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In this paper, we aim to address several important issues about the recently developed lattice Boltzmann

(LB) model for relativistic hydrodynamics [M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys.

Rev. Lett. 105, 014502 (2010); Phys. Rev. D 82, 105008 (2010)]. First, we study the conservation law of

the particle number in the relativistic LB model. Through the Chapman-Enskog analysis, it is shown that

in the relativistic LB model the conservation equation of the particle number is a convection-diffusion

equation rather than a continuity equation, which makes the evolution of the particle number dependent on

the relaxation time. Furthermore, we investigate the origin of the discontinuities that appeared in the

relativistic problems with high viscosities, which were reported in a recent study [D. Hupp, M. Mendoza, I.

Bouras, S. Succi, and H. Herrmann, Phys. Rev. D 84, 125015 (2011)]. A multiple-relaxation-time relativistic

LB model is presented to examine the influences of different relaxation times on the discontinuities.

Numerical experiments show the discontinuities can be eliminated by setting the relaxation time �e (related

to the bulk viscosity) to be sufficiently smaller than the relaxation time �� (related to the shear viscosity).

Meanwhile, it is found that the relaxation time �", which has no effect on the conservation equations at the

Navier-Stokes level, will affect the numerical accuracy of the relativistic LB model. Moreover, the accuracy

of the relativistic LB model for simulating moderately relativistic problems is also investigated.

DOI: 10.1103/PhysRevD.86.085044 PACS numbers: 47.11.�j, 47.75.+f

I. INTRODUCTION

Relativistic hydrodynamics plays an important role in the
fields of astrophysics [1] and high-energy physics [2]. In the
literature, many high-energy astrophysical phenomena have
been investigated by using the relativistic hydrodynamics,
such as ultrarelativistic jet [3], neutron star merger [4], and
pulsar wind [5]. Moreover, the relativistic hydrodynamics is
also of great interest in the context of nuclear physics
because of the experiments on heavy-ion (Au-Au) collisions
with ultrarelativistic energies at the Relativistic Heavy Ion
Collider [6], which reveals a new state of matter: the quark-
gluon plasma.

Owing to the high nonlinearity of the relativistic hydro-
dynamic equations, analytical solutions can be obtained for a
few simple cases only. Thus in recent years various numerical
approaches have been developed for simulating relativistic
hydrodynamics. However, the construction of relativistic
hydrodynamic equations within the framework of convec-
tional numericalmethods usually suffers fromseveral serious
problems [7]. For this reason, some numerical formulations
based on the kinetic theory have been developed, such as the
Boltzmann approach ofmultiparton scattering (BAMPS) [8],
which solves the full Boltzmann equation.

Recently, a relativistic lattice Boltzmann (LB) model
was proposed by Mendoza et al. [9] for simulating relativ-
istic hydrodynamics. This new model can be treated as a
relativistic extension of the standard LB equation [10–13],
which is a special discretization scheme of the Boltzmann
equation. The relativistic LB model utilizes two different
distribution functions, one for the particle number and the
other for the energy momentum. Mendoza et al. have
validated the relativistic LB model via two relativistic
problems, shock waves in quark-gluon plasmas and blast
waves from supernova explosions impinging against dense
interstellar clouds. In addition, they found that the relativ-
istic LB model is about an order of magnitude faster than
the corresponding hydrodynamic codes. Actually, it is well
known that the LB method has many advantages over the
conventional numerical methods because of its kinetic
origin, the inherent parallelizability on multiple process-
ors, and the avoidance of nonlinear convective terms
[14,15], which makes the relativistic LB model useful in
the relativistic context.
Some further studies have also been conducted about the

relativistic LBmethod.Romatschke et al. [16] have proposed
a fully relativistic LB algorithm, which enables the relativ-
istic LB method capable of dealing with non-Minkowskian
geometries and ultrarelativistic fluids.Meanwhile, the exten-
sion of the relativistic LBmodel to the cases with a nonideal
equation of state has also been made by Romatschke [17].
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Recently, through numerical simulations of shock waves in
quark-gluon plasma with low and high viscosities, Hupp
et al. [18] found that the relativistic LB model will lead to
unphysical discontinuities in the cases with high viscosities.
However, the origin of the discontinuities was not revealed.

In this paper, we aim to further develop the relativistic LB
model by addressing several important issues about the
model. First, the particle number conservation law in the
relativistic LB model will be studied. We will show that
the particle number conservation equation in the relativistic
LB model is a convection-diffusion equation rather than a
continuity equation, which makes the evolution of the parti-
cle number dependent on the relaxation time. Furthermore,
we will investigate the origin of the discontinuities reported
in the study of Hupp et al.. A multiple-relaxation-time
(MRT) relativistic LB model will be presented to examine
the influence of different relaxation times. It will be shown
that the discontinuities are dependent on the relaxation time
�e (related to the bulk viscosity) and can be eliminated by
setting �e to be sufficiently smaller than the relaxation time
related to the shear viscosity. In addition, the accuracy of the
relativistic LB model for simulating moderately relativistic
problems will also be investigated.

The rest of the present paper is organized as follows.
Section II will briefly introduce the relativistic LB model.
The particle number conservation equation of the relativ-
istic LB model will be studied in Sec. III. In Sec. IV, some
comments will be made about the energy-momentum con-
servation equations of the relativistic LB model. In Sec. V,
a MRT relativistic LB model will be presented to inves-
tigate the origin of the discontinuities that appeared in the
cases with high viscosities. Finally, a brief conclusion will
be made in Sec. VI.

