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We show that given three Hermitian matrices, what one could call a fuzzy representation of a

membrane, there is a well-defined procedure to define a set of oriented Riemann surfaces embedded in

R3 using an index function defined for points in R3 that is constructed from the three matrices and the

point. The set of surfaces is covariant under rotations, dilatations and translation operations on R3; it is

additive on direct sums; and the orientation of the surfaces is reversed by complex conjugation of the

matrices. The index we build is closely related to the Hanany-Witten effect. We also show that the surfaces

carry information of a line bundle with connection on them. We discuss applications of these ideas to the

study of holographic matrix models and black hole dynamics.
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I. INTRODUCTION

The discovery of D-branes [1] introduced a huge class of
new geometric objects in string theory. It was quickly real-
ized that the coordinate positions of these geometric objects
are matrices, and hence that their positions can become
smeared in the same way that typical wave functions in
quantum mechanics do not have a well-defined position
and momentum due to the uncertainty principle. This fuzzi-
ness of the D-brane position occurs when the matrices that
describe the positions of D-branes do not commute. When
the said matrices commute, the positions of the D-branes can
be identifiedwith the eigenvalues of thematrices themselves.

A second route to obtaining noncommutative coordinates
for branes arises from the light cone quantization of the
membrane [2]. Indeed, just the light cone description in the
classical theory itself leads to such a prescription. In that case
the coordinates that do not commute describe the internal
coordinates of the membrane itself. The idea of Goldstone
and Hoppe is that in the light cone quantization, the super-
membrane acquires a nondegenerate Poisson bracket on its
spatial worldvolume. These Poisson brackets on the mem-
brane coordinates are then approximated by commutators of
finite matrices, so the matrices become the internal coordi-
nates of the membrane itself. This is an UV truncation in the
degrees of freedom, so it regularizes themembrane theory on
the light cone. Indeed, the supermembrane version of this
construction [3] was one of the pieces of evidence that was
given in the construction of the Banks-Fischler-Shenker-
Susskind (BFSS) matrix model describing the full M theory
on the light cone quantization [4]. The geometric object we
call the membrane is supposed to appear in the limit where
the size of the matrices goes to infinity, with small commu-
tators, but it is unclear if a geometric object that is a mem-
brane can be defined for finite matrices or not, and whether it
is a sharp geometric object or a very fuzzy object.

All of the considerations above occur at the classical
level. There is no need to invoke quantum mechanics to

have these noncommutative geometric effects occur. We
can then ask the following question: given a collection of
matrices that do not commute, is it possible to construct a
set of surfaces associated to them that would represent the
membrane worldvolume geometry (or multiple mem-
branes) embedded in flat space without taking an infinite
size matrix limit?
We will answer this question in the affirmative for the

case where we are given three Hermitian matrices X, Y, Z
that generically do not commute. These would then repre-
sent an embedding of a membrane inR3. Wewill also show
that this easily generalizes to embeddings on a plane wave
in the light cone where the plane wave has a transverse R3

set of coordinates. Our construction produces a collection
of closed oriented surfaces embedded in R3. Indeed, we
will show that these membranes not only carry an orienta-
tion, but that we can also deduce that they carry vector
bundles on them and hence behave like D2-branes. We will
also show that the topology of the membranes is continu-
ous when X, Y, Z are deformed, so topology transitions are
not instantaneous and require going through singular ge-
ometries. This implies that the associated brane charge is
conserved.
The main motivation to understand this problem in detail

arises from the study of simulations of black hole forma-
tion in matrix models performed in Ref. [5]. The data
obtained there at the end of the evolution is exactly of
the sort above: a collection of (somewhat random) matrices
that do not commute. Although one can try to find the
brane positions by diagonalizing each matrix, the end
result is not amenable to easy visualization in higher
dimensions. After all, what are we supposed to do with
the noncommutative information? The approach in Ref. [6]
is to find some approximate locations for D0-branes that
minimizes the nondiagonal matrix elements given this
choice of basis and then throws the off-diagonal informa-
tion away. Then it uses those D0-branes as a proxy for the
geometric object. This is a very nice idea. However, this
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type of description does not describe the orientation of
the extended membranes nor can it be used to determine
the topology of the brane configuration except in the large
matrix limit. This is especially hard if one is near a topol-
ogy change. It also seems to indicate that the result is very
fuzzy and the topology of the branes is in the end given by
the topology of a set of points.

Our approach to this problem is very different. We start
from the BFSS [4] and Berenstein-Maldacena-Nastase
(BMN) matrix models [7] and to simplify matters in the
discussion, we orbifold the problem sufficiently so that in
the end we can deal with a reduced model where only three
matrices are required, so instead of starting with a system
with 16 supersymmetries, we go to a system with four
supersymmetries. We do this by taking a model which is
the dimensional reduction of Zk supersymmetric orbifolds
in four dimensions that are chiral. The model we need is
then obtained by taking a quiver where only fractional
branes on one of the nodes of the quiver are present; that
is, we concentrate on the reduction of pure N ¼ 1 super-
Yang-Mills (SYM) reduced to matrices (there are three of
them that are dynamical, which we call X, Y, Z). To
explore the geometry we then add a fractional brane probe
in one of the nodes of the quiver diagram that intersect
the node where our matrices are located. The main idea is
to ask what the D-brane probe sees given a generic set of
coordinates as given by the X, Y, Z matrices. Within the
dynamics of the matrix model orbifold, there are either
bosons connecting the probe brane to the configuration, or
fermions. The interesting degrees of freedom to define the
geometry end up being the fermions. Indeed, one can show
that the spectrum of fermions connecting the probe to the
fuzzy object can be obtained by diagonalizing a simple
Hermitian matrix obtained from the X, Y, Z and the coor-
dinates of the probe. The matrix can be thought of as an
effective Hamiltonian and it is given by

Heff ¼ ðX� xÞ�x þ ðY � yÞ�y þ ðZ� zÞ�z: (1)

A technical point is that the eigenvalues of Heff are not all
positive nor all negative. In second quantizing the fermi-
ons, the positive eigenvalues are associated to raising
operators, and the negative eigenvalues to lowering opera-
tors. The conjugate modes come from the antichiral fermi-
ons. The absolute value of the eigenvalues then serves as
the mass for the fermions. This mass can be thought of
as the length of a fermionic string connecting the probe
to the configuration, so it gives a notion of distance, and
the minimal eigenvalue is the shortest distance to the
configuration.

The important technical point of this paper is that the
eigenvalues of Heff can cross 0 and this depends on the
position of the probe. The geometric surface locus of
the matrix configuration is described exactly by the loca-
tions where one of the eigenvalues of Heff vanishes.
Counting the number of positive eigenvalues ofHeff versus

the negative eigenvalues can indicate the number of such
crossings of 0, and this can be used to define an index
Iðx; y; zÞX;Y;Z. The plane R3 represented by the coordinates

x, y, z is then colored by the index of the location. The
index is locally constant and can only change if one of the
eigenvalues crosses 0. Any path connecting two points with
different indices must have zero crossings: it is impossible
to avoid them by taking a clever path. This indicates that
the surfaces obtained this way are closed. At any crossing,
we can assign an orientation: from higher index to lower
index, so the surfaces are oriented.
A second point that is worth mentioning is that at the zero

crossing a raising operator becomes a lowering operator, or
vice versa. Thus if one follows a vacuum of the fermion
degrees of freedom on one side of the brane continuously to
the other side we get an anomalous creation of fermionic
strings. This is a generalization of the Hanany-Witten effect
[8] and it represents anomalous creation of branes by branes
(for more details on the relations to topology and anomaly
inflow of this effect see Ref. [9]).
The paper is organized as follows. In Sec. II we review

the BFSS and BMN matrix models and some of their
orbifolds. This is used to find an effective Hamiltonian
for chiral fermions in the presence of a configuration of
three matrices plus a probe, which was already written in
Eq. (1). Next, in Sec. III we show how the number of
positive versus negative eigenvalues of the effective
Hamiltonian can be used to define an index function given
a position of a probe. The index vanishes when the probe is
at infinity. The locus where the index changes defines a
collection of surfaces. We show various properties of the
index. In Sec. IV we show that fuzzy spheres give configu-
rations where on some loci the index is nonzero. The
associated surfaces are spheres. We also show how to
construct torus embeddings in R3. Finally, we show that
the surfaces carry the information of a line bundle on them.
This makes them behave like D-branes. In Sec. V we show
how to generalize the index to a linking number between
two such configurations. The linking number ends up
counting the number of strings that are created by trying
to separate the two configurations in a generalization of the
Hanany-Witten effect. Equally, the index counts the num-
ber of strings that are created when bringing the configu-
rations together from infinity. We show that in a special
case of fuzzy spheres for the BMN model, that the data on
when the fermion zero modes appear provides additional
evidence that the surfaces carry a line bundle on them and
behave like D2-branes. We apply these ideas to study
matrices obtained by numerical studies of the BMN matrix
model in Sec. VI. We give applications to understand the
polarization of black holes into membranes and we also
give applications where the Hanany-Witten effect can stop
probe D-branes: we show that as N increases, the Hanany-
Witten effect strings end up storing more energy parametri-
cally in N than the probe, so they are enough to show that

DAVID BERENSTEIN AND ERIC DZIENKOWSKI PHYSICAL REVIEW D 86, 086001 (2012)

086001-2



the black hole will stop the probe inside it and it will not
come out at the other side. Finally, in Sec. VII we conclude.
We also have appendices where some of our more elabo-
rate computations and conventions are described.

II. THE BFSS AND BMN MATRIX MODELS,
AND THEIR ORBIFOLDS

The BFSS matrix model [4] is simply the dimensional
reduction of 9þ 1 SYM to 0þ 1 dimensions. It is a
gauged matrix quantummechanics of nine adjoint matrices
�i with a gauge symmetry by similarity transformations.
An amazing aspect of this dynamical theory is that it is a
description of M theory in the discrete light cone quanti-
zation and in the limit N ! 1, and in an appropriate
double scaling limit it gives a quantization of M theory
in flat space in a light cone quantization. The action is
given by

SBFSS ¼
Z
dtTr

�X9
j¼1

1

2ð2RÞ ðD0�
jÞ2þ i

2
�yD0�

þð2RÞ
4

X9
j;k¼1

½�j;�k�2þX9
j¼1

1

2
ð2RÞð�y�j½�j;��Þ

�
:

(2)

As written, the action depends on a parameter R. This
parameter can be eliminated by a rescaling of the variables
and time and it can be replaced by ℏ. Thus the BFSS matrix
model itself has no intrinsic scale at the classical level.
Indeed, one can check that even ℏ can be removed because
the action has a classical scaling symmetry.

