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After a brief review of the definition and properties of the quantum effective Hamiltonian action, we

describe its renormalization flow by a functional renormalization group equation. This equation can be

used for a nonperturbative quantization and study of theories with bare Hamiltonians that are not quadratic

in the momenta. As an example, the vacuum energy and gap of quantum mechanical models are

computed. Extensions of this framework to quantum field theories are discussed. In particular, one

possible Lorentz-covariant approach for simple scalar field theories is developed. Fermionic degrees of

freedom, being naturally described by a first order formulation, can easily be accommodated in this

approach.
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I. INTRODUCTION

Quantum mechanical systems can be studied with a
variety of methods such as, for example, the canonical
operatorial approach or the functional methods. The latter
are usually employed to construct generating functionals of
different kinds of correlators from which the physical
observables of interest can be derived. Among them a
very useful object is the so-called quantum effective action,
a functional mostly used in quantum field theory (QFT), in
both perturbative and nonperturbative approaches. This is,
in general, a highly nonlocal object that encodes all the
quantum properties of the system; for instance, it generates
the proper vertices of the theory.

The effective action most commonly discussed in the
literature is of the Lagrangian type, since it is derived from
the second order Lagrangian formulation of the bare the-
ory. There is a very good reason to do that, namely, that
people usually consider bare Hamiltonians that are qua-
dratic in the momenta such that one can easily move to a
Lagrangian description. The rationale for this is obtaining a
manifestly Lorentz-covariant formulation in d space-time
dimensions. Another advantage of passing to a second
order formulation is that the number of fields in configu-
ration space is half the one in phase space, since in the
functional formulation the conjugated momenta have been
integrated out.

On the other hand, one may also consider the reasons to
choose a first order Hamiltonian description on the phase
space of a theory. Clearly this is unavoidable when dealing
with the quantization of theories with bare Hamiltonians
nonquadratic in the momenta. In such a case the full phase-
space variables are needed for a quantum description of the
system. Traditionally the main advantage attributed to the
Hamiltonian formulation is that it makes unitarity manifest
[1]. This is because of the strict relationship established by

canonical quantization between the classical symplectic
structure on phase space and the inner product on the
Hilbert space. The Hamiltonian approach may be useful
also when configuration space is not a vector space, since
phase space can usually be interpreted as a cotangent
bundle and it could be easier to deal with. In the functional
integral representation this is translated with the possibility
that the measure in phase space is field independent while
the one in configuration space is not. This happens, for
instance, in the case of nonlinear sigma models. Of course,
even in this case whenever the bare theory is quadratic in
the momenta, the Lagrangian and the Hamiltonian formu-
lations lead to the same results (Matthews theorem), as
proved by perturbative studies [2,3]. In a functional inte-
gral representation, the Hamiltonian approach is based on
quantum generating functionals obtained introducing
sources in the phase-space path integral [4]. From them,
one can define a quantum effective Hamiltonian action that
generates the proper vertices. This was recently studied in
[5], on the wake of a renewed interest in Hamiltonian
gauge theories such as QCD, in particular, in the
Coulomb gauge (see [6] and references therein).
The purpose of the present work is to present a non-

perturbative framework that allows one to compute, within
specific approximation schemes, the quantum effective
Hamiltonian action. This approach is based on the defini-
tion of a one-parameter family of deformed effective ac-
tions, which were introduced in the literature a long time
ago under the name of average effective (Lagrangian)
actions [7]. This is only one of the many formulations of
the functional renormalization group (RG) [8–10], which is
a Wilsonian representation of QFT based on a coarse-
graining procedure allowing one to interpolate, by moving
along an RG flow trajectory in theory space, between the
bare theory at the ultraviolet (UV) scale and the quantum
effective theory at the infrared (IR) scale. Providing a bare
action in the UVand solving the RG flow equation with an
appropriate set of boundary conditions, one could in prin-
ciple obtain the quantum effective action. Since this
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equation is a functional differential equation, generally one
is forced to employ specific approximation schemes, es-
sentially strongly constraining the space of functionals the
solution belongs to with the help of physical arguments.
For almost two decades such a theoretical framework has
been applied to investigate several aspects of QFT’s and
condensed matter systems [11] and has been used to probe
the possibility that, for example, Einstein gravity, as a QFT,
can be nonperturbatively renormalizable [12] within the
paradigm of asymptotic safety [13].

In a previous work [14] we proposed the use of cutoff
operators affecting the symplectic form of phase space and
implementing a more balanced coarse graining and regu-
larization, with respect to the cases where the coarse
graining is performed on the fluctuations in configuration
space only, but after this choice of regularization, we
restricted our discussion to bare Hamiltonians quadratic
in the momenta, and we fully integrated out the momenta,
obtaining a cutoff dependent functional measure in the
Lagrangian path integral, which was leading to a subtrac-
tion term in the RG flow equation. Here instead we are
interested in retaining the full dynamics in phase space,
building a flow that realizes the idea of shell-by-shell
simultaneous integration on both phase-space variables.
As a disclaimer, let us add that other nonperturbative RG
flows called ‘‘Hamiltonian flows’’ already appeared in the
literature, but they largely differ from our formulation.
Examples are the similarity RG [15], which is generated
by iterated unitary transformations within the operatorial
representation, and the flows based on a variational solu-
tion of the Schrödinger equation [16].

In this paper we start our discussion from quantum
mechanical systems [(0þ 1)-dimensional QFT’s] with
scalar degrees of freedom, for which we review some of
the properties of the Hamiltonian effective action in the
first part of Sec. II, and we prove some formulas useful for
the subsequent developments. In the second part of Sec. II
we derive the main equations satisfied by the average
effective Hamiltonian action (AEHA) of a quantum me-
chanical system. They depend on a cutoff operator that
suppresses part of the functional integration generating a
one-parameter flow from the UV to the IR. In particular,
we give the simpler equations associated with the so-called
local Hamiltonian approximation (LHA), which is the
lowest order term of the derivative expansion of the full
functional, for some specific cutoff operators. These are
then used (Sec. II C) to study a family of exactly solvable
Hamiltonians that are not quadratic in the momenta,
and indeed we show that one can easily extract information
like the ground state and the first energy gap of such
systems. The same approach can be used to study general
systems with arbitrary bare Hamiltonians. We conclude
Sec. II discussing the extension of the formalism to quan-
tum mechanical theories with fermionic degrees of
freedom.

In Sec. III we start to address quantum field theories. The
extension to the noncovariant version of QFT is straight-
forward, and we first discuss it briefly for the case of scalar
QFT. Since in the traditional Hamiltonian formulation of
QFT one pays explicit unitarity with the disguising of
Lorentz invariance, we discuss one possible way around
this drawback; that is, we spend the last part of the paper
discussing a manifestly Lorentz symmetric (but maybe not
manifestly unitary) extension of the previous framework
inside the realm of the covariant Hamiltonian formalism.
This is a subject that has a long history in classical

physics [17–19], but whose applications to quantum dy-
namics are pretty rare to be found in the literature. Even if
under different names, the covariant Hamiltonian formu-
lation of the Yang-Mills theory is one of the oldest ex-
amples. In 1977 Halpern addressed such a formalism for
QCD, generically naming it ‘‘first order formalism’’ [20],
but he immediately abandoned the full phase-space for-
mulation integrating out the gauge vector fields, thus being
left with a theory, containing only conjugate momenta, that
he called ‘‘field strength formulation,’’ which was studied
in the following years (see [21] and references therein).
More recently a slight variant of the first order formalism
(still covariant) for the Yang-Mills theory has received
fresh attention from the perspective of topological BF
theories [22]. In particular, the reader can find in [23] an
explicit one-loop computation of what we call the effective
covariant Hamiltonian action of pure Yang-Mills theory,
reproducing the expected asymptotic freedom result.
Despite these successful examples, the main open question
about covariant Hamiltonian QFT is still about its founda-
tions, even if these have begun to be studied recently by
some authors [24,25]. These investigations can shed light
on the issue of unitarity of this covariant formulation.
Without a sound Lorentz covariant quantization prescrip-
tion, covariant Hamiltonian formalism seems but a game,
legitimate only in the special case of Hamiltonians qua-
dratic in the momenta. On the other hand, only by studying
this approach in more general cases and by looking for its
applications to real physical systems can one hope to find a
legitimation for the search of foundations.
In this work, for what concerns a covariant Hamiltonian

formulation of QFT’s, we restrict ourselves to defining the
average effective covariant Hamiltonian action of a scalar
field theory in a particularly simple case. This consists in
assuming that the nontrivial dependence on the covariant
momenta is in the longitudinal [with respect to (w.r.t.) the
Fourier variable] subspace of the space of conjugate mo-
menta. This definition is compatible with both quantum
mechanics (QM) in 0þ 1 dimensions and with QFT’s
whose bare Hamiltonians are quadratic in the momenta,
and it provides a particular dynamical extension outside
this domain. For this simple case we present a framework
for studying such a model by a nonperturbative RG flow
equation. For completeness we also comment on the
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corresponding covariant Hamiltonian formulation for theo-
ries with Dirac fermions.

In the conclusions the reader will find a discussion about
the physical motivations for the introduction of this formal-
ism, as well as a proposal of some possible developments,
extensions, and future applications of this method. Several
appendices follow, where some technical issues are de-
scribed in more detail.

II. THE EFFECTIVE HAMILTONIAN ACTION
IN QUANTUM MECHANICS

In this section we shall work within QM, i.e., a
(0þ 1)-dimensional QFT. As an example we will quantize
a classical system with one bosonic degree of freedom
governed by the following Hamiltonian action:

S½p; q� ¼
Z

dt½pðtÞ@tqðtÞ �HðpðtÞ; qðtÞÞ�; (1)

where the (bare) Hamiltonian can have an arbitrary depen-
dence in the momenta, departing therefore from the usual
quadratic form

Hðp; qÞ ¼ 1

2
p2 þ VðqÞ: (2)

Here and in the following p and q denote canonically
conjugate variables. The quantization of such a system is
performed via the following phase-space path integral:

e
i
ℏW½I;J� ¼

Z
½dpdq��½p; q�ei

ℏfS½p;q�þI�pþJ�qg; (3)

where the dots stand for ordinary integrations. The func-
tional measure on the physical phase space is usually
assumed to be �½p; q� ¼ Det 1

2�ℏ . Also one can easily

extend all the formalism to a Euclidean description.
Since we want to keep our discussion as general as pos-
sible, we will not specify the precise space of functions on
which the functional integral is defined.