II. RELATIVISTIC LB MODEL

The relativistic LB model proposed by Mendoza et al. is
based on the relativistic hydrodynamic equations associ-
ated with the conservation of particle number and the
energy-momentum conservation. The related energy-
momentum tensor is given as follows [9,19]:

T�� ¼ P��� þ ð"þ PÞu�u� þ ���; (1)

where " is the energy density, P is the hydrostatic pressure,
��� is the Minkowski metric, ��� is the dissipative compo-
nent of the stress-energy tensor, and u� is the four-vector
velocity defined by u� ¼ ð�; ��Þ�, in which � ¼ u=cl is
the velocity of the fluid in units of the speed of light and

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ju=clj2

p
is the Lorentz factor. The superscripts

� and � denote the four-dimensional spacetime. They can be
identified according to the normal conventionwhen referring
to a specific coordinate system, e.g., � ¼ t, x, y, z for
Cartesian coordinates [20]. The relativistic hydrodynamic
equations in Cartesian coordinates can be given by [18,19]

@tðn�Þ þ @iðn�uiÞ ¼ 0; (2)

@tðð"þ PÞ�2 � PÞ þ @iðð"þ PÞ�2uiÞ
þ @t�

00 þ @i�
i0 ¼ 0; (3)

@tðð"þ PÞ�2ujÞ þ @iðð"þ PÞ�2uiujÞ
þ @jPþ @t�

0j þ @i�
ij ¼ 0; (4)

where n is the baryon number, which is called the particle
number in Refs. [9,18,19]. The subscripts i and j denote x, y,
and z. The index ‘‘0’’ denotes the time component.
To simulate the relativistic hydrodynamic equations, the

following two evolution equations with the Bhatnagar-
Gross-Krook (BGK) collision operator are adopted in the
relativistic LB model [9,18,19]:

f�ðxþ e��t; tþ �tÞ � f�ðx; tÞ ¼ � �t

�f
ðf� � feq� Þ; (5)

g�ðxþ e��t; tþ �tÞ � g�ðx; tÞ ¼ � �t

�g
ðg� � g

eq
� Þ; (6)

where f� is the distribution function for the particle number,
g� is the distribution function for the fluid energymoment,�t

is the time step, e� are discrete velocities, and �f and �g are

the relaxation times for f� and g�, respectively. The equi-
librium distribution functions feq� and geq� can be determined
by the corresponding constraints. For the D3Q19 lattice, feq�
and geq� are given by [18,19]

feq� ¼ w�n�

�
1þ ðe� � uÞ

c2s
þ ðe� � uÞ2

2c4s
� u2

2c2s

�
; (7)

g
eq
�¼0 ¼ w�ð"þ PÞ�2

�
3� Pð2þ 3c2sÞ

ð"þ PÞ�2c2s
� u2

2c2s

�
; (8)

geq��1 ¼ w�ð"þ PÞ�2

�
P

ð"þ PÞ�2c2s
þ ðe� � uÞ

c2s

þ ðe� � uÞ2
2c4s

� u2

2c2s

�
; (9)

where cs ¼ c=
ffiffiffi
3

p
(c is the lattice speed). The macroscopic

variables are calculated via

n� ¼ X
�

f�; ð"þ PÞ�2 � P ¼ X
�

g�;

ð"þ PÞ�2u ¼ X
�

e�g�: (10)

The shear viscosity is given by � ¼ ð�g � 0:5Þc2sð"þ PÞ�.

III. PARTICLE NUMBER CONSERVATION
EQUATION

A. Theoretical analysis

In this section, we study the particle number conserva-
tion equation of the relativistic LB model. In Refs. [9,19],
Mendoza et al. claimed that the target conservation equa-
tion of the particle number, namely, Eq. (2), can be recov-
ered from the relativistic LB model. Indeed, there is no
doubt that Eq. (2) can be exactly recovered from Eqs. (5)
and (7) when the relationships n� ¼ P

�f
eq
� ¼ P

�f� and
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n�u ¼ P
�e�f

eq
� ¼ P

�e�f� are satisfied. However, the
latter relationship n�u ¼ P

�e�f� is not satisfied in the
relativistic LB model because the velocity in the model is
defined by ð"þ PÞ�2u ¼ P

�e�g�.
As a result, in the relativistic LB model the particle

number conservation equation will not be a continuity equa-
tion. The detailed form can be derived via the Chapman-
Enskog analysis, which can be conducted by taking the
second-order Taylor series expansion of Eq. (5),

�tð@t þ e� � rÞf� þ �2
t

2
ð@t þ e� � rÞ2f� þOð�3

t Þ

¼ � �t

�f
ðf� � f

eq
� Þ; (11)

where r is the spatial gradient operator. By introducing the
following multiscale expansions:

r ¼ 	r1; @t ¼ 	@t1 þ 	2@t2 ;

f� ¼ feq� þ 	fð1Þ� þ 	2fð2Þ� ; (12)

we can rewrite Eq. (11) in the consecutive orders of the
expansion parameter 	 as

	: ð@t1 þ e� � r1Þfeq� ¼ � 1

�f
fð1Þ� ; (13)