The simplest version of the model is for 1� 1 matrices.
In this case, the classical configurations are given by a
point in R9 with a velocity, and the fermions just add
degeneracy to these states. This degeneracy gives the cor-
rect degrees of freedom for a graviton supermultiplet in
11D [4]. The R9 describes the transverse directions to the
light cone, and the rank of the matrices is the amount of
light cone momentum. Such a configuration is a D0-brane.
Ground states in the classical theory in general correspond
to configurations of commuting matrices, where N such
D0-branes are located on R9.

One of the important things about the BFSS matrix
model is that it is capable of describing extended objects.
Indeed, one can describe D2-branes and higher order
D-branes from these configurations. These are easy to see
in the infinite N limit [10], as central charges can be
activated in the supersymmetry algebra that encode such
objects of infinite extent. Such solutions lead to effective
noncommutative field theories. A modern introduction to
the geometric interpretation of these developments can be
found in Ref. [11].

One can also check that matrix configurations source the
various supergravity fields at long distances, and that the
couplings to weakly curved backgrounds give us a way to

compute the currents and the multipoles with respect to the
brane charges of the configurations. This was very system-
atically developed in the works of Taylor and collaborators
[12]. A review of the BFSS matrix model where all of this
is very clearly addressed is in Ref. [13].
Finite matrix configurations can also behave like ex-

tended D-branes. The simplest example of such configura-
tions are fuzzy spheres [14], where three of the matrices are
made proportional to angular momentum matrices. These
have been studied extensively. An important question to ask
is if these geometries survive at finite N, or if they are only
well defined strictly when N ! 1. We will show in this
paper that precise geometries can be described even for
finite N. However, since in the BFSS matrix model in
principle one can also describe all other D-branes in type
IIA string theory, a random configuration of matrices would
be too complicated: it would probably encode somewhat
random extended D-branes of type IIA theory. It would be
nice if we could reduce the problem to just studying surfaces
in three dimensions, where only three of the � matrices
matter, and the other six are eliminated somehow.
A very simple way of doing this is by realizing that the

BFSS matrix model can also be thought of as the dimen-
sional reduction of N ¼ 4 SYM in four dimensions down
to 0þ 1 dimensions. If we manage to reduce the super-
symmetry from N ¼ 4 SYM to just N ¼ 1 SYM, then
instead of having nine matrices �i, we would get only
three matrices, those that arise from the dimensional re-
duction of the gauge field connection. In that situation, the
D0-branes would be confined to an R3, rather than an R9,
and we might expect that we can only describe D2-branes,
as any higher-dimensional even brane would have too high
a dimension to fit in three dimensions.
A simple way to achieve this truncation and to keep a

full geometric interpretation of the system in terms of
string theory is to take a supersymmetric orbifold C3=Zk.
These are described by quiver theories which can be con-
structed by the techniques developed by Douglas and
Moore [15]. What matters for us is that we can end up
with such theories where only the dynamics of N ¼ 1
SYM matter.
This would be the theory ofN identical fractional branes

at the orbifold singularity. A simple explanation of how
those field theories can be built and studied is found in
Ref. [16]. The geometric interpretation in terms of frac-
tional branes and intersection theory of those objects can
be found in Ref. [17].
For simplicity we can choose a Zk action that gives rise

to chiral theories where between any two nodes in the
quiver there is at most one chiral field connecting them:
this way if we add a probe for a different fractional brane,
we can get a single chiral multiplet’s worth of fields con-
necting the probe to the configuration. The particular ex-
ample of an orbifold we can choose is given by acting on
C3 given by coordinates �1, �2, �3 and acting with the Zk
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defined by the identifications �1 ! !�1, �2 ! !2�2,
�3 ! !�3�3, and ! ¼ expð2�i=kÞ is a primitive root of
unity. Many other orbifolds will have similar properties
and the precise details of the orbifold are not important at
this stage. All that we need can be visualized by a simple
subquiver diagram

UðNÞ� ! �Uð1Þ Probe; (3)

where the arrow indicates a single chiral multiplet.
The advantage of having a single chiral field is that the

fermions are represented by a two-component Weyl spinor,
and the � matrices appearing in the BFSS matrix model
reduce to the four-dimensional gamma matrices for such
spinors: those are just the Pauli matrices. The details of the
reductions are shown in the Appendixes A and B. The other
advantage of having chiral fields is that they carry anoma-
lies in four dimensions; thus it is natural to assume that
they might encode a lot of topological information even in
the reduction to 0þ 1 dimensions.

Upon such a reduction, we end up with fermion terms
where we only involve four-dimensional � matrices.
Indeed, if we reduce to a single chiral multiplet, then we
can think of the � matrices themselves as Pauli matrices.
The effective action is then

Sorb ¼
Z

dtTr

�X3
j¼1

1

2ð2RÞ ðD0�
jÞ2 þ i

2
�yD0�

þ ð2RÞ
4

X3
j;k¼1

½�j;�k�2 þX3
j¼1

1

2
ð2RÞð�y�j½�j;��Þ

�
;

(4)

where if c is chiral, then c y is antichiral. Again, R is
meaningless as it can be redefined away, and the classical
symmetries of Sorb have the same properties as those for
SBFSS. The action above is a shorthand: it is the same action
of the BFSS matrix model, but the matrices are restricted
by the orbifold conditions [15].1

The new advantage is that now we only have to deal
with three Hermitian matrices�1;2;3 rather than nine. Also,
the Pauli matrices are easier to handle than the nine-
dimensional gamma matrices.

The question is then if given �1;2;3 Hermitian matrices,
can we associate a collection of D2-branes in a specific
geometric configuration in R3 to it? To the extent that
we can, we can then uplift any such intuition to nine

dimensions and understand better how membrane geome-
tries arise in the BFSS matrix model.
We should still consider if we are allowed to pick the

matrices �1;2;3 to be arbitrary or not. After all, the original
BFSS matrix model is a gauged quantum system, and one
might run afoul of the gauge invariance of the system. This
is easily seen not to be a problem. The gauge constraint
equation is given by X

i

½�i;�i� ¼ 0; (5)

where the�i are the canonically conjugate variables to�i.
For any collection of�i, given as initial conditions, we can
choose initial conditions where �i ¼ 0 as matrices. Thus
the matrices � can be arbitrary. If we analyze the fermion
Hamiltonian at a given instant of time, our reasoning can
be applied for arbitrary matrix configurations.
Another useful matrix model to consider is the BMN

matrix model [7]. That model describes M theory on a
plane wave in the discrete light cone quantization. Its
action is given by

S ¼ SBFSS þ Smass; (6)

Smass ¼
Z

dtTr

�
1

2ð2RÞ
�
�
�
�

3

�
2X3
j¼1

ð�jÞ2 �
�
�

6

�
2X9
j¼4

ð�jÞ2Þ

� i

2

�
�

4

�
�y�123���

3
i
X3

j;k;l¼1

�jkl�
j�k�l

�
; (7)

which is a mass deformation of the BFSS matrix model.
Again, if we look at 1� 1 matrices, the configuration
space is R9, but there are no flat directions: there is a
quadratic potential in the Hamiltonian. This is as it is
supposed to be: it just reflects the fact that there is a
gravitational potential in the plane wave geometry. This
model also can be obtained by a dimensional reduction of
N ¼ 4 SYM to 0þ 1 dimensions. We need an SUð2Þ
invariant reduction on a sphere [19]. Again, dealing with
full nine-dimensional matrices is not very intuitive, so we
can play the same orbifold trick on �4...9 to get rid of those
matrices. Again, we can get rid of R and we can choose
units so that� ¼ 3, but then we are not free to rescale ℏ to
be whatever we want any longer. Thus the BMN matrix
model does have a parameter ℏ, also when we orbifold.
One can go towards the classical regime, and again, if we
give three matrices �1;2;3 we can ask: is there a way to
associate a geometric D2-brane to such a configuration?
Indeed, once we take the BMN matrix model at finite N,
the ground states are made of collections of concentric
fuzzy spheres. These are such that the � themselves are
angular momentummatrices with canonical normalization.
The answer both here and in the BFSS matrix model will

be yes: one gets an associated set of surfaces in both cases.
The surfaces will be slightly different in the BFSS versus
the BMN matrix model. The new ingredient in the BMN

1In practice this can be done keeping the form of the action
fixed and adding information about the matrix restrictions by
using a crossed product algebra [18]. This will produce a set of
orthogonal projectors for each node of the quiver, and the
commutation relations with these projectors will recover all
the information of the quiver diagram. For example the traces
of the projectors will recover the rank of the gauge groups on
each node.
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matrix model is that the fermions get a contribution pro-
portional to �1;2;3 / �1�2�3 / 1 in their mass. This re-
flects the fact that in the 11-dimensional maximally
supersymmetric plane wave background there is a non-
trivial background flux. Such a contribution changes
slightly the shape of the branes that one associates to the
configurations and this is essentially due to the Myers
effect [20]: branes are polarized in the presence of
Ramond-Ramond backgrounds. In particular a D0-brane
becomes polarized into a sphere.

The essence of this article is to look in detail at the
fermion degrees of freedom to understand the geometry of
branes. Our technique is that given three X matrices (these
are identified with �1;2;3 for one of these models and will

be called ~X collectively, or X, Y, Z if wewant to name them
individually), we will ask the following question: what
would a probe pointlike D0-brane see? We ask the question
from the point of view of the fermion degrees of freedom
that connect it to the configuration we are studying. This is
encoded in the dynamics of the fermions themselves. The
problem reduces to studying an effective Hamiltonian
given by

Heff ’ ð ~X � ~�Þ � ~�þ
�
3

4

�
: (8)

The last term is for the BMN model and it describes the
additional contribution to the effective Hamiltonian from
flux. The value comes from a choice of orientation of the
flux and how it relates to the chirality of the fermions (the
sign choices when we take �1;2;3). Solving forHeff gives us
the energies of the fermions that connect the object to the
configuration. In the full dynamics, the wave function
solutions for Heff are second quantized, as the fermionic
objects c become operators when we turn on quantum
mechanics. This is important for the physical interpretation
of the membranes.