It is possible to study the system by a functional that may
be called the quantum effective Hamiltonian action, which
is a trivial generalization of the more widely known effec-
tive Lagrangian action. The latter �L is defined by intro-
ducing in the configuration-space path integral external
sources J coupled to the Lagrangian variables and by
taking the Legendre transform of the generating functional
of the connected Green’s functionsW½J�w.r.t. J. Similarly,
to define the effective Hamiltonian action �H, one starts
from the phase-space path integral (3) and performs a
Legendre transform:

�H½ �p; �q� ¼ ext
I;J
ðW½I; J� � I � �p� J � �qÞ; (4)

where

�p ¼ �W

�I
; �q ¼ �W

�J
:

The introduction of such a functional is not a novelty, as we
have discussed in the Introduction. There are several ways
to convince ourselves that from this functional one can get
all the information about the quantum system.
First, by taking functional derivatives w.r.t. �qðtÞ and

�pðtÞ, one immediately gets

I ¼ ���H

� �p
; J ¼ ���H

� �q
: (5)

For zero sources one has the equations for the vacuum
configuration ð �q; �pÞ. They appear as the classical equations
of motion obtained from the quantum effective
Hamiltonian action.
Second, �H satisfies the following integro-differential

equation:

e
i
ℏ�

H½ �p; �q� ¼
Z
½dpdq��½p; q�ei

ℏfS½p;q��ðq� �qÞ���H� �q �ðp� �pÞ���H� �p g:

(6)

This is a central identity, and it could also be promoted to
the definition of �H.
Third, from this equation one can get a different proof

that the classical equations satisfied by the effective
Hamiltonian action encode the full quantum dynamics,
because they are equivalent to the Hamiltonian Dyson-
Schwinger equations. In fact, the identities

0 ¼
Z
½dpdq� �

�p
ð�½p; q�ei

ℏfS½p;q��ðq� �qÞ���H� �q �ðp� �pÞ���H� �p gÞ

¼
Z
½dpdq� �

�q
ð�½p; q�ei

ℏfS½p;q��ðq� �qÞ���H� �q �ðp� �pÞ���H� �p gÞ

lead to

�
�iℏ �

�p
log�½p; q� þ �S

�p

�
¼ ��H

� �p
;

�
�iℏ �

�q
log�½p; q� þ �S

�q

�
¼ ��H

� �q
:

Fourth, just as for the effective action, the effective
Hamiltonian action has a similar interpretation as the
generator of the one-particle-irreducible (1PI) proper ver-
tices. For more details and a proof of this statement see
Appendix A.
Fifth, by evaluating the effective Hamiltonian action on

its stationarity �p values, one gets the effective Lagrangian
action. In fact, defining

�L½ �q� ¼ ext
�p
�H½ �p; �q�

and calling �p �q the extremal point, it is straightforward to

show that
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I ¼ ���H

� �p
½ �p �q; �q� ¼ 0;

J ¼ ���H

� �q
½ �p �q; �q� ¼ ���L

� �q
½ �q�:

Therefore �L½ �q� ¼ W½0;� ��L

� �q � þ �q � ��L

� �q , from which we

learn that �L satisfies the integro-differential equation

e
i
ℏ�

L½ �q� ¼
Z
½dpdq��½p; q�ei

ℏfS½p;q��ðq� �qÞ���L� �q g;

which is a generalization of the usual configuration-space
integro-differential equation satisfied by the effective ac-
tion, since it does not require S to be quadratic in the
momenta. Because of this simple relation between the
two effective actions, for the rest of this paper we will
use the same letter � for both, dropping the superscripts,
since the reader will be able to distinguish them by their
arguments ( �p, �q for the Hamiltonian one and �q only for the
Lagrangian one).

Sixth, the effective Hamiltonian action can be defined
from the operatorial representation by means of a time-
dependent variational principle, in a way that is the direct
generalization of the usual construction in configuration

space [26]. Let Ĥ be the Hamiltonian operator of the
quantum system and j0i be its time-independent ground
state, and let the boundary conditions of the path integral in
(3) be chosen such that

e
i
ℏW½I;J� ¼ h0jÛI;Jðþ1;�1Þj0i

¼ h0jT exp

�
� i

ℏ

Z þ1
�1

dt½Ĥ� JðtÞq̂� IðtÞp̂�
�
j0i:
(7)

Then the effective Hamiltonian action defined in (4) is
related in the following way:

�½ �p; �q� ¼ ext
jc�;ti

�Z þ1
�1

dthc�; tjiℏ@t � Ĥjcþ; ti
�

(8)

to an extremum with respect to variations of the two states
jc�; ti preserving the constraints

hc�; tjcþ; ti ¼ 1;

hc�; tjq̂jcþ; ti ¼ �qðtÞ;
hc�; tjp̂jcþ; ti ¼ �pðtÞ

(9)

for any t, and the boundary conditions

lim
t!�1jc�; ti ¼ j0i: (10)

A sketch of the proof of this statement is given in
Appendix B. A special role is played by time-independent
�p and �q, because the previous proposition reduces to
�½ �p; �q� ¼ �Eð �p; �qÞR dt where E is the usual energy den-
sity functional defined by the minimum

E ð �p; �qÞ ¼ min
jc i
hc jĤjc i (11)

with respect to variations of the time-independent state jc i
preserving the time-independent version of the constraints
in (9).
This clearly provides an energy interpretation for the

effective Hamiltonian action. In particular, if one evaluates
this action on the constant ( �p, �q) values that make it sta-
tionary, the resulting number is just minus the ‘‘time
volume’’ times the ground state energy. In principle, it is
possible to compute all the energy levels by means of �,
but higher levels require more work. One possible way is
through the two point functions. In a Hamiltonian frame-
work the propagator splits in the entries of the matrix:

i

�
T
ðp� �pÞt0 ðp� �pÞt ðq� �qÞt0 ðp� �pÞt
ðp� �pÞt0 ðq� �qÞt ðq� �qÞt0 ðq� �qÞt

 !�

¼Wð2Þ
tt0 ½I;J�¼

�2W
�It0�It

�2W
�Jt0�It

�2W
�It0�Jt

�2W
�Jt0�Jt

0
B@

1
CA¼

� �pt

�It0
� �pt

�Jt0

� �qt
�It0

� �qt
�Jt0

0
B@

1
CA (12)

(where T is the time ordering operator) so that one could
try to think about p and q as different ‘‘fields’’ but should
also remember the existence of an unusual mixed propa-
gator connecting p legs to q legs or vice versa. Thanks to
(5) one can write this matrix in terms of � as follows:

Wð2Þ
tt0 ½I; J� ¼

� �p
�I

� �p
�J

� �q
�I

� �q
�J

0
@

1
A

tt0
¼

�I
� �p

�I
� �q

�J
� �p

�J
� �q

0
@

1
A�1

tt0

¼ �
�2�
� �p� �p

�2�
� �q� �p

�2�
� �p� �q

�2�
� �q� �q

0
@

1
A�1

tt0

¼ �ð�ð2Þ½ �p; �q�Þ�1tt0 :

(13)

To make the last expression for the two point function more
explicit, one needs to invert a matrix whose elements are
operators. In the particular case in which all block entries of
the original matrix are nonsingular, its inverse is given by

A B

C D

 !�1
¼ ðA� BD�1CÞ�1 ðC�DB�1AÞ�1
ðB� AC�1DÞ�1 ðD� CA�1BÞ�1

 !
:

(14)

In our case the operatorWð2Þk is symmetric, and one can use

the formula in Eq. (14) setting C ¼ BT . Let us stress that in
order to put the off-diagonal blocks of this inverse in the
form of Eq. (14) withC ¼ BT it is only necessary to assume

that B is nonsingular, a condition that is met by �2�
� �p� �q unless

� is extremely pathological. Oncewe know how to compute
the two point functions by means of �, we could have
access to all the energy gaps �En ¼ En � E0 through the
Källen-Lehmann representation of the propagators
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�2W

�Ið�Þ�Ið0Þ¼ i
X
n�0

e�i�En�jh0jp̂jnij2

¼�X
n�0

Z dE

2�
e�iE�

2�Enjh0jp̂jnij2
E2��E2

nþ i�
;

�2W

�Jð�Þ�Jð0Þ¼ i
X
n�0

e�i�En�jh0jq̂jnij2

¼�X
n�0

Z dE

2�
e�iE�

2�Enjh0jq̂jnij2
E2��E2

nþ i�
:

Similar expressions hold for mixed derivatives of W. This
tells us that, in principle, by studying the pole structure of
the Fourier transformed two point functions, we could
compute all the �En. As Eq. (13) shows, this requires the

knowledge of the exact �ð2Þ. In most cases this is not
available, and only approximations are possible. In certain
contexts one popular approximation scheme for the com-
putation of the effective action is the derivative expansion.
The zeroth order of such an expansion in the present
Hamiltonian framework is the LHA and consists of the
ansatz � ¼ R

dtð �p@t �q�Heffð �p; �qÞÞ where the effective

Hamiltonian Heff , which is an ultralocal function of its
arguments (i.e., it does not depend on their derivatives),
can be computed by setting the fields �p and �q to constant
values. For this choice, since the second derivatives of � on
constant field configurations commute with each other, the
inversion rule (14) leads to a simple expression

�2W

�Ið�Þ�Ið0Þ ¼ �
�
�2�

� �p� �p
� �2�

� �q� �p

�
�2�

� �q� �q

��1 �2�

� �p� �q

��1
0�

¼LHA�
Z dE

2�
e�iE�

@2Heff

@ �q@ �q

E2 � detHð2Þeff þ i�

�2W

�Jð�Þ�Jð0Þ ¼ �
�
�2�

� �q� �q
� �2�

� �p� �q

�
�2�

� �p� �p

��1 �2�

� �q� �p

��1
0�

¼LHA�
Z dE

2�
e�iE�

@2Heff

@ �p@ �p

E2 � detHð2Þeff þ i�
; (15)

and similar formulas hold for mixed derivatives ofW. Here

detHð2Þ ¼ @2�q �qH@2�p �pH � ð@2�q �pHÞ2 is the determinant of the

Hessian matrix of H. Therefore we see that in the LHA,
whenever the second derivatives ofHeff commute (as in the
case they are single numbers and not matrices), only one

pole appears in the propagators at the value ðdetHð2Þeff Þ1=2.
Since we are performing a derivative (low energy) expan-
sion, in general this pole is the one closer toE ¼ 0, that is to
say, the first gap �E1, unless the matrix elements h0jp̂j1i
and h0jq̂j1i vanish. Therefore we shall use in the LHA the
relations

E0 ¼ Heffjmin; �E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detHð2Þeff

q
jmin: (16)

So far we have discussed how many properties of a
quantum system can be deduced from the effective
Hamiltonian action, but how can we compute this action?
One way is to use perturbation theory. First of all, one
needs to define propagators and vertex functions. We al-
ready know that in a Hamiltonian framework the propa-
gators of a theory with Hamiltonian action � are given by
Eq. (13). The vertex functions generated by � are simply
given by

�m

� �pm

�n�

� �qn









 �q¼ �p¼0
; mþ n > 2 (17)

and therefore generically comprehend m p legs and n q
legs. Since perturbation theory in phase space is built on
tree level propagators and vertices, one can read these
ingredients from (13) and (17) by substituting � with the
bare action S. For instance, to get the one-loop result
one changes variables of integration in (6) according to

p ¼ �pþ ℏ
1
2p0, q ¼ �qþ ℏ

1
2q0, and Taylor expands both S

and � around ℏ ¼ 0 up to linear terms

Sðp; qÞ ¼ Sð �p; �qÞ þ ℏ
2
ðp0; q0ÞSð2Þð �p; �qÞðp0; q0ÞT þ oðℏ2Þ;

�½ �p; �q� ¼ �0½ �p; �q� þ ℏ�1½ �p; �q� þ oðℏ2Þ:
The change of variable goes along with a change of mea-
sure, owing to the Jacobian determinant Detℏ, such that
the new measure becomes �½p0; q0� ¼ Det 1

2� . The

Gaussian path integral over p0 and q0 combined with

such a measure gives �1½ �p; �q� ¼ i
2 logDetð�iSð2Þ½ �p; �q�Þ,

where S is the bare Hamiltonian action (together with the
obvious result �0½ �p; �q� ¼ S½ �p; �q�). The block determinant
can be written in a more explicit form by means of the
general formula

det
A B
C D

� �
¼ detA detðD� CA�1BÞ

¼ detD detðA� BD�1CÞ; (18)

where the first expression is true if detA � 0 and the

second if detD � 0. Therefore, if �2S
� �p� �p is nonvanishing,

�1½ �p; �q� ¼ i

2
logDet

�
� �2S

� �p� �p

�
�2S

� �q� �q
� �2S

� �p� �q

�
�
�2S

� �p� �p

��1 �2S

� �q� �p

��

¼ i

2
logDet

��
�@2t � detHð2Þ þ

�
@t

@2H

@ �p@ �q

�

þ
�
@t log

@2H

@ �p@ �p

��
@t � @2H

@ �p@ �q

��
�

�
; (19)
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which reduces to the usual one-loop formula for the effec-
tive action in the case of a bare Hamiltonian as the one in
(2). In the formula above we have used the symbol � for

�ðt� t0Þ, which defines the operator. If instead �2S
� �p� �p van-

ishes while �2S
� �q� �q is nonvanishing, the result can be obtained

from (19) by replacing � �p with � �q and vice versa.