	2: @t2f
eq
� þ ð@t1 þ e� � r1Þfð1Þ�

þ �t

2
ð@t1 þ e� � r1Þ2feq� ¼ � 1

�f
fð2Þ� : (14)

With the aid of Eq. (13), Eq. (14) can be rewritten as

@t2f
eq
� þ

�
1� �t

2�f

�
ð@t1 þ e� � r1Þfð1Þ� ¼ � 1

�f
fð2Þ� : (15)

Taking the summations of Eqs. (13) and (15), we can obtain,
respectively,

@t1ðn�Þ þ @1iðn�uiÞ ¼ 0; (16)

@t2ðn�Þ þ
�
1� �t

2�f

�
@1j

�X
�

e�jf
ð1Þ
�

�
¼ 0: (17)

If the velocity is calculated by n�u ¼ P
�e�f�, thenP

�e�jf
ð1Þ
� ¼ 0 can be obtained. However, as previously

mentioned, such a relationship is not satisfied in the relativ-
istic LB model. According to Eq. (13), Eq. (17) can be
rewritten as

@t2ðn�Þ ¼
�
�f � �t

2

�
@1j

�
@t1

�X
�

e�jf
eq
�

�

þ @1i

�X
�

e�ie�jf
eq
�

��
: (18)

From Eq. (7), we can obtain

@t1

�X
�

e�jf
eq
�

�
¼ uj@t1ðn�Þ þ n�@t1uj; (19)

@1i

�X
�

e�ie�jf
eq
�

�
¼uj@1iðn�uiÞþn�ui@1iujþc2s@1jðn�Þ;

(20)

where @t1uj is given by [see Eq. (A27) in the Appendix]

@t1uj ¼ �ui@1iuj � @1jP=½ð"þ PÞ�2�: (21)

Substituting Eqs. (16) and (21) into Eq. (19) yields

@t1

�X
�

e�jf
eq
�

�
¼ �uj@1iðn�uiÞ � n�ui@1iuj

� n@1jP=½ð"þ PÞ��: (22)

According to Eqs. (16) and (18) together with Eqs. (20) and
(22), we can obtain

@tðn�Þ þ r � ðn�uÞ ¼ r � ð’rðn�ÞÞ � r � ð’0rPÞ; (23)

where ’ ¼ c2sð�f � 0:5�tÞ and ’0 ¼ nc2sð�f � 0:5�tÞ=
½ð"þ PÞ��.
From Eq. (23) we can see that the particle number

conservation equation recovered from the relativistic LB
model is a convection-diffusion equation with a source
term rather than a continuity equation. In simulations, the
diffusion term r � ð’rðn�ÞÞ and the source term r �
ð’0rPÞ will result in numerical errors. Since both ’ and
’0 are proportional to (�f � 0:5�t), the numerical errors

are expected to increase with the increase of �f=�t. In

addition, it can be seen that the pressure gradient rP will
also influence the numerical accuracy.
In previous studies [9,18,19], Mendoza et al. and Hupp

et al. used the same relaxation time � for f� and g�,
namely, �f ¼ �g ¼ �, and the relaxation time � is deter-

mined via the shear viscosity � ¼ ð�� 0:5Þc2sð"þ PÞ�.
Clearly, for relativistic problems with high viscosities, the
diffusion and source terms in Eq. (23) will introduce con-
siderable numerical errors. Obviously, to disable these
errors, the relaxation time of f� should be separated
from the relaxation time of g� and must be close to 0:5�t.

B. Numerical results

To validate the above analysis, we perform numerical
simulations for one-dimensional relativistic shock waves
in quark-gluon plasma [9,18,19,21,22]. For shock waves in
viscous quark-gluon matter, the viscosity-entropy density
ratio �=s is usually used to characterize the problem, and
the entropy density s is given by s ¼ 4n� n ln
, where

 ¼ n=neq and neq ¼ dGT

3=�2, in which dG ¼ 16 is the
degeneration for gluons and T is the temperature [9,19].
Similar to previous studies, in the present study we also

adopt 800 lattices together with open boundaries in the
mainstream z direction and set c ¼ �x=�t ¼ cl ¼ 1. The
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initial configuration of the simulated problem consists of
two regions divided by a membrane at z ¼ 0. At t ¼ 0, the
membrane is removed and the fluid starts expanding. The
initial conditions for pressure are given by Pðz < 0Þ ¼
p0 ¼ 5:43 GeV fm�3 and Pðz � 0Þ ¼ 2:22 GeV fm�3. In
lattice units, the corresponding conditions are Pðz < 0Þ ¼
2:495� 10�7 and Pðz � 0Þ ¼ 1:023� 10�7. The initial
temperature is set to be T ¼ 350 MeV (in lattice units

0.0314) in the whole domain, and the initial particle num-
ber is computed with n ¼ P=T.
In simulations, three different cases are considered about

the relaxation time of f�: �f ¼ �g, �f ¼ 1:0�t, and

�f ¼ 0:6�t. The relaxation time �g is determined with� ¼
ð�g � 0:5Þc2sð"þ PÞ�. The particle number profiles at t ¼
400�t (corresponding to t ¼ 3:2 fm=c) with �=s ¼ 0:01,
0.05, and 0.1 are shown in Fig. 1, which clearly shows that
the profiles of the particle number are dependent on the
relaxation time �f when the ratio �=s is fixed, and it can be

seen that, with the increase of �=s, the differences between
the case �f ¼ �g and the other two cases are more and

more apparent. Particularly, at �=s ¼ 0:1, the relaxation
time �g is found to be around 15:5�t, which significantly

deviates from 0:5�t. Consequently, the diffusion term in
Eq. (23) will exert an important influence, and this is the
reason why the particle number profile of the case �f ¼ �g
is much smoother than the profiles of the other two cases.
In summary, the theoretical analysis described in the pre-
vious section has been well validated, and the numerical
results clearly show that the relaxation time of f� should be
close to 0:5�t in order to disable the diffusion term.