III. THE INDEX: ADDING A D0-BRANE PROBE

As we have described previously, the geometry in the
BFSS and BMN matrix models is encoded by matrices of
dimension 1. In this section we will work exclusively with
the BFSSmatrix model type of dynamics. Wewill only add
some passing remarks on the BMN matrix model at the
end. To understand how a generic object of the model looks
geometrically (a general matrix configuration), we can ask
the question by adding a pointlike probe. That is, we want
to extend the size of the matrices by 1, by taking a direct
sum with a 0-brane probe. This just means that we put the
N � N matrix configuration and embed it into an ðNþ1Þ�
ðNþ1Þ matrix in the upper left corner, we add the eigen-
values in the rightmost bottom corner and add 0’s every-
where else. That is, we have a new auxiliary configuration
where

~X ¼ X 0

0 x

 !
; ~Y ¼ Y 0

0 y

 !
; ~Z ¼ Z 0

0 z

 !
: (9)

In our problem, the matrices X, Y, Z share their properties
with the BFSS matrix model: they are three Hermitian
matrices.
The essence of the geometric characterization of the

general matrix will then be encoded in the observations
of a spectator brane. The spectator brane will only be
allowed to ask questions related to the dynamics of the
matrix models themselves and in particular of the degrees
of freedom that connect the extra eigenvalue to the matrix
configuration.
In general there are two classes of modes that connect

the extra eigenvalue to the configuration: bosonic degrees
of freedom and fermionic degrees of freedom. We will
restrict ourselves to the fermionic degrees of freedom.
The questions we will ask depend on the position of the
extra eigenvalue probe.
When we look at the fermions, we decompose them as

follows

~c ¼ 0 c

0 0

 !
; (10)

where our goal now is to ask what are the energies asso-

ciated to the modes ~c . Notice that this picked a very
particular component of the fermions and not the other.
This can be justified completely in orbifold models, as we
discussed previously, but orbifolds are not really required
to make this argument. All we need is the subquiver
diagram that enforces the restrictions of the matrices de-
fined by Eqs. (9) and (10). To do this carefully, we are
choosing the probe to be a different fractional brane than

the matrices ~X represent. The chirality of these modes
indicates that if the branes were four-dimensional frac-
tional branes, then they would intersect for sure if we think
of fractional branes as higher-dimensional branes wrapped
on collapsed cycles. The intersection properties of the
fractional branes represent the intersection properties of
the collapsed cycles [17]. Notice also that we did not put
fermions in the bottom leftmost corner: this is our chirality
assumption for the arrow.
The obvious question to ask first is if there is a definition

of distance from the eigenvalue probe to the matrix con-
figuration. The way to ask that question is to look at the
spectrum of fermions connecting the probe eigenvalue to
the matrix configuration. The eigenvalue probe is located
at x, y, z and the three matrices X, Y, Z are three N � N
Hermitian matrices. Given our three matrices X, Y, Z, this
is described by the following effective Hamiltonian:

Heff ¼ ðX� x1NÞ�xþðY� y1NÞ�yþðZ� z1NÞ�z; (11)

where we are being pedantic in stating that x is multiplying
the identity matrix of N � N matrices. We will omit this in
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the future. The structure of how the Pauli matrices appear
for chiral multiplets is derived in Appendix B.

This is the Hamiltonian of the fermionic degrees of
freedom connecting the probe brane to the rest of the
configuration. The origin of this Hamiltonian is seen
from the term in the full Hamiltonian given by

Tr ðc ��i½Xi; c �Þ; (12)

when evaluated in the configuration ~X, ~Y, ~Z. The
Hamiltonian above describes the mass term for the off-
diagonal modes of the fermion c that are charged under
the gauge group of the extra eigenvalue probe. The gamma
matrices in three dimensions are given by the Pauli matrices,
whereas the dependence on x and X, etc., comes from direct
evaluation of the commutators.

We can think of this as a Hamiltonian in a tensor product
space Hilbbig ¼ HilbN � Hilb"# of an N-dimensional

Hilbert space times a spin-1 half object (a single qubit).
Heff is covariant under unitary transformations of HilbN .
That is, we have that under U 2 AutðHilbNÞ, we can con-
sider this inducing an automorphism of Hilbbig by U � 1.

The automorphism takes X ! UXU�1, Y ! UYU�1,
Z ! UZU�1, and Heff ! ðU � 1ÞHeffðU�1 � 1Þ which
shows that the spectrum of Heff is invariant under such
rotations. This is inherited from the gauge transformations
of the original matrix model. What is important is that the
spectrum of Heff is gauge invariant.

As is usual in string theory, the off-diagonal modes
connecting a subconfiguration to another are considered
to be strings, once they are quantized. The typical energy
of a string of length ‘ is given by �0‘ where �0 denotes the
string tension. Hence, in our effective Hamiltonian, we can
denote the distance from the probe brane located at ðx; y; zÞ
to the configuration by the eigenvalues of the effective
Hamiltonian Heff . The reason to look at fermions is that
fermionic Hamiltonians do not have tachyons. Thus tech-
nically all energies are positive and thus the notion of
distance is positive. This is also true for string states:
open string fermions in the Neveu-Schwartz-Ramond
superstring appear in the Ramond sector for open strings.
The zero point energy of the fields cancels between bosons
and fermions on the world sheet (they have the same
boundary conditions) and the only contribution to the
energy of the string is from the classical stretching between
the ends of the strings.

The eigenvalues of Heff themselves can be positive or
negative, so we interpret the positive eigenvalues as the
frequencies of creation operators, and the negative eigen-
values as frequencies of lowering operators once we
second-quantize. The absolute value of the spectrum of
Heff is then the list of distances from the probe brane to the
object when interpreted as strings. Obviously, if we have
more than one distance, the object with respect to which we
are measuring distances should be considered to be an
extended object. The minimal eigenvalue of the spectrum

thus obtained should give us the minimal distance to the
extended configuration.
Notice that the Hamiltonian Heff is covariant under

rotations and translations. This is inherited from the sym-
metries of the original BFSS Lagrangian. More impor-
tantly, the Hamiltonian is also covariant under rescalings
(if we rescale X, Y, Z and the coordinates x, y, z by the
same common factor, the entries of the matrix rescale
with the same power and thus the eigenvalues scale).
Let us solve the problem of the spectrum first in the

asymptotic regime, where let us say ðx; y; zÞ ! 1 along a
determined direction in R3 keeping the X, Y, Z matrices
fixed. By convenience, we can use rotation invariance to
take z ! 1 keeping x, y equal to 0.
Then we have that

Heff ¼ �z�z þ ðZ�z þ X�x þ Y�yÞ: (13)

We can compute the eigenvalues of Heff by considering it
as a perturbation theory of Heff ’ �z�z. The eigenvalues
of this matrix are degenerate. There are N eigenvalues of
values þz and N eigenvalues of value �z. These are very
large. Since the spectrum is degenerate, to first order we
need to resolve the splitting among the degenerate subset.
This is done by looking at the perturbation terms in Heff

that commute with�z. The term that does that is Z�z itself.
So the transformation that diagonalizes Heff along the two
degenerate subsets is the same transformation that diago-
nalizes Z.
We find that the leading order spectrum is given by

Eig ðHeffÞ ¼ �ðz� �z
i Þ þOð1=zÞ; (14)

where �z
i are the eigenvalues of Z. The extra corrections of

order 1=z are from perturbation theory: they result from
‘‘energy denominators’’ and involve the components ofX, Y.
We find the familiar theme that the eigenvalues of

the matrices X, Y, Z describe the positions of objects
(distances) as viewed from infinity. Since the eigenvalues
are continuous functions of the matrices, we find that the
notion of distance by taking the minimum eigenvalue is
a continuous function of the position.
We are now interested in asking what happens when we

are at distance 0 from a configuration.
This can happen in two ways: an eigenvalue of Heff

crosses 0, or the eigenvalues just grazes 0 and keeps its
sign. A really interesting question is whether the spectrum
of Heff always has paired eigenvalues: if eigenvalues
cross 0, this is not so. If eigenvalues are always paired,
then every time one eigenvalue reaches 0 from positive
values, then another one reaches 0 from negative values.
We will define an index that counts possible crossings of 0
from infinity. At infinity, the spectrum ofHeff is paired into
positive and negative eigenvalues and to first order in
perturbation theory they are equal to each other up to
sign; obviously this implies that the spectrum contains
the same number of positive and negative eigenvalues.
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If an eigenvalue goes from positive to negative, the number
of positive eigenvalues decreases by 1, and the number of
negative eigenvalues increases by 1. Similarly in the other
direction. We want the index to be 0 at infinity and to
change by 1 by each crossing. The definition of the index
is given by

Iððx; y; zÞÞX;Y;Z ¼ nþ � n�
2

; (15)

where nþ the number of positive eigenvalues of Heff , and
n� is the dimension of the space of negative eigenvalues of
Heff . The index is a locally constant function (after all,
eigenvalues of matrices are continuous functions of the
entries) that can only change values at locations where
Heff has null eigenvalues. If for a configuration we have
that Iðx; y; zÞ � 0, we know that on any path connecting x,
y, z to infinity there are crossings of 0 and thus the location
ðx; y; zÞ is surrounded by the noncommutative object char-
acterized by X, Y, Z.

Such an index was defined in Ref. [21] for the position x,
y, z ¼ 0. It was called a Bott index. In their formulation,
they were dealing with approximations to a sphere, where
X2 þ Y2 þ Z2 ’ 1 and the introduction of Pauli matrices
was an auxiliary construction in mathematics. The matri-
ces X, Y, Z represented observables in a quantum system
where only finitely many states are allowed and hence
position observables become finite matrices. They were
also restricted to have small commutators. The operator
Heff in that case would square to something that was very
close to the identity, so all eigenvalues of Heff would need
to be very close to �1. Counting positive and negative
eigenvalues is an invariant under small deformations that
prevent the eigenvalues from getting too far from �1. The
index as interpreted in that case was an obstruction to
localizing the states on a sphere (making X, Y, Z strictly
commute), by demanding that jjX2 þ Y2 þ Z2 � r2jj< 	
by deformations of X, Y, Z that keep this property and a
bound on their commutators is implemented. The spectrum

of the operator ~X � ~� is also used in numerical studies of
noncommutative field theories (see Ref. [22] for a recent

example), and one can also use the operator ~X � � to
define a fuzzy sphere by studying a single matrix model
of 2N � 2N matrices with a constraint [23].