In the rest of this paper we will work on a nonperturba-
tive setting for the computation of the effective
Hamiltonian action, and we will choose ℏ as our unit of
action.

A. The average effective Hamiltonian action

A nonperturbative definition of the path integral (6) can
be given by a functional RG flow equation. The starting
point of this construction is the introduction of an external
parameter in the theory. This allows one to reduce the task
of computing the functional integral in the simpler task of
computing its infinitesimal variation under changes of such
a parameter. In quantum mechanics the external parameter
can be dimensionless, since the number of degrees of
freedom is finite and no regularization is needed. Instead,
the generalization of the construction to field theories
requires the introduction of a dimensionful parameter k,
such that its variation corresponds to a coarse-graining
operation (otherwise we meet infinities in the computation
of the infinitesimal variation). An alternative way is to
assume that the theory has already been regularized, as,
for example, by the introduction of a UV cutoff�, in which
case it is possible to deal with a dimensionless parameter
also in field theories (related to the ratio between the
dimensionful k and �). Since by varying k we will get a
one-parameter flow of theories, we will need initial con-
ditions in order to integrate it. A convenient way to deal
with this issue is to choose the dependence on k in such a
way that the flow interpolates between full functional
integration (conventionally at k ¼ 0) and no integration
at all (conventionally at k ¼ �, even if � might in some
cases be displaced at þ1). The no integration limit can
also be realized considering k as a mathematical parameter
unrelated to a physical sounding coarse-graining proce-
dure, and, in the presence of the physical UV cutoff �,
taking the limit k! 1. Sticking to this framework we
introduce such a parameter, by means of a modification
of the bare action and of the functional measure

eiWk½I;J� ¼
Z
½dpdq��k½p; q�eifS½p;q�þ�Sk½p;q�þI�pþJ�qg;

(20)

and ask for �k expfi�Skg to become � as k! 0 and to
provide a rising delta functional as k! �. As traditional,
to keep the framework as simple as possible, we choose
�Sk to be quadratic in the fields

�Sk½p; q� ¼ 1

2
ðp; qÞ � Rk � ðp; qÞT (21)

such that we need Rk ! 0 and �k ! � when k! 0, as

well as Rk ! 1 and �k ! ðDet Rk

2�Þ
1
2 when k! �. These

constraints can be satisfied by several choices for the
symmetric matrix Rk and for the measure �k. In this paper
we will consider only two simple cases in which the only
nonvanishing entries of Rk are either off-diagonal and built
out of an odd differential operator or diagonal and built out
of even differential operators. These, respectively, read

Rkðt; t0Þ ¼ 0 rkð�@2t Þ@t�ðt� t0Þ
�rkð�@2t Þ@t�ðt� t0Þ 0

� �
;

(22)

Rkðt; t0Þ ¼
Rp

k ð�@2t Þ�ðt� t0Þ 0

0 Rq
kð�@2t Þ�ðt� t0Þ

 !
: (23)

The first choice can be interpreted as a k-dependent defor-
mation of the symplectic potential � ¼ pdq, by means of
an operator ð1þ rkÞ that, after the pullback by a section
defining the specific path, might become a differential
operator. This interpretation suggests the appropriate
k-dependent deformation of the functional measure: if
the new symplectic potential is �k ¼ pð1þ rkÞdq, the

new nontrivial Liouville measure would become �k ¼
ðDet �k

2�Þ
1
2, where �k ¼ d�k is the regularized symplectic

form. This choice for the measure indeed provides the
correct normalization of the Gaussian rising delta func-
tional [14]. Following this line of thought, we can guess a
convenient choice for the regularized measure also in the
second case of a diagonal regulator. The straightforward
adaptation of the previous argument is insisting on adding
to the fundamental symplectic matrix our regulator matrix,
and then taking its determinant. To summarize, the regu-
larized functional measures we will use together with the
regulators (22) and (23), respectively, are

�k ¼
2
4Det 1

2�

0 ð1þ rkð�@2t ÞÞ@t�ðt� t0Þ
�ð1þ rkð�@2t ÞÞ@t�ðt� t0Þ 0

 !351
2

; (24)
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�k¼
2
4Det 1

2�

Rp
k ð�@2t Þ�ðt� t0Þ @t�ðt� t0Þ
�@t�ðt� t0Þ Rq

kð�@2t Þ�ðt� t0Þ

 !351
2

:

(25)

The definition of the AEHA �k½ �p; �q� is
�k½ �p; �q� þ�Sk½ �p; �q� ¼ ext

I;J
ðWk½I; J� � I � �p� J � �qÞ:

Note that the sources minimizing the right-hand side
(r.h.s.) will in general depend on k. Again it is easy to
write an integro-differential equation for the AEHA:

ei�k½ �p; �q� ¼
Z
½dpdq��k½p; q�

� eifS½p;q�þ�Sk½p� �p;q� �q��ðp� �pÞ��k� �p�ðq� �qÞ��k� �q g: (26)

When k! 0 Eq. (26) trivially reduces to Eq. (6) and the
AEHA becomes the full effective Hamiltonian action. It is
not hard to check that when k! � the r.h.s. of Eq. (26)
reduces to expfiS½ �p; �q�g and the AEHA coincides with the
bare Hamiltonian action. A sketch of the proof can be
found in Appendix C.

The relation between the average effective Hamiltonian
and Lagrangian actions is the same as for the full effective
actions:

�k½ �q� ¼ ext
�p
�k½ �p; �q�: (27)

We observe that this is evident in the simplest possible
case, i.e., when the bare action is quadratic in the momenta,

as in (2), since @2H
@p2 and @2H

@p@q are constant (the latter is

actually zero). Indeed, the integration over p in (26) can
be performed exactly, and in such a case one discovers that
the AEHA must also be quadratic in the momenta and that
for any k the canonical momentum that extremizes it is
�p ¼ @t �q. As a result, plugging this field configuration in
(26), using the definition (27), and integrating out the
momenta, one obtains

ei�k½ �q� ¼
Z
½dq��k½q�eifS½q�þ�Sk½q� �q��ðq� �qÞ��k� �q g; (28)

where now�k½q� �
R½dp��k½p; q�e�ip

2

2 and�Sk½q� arises
from the chosen �Sk½p; q�. For example, if one adopts the
scheme of Eqs. (22) and (24), then

�k½q� ¼
�
Det

1

2�
ð1þ rkð�@2t ÞÞ2ð�@2t Þ�

�1
2
;

�Sk½q� ¼ 1

2
@tq � ðr2k þ 2rkÞ@tq:

As usual, the k! � limit of the average effective
Lagrangian action coincides with the bare Lagrangian
action while the k! 0 limit gives the full quantum effec-
tive Lagrangian action.

In this work we are interested in the cases that depart
from such a simple situation.

B. RG flow equation for the AEHA

In this section we discuss the translation of the func-
tional integro-differential equation (26) in a functional
differential equation describing a flow parametrized by k.
Denoting by ‘‘.’’ the operation k@k, and acting with it on

Eq. (26), one obtains

i _�k ¼ _�k

�k

þ ih _�Sk½p� �p; q� �q�ik:

Since �Sk has been chosen quadratic in the fields, the
expectation value can be rewritten by means of the
k-dependent version of Eqs. (12) and (13). Denoting
~�k½ �p; �q� � �k½ �p; �q� þ�Sk½ �p; �q�, these read

ihT ðp� �pÞt0 ðp� �pÞt ðq� �qÞt0 ðp� �pÞt
ðp� �pÞt0 ðq� �qÞt ðq� �qÞt0 ðq� �qÞt

 !
ik

¼ Wð2Þ
ktt0 ½I; J� ¼

�2Wk

�It0�It
�2Wk

�Jt0�It

�2Wk

�It0�Jt
�2Wk

�Jt0�Jt

0
B@

1
CA ¼

� �pt

�It0
� �pt

�Jt0

� �qt
�It0

� �qt
�Jt0

0
B@

1
CA

¼
�I
� �p

�I
� �q

�J
� �p

�J
� �q

0
@

1
A�1

tt0
¼ �

�2 ~�k

� �p� �p
�2~�k

� �q� �p

�2 ~�k

� �p� �q
�2~�k

� �q� �q

0
B@

1
CA
�1

tt0

¼ �ð~�ð2Þk ½ �p; �q�Þ�1tt0 :

Therefore, for any quadratic regulator, the flow equation
can be written as

i _�k ¼ _�k

�k

� 1

2
Tr½ð�ð2Þk þ Rk�Þ�1 _Rk��; (29)

where Rk� ¼ �Sð2Þk . Here one still has freedom for the

choice of �k as a functional of Rk. By using the inversion
formula (14), one can find a more explicit form for the flow
equation. Adopting the regulator (22) affecting only the
Legendre transform term of the bare action (i.e., the sym-
plectic potential) and the corresponding minimally de-
formed Liouville functional measure (24), Eq. (29)
becomes

i _�k ¼ Tr½ _rkð1þ rkÞ�1�� � Tr

�
ð _rk@�Þ

��
rk@�þ �2�k

� �q� �p

�

� �2�k

� �p� �p

�
�rk@�þ �2�k

� �p� �q

��1 �2�k

� �q� �q

��1�
; (30)

where we denote ð@�Þt1t2 ¼ @t1�ðt1 � t2Þ. Instead, the

choice of a diagonal regulator (23) and of the correspond-
ing measure (25) leads to the flow equation
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i _�k ¼ 1

2
Tr½ð _Rp

k�ÞðRp
k�� ð@�ÞðRq

k�Þ�1ð�@�ÞÞ�1� þ
1

2
Tr½ð _Rq

k�ÞðRq
k�� ð�@�ÞðRp

k�Þ�1ð@�ÞÞ�1�

� 1

2
Tr

�
ð _Rp

k�Þ
��
Rp

k�þ
�2�k

� �p� �p

�
� �2�k

� �q� �p

�
Rq

k�þ
�2�k

� �q� �q

��1 �2�k

� �p� �q

��1�

� 1

2
Tr

�
ð _Rq

k�Þ
��

Rq
k�þ

�2�k

� �q� �q

�
� �2�k

� �p� �q

�
Rp

k�þ
�2�k

� �p� �p

��1 �2�k

� �q� �p

��1�
: (31)

Notice that, thanks to the regularization of the functional
measure, these equations correctly reproduce the nonre-
normalization of Hk in the trivial cases in which the bare
Hamiltonian either vanishes or depends on just one field out
of p and q. As far as the reality properties of this equation
are concerned, there is no difference with the standard
Lagrangian formalism in real time; that is to say, the imagi-
nary unit on the left-hand side (l.h.s.) is needed in order to
ensure reality of �k. This is because in real time the traces on
the r.h.s. usually are integrals of functions with poles on the
real axis, which thus lead to imaginary values. An appro-
priate prescription should be given in order to displace these
poles off the real axis. As usual in QFT, one adopts the
prescription that relates the Minkowskian theory to the
Euclidean theory by a continuous Wick rotation. The same
can be done in QM. The reader can find more details about
this translation to imaginary time in Appendix D.