IV. ENERGY-MOMENTUM
CONSERVATION EQUATIONS

In this section, the energy-momentum conservation
equations of the relativistic LB model will be given and
some comments will be made. In Ref. [19], Mendoza et al.
have made a theoretical analysis of the relativistic LB
model through the Chapman-Enskog expansion.
However, in their analysis some important terms have
been omitted. A rigorous Chapman-Enskog analysis of
Eq. (6) is therefore provided in the Appendix, which
reveals that the relativistic LB model recovers the follow-
ing energy-momentum conservation equations at the
Navier-Stokes level:

@tð�� PÞ þ @ið�uiÞ ¼ 0; (24)

@tð�ujÞ þ @ið�uiujÞ ¼ �@jPþ @i�ij þOðu3Þ; (25)

where � ¼ ð"þ PÞ�2 and the stress tensor�ij is given by

�ij ¼ �

�
@ið�ujÞ þ @jð�uiÞ � 2

D
@kð�ukÞ�ij

�

þ &@kð�ukÞ�ij þ ð�g � 0:5�tÞ�c2s@kð�ukÞ�ij

þ ð�g � 0:5�tÞ½uj@iðc2s�� PÞ
þ ui@jðc2s�� PÞ� þOðu3Þ; (26)

where D is the spatial dimension, � ¼ ð�g � 0:5Þc2s�=� is

the shear viscosity, and & ¼ 2�=D is the bulk viscosity, in
which � ¼ 1� P=½c2sð�� PÞ�.
Now several comments are made about the energy-

momentum conservation equations of the relativistic LB
model. First, similar to standard LB models, the relativistic
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FIG. 1 (color online). Particle number profiles at t ¼ 400�t

with different values of �f: (a) �=s ¼ 0:01, (b) �=s ¼ 0:05, and

(c) �=s ¼ 0:1.
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LB model has also neglected some third-order velocity
terms in deriving the stress tensor Eq. (26) [see Eqs. (A18)
and (A24) in the Appendix]. Second, it can be seen that,
besides the neglected third-order velocity terms, some other
error terms are also included in Eq. (26). These error terms
originate from the following changes:X

�

ĝeq� ¼ � ) X
�

geq� ¼ �� P; (27)

X
�

e�ie�jĝ
eq
� ¼ �uiuj þ c2s��ij )

X
�

e�ie�jg
eq
�

¼ �uiuj þ P�ij; (28)

where ĝeq� ¼ w��ð1þ ua þ 0:5u2a � 0:5u2=c2sÞ, in which
ua ¼ ðe� � uÞ=c2s .

Obviously, when the inverse changes are made, i.e.,
when �� P ) � and P ¼ c2s�, the coefficient � will be
equal to zero. Then the third and fourth terms on the right-
hand side of Eq. (26) will disappear. Actually, the fourth
term on the right-hand side of Eq. (26) can be removed by
setting

P
�e�ie�je�kg

eq
� ¼ Pðuk�ij þ ui�jk þ uj�ikÞ.

However, such a relationship cannot be satisfied in the
framework of standard lattices (such as D2Q9 and
D3Q19) owing to their low symmetry [23,24].

With regard to the bulk viscosity, it should be noted that
in the kinetic theory both the Boltzmann equation and the
Boltzmann-BGK equation will give a zero bulk viscosity
(& ¼ 0) for monatomic gases. However, the LB-BGK
equation, which is a special discretization scheme of the
Boltzmann-BGK equation, results in a nonzero bulk vis-
cosity. In the LB community, the nonzero bulk viscosity is
usually interpreted as a numerical artifact originating from
the influence of the discretization on the attenuation of
sound waves [25]. Owing to the nonzero bulk viscosity & ¼
2�=D, for (1þ 1)-dimensional relativistic problems
(ux ¼ uy ¼ @x ¼ @y ¼ 0), Eq. (26) will give

�zz ¼ 2�@zð�uzÞ þ Er; (29)

where Er represent the error terms. From Eq. (29) it can be
seen that the coefficient before the term @zð�uzÞ is 2�.
However, according to the relativistic hydrodynamics, the
correct coefficient should be 4�=3 (& ¼ 0 and D ¼ 3)
[22]. A transformation of the shear viscosity is therefore
needed. Such a problem has not been noticed in previous
studies.