In the case we have described here the index is dictated
by the dynamics of fermionic degrees of freedom on
D-branes. There are also no restrictions on the size of
commutators. These ideas can be extended further to
higher dimensions and matrices with various restrictions
following the ideas in Ref. [24]. Such a generalization is
beyond the scope of the present paper.

Here are basic properties of the index function (some of
these already appear in the work [21]):

(1) The index is an integer. At infinity the index van-
ishes (as we computed already). The index changes
by�1 if a single eigenvalue crosses 0. It changes by
integers if many eigenvalues cross 0.

(2) Orientation. The index defines a collection of
oriented closed surfaces. The surfaces are the locus
where the index changes value. The orientation is
defined by going from larger values to smaller values
of the index (this includes the sign; thus �1>�2
etc.). The surface set itself is obtained from the zero
locus of a polynomial in ðx; y; zÞ obtained by taking
determinants. These surfaces will be called mem-
branes or D-branes interchangeably.

(3) Additive property. Given two configurations X1, Y1,
Z1 and X2, Y2, Z2, we can consider a new configu-
ration given by taking direct sums X3 ¼ X1 	 X2,
Y3 ¼ Y1 	 Y2, Z3 ¼ Z1 	 Z2. The index is additive
under such constructions

Iððx; y; zÞÞX3;Y3;Z3
¼ Iððx; y; zÞÞX1;Y1;Z1

þ Iððx; y; zÞÞX2;Y2;Z2
(16)

and the set of surfaces with orientation is also addi-
tive under this operation.

(4) Orientation reversal. This states that we can reverse
the orientation of a surface without affecting its
shape. This is done by considering the complex
conjugate to the matrices X, Y, Z. In equations, we
have that

Iððx; y; zÞÞX;Y;Z ¼ �Iððx; y; zÞÞX�;Y�;Z� : (17)

This property is less obvious. A proof is as follows:
A matrix and its transpose have the same eigenval-

ues. Thus ð ~X � ~xÞ � ~� has the same eigenvalues as

ð ~X� ~xÞT � ~�T . Now, ~XT ¼ ~X�, so we can substi-
tute. However, for Pauli matrices we have that
~�T ’ � ~� after a unitary transformation in the
spin-1=2 subspace. Thus, we have that the eigenval-

ues of ð ~X � ~xÞ � ~� are equal to the eigenvalues of

ð ~X� � ~xÞ � ð� ~�Þ. That is, the matrix ð ~X� � ~xÞ � ~�

has the same eigenvalues as ð ~X � ~xÞ � ~� but with
signs changed. This exchanges nþ and n� and re-
verses the index.

(5) If X, Y, Z are real, then Iððx; y; zÞÞ ¼ 0 everywhere.
This is a corollary of the orientation reversal
property. Obviously for such configurations we
have that Iððx; y; zÞÞX;Y;Z ¼ �Iððx; y; zÞÞX�;Y�;Z� ¼
�Iððx; y; zÞÞX;Y;Z, from which the result follows.

This in particular holds for collections of 0-branes:
direct sums of one-dimensional problems.

(6) The index is covariant under rotations, translations
and dilatations of the system. This follows from the
similar properties that Heff has.

(7) The index is not trivial: there are matrix configura-
tions ðX; Y; ZÞ for which Iððx; y; zÞÞX;Y;Z � 0. We

will explore these in the next section.
If we instead work with the BMN matrix model we get

an effective Hamiltonian given by
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Heff ¼ �z�z þ ðZ�z þ X�x þ Y�yÞ þ 3

4
�x�y�z: (18)

The extra term causes trouble with scaling the surfaces, and
with being able to change the sign of the eigenvalues by
complex conjugation. This way some of the various prop-
erties described above are broken. For example the change
of orientation does not happen automatically, and the cor-
responding Index does not behave as nicely. We still get
translation and rotation covariance. The index still vanishes
when a probe is at infinity, but one can check that even for
1� 1 matrices, the index changes when the probe which is
used to define the index is on top of the 0-brane that
described the configuration. This is the Myers effect in
action [20]. Indeed, as far as fermions are concerned, the
presence of a background Ramond-Ramond flux changes
the Dirac equation, and an example computed by one of the
authors of the paper can be found in Ref. [25]. In that
example the displacement of the location of the fermion
zero modes was required in order for configurations to form
tori that were Bogomol’nyi-Prasad-Sommerfield (BPS). In
the present case, the structure of the gamma matrices fol-
lows the background flux in the BMN model [7].

On the other hand, in this case many fuzzy spheres are
ground states of the system and one expects that these
solutions survive as time-independent configurations.
Also, many of these can be made to oscillate slightly so
the membranes can persist indefinitely.

IV. FUZZY SPHERES AND EMERGENT SURFACES

A. Fuzzy spheres

Now that we have defined an index, let us consider some
special examples of the index computation. We will start
with a fuzzy sphere and ask about the index at the center
of the sphere. The fuzzy sphere is defined as follows.
Let L1;2;3 be the angular momentum matrices of the irre-
ducible representation of SUð2Þ of spin j. These satisfy the
identities

½Li; Lj� ¼ i�ijkLk: (19)

The maximum eigenvalues of L3 are �j. Consider the
following set of three matrices built by the following
combinations:

X ¼ r

j
L1; Y ¼ r

j
L2; Z ¼ r

j
L3: (20)

This is called a fuzzy sphere. The maximum eigenvalue of
Z is jrj. Thus one could argue that the sphere has radius jrj
(as seen from infinity as in our large distance computation

in the previous section). Notice that X2 þ Y2 þ Z2 ¼
jðjþ1Þ
j2

r2. Thus one could also argue that the radius of the

sphere is given by ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 1

jÞ
q

jrj. These two become

identical in the large j limit, but at finite j there is some
discrepancy. However, it is natural to believe that there is

a well-defined surface near this radius that surrounds the
origin and that is our candidate for a locus where an
eigenvalue changes sign.
Let us prove this assertion by computing the index in the

center of the configuration, at x ¼ y ¼ z ¼ 0. The effec-
tive Hamiltonian we have to deal with is then given by

Heff ¼ r

j
~L � ~�: (21)

This is the same type of problem that shows up in spin-orbit
coupling in the hydrogen atom. The important thing is that
this is spherically symmetric, so it makes sense to decom-
pose the Hilbert space Hilbbig into irreducible representa-

tions of SUð2Þ. The big Hilbert space is given by

Hilb big ’ ðjÞ �
�
1

2

�
’
�
jþ 1

2

�
	 ðj� 1=2Þ; (22)

and it decomposes into two irreducible representations of
SUð2Þ. For each of them, we have a common eigenvalue of
Heff . Moreover, Heff is traceless. This can be proved in
general because the Pauli matrices themselves are trace-
less. Thus, the two possible eigenvalues of Heff have the
opposite sign. One is positive, and the other is negative.
This depends on the sign of r. Let us choose the sign of r so
that nþ > n�. The number of eigenvalues of the bigger
representation of SUð2Þ is nþ ¼ 2jþ 2, while those of the
smaller representation are n� ¼ 2j. These are the dimen-
sions of the two irreducible representations of SUð2Þ ap-
pearing in the tensor product. We obtain that

Iðð0; 0; 0ÞÞFuzzy Sphere ¼ nþ � n�
2

¼ 1: (23)

We already knew that the index was an integer, and that the
typical change should be by �1. Here we find an explicit
example where the index changed by one somewhere
between the origin and infinity. Because of spherical sym-
metry, the index changes value at a fixed sphere radius. A
direct computation carried in the Appendix C shows that
the radius at which it happens is given exactly by jrj. We
thus find that the radius is governed by the maximum
eigenvalue, rather than by the value of X2 þ Y2 þ Z2.
Indeed, if we use the definition of distance from the origin
that is obtained from the spectrum of Heff we find that the
distance is equal to jrj. Indeed, with the spectral definition
of distance we used, we find that the distance from any
point in space to the sphere is the one that is obtained by
elementary geometry.
Obviously, we can also set up direct sums of concentric

fuzzy sphere configurations of various radii, so we can get
configurations where the index is arbitrarily large. For such
configurations the index counts the (minimal) number of
sphere layers that need to be crossed to get out of the
center. Since the index counts with sign, surfaces (which
we call membranes) of different orientations can be present
and the index itself represents a lower bound on the number
of layers that need to be crossed.
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B. From a sphere to a torus

Here we detail how to make configurations that lead to a
fuzzy torus embedded in three dimensions. The idea is to
begin with a fuzzy sphere and to deform the matrices in a
simple form to go from a sphere to a torus. The basic idea is
to follow the construction of the giant torus as described in
Ref. [26] (other examples of embeddings of Riemann
surfaces in R3 can be found in Ref. [27], and in Ref. [28]
one can also find a different example that interpolates
between sphere and tori). In the case of the giant torus,
one is supposed to add strings with maximal angular
momentum to a sphere until the geometry transitions to a
torus. To do this, it is convenient to use matrices defined by

X� ¼ X � iY; (24)

and in the other direction

X ¼ Xþ þ X�

2
; (25)

Y ¼ Xþ � X�

2i
: (26)

The matrices X� in the fuzzy sphere of spin j case are
rescaled ladder operators for spherical harmonics. X� are
adjoints of each other. In a natural basis for a sphere, we
have that

Xþ
ba ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjðjþ 1Þ � aðaþ 1Þ

q
	b;aþ1: (27)

The labels a, b go from j . . .� j.
In the matrix Xþ, if we quantize fluctuations of the fuzzy

sphere (see for e.g., Ref. [29]), one can check that the
different diagonals of the matrix carry different amounts
of angular momentum in the z direction. They differ by one
unit, and the diagonal where Xþ has entries carries no
angular momentum in the z direction. When we condense
various of these fluctuations, we simply replace them by an
expectation value which becomes just a number multiply-
ing the appropriate fuzzy tensor harmonic. Since we are
looking to maximize the angular momentum of the fluctu-
ations, the deformation we seek is given by

Xþ
ba ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjðjþ 1Þ � aðaþ 1Þ

q
	b;aþ1 þ r
	b;j	a;�j;

(28)

and we then take X� ¼ ðXþÞy. We are using the index
convention for the matrices that is associated to the Lz spin
of the SUð2Þ representation of spherical harmonics. The
self-adjoint matrices X, Y are built from the same linear
combinations as above, after the deformation. The parame-
ter r just rescales the full solution, so we can ignore it. The
parameter 
 then controls the geometry. For 
 ¼ 0 we
have a sphere. Indeed, the topology of the sphere is
preserved for some values of 
 around 0. We have seen

numerically that the topology changes at the precise value

 ¼ j, although this is not essential for our discussion.
Another thing to notice is that the presence of 
 breaks

the rotational symmetry to Z2jþ1 which is the rank of the

matrices. This can be understood from the spin of the
excitations around the z axis: it is the unbroken symmetry
associated to condensing the state with highest spin along
the z axis. Thus the torus shape is not invariant under full
rotations along the X, Y plane. The simplest case where the
family of surfaces we get seems to contain a torus is for
4� 4 matrices. A figure for the case of 6� 6 matrices is
presented in Fig. 1.
We should also notice that in our case it is obvious we

have a torus. In other setups, to argue for the genus of the
surface is more involved, using an approximation to Morse
theory on the surface [30], and the result is inherently more
fuzzy, or explicitly requires taking a limit of large matrices
[31]. One can also obtain more standard fuzzy tori as zero
energy configurations in higher dimensions by studying
beta deformed matrix models [32].