The previous flow equations are still too general for a
first approach to their meaning and application; therefore
let us give more specific and simple forms of the first one of
them, Eq. (30). As a first example let us consider the
truncation �k ¼

R
dtð �p@t �q� 1

2
�p2 � Vkð �qÞÞ. Introducing

the notation Pkð�@2t Þ ¼ �@2t ð1þ rkÞ2, one finds the RG
flow equation

�i
Z

dt _Vkð �qÞ ¼ 1

2
Tr½ _PkP

�1
k ��

1

2
Tr½ _PkðPk�Vð2Þk ð �qÞÞ�1�;

(32)

which is what one gets by the effective average Lagrangian
action approach [14] in the local potential approximation
(LPA). A more general example is the LHA, i.e., the case
in which the flow equation for the truncation �k ¼R
dtð �p@t �q�Hkð �p; �qÞÞ is evaluated on constant �q and �p

configurations. For this choice, if the second derivatives of
�k commute with each other as in the present case where
they are 1-by-1 bosonic matrices, the operators in the trace
can be simplified and one obtains

� i
Z

dt _Hkð �p; �qÞ

¼ �Tr
2
4� _rk

1þ rk
�

�
detHð2Þk ð �p; �qÞ

�@2ð1þ rkÞ2�� detHð2Þk ð �p; �qÞ

3
5

þ Tr

2
4 ð _rk@�Þ �2Hk

� �p� �q ð �p; �qÞ
�@2ð1þ rkÞ2�� detHð2Þk ð �p; �qÞ

3
5; (33)

where detHð2Þk ¼ @2�q �qHk@
2
�p �pHk � ð@2�q �pHkÞ2 is the determi-

nant of the Hessian matrix of Hk. Notice that the second
trace vanishes whenever it is possible to evaluate it in
Fourier space and when the domain in such space is
symmetric around the origin. If this is the case, we are
left with

i
Z

dt _Hkð �p; �qÞ ¼ 1

2
Tr

� _Pk

Pk

�
detHð2Þk ð �p; �qÞ

Pk�� detHð2Þk ð �p; �qÞ
�
: (34)

Here one could adopt any of the regulators Rk developed
in the vast literature about the average effective Lagrangian
action [11,27] and plug it in the last formula by Pkð�@2t Þ ¼
�@2t þRkð�@2t Þ. One of the simplest choices for the
regulator is a constant rk, that is to say, an operator that
is multiplicative in both time and frequency representa-
tions; in other words, a function of k and � only. If no UV
cutoff is present, this choice is possible only in quantum
mechanics because it does not produce any coarse grain-
ing, and therefore it does not regularize the functional
traces. Assuming _rk > 0, 8 k 2 ð0;�Þ, one can trade k
for the dimensionless parameter rk. Thus, in LHA and if
the second derivatives of Hk commute with each other,
assuming that the traces can be written as

R
dt
R

dE
2� (after

Fourier transform) and that there is no UV cutoff in the
theory, then by Wick rotating the trace (E! iE) one gets

dHr

dr
¼ � 1

2ð1þ rÞ2 ðdetH
ð2Þ
r Þ12: (35)

A different choice that makes the computation of the traces
even simpler than for a constant rk is the square root of the
Litim regulator [27]. Denoting by rkðE2ÞE the Fourier
transform of rkð�@2t Þi@t, and with � the Heaviside step
function, after Wick rotation such a regulator reads

rkðE2ÞE ¼ �ðkþ EÞ�ðkþ EÞ�ð�EÞ
þ ðk� EÞ�ðk� EÞ�ðEÞ:

In the LHA and if the second derivatives of Hk commute
with each other, this gives the same result as (34) for
PkðE2Þ ¼ k2�ðk2 � E2Þ þ E2�ðE2 � k2Þ, that is,

_H k ¼ � k

�

detHð2Þk

k2 þ detHð2Þk

: (36)

Of course, if one considers Hkð �p; �qÞ ¼ Tkð �pÞ þ Vkð �qÞ as
an initial condition for the flow, whenever both Tk and Vk
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are polynomials of degree higher than two, the determinant
becomes a function of both �q and �p so that the flow
generates also mixed �p and �q dependence in the effective
Hamiltonian. Therefore one should consider a larger trun-
cation in order to track such terms. Also a structure of a
�-model kind, quadratic in the momenta, generates a
dependence in the momenta that is more than quadratic.
We stress that in general the flow will also generate a
dependence on time derivatives of q and p variables.
This goes beyond the LHA, but it is still compatible with
the standard Hamiltonian approach as long as one starts the
flow at the UV with a derivatives-free bare Hamiltonian.

C. Exercise: The ground state energy and gap of models
that are more than quadratic in the momenta

As an example of the application of the framework
discussed in the previous subsections to specific problems,
we will present the computation of the first two energy
levels of some exactly solvable systems for which no
simple Lagrangian description is available, due to the
fact that the functional integral over the conjugate mo-
menta is not Gaussian. This will serve as a check of the
soundness of the formalism, but the reader is invited to
remember that the very same simple computations ex-
plained in the following would also work for much more
complicated models. Let us recall that the functional RG
has already been successfully applied to the computation
of the spectrum of quantum mechanical models in the
configuration-space formulation [28,29].

The systems we are going to address have the following
classical Hamiltonian:

Hnðp; qÞ ¼
�
p2 þ!2q2

2

�
n
: (37)

They are easy to solve because of the Oð2Þ symmetry that
forces the Hamiltonian to depend only on the ‘‘action’’ and
not on the ‘‘angle’’ coordinate in phase space. Even with-
out performing a canonical transformation to such coordi-
nates, the energy spectrum can be built by ladder operators.
Rescaling the variables q ¼ q0=

ffiffiffiffi
!
p

and p ¼ ffiffiffiffi
!
p

p0 as well
as the HamiltonianH ¼ !nH0, we can reduce the problem
to the one with ! ¼ 1; therefore in the following we will
restrict to such a case. The operator algebra of these
quantum models is completely described by

â ¼ q̂þ ip̂ffiffiffi
2
p ; ây ¼ q̂� ip̂ffiffiffi

2
p ; âây � âyâ ¼ 1:

(38)

The Hamiltonian operator is just the nth power of

ðN̂ þ 1
2Þ where N̂ ¼ âyâ is the number operator. This is

enough to deduce the whole energy spectrum for any
positive integer n.

To reproduce such a spectrum by means of the RG flow
equation, the first step is to specify the initial condition for

the integration of the flow. From the discussion of the
previous subsections follows that the most suitable initial
condition is �k¼� ¼ S, where S is the bare action to be
inserted in a path integral, as the input specifying which
system is being studied. At this point it is necessary to
recall that such a bare action is in one-to-one correspon-
dence with the Hamiltonian of the operator representation:
the bare Hamiltonian is just the Weyl symbol of the
Hamiltonian operator. Let us remember that an operator

Ôðp̂; q̂Þ can always be written as a sum of symmetrized (in
p̂ and q̂) operators

Ô ¼ ÔS þ
X
i

ÔiS ¼ ÔW; (39)

which is what one calls the Weyl-ordered version of Ô.
Also, its average on coordinate q̂ eigenstates with eigen-
values x and y is conveniently given by

hxjÔjyi ¼
Z

dphxjpiOW

�
p;

xþ y

2

�
hpjyi: (40)

The function OW in the r.h.s. of Eq. (40) is called the Weyl

symbol of Ô, and it can be considered as the classical

counterpart of Ô. There are many ways to compute this

function; one is to Weyl order Ô and then to replace the

operators in ÔW with c numbers. Another way is through
the relation

OWðp; qÞ ¼
Z

dxeipx
�
q� x

2









Ôðp̂; q̂Þ








qþ x

2

�
; (41)

where the bra’s and ket’s are again eigenstates of the q̂
operator. For instance, considering the models in Eq. (37),
in the n ¼ 2 and n ¼ 3 cases such symbols read

H2Wðp; qÞ ¼
�
p2 þ q2

2

�
2 � 1

4
;

H3Wðp; qÞ ¼
�
p2 þ q2

2

�
3 � 5

4

�
p2 þ q2

2

�
:

(42)

Notice that both subtraction terms above, generated by
Weyl ordering, are proportional to ℏ2, but in natural units
such a dependence disappears.
Inserting these initial conditions in the flow equation for

the LHA, one can compute the full quantum effective
Hamiltonian at k ¼ 0. Such a task can be performed by
numerically integrating the flow equation. However, if one
is interested in simple quantities as the first two energy
levels, this might be unnecessary: it could be enough to
truncate the LHA to a polynomial in z � ðp2 þ q2Þ=2 of
finite order. Indeed, if the bare Hamiltonian depends on p
and q only through z, in the LHA approximation Hk can
also be shown to respect this symmetry for suitable cutoff
operators.
We started by studying these polynomial truncated flows

as generated by Eqs. (35) and (36), finding that singular-
ities appear at nonvanishing values of k. This happens
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because at some k the radius of convergence of the neces-
sary expansion of the r.h.s. in powers of z goes to zero, a
fact related to the vanishing of the terms quadratic in the
fields in the bare Hamiltonian of the n ¼ 2 model. If no
expansion is performed, as in the numerical integration of
the flow equation for Hk, no singularity is met and the
ground state and gap can be estimated by the value of Hk

and of ðdetHð2Þk Þ1=2 at the minimum. However, these esti-

mates do not reach a great accuracy either because of
spurious dependence on the boundary conditions (which
can be controlled by some nonlinear redefinitions ofHk) or
because of numerical errors: typically we reached no more
than two digit accuracy in the region around the minimum.
To get stable predictions with a precision better than 1%,
we turned to a different choice of regulators, curing the
problem about the polynomial expansion of the flow equa-
tion. Such a choice is that of a diagonal regulator, as in
Eq. (43). We chose this regulator to be constant, i.e.,Rp

k ¼
Rq

k ¼R a multiplicative operator (recall that we are

assuming !2 ¼ 1; therefore even if Rp
k and Rq

k have

different dimensions, we can set them equal if we assume
their ratio to be some power of !). We also introduced a
UV cutoff � to control the convergence of the flow for
R! 1. As a result, we observed that, for such a constant
regulator, � can be removed only after the integration of
the flow from R ¼ 1 to R ¼ 0. The resulting flow equa-
tion in the LHA is

@RHR ¼ � 1

�
arctan

�
�

R

�
þ 2Rþ @2�p �pHR þ @2�q �qHR

2�DR

� arctan

�
�

DR

�
; (43)

where we defined

DR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þRð@2�p �pHR þ @2�q �qHRÞ þ detHð2ÞR

q
:

In this scheme good estimates for the ground state energy
E0 and the energy gap �E1 ¼ E1 � E0 can be obtained by
simple polynomial truncations. For a bare Hamiltonian that
is a polynomial of order n we consider two cases: a
truncation with a polynomial of the same order n and
another of order nþ 1. In the latter case we add a super-
script þ1 to the corresponding quantities Eþ10 and �Eþ11 .

In Table I we give the results obtained by choosing as an

initial condition both the Weyl-ordered HnW and the Weyl-
uncorrected Hamiltonian Hn.
We note that the quantities E0 and �E1 depend on the

local properties of the effective Hamiltonian at the mini-
mum ( �p ¼ �q ¼ 0) and therefore can be extracted with a
good approximation adopting simple polynomial trunca-
tions. From Table I we see that there is no clear pattern on
the change of the precision of the results when increasing
the order of the truncation. In the worst case we find a
relative error of order 10�3. To achieve a better accuracy,
going to next-to-leading order in the derivative expansion
would probably do the job.
We remark that for the first time in the functional RG

approach one faces the ordering problem in the choice of
the bare Hamiltonian function, which corresponds to the
initial condition for the flow. This feature generally extends
to QFT, and therefore one needs to keep it in mind before
interpreting the results obtained by choosing an initial
condition that is nonseparable in p and q.