V. ORIGIN OF DISCONTINUITIES

A. MRT relativistic LB model

In this section, the origin of the discontinuities reported
in the study of Hupp et al. [18] will be investigated with a
MRT relativistic LBmodel. Actually, in the LB community
it has been well recognized that the MRT collision operator
can overcome some obvious defects of the BGK collision
operator, such as the fixed Prandtl number and fixed ratio

between the shear and bulk viscosities. In addition, much
research has shown that the MRT collision operator can
improve the numerical stability of LB models by separat-
ing the relaxation times of hydrodynamic and nonhydro-
dynamic moments [15,24,26–28].
The MRT-LB equation can be obtained by replacing the

BGK collision operator with the MRT collision operator,
and then Eq. (6) can be rewritten as

g�ðxþ e��t; tþ �tÞ ¼ g�ðx; tÞ � �t��ðg � g
eq
 Þjðx; tÞ;

(30)

where � ¼ M�1SM is the collision matrix, M is an
orthogonal transformation matrix, and S is a diagonal
matrix. In the present study, we consider (1þ 1)-
dimensional relativistic problems only. Hence the MRT
collision operator based on the D2Q9 lattice is adopted.
The corresponding diagonal matrix S is given by

S ¼ diagð��1
� ; ��1

e ; ��1
" ; ��1

j ; ��1
q ; ��1

j ; ��1
q ; ��1

� ; ��1
� Þ;

(31)

where �� ¼ �j ¼ �t are the relaxation times for the con-

served moments; �� and �e are the relaxation times related
to the shear and bulk viscosities, respectively. For the
D2Q9 lattice, according to the related constraints, the
equilibrium distribution function g

eq
� is defined as follows:

g
eq
�¼0 ¼ w��

�
9

4
� Pð5þ 9c2sÞ

4�c2s
� u2

2c2s

�
; (32)

g
eq
��1 ¼ w��

�
P

�c2s
þ ðe� � uÞ

c2s
þ ðe� � uÞ2

2c4s
� u2

2c2s

�
; (33)

where� ¼ ð"þ PÞ�2. Through the transformation matrix,
the distribution function g� and its equilibrium distribution
g
eq
� can be projected onto the moment space via m ¼ Mg

and meq ¼ Mgeq, respectively, where g ¼ ðg0; g1; � � � ;
g8ÞT and geq ¼ ðgeq0 ; geq1 ; � � � ; geq8 ÞT . After some algebra,

the following equilibria meq can be obtained:

meq ¼ ½ð�� PÞ; ð�4�þ 3�u2 þ 10PÞ;
ð4�� 3�u2 � 13PÞ; �ux;��ux; �uy;��uy;

�ðu2x � u2yÞ; �uxuy�T: (34)

With m and meq, Eq. (30) can be implemented as follows:

m� ¼m��tSðm�meqÞ; g�ðxþe��t;tþ�tÞ¼g��ðx;tÞ;
(35)

where g� ¼ M�1m�. The transformation matrix M of the
D2Q9 lattice and its inverse matrix M�1 can be found in
Ref. [24].
The energy-momentum conservation equations recov-

ered from the MRT relativistic LB model can also be
obtained with the Chapman-Enskog analysis, which can
be implemented in the moment space [29]. The recovered
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conservation equations are the same as those given in
Eqs. (24) and (25) except that the stress tensor is given by

�ij ¼ �

�
@ið�ujÞ þ @jð�uiÞ � 2

D
@kð�ukÞ�ij

�

þ &@kð�ukÞ�ij þ �ð�e � 0:5�tÞc2s@kð�ukÞ�ij

þ ð�� � 0:5�tÞ½uj@iðc2s�� PÞ þ ui@jðc2s�� PÞ�
þOðu3Þ: (36)

Here the shear viscosity � ¼ ð�� � 0:5Þc2s�=�, the bulk
viscosity & ¼ ð�e � 0:5Þc2s�=�, D ¼ 2, and c2s ¼ 1=3.
Note that the third term on the right-hand side of
Eq. (36), which can be rewritten as �&���1@kð�ukÞ�ij,

is also related to the bulk viscosity. In addition, because of
the spatial limit of the two-dimensional MRT collision
operator (D ¼ 2), a similar transformation of the shear
viscosity is also needed when comparing the present nu-
merical results with the results of BAMPS.

B. Numerical results

Now numerical simulations are carried out for relativis-
tic shock waves in quark-gluon plasma to investigate the
discontinuities caused by the relativistic LB model. The
configuration of the problem and the initial conditions are

the same as those in Sec. III. In simulations, a grid size of
Nx � Nz ¼ 4� 800 is adopted. The open boundaries are
employed in the z direction, and the periodic conditions are
applied in the x direction. For the MRT relativistic LB
model, in addition to ��, there are three adjustable relaxa-
tion times: �q, �e, and �". To examine the influences of

different relaxation times, we consider the following four
cases: Case A: �e ¼ �" ¼ �q ¼ ��; Case B: �e ¼ �" ¼
��, �q � 0:5�t ¼ að�� � 0:5�tÞ; Case C: �" ¼ �q ¼ ��,

�e � 0:5�t ¼ að�� � 0:5�tÞ; and Case D: �q ¼ ��, �e ¼
�" ¼ 0:5�t þ að�� � 0:5�tÞ. The parameter a is chosen as
1=20. Its influences will be shown later.
For the present test, the corresponding  ¼ uz=cl

is around 0.2 and is in the weakly relativistic regime (1<
� � 2), in which the third-order velocity terms can be
neglected. The predicted velocity profiles of Cases A and B
at t ¼ 400�t (i.e., t ¼ 3:2 fm=c) with �=s ¼ 0:5 are
shown in Figs. 2(a) and 2(b), respectively. For comparison,
the results of BAMPS are also presented. From the figure it
can be found that a discontinuity at z ¼ 0 appears in both
cases. Moreover, it is seen that there are no obvious
differences between the results of the two cases. In the
LB-MRT community, it is known that the relaxation time
�q will affect the numerical accuracy of LB models via the