C. D2-branes

The main characteristic of D-branes is that they carry a
connection on their worldvolume. This is the familiar
statement that the open string sector has a massless spin-
1 particle on the D-brane worldvolume. Here, we want to
show that the geometry that we deduced for these surfaces
carries the information of a line bundle on it.

FIG. 1 (color online). A fuzzy torus, for r ¼ j ¼ 5=2,

 ¼ 2:55. The Z6 symmetry is easily visible.
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The idea is rather simple. The surfaces are defined by
the vanishing of an eigenvalue of Heff , as calculated for
Eq. (11). Obviously, for a single zero eigenvalue there is
a corresponding eigenvector. Let us call it c 0ðx; y; zÞ.
Typically there is only one eigenvalue crossing 0 at a
time; we check this numerically for various configurations,
including the fuzzy spheres and torus we have presented.

The eigenvector c 0, normalized to unity, is well defined
up to a Uð1Þ phase. This is the familiar symmetry for states
in a Hilbert space in quantum mechanics: a global phase
for the full wave function is not measurable, as physical
states are rays in the Hilbert space.

Now, for each position on the surface there is such an
eigenvector. This changes continuously when we vary the
position along the surface ðx; y; zÞ, as the eigenvectors are
also smooth functions of the matrix entries. One can
easily understand this fact by the fact that the eigenvectors
can be calculated using perturbation theory in quantum
mechanics.

One can construct a bundle from these c 0ðx; y; zÞ. One
defines sections of the bundle by functions multiplying
c 0ðx; y; zÞ. Because the phase of c is ambiguous, we
have to choose a phase by patches on the surface, and
between patches there are transformation rules for c 0.

One can also define a connection on the patches. This is
done by the familiar Berry phase, defined by

v�A� ¼ �iv�c �
0ðx; y; zÞ@�c 0ðx; y; zÞ

¼ �iv�hc 0j@�jc 0i; (29)

where v� is a tangent vector to the surface. Obviously, this
defines the connection of a line bundle on the world sheet.
Thus, at least in principle, the membrane behaves exactly
like we would expect a D2-brane to behave. At this stage, it
is not clear whether the Berry connection that one would
compute this way is just the connection that open strings
feel, or if this is further twisted by the tangent bundle on the
surfaces that were defined as we prescribed.

With some tuning, one might find situations where there
is a degeneracy of eigenvalues and one would need to
consider a bundle on the corresponding D-brane. The full
exploration of the curvature on these bundles and the
precise connection to D-branes is beyond the scope of
the present paper. We will show later that there is further
evidence for physical states feeling a connection on the
membrane world sheet when we intersect two of these
objects.

V. A LINKING NUMBER

Now that we have defined a geometric object for a
collection of three Hermitian matrices, we can do some-
thing more. We can take two such objects and ask how they
are related to each other. Indeed, in thematrixmodel setups,
each of them would be a configuration of branes, so the
spectrum of strings stretching between them becomes

interesting from a dynamical point of view. One can define
a linking number that for 0-branes at a position ~x reduces
to the index we defined in previous sections.
The idea is to take the matrices X1, Y1, Z1 of rank r1 and

X2, Y2, Z2 of rank r2 and define a matrix analog the
Hamiltonian Heffðx; y; zÞX1;Y1;Z1

, where we replace ðx; y; zÞ
by Hermitian matrices ðX2; Y2; Z2Þ. If the matrices com-
mute with one another, we want theHeff operator to give us
an operator that acts as Heff on the direct sum over the
eigenvalues of X2, Y2, Z2. One easily sees that the follow-
ing Hamiltonian does that:

Hð1Þ
eff ð ~X1; ~X2Þ ¼ ðX1 � 1r2 � 1r1 � X2Þ � �x

þ ðy $ xÞ þ ðz $ xÞ: (30)

Notice that onceHð1Þ is defined this way, it does not matter
anymore that the X2, Y2, Z2 matrices commute with each
other.
Then, the definition of our linking number is given by

Lð1Þ½ðX1; Y1; Z1Þ; ðX2; Y2; Z2Þ� ¼ n1þ � n1�
2

: (31)

It is easy to prove that Lð1Þ is antisymmetric in the entries.
This is because tensor product spaces A � B are equivalent
to B � A as Hilbert spaces. If we think of these spaces in
tensor notation, the equivalence is a reordering of the in-

dices. The Hamiltonian Hð1Þ
eff then changes sign [more pre-

cisely, Hð1Þ
eff ð ~X; ~X0Þ is unitarily equivalent to �Hð1Þ

eff ð ~X0; ~XÞ�
when we exchange the triples ~X1 and ~X2.
There is a second linking number that one can define,

by changing a brane by an antibrane, that is, reversing
orientation:

Hð2Þ
eff ¼ ðX1 � 1r2 � 1r1 � X�

2Þ � �x þ ðy $ xÞ þ ðz $ xÞ:
(32)

Again, if X2, Y2, Z2 commute with each other and are

diagonal, we cannot distinguish Hð2Þ
eff from Hð1Þ

eff . But if

the matrices do not commute with each other, we can.
The definition of the second linking number is

Lð2Þ½ðX1; Y1; Z1Þ; ðX2; Y2; Z2Þ� ¼ n2þ � n2�
2

: (33)

This is symmetric in the exchange of ðX1; Y1; Z1Þ and

ðX2; Y2; Z2Þ. This uses the antisymmetry of Lð1Þ combined
with the change in sign of the index upon complex con-
jugation discussed in previous sections. It turns out that
when considering the dynamics of fermions as given in the

BFSS matrix model, it is the spectrum of Hð2Þ
eff that controls

the physics [33]. This is because the matrix multiplication
rules on commutators translate to needing to take the trans-
pose of the matrices X2, Y2, Z2, which is equivalent to
using their complex conjugates. This is also equivalent to
saying that the fermions transform as a fundamental under

DAVID BERENSTEIN AND ERIC DZIENKOWSKI PHYSICAL REVIEW D 86, 086001 (2012)

086001-10



one set of branes and an antifundamental with respect to
the other set of branes.

Also notice that if we move one of the objects and
take them to infinity (by adding multiples of the identity
matrix), then at infinity both of the linking numbers are 0.
Also, if we shrink one object until it is pointlike (by
making X2, Y2, Z2 proportional to the identity matrix,
with coefficients x2, y2, z2), then the linking number is r2
times the index Iðx2; y2; z2ÞX1;Y1;Z1

.

Also, one can use these same HamiltoniansHð1Þ
eff andH

ð2Þ
eff

to define a spectral distance between two such configura-
tions, again by taking the eigenvalues closest to 0 and
taking absolute values. For infinite membranes touching
each other in the Ishibashi-Kawai-Kitazawa-Tsuchiya
matrix model one finds zero modes [34]. The effective
Hamiltonian for fermions in that case takes a similar
form to the BFSS matrix model. This is just as expected
from the mode spectrum of brane intersections at angles
[35]. When the intersections are extended and compact, the
low-lying modes at the intersection need to be quantized
carefully and zero modes are not guaranteed. One would
expect that the spectral distance then gives an upper bound
for a geometric distance between the brane configurations.

We will now give an application of the linking numbers.
We will show that the linking numbers actually take into
account that the surfaces defined in previous sections
actually carry a connection for a line bundle on them that
couples to physical states. This provides further evidence
that the surfaces are actually behaving as D2-branes. This
is easiest to check from the calculations in the Appendix C.

The idea is as follows: take two fuzzy spheres and dis-
place them relative to each other. For simplicity, we have
them normalized so that the radius is equal to j and j0, the
spin of the corresponding representations of SUð2Þ. This is
natural in the BMN model for ground states. Let the
displacement between the fuzzy sphere centers be charac-
terized by b. Because of the high amount of symmetry, one
can actually compute the index analytically and follow the
crossings of 0 of the fermion eigenvalues in a lot of detail.
If the displacement is b, along the z axis, and the fermions
are decomposed into fuzzy spherical harmonics with re-
spect to both fuzzy spheres, one finds that the eigenvalues
cross 0 sequentially when b ¼ j� j0 þ ‘, where ‘ is an
integer between 0 and 2j0 inclusive. This means the index
of the configuration where the big fuzzy sphere surrounds
the smallest is exactly equal to 2j0 þ 1, which is the
dimension of the representation of the spin j0 set of matri-
ces. This is expected: the small fuzzy sphere is made of
2j0 þ 1 D0-branes, so that when they are all inside the big
fuzzy sphere, we expect the index to be 2j0 þ 1 times the
index of the smallest representation.