D. The average effective Hamiltonian action
in fermionic quantum mechanics

Since fermions usually have a first order dynamics, the
Hamiltonian formulation of it is identical to the Lagrangian
one. Therefore the AEHA formalism in this case is iden-
tical to the traditional Lagrangian approach. For complete-
ness we will briefly review it in this subsection.
Let us consider as an example a free system whose

Lagrangian variables are n real Grassmann-valued func-
tions of time: f�iðtÞgi¼1;...;n, evolving according to the fol-

lowing Lagrangian:

Lð�ðtÞ;@t�ðtÞÞ¼1

2
�iðtÞi@t�jðtÞ�ij�Vð�iðtÞÞ: (44)

Defining the momenta �i as the right partial derivatives of
L with respect to @t�

i, we find n second class primary
constraints

	iðtÞ ¼ �iðtÞ � i

2
�ij�

jðtÞ ¼ 0; (45)

which cause the canonical Hamiltonian H ¼ �i@t�
i �

L ¼ Vð�iÞ to be independent of �i. The relevant phase
space is the surface S defined by (45), a complete set of
independent coordinates on it is given by �i and the func-
tional integral is to be taken over all paths �iðtÞ lying on

TABLE I. The ground state energy E0 and the first energy gap �E1 for the bare Hamiltonians of Eqs. (37) and (42), as computed
from the flow Eq. (43) by means of two polynomial truncations: up to the same order of the bare Hamiltonian and up to the next order
(þ 1 superscript).

Bare Hamiltonian Eexact
0 E0 Eþ10 �Eexact

1 �E1 �Eþ11

H2W 1=4 0.249 36 0.249 36 2 1.998 71 1.998 71

H2 1=2 0.499 89 0.499 94 2 1.998 67 1.999 85

H3W 1=8 0.124 92 0.124 89 13=4 3.247 36 3.249 05

H3 3=4 0.749 85 0.748 56 9=2 4.4991 4.4939
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this surface. In the presence of second class constraints and
assuming that the whole phase space is endowed with a
symplectic structure � ¼ d�, we can define a nondegen-

erate symplectic form ~� ¼ ~d ~� on the reduced phase space,
simply by restricting � to S. As the inverse of � is the
Poisson bracket ½ ; �, the inverse of ~� is the Dirac bracket
½ ; ��, which in the reduced phase-space coordinates �i

has components ½�i; �j�� ¼ �i�ij ¼ ½	i; 	j�. The kinetic
term in (44) can be interpreted as the Legendre transform

term on S, i.e., as the pullback of the symplectic potential ~�
by a section �iðtÞ. The appropriate measure for functional
integration over S is again the square root of the super-
determinant of the symplectic form ~� [30]. In conclusion,
the functional integral over the reduced phase space reads

Z ¼
Z
½d���½��eiS½��;

S½�� ¼
Z

dt

�
1

2
�ii@t�

j�ij � Vð�iÞ
�
:

(46)

Following the same coarse-graining scheme explained
in the previous subsections we modify the symplectic
structure of the reduced phase space by replacing ~�
with ~�k ¼ ð1þ rkÞ~�. This is tantamount to adding the
term �Sk½�� ¼

R
dt½12�irkð�@2t Þi@t�j�ij� to the bare

action. Correspondingly the functional measure becomes

�k¼ðSDet ~�k

2�Þ1=2¼�ðSDetð1þrkÞ�Þ1=2, where � stands

for a product of Dirac and Kronecker deltas. Then the
modified path integral reads

Zk½Ji� ¼
Z
½d���k½��eifS½��þ�Sk½��þJi��ig: (47)

Starting from it, one defines the AEHA

�Sk½ ��� þ �k½ ��i� ¼ ext
Ji
ðWk½Ji� � Ji � ��iÞ; (48)

which satisfy the following integro-differential equation:

ei�k½ ��i� ¼
Z
½d���k½��eifS½��þ�Sk½�� �����k

�
 
� ��i
�ð�� ��Þig

; (49)

and therefore the k! � limit of �k is just the bare action.
The flow equation for �k reads

i _�k ¼ � 1

2
Tr½ _rkð1þ rkÞ�1��

þ 1

2
Tr

�
ð _rki@t�Þ

�
rki@t�þ �

!

� ��
�k

�
 

� ��

��1�
; (50)

where the trace is over fi; jg indices as well and, as in the
bosonic case, in the matrix rki@� the derivatives act on the
first index.

III. THE EFFECTIVE HAMILTONIAN ACTION IN
QUANTUM FIELD THEORY

There are at least two possible generalizations of the
previous formalism to QFT.
The simplest can be obtained by embracing the tradi-

tional Hamiltonian formulation of field theory, where one
associates a canonically conjugate field (momentum) with
the time derivative of each Lagrangian coordinate. This
choice leads to a noncovariant formulation. The translation
of all previous formulas to this framework can be obtained
by replacing the bare Hamiltonian with the spatial integral
of a Hamiltonian density and by promoting the integrals
and functional traces to sums over spatial positions as well
as time instants. In this way one can obtain a formal
definition of the noncovariant effective Hamiltonian action
and extend all the previous discussions developed in
Sec. II A.
However, in so doing, willing to construct the corre-

sponding coarse-graining procedure for the flow of the
average effective Hamiltonian action, one faces the neces-
sity to regularize the spatial part of these summations,
which are otherwise ill defined. In other words, the
regulator matrix Rk, appearing in �Sk and �k, must
now contain operators depending on spatial derivatives
too. For instance, choosing an off-diagonal Rk one could
consider

Rkðx; x0Þ ¼ 0 rkð�hÞ@0�ðx� x0Þ
�rkð�hÞ@0�ðx� x0Þ 0

� �
�k

¼
�
Det

1

2�

0 ð1þ rkð�hÞÞ@0�ðx� x0Þ
�ð1þ rkð�hÞÞ@0�ðx� x0Þ 0

� ��1
2
;

but this choice would explicitly break Lorentz symmetry. Instead, it would be easy to write more general regulators
preserving such a symmetry, even if in an implicit form. In both cases one may study the AEHA defined by the integro-
differential equation

ei�k½ ��; �
� ¼
Z
½d�d
��k½�;
�eifS½�;
�þ�Sk½�� ��;
� �
��ð�� ��Þ��k� ���ð
� �
Þ��k

� �

g
:

This road could be useful if one is interested in nonrelativistic field theories, but for relativistic systems, since Lorentz
invariance is not manifest, in this framework it is hard to distinguish truncations for �k that are Lorentz symmetric from
those that are not (one would have to deal with Ward-Takahashi-Slavnov-Taylor identities).

FUNCTIONAL RENORMALIZATION GROUP FLOW OF THE . . . PHYSICAL REVIEW D 86, 085041 (2012)

085041-11



Another possibility is to choose a covariant Hamiltonian
formalism, in which one introduces a momentum field for
each first order partial derivative of the Lagrangian coor-
dinates, thus preserving manifest Lorentz covariance. In
the following we will give the two simplest examples of
how this could work: spin zero and spin one-half field
theories. There are several choices one can do. In this
work we shall attempt to use a reduced approach, which
has the advantage of being the minimal extension that on
one side preserves the general results in 0þ 1 dimensions
(QM) and on the other side leads to the usual QFT results in
the case of quadratic bare Hamiltonians. More general
formulations as well as specific applications will be con-
sidered elsewhere.

A. Covariant Hamiltonian scalar field theory

Let us build the covariant Hamiltonian formulation of a
classical unconstrained single scalar field in d space-time
dimensions with the standard Lagrangian density

L ð
; @�
Þ ¼ � 1

2
ð@�
Þð@�
Þ � Vð
Þ

(in a Minkowski mostly plus signature). The covariant
Hamiltonian density is defined as the extremum

H ð��;
Þ ¼ ext
@�

ð���@�
�Lð
; @�
ÞÞ

¼ ����
�

2
þ Vð
Þ; (51)

and by demanding the stationarity of the Hamiltonian
action

S ¼
Z

ddx½���@�
�H �; (52)

one finds the De Donder–Weyl equations

�� ¼ @�
; @��
� ¼ V 0ð
Þ;

i.e., a first order system equivalent to h
� V 0ð
Þ ¼ 0.
Here the dynamics of �� and 
 seem to be completely
coupled; however, this is not the case. In fact, the Lorentz
vector �� can be decomposed into a transverse and a
gradient part �� ¼ ��

? þ ��
k , by means of the standard

projectors �
��
k ¼ @�@�=h and �

��
? ¼ ��� ��

��
k .

Rewriting the Hamiltonian action density in terms of these
reduced degrees of freedom (and assuming that the bound-
ary terms coming from integration by parts do not contrib-
ute), one finds ���

k@�
�H with

H ð��
?; �

�
k ; 
Þ ¼ �

�?���
?

2
� ��

k�k�
2
þ Vð
Þ

and the corresponding Hamiltonian equations

��
k ¼ @�
; @��

�
k ¼ V 0ð
Þ; ��

? ¼ 0:

Hence the transverse momenta are classically irrelevant if
the Hamiltonian is quadratically depending on them. This
translates into the following quantum property: if the bare
Hamiltonian is separable in � and 
 and quadratically
depending on �, the functional integration over transverse
momenta factorizes from those on the other two fields.
Now let us address the possibility to extend this formal-

ism to covariant Hamiltonian densities that are more than
quadratic in the momenta. The classical decoupling of the
transverse momenta, i.e., their factorization in the func-
tional integral, can happen also for nonquadratic
Hamiltonians, such as H ¼ Tð����Þ þ Vð
Þ. Insisting
on the validity of the classical variational principle for the
action (52), the classical equations read

@��
�
k ¼

�

�


Z
ddxH ; �@�
 ¼ �

���
k

Z
ddxH ;

�

���
?

Z
ddxH ¼ 0:

The interesting question now is whether the third equation
is a constraint or it gives a dynamics to the transverse
momenta. If H does not contain derivatives of ��

?, and
if one can perform some sort of Fourier transform such that
��
? can be considered orthogonal to @� with respect to the

metric in Minkowski space-time, then the third equation
cannot contain derivatives of ��

?. Therefore, under these
assumptions, one can always solve the third equation by
writing ��

? as a local (ifH is local) function of ��
k ,
 and

their derivatives. By substituting this solution in the first
two equations, one gets a coupled dynamics for the uncon-
strained variables ��

k and 
 only. That is, under these

assumptions the transverse momenta do not have their
own independent dynamics and behave only as redundant
variables that can be eliminated without losing the locality
of the action. However, even in this case the quantization of
the theory containing the ��

? fields is not equivalent to the

quantization of the theory in which one got rid of them by
means of the classical equations, since in the first case one
has a full functional integral over ��

?, whose stationary

phase approximation gives the second quantum theory.
Nevertheless, considering a Hamiltonian action depending
on parallel momenta only, although it is not the most
general case, is already a consistent and covariant general-
ization of the standard noncovariant Hamiltonian ap-
proach, reproducing the known results for quadratic
Hamiltonians. Therefore in this paper we will restrict
ourselves to such a case.
The aim of the rest of this section is to give meaning to

the quantization of the classical theory with the bare action
(52) under the assumption that H depends on ��

k only.