treatment of nonslip boundaries [30]. Nevertheless, the
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FIG. 2 (color online). Velocity profiles of weakly relativistic shock wave in quark-gluon plasma at �=s ¼ 0:5 in different cases. Case
A: �e ¼ �" ¼ �q ¼ ��; Case B: �e ¼ �" ¼ ��, �q � 0:5�t ¼ að�� � 0:5�tÞ; Case C: �" ¼ �q ¼ ��, �e � 0:5�t ¼ að�� � 0:5�tÞ; and
Case D: �q ¼ ��, �e ¼ �" ¼ 0:5�t þ að�� � 0:5�tÞ. The circles represent the results of BAMPS.
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present problem contains no nonslip boundaries, and this may
be the reason why �q has no effect on the present problem.

The velocity profile of Case C is displayed in Fig. 2(c),
from which we can see that the discontinuity that appeared
in Cases A and B has disappeared. According to the setup
of Case C, it can be found that the discontinuity is
dependent on the relaxation time �e. In other words, the
discontinuity is related to the moment m1, which, at the
Navier-Stokes level, leads to the second and third terms on
the right-hand side of Eq. (36). Clearly, these terms will
affect the performance of the relativistic LB model. More
importantly, the higher-order terms (beyond the Navier-
Stokes level) resulting from the moment m1 will also
impose a significant influence, which makes the relaxation
time �e pretty important in simulations. For problems with
high viscosities, when �e ¼ �� (��=�t is around 100 for the
present problem), the error terms arising from the moment
m1 will be of the same order of magnitude as the shear
viscosity terms. To damp these errors, the relaxation time
�e should be sufficiently smaller than ��, and then the
unphysical discontinuity can be eliminated.

The velocity profile of Case D is illustrated in Fig. 2(d).
By comparing Fig. 2(d) with Fig. 2(c), we can see that the
results of Case C deviate from the results of BAMPS in
several regions, while the results of Case D basically agree
well with those of BAMPS in the whole domain, which
indicates that the relaxation time �" affects the numerical
accuracy of the relativistic LB model. In the literature, it
has been shown that �" will affect the numerical stability of
LB models [30]. Meanwhile, through the Chapman-
Enskog analysis it can easily be found that �" does not
affect the macroscopic equations at the Navier-Stokes level
[29], which implies that the influences of �" are attributed
to the higher-order terms given by the moment m2.

The effects of the parameter a are displayed in Fig. 3 by
taking Case D as an example. From the figure we can find
that the discontinuity that appeared at z ¼ 0 can be gradu-
ally removed with the decrease of the parameter a, and it
can be seen that there are only several minor differences

between the results of a ¼ 1=20 and a ¼ 1=50, which
means that a ¼ 1=20 is sufficient for the present problem.
The predicted pressure distributions at �=s ¼ 0:2 and
�=s ¼ 0:5 are described in Figs. 4 and 5, respectively.
The results of BAMPS given in Ref. [21] are also presented
for comparison. Similar discontinuities can be observed in
the pressure profiles of Cases A and B, and it can be found
that the discontinuities will become strong with the in-
crease of �=s. Furthermore, good agreement with the
results of BAMPS can also be observed in Case D.
Finally, a moderately relativistic shock wave in quark-

gluon plasma is also considered. The initial pressure dis-
tribution is given by Pðz < 0Þ ¼ 5:43 GeV fm�3 and
Pðz � 0Þ ¼ 0:339 GeV fm�3, which correspond to
2:495� 10�7 and 1:557� 10�8 in lattice units, respec-
tively [18]. The initial temperature is Tðz < 0Þ ¼
400 MeV and Tðz � 0Þ ¼ 200 MeV (in lattice units
0.018). The velocity and pressure profiles of Cases A and
D at �=s ¼ 0:5 and t ¼ 400�t (i.e., t ¼ 3:2 fm=c) are
depicted in Fig. 6. In this test the parameter a is set to be
1=30. From the figure we can see that the results of Case D
still obviously deviate from the results of BAMPS although
the discontinuities at z ¼ 0 have been eliminated.
In fact, from Fig. 6 it can be found that the main devia-

tions are located in the region z=L ¼ ½0; 0:375�, which
corresponds to  ¼ uz=cl � 0:55 (cl ¼ 1). It is therefore
believed that the error terms of the relativistic LB model
have imposed an important influence on the numerical
results. To identify the influence of the error terms, we
introduce a correction term into Eq. (30), and then the
collision process can be rewritten as [24]

m � ¼ m� �tSðm�meqÞ þ
�
I� �tS

2

�
C; (37)

where C ¼ ðC0; C1; � � � ; C8ÞT is the correction term in the
moment space. Strictly speaking, to remove the error
terms, both the moments m1 and m7 should be corrected
for the present problem. However, since the errors resulting
from the moment m1 can be damped via �e, we can con-
sider the correction of m7 only (C0;1;...;6;8 ¼ 0). According
to the Chapman-Enskog analysis, C7 is given by