The first zero mode appears when the spheres touch each
other for the first time, at displacement b ¼ j� j0. As b
advances further, the two fuzzy spheres touch each other
along a circle. We expect the lightest fermions to be

localized in this circle. So the problem effectively reduces
to a one-dimensional problem. As can be seen from the
results of the Appendix C, the fermion modes with maxi-
mal angular momentum in each SUð2Þ representation of
fuzzy spherical harmonics do not mix with other states, and
their frequencies are given exactly by

j� j0 þ ‘� b; (34)

where ‘ is an integer. These states are evenly split in
energy, creating effectively a Kaluza-Klein tower of fi-
nitely many states (this is very similar to the Kaluza-
Klein tower of tachyons between such spheres computed
in the BMN model for such crossings in Ref. [36]). Such a
Kaluza-Klein tower is an approximation to a quantum field
theory for zero mass fermions on a circle (either left
moving or right moving depending on if the energy of
the mode is positive or negative) in the presence of a
holonomy around the circle (this can be translated to
quasiperiodic boundary conditions on the fermions if we
want to). The fermions can have zero eigenvalues if the
holonomy is a multiple of 2�. This can be removed by a
large gauge transformation redefining the notion of mo-
mentum on said circle. The important thing to notice is that
if the corresponding surfaces that are intersecting have the
properties of D-branes, in that each carries a connection
A1,A2, then the fermions that stretch between them feel
the connection A1 �A2. Because of spherical symme-
try, this connection can be computed from Gauss’s law by
calculating the area of the sphere that the circle where the
fermions lie encloses

H
A1ds ¼

R
S1
F1da. The area of a

sphere slice is proportional to the height of the slice; henceR
S1
F1da / A which is linear in the vertical height of

the slice.
Hence, shifts of 2� in the holonomy are equally spaced

in b. Indeed, if the sphere is made of n D0-branes, we
expect the total flux through the sphere of this bundle to be
equal to n ¼ 2jþ 1. However, we can also expect a cur-
vature correction. If we think of the matrices as describing
a lowest Landau level of end points on each sphere, in
order to have n states we need a monopole flux equal to
n� 1 (this is if the end points are treated as monopole
spherical harmonics). This extra one is the contribution of
the curvature of the sphere. One can check this way that the
net flux for this connection through each sphere is 2j and
2j0 respectively, as opposed to 2jþ 1 and 2j0 þ 1. Thus
the net flux through a slice is proportional to the area,
which is 2�jð2j� tÞ where t is the height of the slice.
Since the total flux through each sphere is 2j, and the area
is 4�j2 for each sphere, we get that the flux per unit height
is constant and the same for both spheres. Thus, the flux for
each sphere is linear in height with the same coefficient.
This can be visualized in Fig. 2. As seen in the figure, the
net flux that we need to compute is the one associated to
the surface that has not been dashed in the graphic. This is
proportional to jþj0 þb as a function of the displacement.
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We need this number to be an integer in order to get the
correct holonomy. We see then that the geometric argu-
ment matches the matrix computation. Obviously this is a
simplified computation where it so happens that the flux
per unit height on each sphere is the same.

Thus, the setup shows that indeed the surfaces we make
are compatible with the idea of having a curvature of a line
bundle on them for physical states that thread between
them. There is another way to think about this that we
already discussed: on the locus of positions where an
eigenvalue vanishes there is a preferred fermion wave
function for the Hamiltonian Heff : this is the zero eigen-
vector itself. This is only well defined up to a phase. If we
want to patch these together to form a vector bundle over
the surface, we need a line bundle connection so that this
phase ambiguity is resolved on parallel transport. This is
the generic case, but we can set it up so that the null
eigenspaces are degenerate (thereby giving us multiple
branes on top of each other). Thus, in general one will
need a bundle connection to resolve these issues. Since the
structure that we are analyzing involves the symmetries of
a Hilbert space under change of basis, the connection in
general will be UðnÞ valued for n coinciding branes.

The last thing that we will do in this section is to give a
more physical interpretation of these zero modes. The main
idea, which we have hinted at already when we defined the
index function, is that a crossing by 0 represents a raising
operator becoming a lowering operator and vice versa (for
the particle conjugate). If we follow a ground state con-
tinuously past this change, the ground state is defined by
aj0i ¼ 0 ¼ bj0i, where a is the lowering operator for
particles (the ones with positive frequency), and b is the
lowering operator for the antiparticles (the ones associated
to negative frequencies inHeff). After the crossing by 0, the
state that follows by continuity of j0i is not a ground state
anymore. Instead, one of the lowering operators, let us say
a�, becomes a by (a raising operator). The state on the
other side of the barrier will have a nonzero occupation

number for a single fermion in the Hilbert space. This is, on
crossing a 0, a fermion is created. This is nothing but the
Hanany-Witten effect (and its various generalizations dis-
cussed in Refs. [8,9]).
The linking number we defined then encodes the number

of strings that are created (with orientation) when separat-
ing two objects that are partially inside each other. Or the
number of strings that were created on bringing the objects
together from infinity when they cross each other. This is
done by following a vacuum adiabatically until exactly the
point where the transition happens (where there is a degen-
eracy of vacua), and then following the state that is created
after a crossing and which is not a vacuum any longer
adiabatically as well, until further crossings where fermion
zero modes determine a degeneracy of a Fock space of
fermions at each level.
Notice that this interpretation in terms of the Hanany-

Witten effect explains why the geometry is so sharp. The
presence or not of strings connecting the two surfaces is
easy to test: we check if the fermionic ground state is gauge
invariant or not. The Hanany-Witten effect has the property
that the fermionic ground state is not always gauge invari-
ant, so the presence of the strings is protected by topology.

VI. ASPECTS OF MATRIX BLACK HOLES

Recently, various simulations have been carried in ma-
trix models to understand various aspects of the dynamics
of black holes in holographic setups. The main idea so far
has been to compare the numerical simulations in the BFSS
matrix model with black holes as described in Ref. [37].
The numerical approach was initiated in the works [38,39]
and a lot of the thermodynamic static properties of the
black holes have been matched in the quantum mechanics.
The most impressive such agreement is in Ref. [40]. The
BFSS matrix model has an infinite moduli space of vacua,
so the thermal ensemble of these models is not well de-
fined. This gives such calculations a systematic error. To
have a better setup one wants a matrix theory with a well-
defined ensemble, and the BMN matrix model fits the bill.
Numerical simulations using lattice techniques were car-
ried out in Ref. [41]. Also, classical simulations of the
dynamical evolution of the BMN matrix model have been
carried out in Ref. [5].
All of these calculations in general give us a huge

number of sets of matrices about which we can now start
asking very geometric questions; for example, how many
membranes are inside the black hole? One good reason to
do this is that general consideration of black hole entropy
for nonextremal black holes suggests that they are made of
a gas of brane-antibrane pairs [42] and their excitations.
Since our construction permits us to study the geometry

of the typical matrices in a thermal ensemble, we can ask
what the black hole looks like in the matrix variables. We
will show an example of this based on data obtained from
simulations similar to those reported in Ref. [5], where we

FIG. 2. Illustration of two intersecting spheres. The net con-
nection seen by the fermions stretching between them can be
computed by calculating the net flux through the solid lines.
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truncate to only three matrices as described previously. The
simplest thing to do in order to understand the data is to
compute the spectrum of Heffðx; y; zÞX;Y;Z given a collec-

tion of three matrices X, Y, Z that are obtained from such
simulations. We show the results by fixing the matrix and
setting y, z ¼ 0. A typical such result is shown in Fig. 3.

What we should notice is that there are various crossings
of 0, and that there is a region in the center of the configu-
rations where the eigenvalues ofHeff do not seem to have a
gap in them. That is the black hole region of the configu-
ration. For large x we see that the eigenvalues behave as
parallel lines and this matches our expectations based on
perturbation theory from Eq. (14). We clearly see various
crossings of 0, mostly because of the shift of flux. Also, in
the region without a gap the eigenvalue distribution ap-
pears to have a well-defined density of eigenvalues.

One can show that if one varies the classical temperature
of the BMN ensemble T and one makes it large (so that the
quartic term in the potential dominates over the cubic
and quadratic terms), then the matrices themselves grow

roughly like T1=4. This is an application of the virial
theorem applied to the BMN Hamiltonian. Similarly, one
can show that at T fixed, and varying N, the matrices grow

only like N1=4. The virial theorem would just state that

Ekin ’ N2T ’ Epot ’ Trð½X; X�2Þ ’ TrðX4Þ ’ Nx4; (35)

that is, the kinetic energy is proportional to the potential
energy, which is roughly characterized by the typical ei-
genvalues of the matrix X, which we call x in the equation.
Since there are N such eigenvalues and the potential is
quartic, we expect that the result is roughly Nx4. We then

get x ’ N1=4T1=4.
This means that the matrix Heff also grows roughly like

N1=4, so its eigenvalues scale like N1=4. If we assume that
in the ungapped region the Hamiltonian Heff behaves like

a random matrix in that it has a well-defined density of
eigenvalues when we take N ! 1, then since we have 2N
eigenvalues, the eigenvalue density near the black hole

region near 0 grows like N3=4. Because of the flux contri-
bution to the fermion mass (the Myers effect [20]), the
center of the configuration is displaced from 0: the eigen-
value configuration is centered at 3=4 in our units (see the
Appendix C). Far away, half the eigenvalues are above the

x axis, and half are below, so roughly �ð0Þ ’ OðN3=4Þ
eigenvalues cross 0. This means the inside of the black
hole is full of branes that have been polarized, all with the
same orientation. As the temperature is increased, the
eigenvalue distribution becomes wider and fewer eigenval-
ues cross 0. The N dependence is still correct, but there
is also a temperature dependence. This polarization into
D-branes is mostly because of the Myers effect. Remember
that in this problem we have truncated to three matrices,
so we are actually working on an orbifold: we are only
using Heff with only Pauli matrices. The true fermion
Hamiltonian in the BMN matrix model uses all matrices
and will have different characteristics. Thus, if we truncate
this way we are working with something that resembles
more a brane-world black hole (we cannot move it away
from some locus).