Since in this case the bare action S does not depend on ��
?,

we are in the presence of a gauge symmetry: by introduc-
ing projectors where needed, S can be rewritten in a form
that is manifestly invariant under the infinitesimal
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transformation: ���ðxÞ ¼ �
�

? �
ðxÞ, for any infinitesimal

vector field �. In this paper we will discuss the functional
integral quantization of the theory by means of the intro-
duction of the constraint ��


? �
 ¼ 0 in the functional

measure (something like a sharp gauge fixing1). Thus,
the generating functional of the theory will be

Z½I�; J� ¼ eiW½I�;J�

¼
Z
½d��d
��½��


? �
��eifS½��;
�þI����þJ�
g:

(53)

Notice that, depending on which regularization and precise
definition of the functional integral is chosen, the func-
tional integration over ½d��

k� and the constrained integra-

tion ½d����½��

? �
� could differ by a field-independent

Jacobian determinant. A skeletonized definition in Fourier
space, i.e., the use of a discretization of Fourier space,
would make this Jacobian to be equal to one. Whenever
such a Jacobian is unity, since the constraint kills all but
one of the integrals over the �’s, the usual functional
measure � ¼ Det 1

2� provides the normalization needed

to reproduce the known results for bare Hamiltonian ac-
tions quadratic in the momenta. Otherwise � needs to be
different (but still field independent) to balance the
Jacobian determinant. Starting from Eq. (53) the definition
of the effective Hamiltonian action is again

�½ ���; �
� ¼ ext
I�;J
ðW½I�; J� � I� � ��� � J � �
Þ; (54)

which is equivalent to state that � is the solution of the
following integro-differential equation with suitable
boundary conditions:

ei�½ ���; �
� ¼
Z
½d��d
��½��


? �
�

��e
ifS½��;
��ð�� ��Þ� ��

� ���
�ð
� �
Þ��

� �

g
: (55)

In the following we shall try to give a definition of the
integrals (53) and (55) based on an RG flow equation for
the average version of the effective action. First of all, one
has to introduce k-dependent operators that disappear in
the k! 0 limit and that provide a rising delta functional in
the k! � limit. As before let us denote this regularization
as follows:

Zk½I�; J� ¼
Z
½d��d
��½��


? �
�
��ke

ifS½��;
�þ�Sk½��;
�þI����þJ�
g:

We will choose a regularization corresponding to a
k-dependent deformation of the term whose one-
dimensional version is the Legendre transform term, i.e.,
���@�
. In other words, we will restrict to an

off-diagonal Rk, or more explicitly

�Sk½��;
� ¼
Z

ddx½���rkð�hÞ@�
�;

�k ¼ �

�
Det

0 �ð1þ rkð�hÞÞ@��ðx� x0Þ
ð1þ rkð�hÞÞ@��ðx� x0Þ 0

 !�1
2
:

(56)

The definition of the AEHA is the same as in quantum mechanics

�k½ ���; �
� þ �Sk½ ���; �
� ¼ ext
I�;J
ðWk½I�; J� � I� � ��� � J � �
Þ; (57)

from which the usual integro-differential equation

ei�k½ ���; �
� ¼
Z
½d��d
��½��


? �
��ke
ifS½��;
�þ�Sk½ð�� ��Þ�;
� �
��ð�� ��Þ� ��k

� ���
�ð
� �
Þ��k

� �

g
: (58)

By taking the k@k derivative of Eq. (58) one finds

i _�k ¼ _�k

�k

� i
Z

ddxhð�� ��Þ� _rk@�ð
� �
Þi: (59)

For the second term, we need to write the two point
function in terms of derivatives of �k. Since this theory

contains one Lagrangian coordinate and one momentum,

�ð2Þ is a two-dimensional square matrix, as in quantum

mechanics. However, our momentum is a vector field

bringing a Lorentz index, and even if it lies in a one-

dimensional subspace, such a subspace varies from point

to point in space-time. Thus, unless we want to choose a

frame in the tangent bundle such that at every space-time

point x the vector ��ðxÞ has only one and the same non-

vanishing component, we are forced to deal with it as a

generic Lorentz vector. Since we prefer to write formulas

in a generic frame, we will treat �ð2Þ as a generic

ðdþ 1Þ-dimensional square matrix, whose entries can be

written as four blocks: a (1,1) tensor (d-by-d square

1Dirac’s classification of constraints and the consequent
quantization schemes for gauge theories are based on the non-
covariant Hamiltonian formalism and therefore are not straight-
forwardly applicable to the present case. However, classical
constrained dynamics has been extensively discussed in the
literature about the covariant Hamiltonian formalism(s) [18],
and some proposals have been provided about the corresponding
path integral quantization of gauge theories [25].
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matrix), one contravariant (column) vector, one covariant
(row) vector, and one Lorentz scalar. Because the momenta
enter the theory naturally with high indices (to be con-
tracted with derivatives), we will treat them as column
vectors. Therefore the source I will become a row vector.
We will denote by ð Þt the transposition of these objects,

that is, the canonical isomorphism defined by the space-
time metric. Thus �t and It will denote row and column
vectors, respectively. Of course, derivatives with respect to
contravariant (covariant) vectors will be considered cova-
riant (contravariant). Going back to the task of computing
the two point functions, since

i

*
T
ð�� ��Þx 	 ð�� ��Þtx0 ð�� ��Þxð
� �
Þx0
ð
� �
Þxð�� ��Þtx0 ð
� �
Þxð
� �
Þx0

 !+
k

¼ Wð2Þk xx0 ½I; J� ¼
�Wk

�Ix
	
�

�
 

�Ix0

�
t �2Wk

�Jx0�Ix�
�2Wk

�Ix0�Jx

�
t �2Wk

�Jx0�Jx

0
B@

1
CA

one needs an explicit expression for the vector �2Wk

�J�I in terms of �k. This can be found by using

I� ¼ rk@� �
� ��k

� ��� ; J ¼ �rk@� ��� � ��k

� �

;

and thus getting

Wð2Þk xx0 ½I; J� ¼
�� 	

�
�
 

�I

�
t � ��

�J�
� �

�I

�
t � �


�J

0
@

1
A

xx0

¼ It 	 �
 

� �� ð�I
� �

Þt

�J
� ��

�J
� �


0
@

1
A�1

xx0

¼ �
�
��k

� ��

�
t 	 �

 

� ��

�
�rk@�þ �2�k

� �
� ��

�
t

rk@�þ �2�k

� ��� �


�2�k

� �
� �


0
B@

1
CA
�1

xx0

� � A B
BT D

� ��1
xx0
;

where ðrk@�Þx1x2 ¼ rkð�@2x1Þ@x1�ðx1 � x2Þ is a Lorentz-covariant (row) vector. This matrix is manifestly symmetric
with respect to full transposition T of both Lorentz and space-time-position indices. Since the building blocks B
and BT are not square matrices, we cannot use formula (14). Anyway, if A and ðD� BTA�1BÞ are nonsingular, this
becomes

Wð2Þk ½I; J� ¼ �
A�1 þ A�1BðD� BTA�1BÞ�1BTA�1 �A�1BðD� BTA�1BÞ�1

�ðD� BTA�1BÞ�1BTA�1 ðD� BTA�1BÞ�1
 !

: (60)

If instead D and ðA� BD�1BTÞ are nonsingular, then we can write

Wð2Þk ½I; J� ¼ �
ðA� BD�1BTÞ�1 �ðA� BD�1BTÞ�1BD�1

�D�1BTðA� BD�1BTÞ�1 D�1 þD�1BTðA� BD�1BTÞ�1BD�1
 !

: (61)

The off-diagonal entries of these matrices can finally be plugged into Eq. (59). Thus, if, for instance, A and ðD� BTA�1BÞ
are nonsingular, the final flow equation is

i _�k ¼ Tr½ _rkð1þ rkÞ�1�� � Tr

��
rk@�þ �2�k

� ��� �


��
�2�k

� ��� ��

��1

� ð _rk@�Þ
�
�2�k

� �
� �

�
�
rk@�þ �2�k

� ��� �


��
�2�k

� ��� ��

��1�
rk@�þ �2�k

� ��� �


�
T
��1�

: (62)

Here for the sake of notational simplicity we dropped the
symbols for tensor products and Lorentz transpositions. By
means of Eq. (61) the reader can write down a similar flow
equation for the case in which D and ðA� BD�1BTÞ are
nonsingular.

As an example let us discuss the LHA for a scalar theory
enjoying Z2 symmetry under simultaneous reflections:

�� ! ���, 
! �
. In other words, we are going to

insert the approximation �k ¼
R
ddxð� ���@� �
�

H kð ��2

2 ;
�
2

2 ÞÞ, where ��2 � ��� ���, in the previous flow

equation. To project the r.h.s. of the flow equation inside

such an ansatz for �k, one usually evaluates it on constant

field configurations. This can be done also in the present
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case, without contradicting the assumption that the mo-
menta ��� be longitudinal, by choosing the Fourier trans-
form of ��� pointing in the same direction of the Fourier
variable and being proportional to a delta function. We will

denote by H ði;jÞ
k the result of differentiating H k i times

w.r.t. ��2

2 and j times w.r.t. 
2

2 . Let us recall the notation

already used in quantum mechanics [see Eq. (34)] for the
regulator in the LHA, i.e., Pkð�hÞ ¼ ð1þ rkð�hÞÞ2�
ð�hÞ. Let us also introduce for convenience the function

�dð�Þ ¼ 2F1

�
1

2
; 1;

d

2
;�

�
(63)

and the following threshold functional

ld0½�;�� ¼
1

4
v�1d k�d

Z ddp

ð2�Þd

� _Pkðp2Þ
Pkðp2Þ þ k2�ðp2Þ�dð�ðp2ÞÞ; (64)

where v�1d ¼ 2dþ1�d=2�ðd2Þ. Then the flow equation for the

dimensionful average effective Hamiltonian density can be
written

i _H k ¼ 2vdk
dðld0½�H ; �H � � ld0½�H ; 0�Þ; (65)

where we further defined the dimensionless quantities

�H ðp2Þ ¼ Pkðp2Þ
Pkðp2Þ þ k2�H

��2H ð2;0Þ
k

H ð1;0Þ
k þ ��2H ð2;0Þ

k

; (66)

�H ¼
1

k2

�
��2 �
2ðH ð1;1Þ

k Þ2 H ð1;0Þ
k

H ð1;0Þ
k þ ��2H ð2;0Þ

k

�H ð1;0Þ
k ðH ð0;1Þ

k þ �
2H ð0;2Þ
k Þ

�
; (67)

the second of which is not a function of p2. First of all, let
us notice that if we make the ansatz that the theory is
quadratic in the momenta at every scale, then the vanishing

of H ð2;0Þ
k entails the vanishing of �H and we recover the

Lagrangian flow in the LPA. If instead �H is nonvanish-
ing, the presence of a p-dependent denominator in the
argument of the function �d in general makes the analytic
computation of ld0 quite hard. For this reason it is wise to

choose the regulator in such a way to kill the p dependence
of all the denominators. In the LHA this can be accom-

plished by means of the optimized regulator rkðp2Þ¼
ðk= ffiffiffiffiffiffi

p2
p �1Þ�ðk2�p2Þ, i.e., Pkðp2Þ¼ ðk2�p2Þ�ðk2�p2Þ.

