be a hypergeometric func-
tion with a ¼ �‘, b ¼ ‘þ 2, c ¼ 3=2, ð‘ ¼ 0; 1; 2; 3; . . .Þ
and the eigenvalue E ¼ 2lð2lþ 4Þ is obtained. Therefore
the solution of the Eq. (A.6) is expressed in terms of
hypergeometric function

Y‘ðc Þ ¼ C‘Fð�‘; 2þ ‘; 3=2; cos2c Þ; (A.9)

where the normalization factor C‘ is determined by

Z
S5

ffiffiffi
g

p jY‘j2 ¼ �3

22‘�1ð2‘þ 1Þð2‘þ 2Þ : (A.10)

The conformal dimension � of the corresponding chiral
primary operator is � ¼ 2‘.

APPENDIX B: DETAILED CALCULATION

1. Fluctuations h and a

In this appendix we show the detailed calculations of
fluctuations h and a defined by the scalar field sðxÞ as (3.9),
(3.10), and (3.11). Actually it is enough to calculate them
when s0 is a delta function as

s0ðxÞ ¼ �4ðx� x0Þ: (B.1)

In this case the classical solution (3.12) becomes

sðy; x; ; �; c Þ ¼ c�
y�

Kðy; x; x0Þ� Y�=2ðc Þ: (B.2)

We use the convention for the covariant derivative and
totally antisymmetric tensor

riTj1���jn :¼ @iTj1���jn �
Xn
l¼1

�k
ijl
Tj1���jl�1kjlþ1���jn ; (B.3)

�y0123 ¼ 1; (B.4)

where Christoffel symbols are �i
jk
:¼ 1

2 g
ilð@jglk þ @kglj �

@lgjkÞ.

The first derivatives and the second derivatives of s are

@ys

s
¼ �

�
1

y
� 2y

K

�
; (B.5)

@is

s
¼ ��

2ðx� x0Þi
K

; (B.6)

ryrys

s
¼ �2

y2
þ 4�ð�þ 1Þ

�
� 1

K
þ y2

K2

�
; (B.7)

ryris

s
¼ �ð�þ 1Þ

�
þ4y

ðx� x0Þi
K2

� 2
ðx� x0Þi

yK

�
; (B.8)

rirjs

s
¼ ��

�ij

y2
þ 4�ð�þ 1Þ ðx� x0Þiðx� x0Þj

K2
:

(B.9)

Using these results and the definition of h in AdS the
expression of fluctuations are

hAdSyy

�s
¼ 2

y2
� 16

K
þ 16

K2
; (B.10)

hAdSyi

�s
¼ 16y

ðx� x0Þi
K

� 8
ðx� x0Þi

yK
; (B.11)

hAdSij

�s
¼ �2

�ij

y2
þ 16ðx� x0Þiðx� x0Þj

K2
; (B.12)

and in 2-sphere

hS
�s

¼ 2;
hS��

�s
¼ 2sin2: (B.13)

2. D5-brane action

When we give fluctuation to the metric and the RR
4-form, the D5-brane action is deformed as follows in the
first order. We use the notation vi ¼ xi � x0i and p, q run 0,
1, 2. The first-order fluctuation is calculated as follows:

Sð1Þ ¼ T5

2

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffi
detH

p ðH�1
symÞab@aXM@bX

NhMN

þ iT5

Z
F ^ a4

¼ T5

Z
d6�ðLð1Þ

DBI þLð1Þ
WZÞ: (B.14)

In this equation we need the explicit form of the symmetric
part of H�1
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H�1
sym ¼

ð1þ �2Þ�1y2

y2

y2

y2

ð1þ �2Þ�1

½sin2ð1þ �2Þ��1

0
BBBBBBBB@

1
CCCCCCCCA
: (B.15)

Equation (B.14) is calculated as follows:

Lð1Þ
DBI

:¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
detH

p ðH�1
symÞab@aXM@bX

NhMN

¼ ð1þ �2Þsin2
2y4

fHyy@yX
M@yX

NhAdSMN þHij@iX
M@jX

NhAdSMN þH@X
M@X

NhSMN þH��@�X
M@�X

NhSMNg

¼ �s sin

y4K2
f�8y2v2

3 þ �ð16y3v3 � 8yv3KÞ þ �2ð8y2ðvpvp þ v2
3Þ � 4K2Þg: (B.16)

L ð1Þ
WZ

:¼ iF �

1

4!
�abcdðPaÞabcd ¼ i2� sinðay012 þ �a3012Þ ¼ i2� sin

�
�4s

1

y3
2v3

K
þ ��4s

1

y3

�
1

y
� 2y

K

��

¼ i sin�s

y4K2
f�ð16v3yKÞ þ �2ð8�2 � 16y2KÞg: (B.17)

Sð1Þ is the sum of these two terms

Sð1Þ ¼ T5

Z
d6�ðLð1Þ

DBI þLð1Þ
WZÞ ¼ �8T5

Z
d6�

sin � �s
y2K2

ðv3 � �yÞ2 ¼ �8T5

Z
d6�

sin � �s
y2K2

x023 : (B.18)

This formula with the classical solution (B.1) s0ðxÞ ¼ �4ðx� x0Þ is the functional derivative �Sð1Þ=�s0ðx0Þ. This functional
derivative evaluated at x03 ¼ � is the quantity we want. Notice that the D5-brane sits at c ¼ �=2, thus the spherical
harmonics should be evaluated at this surface. This value is given by [see Eq. (A.9)]

Y‘ðc ¼ �=2Þ ¼ C‘: (B.19)

Putting all these things together, we obtain

� �Sð1Þ

�s0ð�Þ ¼ 32T5��c�C‘

Z 1

0
dy

Z
dx0dx1dx2

y��2�2

ðð�y� �Þ2 þ xpxp þ y2Þ�þ2

¼ 32T5�
5=2�c�C‘

�ð�þ 1=2Þ
�ð�þ 2Þ �2

Z 1

0
dy

y��2

ðð�y� �Þ2 þ y2Þ�þ1=2
: (B.20)

In the above calculation we used the formula

Z
dDx

1

ðx2 þ AÞ
 ¼ �ð�D=2þ 
Þ
�ð
Þ

�D=2

A�D=2þ

: (B.21)

In our unit (3.4) the D5-brane tension is written as T5 ¼ 2N
ffiffiffi
�

p
ð2�Þ4 . Finally by substituting T5, c� and� ¼ 2‘ to Eq. (B.20), and

the change of valuable as y ¼ �u, we obtain

� �Scl
�s0ð�Þ ¼ C‘

ffiffiffiffi
�

p
2‘�ð2‘þ 1=2Þ

�3=2
ffiffiffiffiffiffi
2‘

p
�ð2‘Þ

1

�2‘

Z 1

0
du

u2‘�2

½ð1� �uÞ2 þ u2�2‘þ1=2
: (B.22)
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