A. Black holes absorb matter

An important characteristic of black holes is that if one
throws matter at them, then the matter does not come out
at the other side. Let us throw a fractional D0-brane at
such a (orbifold) black hole. Notice that we need to do so
in the orbifold of the BMN geometry. We can require the
fractional D0-brane to be at a large distance from the
black hole (let us say k times the size of the black hole
itself ). The energy of such a D0-brane in the BMN matrix

model that starts at rest is of order k2N1=2. To estimate this
we just look at the quadratic potential term for the X1;2;3

matrices.
If we throw a fractional D0-brane to the black hole as

described above, at each zero eigenvalue crossing a string
is created due to the Hanany-Witten effect we have dis-
cussed previously. This is identical to the creation of
strings observed in the one-dimensional model for D-brane

scattering studied in Ref. [43]. There are about N3=4 such
strings per D0-brane that are created (as many going in as
out). When we reach the end of the matrix configuration,

these strings have a length of order N1=4, so the energy
stored in these strings is of order ℏN. So long as

ℏN >> k2N1=2, we find that the D0-brane does not have
enough energy to come out: it gets transferred to the
strings. Notice that this depends on ℏ. When we take
N ! 1, it is clear that the strings win over the initial
energy of the D0-brane. Thus we find that the matrix
thermal configuration does become a very good absorber:
every fractional D0-brane that is thrown at it is eaten.
Indeed, if we throw bigger objects at the thermal ensemble

4 2 4

5

5

Eigenvalues Heff

2
x

FIG. 3. Eigenvalues of Heffðx; 0; 0ÞX;Y;Z from a typical configu-
ration of matrices after thermalization, when varying x. The
matrices have rank 21.
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(let us say made of M fractional D0-branes), the effect is
proportional to the number of fractional D0-branes making
up the object: the linking number will guarantee that. Thus
all objects are absorbed with the same efficiency. This is
very similar to how black holes actually operate.

Notice also that usually in these dynamical setups if
fermions are created by dynamics, then so are bosons.
The accounting might be different, but they usually follow
each other somewhat. Indeed, in the BMN model alone,
the presence of tachyons in some regions of the dynamics
can generate large numbers of bosons [36]. Thus one
should also expect bosonic modes to be created by dynami-
cal mechanisms (the modes become nonadiabatic) rather
than by a simple topological argument in general.

This simple accounting of how objects are absorbed that
we found is different than other approaches that presume
the formation of a tachyon in an ensemble [44]. Maybe an
effective tachyon can be thought of as a collective effect of
all these fermions and bosons.

We should remind the reader that we should not take the
arguments above based on generalizations of the Hanany-
Witten effect very seriously for the full BMN matrix
model. There the dynamics of the other matrices might
change the physics substantially, as there we expect these
D2-branes to fluctuate in the transverse directions. Thus,
the topology of the Hanany-Witten effect would only be
available for D8-branes, rather than D2-branes, so that
there is no background flux reason to polarize D8-branes
in large numbers.

VII. CONCLUSION

The 16 supersymmetries of the BFSS matrix model can
be reduced down to four supersymmetries, removing six of
the nine bosonic matrices and thereby giving three matri-
ces which capture some dynamics of the full theory. Such a
reduction can be obtained by orbifolding six of the nine
directions. If the orbifold is chosen with respect to a Zk

action, then chiral fermions arise. Chiral fermions give rise
to anomalies in four dimensions, and it follows that the
fermions can encode some topological information in
the reduced matrix model. This information can be used
to study the geometry of membranes formed by thermal-
ized black holes in numerical simulations of the matrix
models.

Appending a D0-brane probe, described by a point in
R3, to the three relevant matrices of the matrix models
allows us to look at the dynamics of the theory. An effec-
tive Hamiltonian, derived from the interaction between
chiral fermions joining a fractional probe brane and the
configuration we are probing, describes how fermionic
strings are created between these branes and the D0-brane.
The energy eigenvalues are proportional to the string
length and thus the minimum eigenvalue can be interpreted
as the minimum distance between the D0-brane and the
noncommutative configuration. If an eigenvalue equals 0,

then the probe is intersecting the membrane. Passing
through the membrane changes the number of positive
and negative eigenvalues by integer increments. An index
function has been built that captures these crossings by
taking the difference of the count of positive versus nega-
tive eigenvalues.
The index inherits the symmetries of the Hamiltonian

from which it is derived; it is covariant under rotations,
translations, and dilatations and is gauge invariant. The
continuity of the eigenvalue functions of a matrix imply
that the index function is locally constant and defines
closed oriented surfaces. It has been shown that the index
is 0 at infinity. The index is also additive amongst direct
sums of different matrix configurations. Finally the index
has a transformation that reverses the orientation of the
membranes. These properties are all true in the BFSS
matrix model. In the BMN matrix model, there is a mass
contribution to the fermions caused by the dimensional
reduction of the nine-dimensional gamma matrices. This
ruins the orientation reversal and scaling properties of the
index function. Furthermore, the added mass changes the
shapes of the membranes slightly, which is directly related
to the Myers effect [20].
Physically we can speak of the eigenvalues of the effec-

tive Hamiltonian as representing the energies of the fermi-
ons in different regions between the membranes; positive
eigenvalues corresponding to fermion creation and nega-
tive eigenvalues corresponding to fermion annihilation.
As one crosses a membrane from higher to lower index,
a fermion creation operator is transformed into a fermion
annihilation operator. In the BFSS matrix model we can
view this as a generalization of the Hanany-Witten effect.
In the BMNmatrix model the dynamics of flux changes the
results and many of the properties of the index are modi-
fied. This can be ascribed to the Myers effect [20]. These
crossings define the surfaces in R3. We showed configura-
tions that correspond to both spheres and tori. Wewere also
able to show that the surfaces carry the information of a
line bundle on them with connection (which can be calcu-
lated using Berry phase arguments). This shows that the
membranes we found really behave like D2-branes. Our
exploration of this issue was very sketchy, so finding how
to make this correspondence precise requires more work.
Indeed, we would need to see if the connection we com-
puted also includes information of the tangent bundle of
the surface or not and how to separate that part from the
D-brane worldvolume spin-1 excitations.
We were also able to generalize this index to a linking

number between two such configurations. The linking
number is also interpreted in terms of the Hanany-Witen
effect: it counts how many such strings are created when
trying to separate the two configurations away from each
other.
Finally we were able to show that these surfaces can be

used to analyze numerical data from simulations in the
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BMN matrix model and in more general setups, and the
data show that one can make contact with conjectures
about the structure of black hole interiors as made from
brane-antibrane systems. We were also able to show that
with the Hanany-Witten effect, the fermions created on
these surfaces could be used to stop a probe D0-brane
particle in a simple model. Thus it is clear that these modes
can give us a handle on black hole dynamics that do not
require much effort.

After solving the problem of embeddings into three
dimensions, it would be interesting to understand how
this same story plays out in higher dimensions. One of
the ways in which extended objects are understood is in
terms of Berry phase dynamics [45] (for a more recent
discussion see Ref. [46] and references therein). The Berry
phase can lead to a nontrivial vector bundle structure of the
fermion excitations connecting a probe to a brane. One can
expect that if topology requires this structure to become
degenerate at various loci, that these loci describe extended
objects: again, one has to look for fermion zero modes
depending on position, and at least in principle it should
be possible to predict that there are degenerations in some
setups. However, the story might be much more compli-
cated, as we might be required to have more than one
fermion zero mode simultaneously to describe this locus.
The Berry phase dynamics associated to that setup would
then be non-Abelian. It would be nice to understand this
better. This might also require using extended probe branes
to see the effects. The general question will then be to
understand generalized versions of the Hamiltonian (1) and
the general structure of degenerations. Our construction
also suggests that in these general setups there can be a
similar linking number so long as one can guarantee cross-
ings of 0 of the eigenvalues of Heff . One can show that for
even dimensions (an even number of matrices) the spec-
trum of fermions starting from a D0-brane probe to a
configuration is mirrored: for every positive eigenvalue
there is a negative one. This is because one can find a
matrix similar to �5 in four dimensions that anticommutes
with Heff as given by the generalization of Eq. (1). This
suggests that ideally we should work with an odd number
of matrices to make the existence of zero modes plausible
for somewhat general configurations.

A second thing that is interesting to study is how to
recover the matrices given the surfaces (perhaps with addi-
tional information on them) and the rank of the matrices.
One could also ask if the surfaces we obtained move in a
way that closely resembles the membrane dynamics once
we turn on the dynamics. This might be important to
understand 1=N effects in matrix theory. Also, we found
that in general we could reverse orientations of branes by
using complex conjugation. It would be nice to understand
if a brane-antibrane pair in these models generally leads to
tachyons on their worldvolume and it would be interesting
to analyze how tachyon condensation would progress in

these setups. Also, it would be interesting to understand
this issue with a probe D0-brane on top of a D2-brane: do
we always get tachyons in this way?
Also, the ideas found in Ref. [24] suggest various gen-

eralizations to different types of matrices. These ideas have
applications in condensed matter physics and the connec-
tions we found with string theory ideas might provide
interesting ways of analyzing the condensed matter sys-
tems and their dynamics. Such changes of the structure of
matrices are natural when considering orientifolds. Thus
our arguments should generalize to those setups.
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APPENDIX A: BFSS AND BMN
MODEL CONVENTIONS

The following was taken from Refs. [7,29,36] using a
mix of conventions:

S ¼ S0 þ Smass; (A1)

S0 ¼
Z

dtTr

�X9
j¼1

1

2ð2RÞ ðD0�
jÞ2 þ i

2
�yD0�

þ ð2RÞ
4

X9
j;k¼1

½�j;�k�2 þX9
j¼1

1

2
ð2RÞð�y�j½�j;��Þ

�
;

(A2)

Smass¼
Z
dtTr

�
1

2ð2RÞ
�
�
�
�

3

�
2X3
j¼1

ð�jÞ2�
�
�

6

�
2X9
j¼4

ð�jÞ2
�

� i

2

�
�

4

�
�y�123���

3
i
X3

j;k;l¼1

�jkl�
j�k�l

�
: (A3)

The fermion representation we choose to work in is
not explicitly real, and so �T is replaced by �y (see
Appendix B). Rescale to get rid of R:

� ! g�2=3�; � ! 1

g
�; t ! g2=3

2R
t;

� ! 6Rg�2=3�;
(A4)
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S ¼ S0 þ Smass

S0 ¼ 1

g2

Z
dtTr

�X9
j¼1

1

2
ðD0�

jÞ2 þ i

2
�yD0�

þ 1

4

X9
j;k¼1

½�j;�k�2 þX9
j¼1

1

2
ð�y�j½�j;��Þ

�

Smass ¼ 1

g2

Z
dtTr

�
1

2

�
��2

X3
j¼1

ð�jÞ2 �
�
�

2

�
2 X9
j¼4

ð�jÞ2
�

� i

2

�
3�

4

�
�y�123���i

X3
j;k;l¼1

�jkl�
j�k�l�:

Rescale again to get rid of �:

�!��; �!�3=2�; t! 1

�
t; g!�3=2g;

(A5)

S ¼ S0 þ Smass; (A6)

S0 ¼ 1

g2

Z
dtTr

�X9
j¼1

1

2
ðD0�

jÞ2 þ i

2
�yD0�

þ 1

4

X9
j;k¼1

½�j;�k�2 þX9
j¼1

1

2
ð�y�j½�j;��Þ

�
; (A7)

Smass ¼ � 1

g2

Z
dtTr

�
1

2

�X3
j¼1

ð�jÞ2 þ 1

22
X9
j¼4

ð�jÞ2
�

þ i

2

�
3

4

�
�y�123�þ i

X3
j;k;l¼1

�jkl�
j�k�l

�
: (A8)

Notice that if we start with� ¼ 0, then in the rescaling we
just modify g and we find that the BFSS Lagrangian has no
free parameters (this is the statement that the gauge cou-
pling in 0þ 1 dimensions is dimensionful, so that there is
no dimensionless coupling constant).