For such a choice

�H ðp2Þ ¼ 1

1þ �H

��2H ð2;0Þ
k

H ð1;0Þ
k þ ��2H ð2;0Þ

k

(68)

is p independent, and the threshold function for constant
argument becomes

ld0½�;�� ¼
2

d

1

1þ �
�dð�Þ:

To sum up, for the optimized regulator the flow equation of
the LHA reads (after Wick rotation)

_H ¼ � 4

d
vdk

d �H

1þ �H
�dð�H Þ (69)

with �H and �H given by (67) and (68). The function �d

takes simpler forms for integer d. For instance, in d ¼ 2,
d ¼ 3, and d ¼ 4 it, respectively, reads

�2ð�Þ ¼ ð1� �Þ�1
2; �3ð�Þ ¼ arctanhð ffiffiffiffi

�
p Þffiffiffiffi

�
p ;

�4ð�Þ ¼ 2

�
½1� ð1� �Þ�1

2�:
(70)

Equation (65) can be taken as a first step toward the non-
perturbative study of scalar QFT in the covariant
Hamiltonian formalism. In particular, one of the first ques-
tions to be addressed is whether such an equation admits
non-Gaussian fixed points. In case a positive answer exists,
these could provide a possible solution to the triviality
problem of scalar QFT in four dimensions. In fact, choos-
ing the engineering dimensions of the fields in such a way
that the coefficients of the ��2 and Legendre terms are
dimensionless, dimensional analysis tells us that the cou-
pling multiplying the operator ð ��2Þið �
2Þj has dimension-
ality dij ¼ ð1� i� jÞdþ 2j. Therefore in d ¼ 4 the only

momentum dependent non IR-irrelevant term is ��2, and all
other terms with positive integers ði; jÞ are IR irrelevant. In
other words, scalar theories more than quadratic in the
momenta are expected to be highly favored in the UV
and to be well approximated by quadratic theories in the
IR. From this point of view it seems reasonable to look for
the UV completion of four-dimensional scalar QFT in a
general Hamiltonian framework. For instance, this could
be done according to the paradigm of asymptotic safety
[13], i.e., by looking for nontrivial fixed points of the RG
flow having a finite dimensional UV critical surface (a
finite number of UV attractive directions in theory space).
On the other hand, this very same argument in the case of a
simpler scalar QFT in configuration space is often used for
a qualitative understanding of the absence of Z2-symmetric
non-Gaussian fixed points in d ¼ 4: in this case the only
IR-relevant monomial-like operator is the mass term, all
other monomials being either marginal or IR-irrelevant.
Nevertheless, since in the present formulation the theory
contains not only a scalar field but also a longitudinal
vector field, we believe that the understanding of this issue
requires explicit computations in order to reveal the details
of the underlying dynamics.
Another interesting question regarding Eq. (65) is

whether it can teach us to what extent the covariant
Hamiltonian framework adopted in this paper is sound
and useful. In particular, it would be interesting to
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compare, within a fixed approximation such as the LHA,
the RG flow of the traditional noncovariant Hamiltonian
formulation with that of the covariant one allowing for
longitudinal momenta only (the present case) and with
the one allowing also for transverse momenta. These and
other questions will be left open by the present work.

B. Spinor field theory

Let us build the covariant Hamiltonian formulation of a
classical Lagrangian field theory for a single Dirac field in
a number d (allowing Dirac spinors) of space-time dimen-
sions with the standard Lagrangian density

L ðc ; @�c Þ ¼ � �c 6@c � Vð �c ; c Þ
(in a Minkowski mostly plus signature) where �c ¼
ic y�0. Defining the momenta �� as the right partial
derivatives of �L with respect to @�c , we find d second
class primary constraints

	�ðxÞ ¼ ��ðxÞ � �c ðxÞ�� ¼ 0; (71)

whose solution is �c ¼ 1
d �

���. These constraints boil

down the momenta to functions of just one field; hence
there is no room here for the other d� 1 conjugate fields
that in the bosonic case could be identified with the trans-
verse momenta. The relevant phase space is the surface S
defined by (71), the only independent coordinate on it is c ,
and the functional integral is to be taken over all histories
c ðxÞ. The covariant Hamiltonian density is defined as

H ð��; c Þ ¼ ext
@�c
ð���@�c �Lðc ; @�c ÞÞ

¼ V

�
� 1

d
����; c

�
;

and on S it is just Vð �c ; c Þ. Thus the covariant AEHA
formalism in this case is equivalent to the usual Lagrangian
approach, exactly as was previously described for fermi-
onic QM; one just has to replace time derivatives with @6
operators.

IV. CONCLUSIONS

In this work we have focused on the description of
quantum dynamics by means of the quantum effective
Hamiltonian action (EHA). We have first reviewed its
properties by a discussion in quantum mechanics, taking
advantage of the fact that QM and noncovariant QFT’s are
very similar in this respect. We have then discussed how to
compute the effective action. For instance, we have derived
a general one-loop formula, which can be useful to com-
pare the results obtained by other approaches, and we have
generalized the variational definition provided a long time
ago by Jackiw and Kerman [26] for its Lagrangian
counterpart. But the main goal of this work is to provide
an alternative nonperturbative tool to compute the EHA.
This is a Hamiltonian generalization of the so-called

functional renormalization group, in particular, of the
formulation by Wetterich based on the average effective
(Lagrangian) action [7].
Such a generalization, which is one of the main results of

our work, is straightforward in QM, even if the family of
one-parameter-dependent cutoff operators is wider and in
general the formulas are more cumbersome. Starting from
the most general flow equation, we have derived simpler
equations as the one associated with the so-called LHA,
i.e., the leading order in the derivative expansion. To show
that the approach is trustworthy, we have studied, as an
example, a family of quantum mechanical systems with
bare Hamiltonians nonquadratic in the momenta, we have
computed for two cases the ground state energy and the
first energy gap, and we have successfully compared them
to the exact results, employing different kind of schemes
and approximations. We stress that for the models under
consideration we needed to take into account, as expected,
the issue of Weyl ordering, which turns out to be at the base
of the present flow equation quantization as it is well
known to be for the functional integral quantization. This
fact calls for some care in defining the concept of a bare
nonseparable Hamiltonian action.
The application of the formalism developed for QM to

the QFT case is straightforward and quickly discussed but,
as in all Hamiltonian approaches to QFT, one must pay full
generality and manifest unitarity with nonmanifest Lorentz
covariance. This is unpleasant and complicates the job of
performing approximations without breaking such a sym-
metry. For this reason, in the second part of the paper, we
have discussed the possibility to generalize the EHA for-
malism to include also covariant Hamiltonian QFT.
Functional integral quantizations of such theories have
already been addressed in the literature, especially for
gauge theories. In the present work we have addressed
the simplest cases of scalar and spinor degrees of freedom.
Actually, for scalar QFT we further restricted our work to
the presence of one conjugate momentum only, namely, a
longitudinal vector field. In this specific case we have
provided an RG flow equation representation of the corre-
sponding QFT, and we have worked out its explicit form in
the LHA.
Let us close this work addressing the issue of the physi-

cal motivations for it and of its usefulness. Clearly, the use
of this framework is related to Hamiltonian systems non-
quadratic in momenta, and therefore we should comment
on the question: where are they or why should we look for
them?
Quantummechanical systems more than quadratic in the

momenta may be interesting on the base of first principles
(think about the action of the free relativistic particle) or
arise as effective descriptions of physical systems. Also,
they could appear as intermediate technical tools for the
description of more complicated systems. For instance,
within the worldline formalism, one-loop computations
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are reduced to quantum mechanical path integrals with
Hamiltonians, which sometimes are nonquadratic in the
momenta [31]. In these cases one can hope to use this
approach as an alternative or a complementary tool to
perturbation theory.

Theories more than quadratic in the momenta, when
reduced to the Lagrangian formulation, show a nonlinear
dependence on the derivatives of the fields. This depen-
dence, if expanded in powers and truncated, typically
generates violations of unitarity. Nevertheless, before trun-
cation nothing prevents such theories from being unitary.
That is, there might be some interesting nontrivial exten-
sions of quantum models that are nonquadratic in the
momenta and that make perfect sense from a quantum
mechanical point of view.

Why should we look for them? As already commented at
the end of the section on scalar QFT, the study of the RG
flow on the Hamiltonian theory space might show new
possibilities for the UV or IR behavior of systems that at
some intermediate scale are well approximated by simple
Lagrangian theories. Stated in different words, keeping
both phase-space variables could make easier the task of
parametrizing the quantum dynamics far from that inter-
mediate simple Lagrangian scale. One reason for such an
expectation is the following: we know that the effective
actions are in general nonlocal and that integrating out non-
Gaussian degrees of freedom is responsible for such non-
localities; therefore avoiding integrating out the momenta
should be of help in the hard task of reducing as far as
possible the importance of nonlocal interactions. Restated
one more time: even by studying the running of approxi-
mate local actions on the Hamiltonian theory space one
can, just by putting the momenta on-shell, have access to at
least part of the running of nonlocal actions in the
Lagrangian theory space. For these reasons also the study
of theories whose bare actions are quadratic but that flow
to AEHA’s more than quadratic in the momenta could
benefit from this first order formulation. Examples are
the covariant Hamiltonian formulation of Yang-Mills the-
ory and generic nonlinear sigma models, which in our
opinion deserve future investigations within the present
framework.

The analysis of Hamiltonian flows might open the in-
triguing possibility of finding systems belonging to new
universality classes, by looking for fixed points of the flow
in the Hamiltonian formulation. We have started to con-
sider this challenging problem within the ‘‘reduced’’ co-
variant formulation of scalar QFT presented in this paper,
and we hope to report on this soon. The results of all these
studies will in general depend on the kind of Hamiltonian
formulation we choose, a fact that enables one to quanti-
tatively compare different quantization prescriptions as
well as to look for physical systems described by each of
them. Thus, in our opinion, a vast playground lies open,
waiting for future investigations.
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APPENDIX A: THE EFFECTIVE HAMILTONIAN
ACTION AS THE GENERATING FUNCTIONAL OF

1PI VERTEX FUNCTIONS

In this appendix we are going to prove that the effective
Hamiltonian action is the generating functional of the 1PI
proper vertices, in the sense that the tree level amplitudes
computed with vertex functions and propagators extracted
from it are equal to the full perturbative series generated by
the bare Hamiltonian action. For the ease of the explana-
tion we limit this discussion to the QM case, choosing
ℏ ¼ 1 as a unit of action. The proof works just as for the
usual Lagrangian effective action [32].
(1) Write down a path integral based on a Hamiltonian

bare action that is (1=g) times the Hamiltonian
effective action, with g an external parameter. This
rescaling of the action entails a corresponding re-
scaling of the Liouville form �g � 1

g � ¼ 1
g
�pd �q.

Thus, to define the new path integral, we must adopt

a functional measure �g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det�g

p
corresponding

to the symplectic structure �g ¼ d�g:

eiWg½I;J� ¼
Z
½dpdq��g½p; q�e

i
gf�½ �p; �q�þI� �pþJ� �qg:

(A1)

(2) Recognize that the parameter g allows one to dis-
tinguish different loop orders in the perturbative
evaluation of this path integral. In fact, Eqs. (17)
and (13) show that in the perturbation theory gen-
erated by �g � 1

g� the vertex functions are propor-

tional to 1=g while propagators are proportional to
g. Thus any graph with i internal lines and v
vertices gives a contribution proportional to gi�v.
Since the number of loops is l ¼ i� vþ 1, any
loop expansion is an expansion in powers of g of
the kind

Wg½I; J� ¼
X1
l¼0

gl�1Wg;l½I; J�: (A2)

(3) Evaluate the same path integral by a stationary
phase method, an approximation that can be made
arbitrarily good by tuning g arbitrarily close to zero.
Since by definition the exponent at the stationarity
point gives the W½I; J� of Eq. (4), one gets

eiWg½I;J� �
g!0

�g½p; q�
�
Det

1

2�g
�½ �p; �q�ð2Þ

��1
2
e

i
gW½I;J�:

(A3)

(4) Expand the logarithm of the last result in powers of
g. Because
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log�g½p; q� ¼ �Tr loggþ log�½p; q�;

log

�
Det

1

2�g
�½ �p; �q�ð2Þ

��1
2

¼ Tr loggþ log

�
Det

1

2�
�½ �p; �q�ð2Þ

��1
2
;

the combination of Eqs. (A2) and (A3) gives

X1
l¼0

gl�1Wg;l½I; J� �
g!0

1

g
W½I; J�

� i log

�
�½p; q�

�
Det

1

2�
�½ �p; �q�ð2Þ

��1
2

�
;

that is, Wg;0½I; J� ¼ W½I; J�.