C7 ¼ 2�t½uz@zðc2s�� PÞ � c2s��
�1uz@z�

� uz@zð�u2zÞ þ u2z#@zð�uzÞ�; (38)

where # ¼ 1þ ½ð"=Pþ 1Þ�2 � 1��1. The first term on
the right-hand side of Eq. (38) is caused by the change in
Eq. (28), the second term is due to the change from �@zuz
to @zð�uzÞ, while the last two terms are the third-order
velocity terms resulting from @t1ð�u2zÞ. Here it should be

noted that Eqs. (37) and (38) mainly serve as a strategy to
examine the influence of the error terms. For practical
applications, a more sophistical model is required because
there will be many error terms in three-dimensional prob-
lems. The corrected numerical results of Case D are shown
in Fig. 7, from which an obvious improvement can be
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FIG. 3 (color online). Velocity profiles of Case D at �=s ¼ 0:5
with different values of a.
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FIG. 4 (color online). Pressure profiles of weakly relativistic shock wave in quark-gluon plasma at �=s ¼ 0:2 in different cases.
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FIG. 5 (color online). Pressure profiles of weakly relativistic shock wave in quark-gluon plasma at �=s ¼ 0:5 in different cases.
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observed although there are still some minor differences
between the corrected results and the results of BAMPS.
Actually, these differences are acceptable on the basis of
the fact that the LB equation is a special approximation of
the full Boltzmann equation.

VI. CONCLUSION

In this paper, several important issues about the re-
cently proposed relativistic LB model have been theo-
retically and numerically studied. First, we have shown
that the particle number conservation equation of the
relativistic LB is a convection-diffusion equation rather
than a continuity equation claimed in previous studies.
To disable the related error terms, the relaxation time of
f� should be close to 0:5�t. Second, the origin of the
discontinuities reported in Ref. [18] has been investi-
gated by using a MRT relativistic LB model. It is found
that the discontinuities are dependent on the relaxation
time �e, and the relaxation time �" is found to affect the
numerical accuracy of the relativistic LB model although
it has no effect on the conservation equations at the
Navier-Stokes level. In particular, numerical experiments
show that, by setting �e and �" to be sufficiently smaller
than the relaxation time ��, the discontinuities that ap-
peared in the relativistic problems with high viscosities

can be eliminated and the accuracy of the relativistic LB
model can be improved.
Furthermore, we have shown that the relativistic LB

model will lead to considerable numerical errors for mod-
erately relativistic problems although the discontinuities
can be eliminated with the MRT collision operator.
Nevertheless, it is also found that the accuracy of the
relativistic LB model can be obviously improved when
the error terms are removed. In fact, most of the error
terms can be removed via

P
�e�ie�je�kg

eq
� ¼ �uiujuk þ

Pðuk�ij þ ui�jk þ uj�ikÞ. However, this relationship can-

not be satisfied in the framework of standard lattices, and
high-order lattices must be used. In other words, a high-
order MRT-LB model is needed for simulating moderately
relativistic problems. In the literature, there have been
several high-order MRT-LB models for nonrelativistic
thermodynamics [31,32], which may offer some insights
about constructing high-order MRT-LB models for relativ-
istic hydrodynamics. This issue can be considered in future
studies.
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APPENDIX: CHAPMAN-ENSKOG
ANALYSIS OF EQ. (6)

In this appendix, a rigorous Chapman-Enskog analysis
of Eq. (6) is provided. According to the second-order
Taylor series expansion, the following equation can be
obtained from Eq. (6):

�tð@t þ e� � rÞg� þ �2
t

2
ð@t þ e� � rÞ2g�

¼ � �t

�g
ðg� � geq� Þ þOð�3

t Þ: (A1)

Using Eq. (12) and the expansion g� ¼ g
eq
� þ 	gð1Þ� þ

	2gð2Þ� , we can obtain

	: ð@t1 þ e� � r1Þgeq� ¼ � 1

�g
gð1Þ� ; (A2)

	2: @t2g
eq
� þ ð@t1 þ e� � r1Þgð1Þ� þ �t

2
ð@t1 þ e� � r1Þ2geq�

¼ � 1

�g
gð2Þ� : (A3)

With Eq. (A2), Eq. (A3) can be rewritten as

@t2g
eq
� þ

�
1� �t

2�g

�
ð@t1 þ e� � r1Þgð1Þ� ¼ � 1

�g
gð2Þ� : (A4)

The zeroth- through third-order velocity moments of g
eq
�

give the following equations:X
�

geq� ¼ð"þPÞ�2�P;
X
�

e�ig
eq
� ¼ð"þPÞ�2ui; (A5)

X
�

e�ie�jg
eq
� ¼ ð"þ PÞ�2uiuj þ P�ij; (A6)

X
�

e�ie�je�kg
eq
� ¼ð"þPÞ�2ðuk�ijþui�jkþuj�ikÞ: (A7)

According to the relationships
P

�g� ¼ P
�g

eq
� andP

�e�g� ¼ P
�e�g

eq
� , we haveX

�

gðnÞ� ¼ 0;
X
�

e�g
ðnÞ
� ¼ 0; n ¼ 1; 2; � � � : (A8)

Taking the summations of Eq. (A2) and (A4), we can
obtain, respectively,

@t1ðð"þ PÞ�2 � PÞ þ @1iðð"þ PÞ�2uiÞ ¼ 0; (A9)

@t2ðð"þ PÞ�2 � PÞ ¼ 0: (A10)

Combining Eq. (A9) with Eq. (A10) leads to

@tðð"þ PÞ�2 � PÞ þ @iðð"þ PÞ�2uiÞ ¼ 0: (A11)