In the At ¼ 0 gauge, the covariant time derivatives
become ordinary time derivatives. Relabel the �j by XI.
Define Xi ¼ �i for i ¼ 1, 2, 3 and Ya ¼ �a for a ¼
1; . . . ; 6. The bosonic action takes the form

SB ¼ 1

2g2

Z
dtTr

�
ð _XiÞ2 þ ð _YaÞ2 � ðXiÞ2 � 1

4
ðYaÞ2

� 2i�ijkX
iXjXk � 1

2
½XI; XJ�2

�
: (A9)

The fermionic action becomes

SF ¼ 1

g2

Z
dtTr

�
i

2
�y _�� i

2

�
3

4

�
�y�123�

þ 1

2
�y�I½XI;��

�
: (A10)

This is how the action is written in Ref. [36].

APPENDIX B: FERMION DECOMPOSITION

This section comes from Appendix A of Ref. [29].
Decompose the 16-component spinor as

SOð16Þ ! SOð6Þ � SOð3Þ ’ SUð4Þ � SUð2Þ
16 ! ð4 � 2Þ 	 ð�4 � �2Þ
� ! c I�; c

yJ
;

(B1)

where I, J are fundamental SUð4Þ indices and �, 
 are
fundamental SUð2Þ indices. The spinors obey the reality
condition

ðc yÞI� ¼ ~c I�; (B2)

which allows us to write the spinors in the stacked form

� ! c I�

��
c
yI


 !
: (B3)

The matrices gaIJ are introduced to relate the inner product
of SUð4Þ to the vector of SOð6Þ which satisfies

gaðgyÞb þ gbðgyÞa ¼ 2	ab: (B4)

The gamma matrices are then written as

�i ¼ ��i � 1 0

0 �i � I

 !
;

�a ¼ 0 1 � ga

1 � ðgaÞy 0

 !
:

(B5)

The terms in the Lagrangian then decompose as

i

2
�yD0� ! ic yI�D0c I�; (B6)

i

2
�y�123� ! c yI�c I�; (B7)

1

2
�y�i½Xi;�� ! �c yI��i


� ½Xi; c I
�; (B8)

1

2
�y�a½Xa;�� ! 1

2
��
c

yI�gaIJ½Ya; c yJ
�

� 1

2
��
c I�ðgyÞaIJ½Ya; c J
�: (B9)

The fermionic part of the action (in the A0 ¼ 0 gauge) may
then be written as
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SF ¼ 1

g2

Z
dtTr

�
ic yI� _c I� � 3

4
c yI�c I�

� c yI��i

� ½Xi; c I
� þ 1

2
��
c

yI�gaIJ½Ya; c yJ
�

� 1

2
��
c I�ðgyÞaIJ½Ya; c J
�

�
: (B10)

Notice that the coupling to the X variables uses just the
Pauli matrices after this decomposition. Also, a c spinor is
always paired with its conjugate. If we perform orbifolds
that are chiral, this structure remains, but the other mass
terms that do not preserve four-dimensional chirality might
be eliminated.

APPENDIX C: FERMIONIC MODES BETWEEN
DISPLACED FUZZY SPHERES

For our paper we want to consider computing fermionic
modes between two fuzzy spheres in the BMN matrix
model that have been displaced as described in Ref. [36].
We want to restrict to a chiral projection of the modes
between two such fuzzy spheres. First we will set up some
conventions for the fermionic modes of a single fuzzy
sphere. Then we work with the more general problem.

1. Diagonal fermionic modes

This section is essentially a repeat of Sec. 5.2 of
Ref. [29] using the conventions of Ref. [36].

The SUð4Þ indices are dropped as they do not come into
play at all during the following calculation. We take the
following conventions for the spherical harmonics and the
angular momentum generators:

TrðYy
lmYl0m0 Þ ¼ 1

2
	ll0	mm0

�lmþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl�mþ 1Þ

p
�lm� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl�mÞðlþmþ 1Þp

½L3; Ylm� ¼ mYlm ½Lþ; Ylm� ¼ �lm� Ylmþ1

½L�; Ylm� ¼ �lmþ Ylm�1 ½L3; Yy
lm� ¼ �mYy

lm

½Lþ; Yy
lm� ¼ ��lmþ Yy

lm�1

½L�; Yy
lm� ¼ ��lm� Yy

lmþ1�
l�lþ ¼ 0

�ll� ¼ 0 �lmþ1þ ¼ �lm� ;

where L� ¼ L1 � iL2. We expand the fermions as

c � ¼ X
lm

c lm
� Ylm: (C1)

The potential in the presence of the bosonic expectation
values becomes

VF � 3

4
Trðc y�c �Þ ¼ Tr½c y��i


� ½Li; c I
��
¼ Tr½c yþð½L3; cþ� þ ½L�; c��Þ þ c y�ð½Lþ; cþ� � ½L3; c��Þ�
¼ Tr½c yþX

lm

ðmc lmþ Ylm þ�lmþ c lm� Ylm�1Þ þ c y�X
lm

ð�lm� c lmþ Ylmþ1 �mc lm� YlmÞ�

¼ 1

2

X
lmm0

½c ylm0
þ ðmc lmþ 	m0m þ�lmþ c lm� 	m0m�1Þ þ c ylm0

� ð�lm� c lmþ 	m0mþ1 �mc lm� 	m0mÞ�

¼ 1

2

X
lmm0

c ylm0
þ c ylm0

�
� � m �lmþ 	m0m�1

�lm� 	m0mþ1 �m

 !
c lmþ
c lm�

 !
:

The eigenvalues of the matrix plus 3=4 give the mass
spectrum. Note that �l 
 m, m0 
 l. The 	’s tell us that
this matrix has 2l two-by-two blocks and two one-by-one
blocks where m, m0 ¼ l and m, m0 ¼ �l. Each of the one-
by-one blocks yields the eigenvalue l. The 2l two-by-two
blocks can be parametrized according to m from �l to
l� 1. They are given by

m �lmþ1þ
�lm� �ðmþ 1Þ

 !
¼ m �lm�

�lm� �ðmþ 1Þ

 !
: (C2)

The eigenvalues are given by the characteristic equation

0 ¼ ðm� �Þð�m� 1� �Þ � ðl�mÞðlþmþ 1Þ
¼ ð�� lÞð�þ lþ 1Þ:

Thus the eigenvalues are l and �ðlþ 1Þ. This means that
the mass spectrum is M ¼ 3=4þ l with degeneracy of
2lþ 2 and M ¼ �ðlþ 1=4Þ with degeneracy 2l. Note
that there are two more positive eigenvalues than negative
eigenvalues.

2. Off-diagonal modes

Here we follow the procedure of the previous section
and that in Ref. [36]. Expand the off-diagonal modes in
fuzzy monopole harmonics
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c � ¼ X
lm

0 	c lm
� Ylm

ð	 ~c lm
� ÞYy

lm 0

� �
: (C3)

The following commutators are necessary:

½X3;c �� ¼
X
lm

0 	c lm
� ½L3; Ylm�

ð	 ~c lm
� Þ½L3; Yy

lm� 0

 !

þ b

2
4 0 0

0 1

 !
;

0 	c lm
� Ylm

ð	 ~c lm
� ÞYy

lm 0

 !35
¼X

lm

0 ðm� bÞ	c lm
� Ylm

�ðm� bÞð	 ~c lm
� ÞYy

lm 0

 !

½Xþ;c �� ¼
X
lm

0 	c lm
� ½Lþ; Ylm�

ð	 ~c lm
� Þ½Lþ; Yy

lm� 0

 !

¼X
lm

0 �lm� 	c lm
� Ylmþ1

��lmþ ð	 ~c lm
� ÞYy

lm�1 0

 !

½X�;c �� ¼
X
lm

0 	c lm
� ½L�; Ylm�

ð	 ~c lm
� Þ½L�; Yy

lm� 0

 !

¼X
lm

0 �lmþ 	c lm
� Ylm�1

��lm� ð	 ~c lm
� ÞYy

lmþ1 0

 !
:

Substituting these expressions into the potential, taking the
chiral projection and finally taking the trace we have

VF�3

4
Trðc y�c �Þ

¼ c yþlm0
c y�lm0� 	 m�b �lmþ 	m0m�1

�lm� 	m0mþ1 �ðm�bÞ

 !
c lmþ
c lm�

 !
:

(C4)

Notice that this essentially produces the exact same matrix
system as for the diagonal modes except with different
diagonal elements. Also, half-spin objects are allowed
as when we decompose into the tensor product we can
get different spins. There is a one-by-one block with � ¼
l� b, another with � ¼ lþ b, and 2l two-by-two blocks.
The matrix for these blocks is

m� b �lm�
�lm� �ðmþ 1� bÞ

 !
(C5)

with �l 
 m 
 l� 1. The eigenvalues are

�� ¼ � 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmþ 1Þ þ ðb�m� 1=2Þ2

q
:

(C6)

Thus the full modes are with �l 
 m 
 l� 1 (each with
degeneracy two):

M ¼ 1

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmþ 1Þ þ ðb�m� 1=2Þ2

q
:

We also have two other modes corresponding to the one-
by-one blocks of the mass matrix: M ¼ 3=4þ l� b.
These yield zero modes for the right value of b. That is,
we have zero modes when

b ¼ �ðlþ 3=4Þ
for the modes with the greatest angular momentum in the z
direction for a given value of ‘. These zero modes are
correlated with the modes that become tachyonic for bo-
sons in the same type of configurations found in Ref. [36]:
they are objects of maximal spin fixing ‘.
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