APPENDIX B: THE EFFECTIVE HAMILTONIAN
ACTION FROM AVARIATIONAL FORMULA ON

THE HILBERT SPACE

This appendix is to prove the proposition of Sec. II about
the possibility to define the effective Hamiltonian action in
the operator representation by means of a variational prin-
ciple. The following arguments are not original, but just the
obvious extension of those presented in [26]. To compute
the extremum (8) with the constraints (9), one introduces
three Lagrange multipliers wðtÞ, IðtÞ, JðtÞ and looks for the
extremum of hc�;tji@t�ĤþJðtÞq̂þIðtÞp̂�wðtÞjcþ;ti
with respect to the two states jc�; ti. Setting the two
functional derivatives to zero gives

ði@t � Ĥ þ JðtÞq̂þ IðtÞp̂Þjcþ; ti ¼ wðtÞjcþ; ti; (B1)

ði@t � Ĥ þ JðtÞq̂þ IðtÞp̂Þjc�; ti ¼ w
ðtÞjc�; ti: (B2)

It is possible to define the states

jþ; ti ¼ exp

�
i
Z t

�1
dt0wðt0Þ

�
jcþ; ti;

j�; ti ¼ exp

�
�i

Z þ1
t

dt0w
ðt0Þ
�
jc�; ti;

(B3)

which solve the following Schrödinger equation:

ði@t � Ĥþ JðtÞq̂þ IðtÞp̂Þj�; ti ¼ 0 (B4)

and satisfy the boundary conditions limt!�1j�; ti ¼ j0i.
In other words, jþ; ti ¼ ÛI;Jðt;�1Þj0i and h�; tj ¼
h0jÛI;Jðþ1; tÞ, such that

eiW½I;J� ¼ h0jÛI;Jðþ1;�1Þj0i ¼ h�; tjþ; ti
¼ ei

Rþ1
�1 dt0wðt0Þ; (B5)

that is, W½I; J� ¼ Rþ1
�1 dt0wðt0Þ. On the other hand, by

contracting Eq. (B1) with hc�; tj and using the previous
equation, along with the constraints (9), one finds that for
the stationarity states the following relation holds:

Z þ1
�1

dthc�; tjiℏ@t � Ĥjcþ; ti

¼ W½I; J� �
Z þ1
�1

dt½JðtÞ �qðtÞ þ IðtÞ �pðtÞ�: (B6)

To prove that the values of I and J on the r.h.s. are the
extremal ones, it is necessary to take derivatives of this
equation with respect to the sources and remember that on
the l.h.s. the extremal value cannot depend on the Lagrange
multipliers, nor can the constraint points �p and �q on the
r.h.s.

APPENDIX C: THE REALIZATION OF THE
RISING DELTA FUNCTIONALWHEN k! �

To analyze the k! � limit of Eq. (26), we first perform
a change of variables in the path integral:

p0 ¼ p� �pþ ðrk@tÞ�1 ��k

� �q
;

q0 ¼ q� �q� ðrk@tÞ�1 ��k

� �p
;

and then define the complex variable: z ¼ ðp0 � iq0Þ= ffiffiffi
2
p

.
The result of these manipulations is

ei�k½ �p; �q� ¼
Z
½dz��k expi

�
1

2

Z
dtðz
rki@tz� zrki@tz


Þ

� ��k

� �q
� ðrk@tÞ�1 ��k

� �p
þ S

�
�p� ðrk@tÞ�1 ��k

� �q

þ ffiffiffi
2
p <ðzÞ; �qþ ðrk@tÞ�1 �Hk

� �p
� ffiffiffi

2
p =ðzÞ

��
:

Under the assumption that �k stays finite for any k 2
½0;��, when k! � every �k-dependent term on the
r.h.s. gets killed by the divergence of rk. On the other

hand, since �k ¼ Detð1þrk2� �Þ (excluding the possible

zero eigenvalues), the first term in the exponent together
with the regularized functional measure provides a rising
delta functional, constraining z, i.e., ðp� �pÞ and ðq� �qÞ,
to vanish.2 Thus in this limit the r.h.s. reduces to
expfiS½ �p; �q�g and the AEHA coincides with the bare
Hamiltonian action. To show that a rising delta functional
is indeed realized, we need to prove that the quadratic form
(z
rki@tz� zrki@tz


) is positive definite. This is not ob-
vious since i@t is a real operator on the spaces of functions
one is usually interested in, but whose sign is not fixed.
However, if the domain of the functional integral is such
that all contributions coming from the time boundaries are

2Although the quadratic form (rki@t�) in the exponent and the
operator in the measure ð1þ rkÞ� asymptotically differ for a
factor of i@t, the path integral is properly normalized [14] in such
a way to be finite for a free system (8k 2 ½0;��) and to show a
k-independent divergence in the H ¼ 0 case.
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vanishing, and if the Fourier transform is allowed, then one
can write (the reader should interpret the integrals as
generic sums over unspecified domains)

i

2

Z
t
ðzðtÞ
rki@tzðtÞ � zðtÞrki@tzðtÞ
Þ ¼

Z
t
p0ðtÞrki@tq0ðtÞ

¼ 1

2

Z
E
rkðE2ÞEðp0ð�EÞq0ðEÞ � q0ð�EÞp0ðEÞÞ

¼
Z
E
�ðEÞrkðE2ÞEðp0ð�EÞq0ðEÞ � q0ð�EÞp0ðEÞÞ

¼ i
Z
E
�ðEÞrkðE2ÞEðx�ðEÞ
x�ðEÞ � xþðEÞ
xþðEÞÞ;

where we assumed qðtÞ and pðtÞ real, such that for their
Fourier transforms satisfy pð�EÞ ¼ pðEÞ
 and qð�EÞ ¼
qðEÞ
, we defined x�ðEÞ ¼ ðp0ðEÞ � iq0ðEÞÞ= ffiffiffi

2
p

, and we
denoted by � the Heaviside step function. The last equation
shows that the diagonalization of the quadratic form gives
two complex Gaussians that can be independently rotated
to real Gaussians with positive definite inverse variances.
In reality they might not be positive definite and allow for
zero modes, but we will not discuss this possibility in the
present work.

APPENDIX D: THE AVERAGE EFFECTIVE
HAMILTONIAN ACTION IN EUCLIDEAN

SPACE AND WICK ROTATION

Of course, the Hamiltonian formalism without time
makes little sense. However, it could be nice to forget
about the evaluation of integrals with poles once and for
all by working in Euclidean space from the very beginning.
In this appendix the reader will find the translation of some
of the main formulas of the present work to Euclidean
space and a discussion on the possible equivalence of the
theories in Minkowski and Euclidean space, i.e., on the
feasibility of a Wick rotation to imaginary time.

Let us start with scalar QM. In this case Wick rotation
(t! �i�) of Eq. (3) with action (1) is safe and leads to a
convergent path integral

eW½I;J� ¼
Z
½dpdq��½p; q�e�fS½p;q��Jq�Ipg

with action

S½p; q� ¼
Z

d�½�pð�Þi@�qð�Þ þHðpð�Þ; qð�ÞÞ�: (D1)

The regularization goes as usual

eWk½I;J� ¼
Z
½dpdq��ke

�fS½p;q�þ�Sk½p;q��Jq�Ipg

with �Sk and �k, which can still be chosen according to
Eqs. (21)–(25) if we replace @t with �i@� (the minus sign
here is because of the global minus factorized in front of
the action). The definition of the AEHA is

�k½ �p; �q� þ�Sk½ �p; �q� ¼ ext
I;J
ðI � �pþ J � �q�Wk½I; J�Þ;

which is equivalent to

e��k½ �p; �q� ¼
Z
½dpdq��k½p; q�

� e�fS½p;q�þ�Sk½p� �p;q� �q��ðp� �pÞ��k� �p�ðq� �qÞ��k� �q g:

(D2)

From it the flow equation follows:

_� k ¼ 1

2
Tr½ð�ð2Þk þ Rk�Þ�1 _Rk�� � _�k

�k

; (D3)

where Rk� ¼ �Sð2Þk . We see that this equation formally

differs from the Minkowskian one (29) by the absence of
the imaginary factor i on the l.h.s., by a global minus factor
on the r.h.s., and by the fact that inside Rk we find the
operator i@� instead of @t. Thus, for instance, in the par-
ticular case of an off-diagonal regulator the explicit form of
the flow equation becomes

_�k ¼ Tr

�
ð� _rki@�Þ

��
�rki@�þ �2�k

� �q� �p

�

� �2�k

� �p� �p

�
rki@�þ �2�k

� �p� �q

��1 �2�k

� �q� �q

��1�
� Tr½ _rkð1þ rkÞ�1��: (D4)

Next let us consider scalar covariant Hamiltonian QFT.
Since �� is a vector, Wick rotation involves also its zero
component, independently of whether we allow for trans-
verse momenta: x0 ! �ix4 and �0 ! �i�4. However,
performing such a replacement in the action (52) with
Hamiltonian (51), one finds that

iS!
Z

ddx

�
1

2
ð�� @
Þ2 � 1

2
ð@
Þ2 � Vð
Þ

�
;

therefore the integral over � diverges. In other words,
such a Wick rotation cannot be performed. The main
difference from the case of QM, or the reason for such a
failure, is the fact that the momenta are assumed to rotate
along with time. Despite this problem, one possible reason
for studying a Euclidean covariant Hamiltonian formula-
tion is that we know that the Euclidean noncovariant
Hamiltonian theory makes perfect sense because it is re-
lated by a continuos Wick rotation to the corresponding
Minkowskian theory. Therefore the Euclidean covariant
formulation can be derived from the noncovariant
Hamiltonian formulation and studied as a generalization
of it. By definition the bare action of such a covariant
Hamiltonian Euclidean theory reads

S½��;
� ¼
Z

ddx½���i@�
þH ð��;
Þ�: (D5)
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Its Hamiltonian quantization in a scheme where only lon-
gitudinal momenta are present is based on the functional
integral

Z½I�; J� ¼
Z
½d��d
��½��


? �
��e�fS½��;
��I�����J�
g:

Again, to get a functional RG flow equation representation
of this integral, one introduces a k dependence in the bare
action and in the measure. In the following we choose an
off-diagonal quadratic regularization, i.e., of the kind (56),
but with @� replaced by i@�. The definition of the AEHA is
the same as in Euclidean quantum mechanics

�k½ ���; �
�þ�Sk½ ���; �
�¼ ext
I�;J
ðI� � ���þJ � �
�Wk½I�;J�Þ;

(D6)

from which the usual integro-differential equation

e��k½ ���; �
�¼
Z
½d��d
��½��


? �
��k

�e
�fS½��;
�þ�Sk½ð�� ��Þ�;
� �
��ð�� ��Þ� ��k

� ���
�ð
� �
Þ��k

� �

g
:

(D7)

Again, the Euclidean flow equation can be obtained from
the Minkowskian one by stripping the imaginary i on the
l.h.s., by changing the global sign on the r.h.s., and by
replacing rk@� with rki@�.
As far as fermions are concerned, no new behavior under

Wick rotation shows up, because of the identification of
configuration space with the reduced phase space.
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