Similarly, taking the first-order moments of Eqs. (A2) and
(A4), we can obtain, respectively,

@t1ðð"þ PÞ�2ujÞ þ @1jPþ @1iðð"þ PÞ�2uiujÞ ¼ 0;

(A12)

@t2ðð"þ PÞ�2ujÞ þ
�
1� �t

2�g

�
@1i

�X
�

e�ie�jg
ð1Þ
�

�
¼ 0:

(A13)

According to Eq. (2),
P

�e�ie�jg
ð1Þ
� is given by

X
�

e�ie�jg
ð1Þ
� ¼ ��g

�
@t1

�X
�

e�ie�jg
eq
�

�

þ @1k

�X
�

e�ie�je�kg
eq
�

��
: (A14)

With the aids of Eq. (A6) and (A7), we can obtain

@t1

�X
�

e�ie�jg
eq
�

�
¼ @t1ð�uiujÞ þ @t1P�ij; (A15)

@1k

�X
�

e�ie�je�kg
eq
�

�
¼c2s@1kð�ukÞ�ijþc2s�ð@1iujþ@1juiÞ

þc2s ðuj@1i�þui@1j�Þ; (A16)

where� ¼ ð"þ PÞ�2. According to Eq. (A12), @t1ð�uiujÞ
is given by

@t1ð�uiujÞ ¼ uj@t1ð�uiÞ þ ui@t1ð�ujÞ � uiuj@t1�

¼ uj½�@1kð�uiukÞ � @1iP�
þ ui½�@1kð�ujukÞ � @1jP� � uiuj@t1�:

(A17)

Neglecting the terms of u3, Eq. (A17) can be written as

@t1ð�uiujÞ ¼ �uj@1iP� ui@1jPþOðu3Þ: (A18)

The expression of @t1P can be derived from Eq. (A9) and is

given by

@t1P ¼ � @1kð�ukÞ
ð"=Pþ 1Þ�2 � 1

: (A19)

In the above derivation, @t1ðð"=Pþ 1Þ�2Þ has been ne-

glected. Substituting Eqs. (A15) and (A16) together with
Eqs. (A18) and (A19) into Eq. (A14) gives

X
�

e�ie�jg
ð1Þ
� ¼ ��gfc2s�ð@1iuj þ @1juiÞ

þ �c2s@1kð�ukÞ�ij þ ½uj@1iðc2s�� PÞ
þ ui@1jðc2s�� PÞ�g; (A20)

where � ¼ 1� P=½c2sð�� PÞ�. Substituting Eq. (A20)
into Eq. (A13) and then combining Eq. (A13) with
Eq. (A12), we can obtain
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@tðð"þ PÞ�2ujÞ þ @iðð"þ PÞ�2uiujÞ
¼ �@jPþ @i�ij þOðu3Þ; (A21)

where �ij is the stress tensor and is given by

�ij ¼ �

�
�ð@iuj þ @juiÞ � 2

D
�@kuk�ij

�

þ &�@kuk�ij þ ð�g � 0:5�tÞ�c2s@kð�ukÞ�ij

þ ð�g � 0:5�tÞ½uj@iðc2s�� PÞ þ ui@jðc2s�� PÞ�;
(A22)

where � ¼ ð�g � 0:5Þc2sð"þ PÞ� is the shear viscosity

and & ¼ 2�=D is the bulk viscosity. The first and second
terms on the right-hand side of Eq. (A22) can be rewritten
as follows:

�

�
�ð@iuj þ @juiÞ � 2

D
�@kuk�ij

�
þ &�@kuk�ij

¼ �

�
@ið�ujÞ þ @jð�uiÞ � 2

D
@kð�ukÞ�ij

�
þ &@kð�ukÞ�ij

� �

�
ui@j�þ uj@i�� 2

D
uk@k��ij

�
� &uk@k��ij:

(A23)

Since the derivative of the Lorentz factor @j� is propor-

tional to ui@jui, the last two terms on the right-hand side of

Eq. (A23) will be of the order u3. Then Eq. (A22) can be
rewritten as

�ij ¼ �

�
@ið�ujÞ þ @jð�uiÞ � 2

D
@kð�ukÞ�ij

�

þ &@kð�ukÞ�ij þ ð�g � 0:5�tÞ�c2s@kð�ukÞ�ij

þ ð�g � 0:5�tÞ½uj@iðc2s�� PÞ þ ui@jðc2s�� PÞ�
þOðu3Þ: (A24)

Finally, we give the expression of @t1uj, which is needed in

theChapman-Enskog analysis of Eq. (A5). FromEq. (A12),
we have

ð"þPÞ�2@t1ujþuj@t1ðð"þPÞ�2Þþ@1jP

þuj@1iðð"þPÞ�2uiÞþð"þPÞ�2ui@1iuj¼0: (A25)

Then the following equation can be obtained by substituting
Eq. (A9) into Eq. (A25):

ð"þ PÞ�2@t1uj � uj@t1Pþ @1jP

þ ð"þ PÞ�2ui@1iuj ¼ 0: (A26)

Hence @t1uj is given by

@t1uj ¼ �ui@1iuj �
ð�uj@t1Pþ @1jPÞ

ð"þ PÞ�2
: (A27)

According to Eq. (A19), for weakly relativistic problems
(1< � � 2 and ju=clj< 0:3), uj@t1Pwill bemuch smaller

than @1jP and can be neglected.
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