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In two previous works [K. Dusling, T. Epelbaum, F. Gelis, and R. Venugopalan, Nucl. Phys. A850, 69

(2011); T. Epelbaum and F. Gelis, Nucl. Phys. A872, 210 (2011)], we studied the time evolution of a

system of real scalar fields with quartic coupling that shares important features with the color glass

condensate description of heavy-ion collisions. Our primary objective was to understand how such a

system, when initialized with a nonperturbatively large classical field configuration, reaches thermal

equilibrium. An essential goal of these works was to highlight the role played by the quantum fluctuations.

However, these studies considered only a system confined within a box of fixed volume. In the present

paper, we extend this work to a system that expands in the longitudinal direction, thereby, more closely

mimicking a heavy-ion collision. We conclude that the microscopic processes that drive the system toward

equilibrium are able to keep up with the expansion of the system; the pressure tensor becomes isotropic

despite the anisotropic expansion.

DOI: 10.1103/PhysRevD.86.085040 PACS numbers: 12.38.Mh, 11.10.Wx

I. INTRODUCTION

The issue of thermalization of the quark-gluon matter
produced in heavy-ion collisions is one of the most
challenging problems in this field. On the one hand,
this matter appears to behave like a nearly perfect fluid,
as is suggested by the comparison between flow mea-
surements at Relativistic Heavy Ion Collider [1–4] and
hydrodynamical models with low-shear viscosity [5].
Moreover, this comparison seems to call for a very early
onset (< 1 fm=c) of the hydrodynamical behavior. Such
a good description by hydrodynamics is usually inter-
preted as an indication that the system is fairly close to
local thermal equilibrium. On the other hand, trying to
justify this fast equilibration from first principles has
proven to be notoriously difficult, and no definitive con-
clusion has been reached thus far. Early estimates of the
thermalization time based on a standard kinetic descrip-
tion (with 2 ! 2 and 2 ! 3 processes), as in the bottom-
up scenario [6], lead to equilibration times that are much
larger than what hydrodynamics seems to require. In
addition to kinetic scattering processes, quarks and glu-
ons with an anisotropic particle distribution are subject
to Weibel instabilities [7,8] that are well known in QED
plasmas. These potentially play a significant role in
restoring isotropy and in thermalizing the system. A
formal description of Weibel instabilities can be couched
in the framework of hard thermal loop effective field
theory, where the hard particles coexist with soft fields
[9–13]. This approach has been applied to study the
evolution of such anisotropic systems, and the role of
instabilities in their relaxation towards equilibrium, in a
series of mostly numerical works [14–24]. For recent
analytical parametric estimates of the effect of Weibel

instabilities in the expanding systems produced in
heavy-ion collisions, see Refs. [25,26].
Another feature of heavy-ion collisions that complicates

our understanding of thermalization is the fact that, at such
early times, the collision is more appropriately described in
terms of fields rather than on-shell particles.1 Such a descrip-
tion arises naturally in the color glass condensate (CGC)
effective theory. In this approach [27–33], the nuclei are
described in terms of highly boosted color sources coupled
to soft gauge fields. At the very high energies reached at
RHIC and LHC, the density of color sources becomes so
large that their currents are inversely proportional to the
(assumed to be small) coupling constant. In this framework,
one can systematically arrange the various contributions to a
computation of inclusive quantities in powers of the strong
fine structure constant �s with a given order in �s corre-
sponding to a fixed loop order. The leading order approxi-
mation can be expressed entirely in terms of the classical
solution of the Yang-Mills equations, the next-to-leading
order (NLO) is composed of the one-loop graphs in the
presence of a classical background field, and so on. A very
satisfying aspect of this description is that the color source
distribution of the projectiles appears only via universal
weight functionals of these distributions. Factorization theo-
rems have been proven that demonstrate (to leading accuracy
in powers of �sY, where Y is the rapidity) that these weight
functionals are the same for all inclusive observables and for
different reactions involving identical projectiles [34–36].
The evolution of these weight functionals with rapidity is
described by the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner equation [37–44].

1Soft modes, as we know from the uncertainty principle, need
a rather long time to go on shell.
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In the CGC framework, the Weibel instabilities manifest
themselves in the form of unstable solutions of the classical
Yang-Mills equations [45–53] that lead to secular divergen-
ces in theNLO2 correction to quantities such as the pressure:
these corrections diverge when the time goes to infinity. In
Ref. [57], we sketched an improvement that resums, at each
order of the expansion in �s, the terms that have the fastest
growth in time. This resummation scheme, which amounts
in practice to averaging classical solutions of the field equa-
tions of motion over a Gaussian ensemble of initial condi-
tions,3 was justified more extensively in Refs. [65,66].
Moreover, the precise form of the initial Gaussian ensemble
of gauge fields was also derived in this work.

Since the numerical implementation of this resummation
in QCD is computationally very demanding, we first con-
sidered a much simpler field theory in Refs. [67,68], a
scalar field theory with a quartic �4 coupling. Similar
issues arise in this simpler context and provide one with a
feeling for the effect of instabilities on the evolution of the
system toward equilibrium. The scalar theory, like QCD, is
scale invariant at the classical level in 3þ 1 dimensions,4

More importantly, this theory is known to have unstable
classical solutions because of parametric resonance (see
Refs. [69,70]). Although the microscopic nature of these
instabilities is very different from the Weibel instabilities
encountered in Yang-Mills theory, they also lead to secular
divergences in the pressure at NLO. Therefore, as in the
latter, a resummation of the divergent contributions at each
order is essential to obtain finite results at late times.

In Refs. [67,68], a resummation identical to the one advo-
cated in Refs. [57,65,66] for QCD was applied to this scalar
theory and implemented in a numerical lattice computation.
These simulations showed that the pressure quickly relaxes
to the value required by the equilibrium equation of state
(P ¼ �=3). On longer timescales, the particle distribution
evolves to a classical equilibrium distribution. Moreover, we
found that when the system is initialized with an excess of
particle number (compared to the equilibrium value at a
given energy), a transient chemical potential appears and
even a Bose-Einstein condensate5 if the particle number
excess is too large (see also Refs. [71–73]).

In the two papers already mentioned exploring nonequi-
librium scalar dynamics, only systems contained in a fixed
volume box were considered. The isotropization of the
pressure tensor was, therefore, not relevant. To address
this issue, we shall extend here our study of scalar �4 field
theory to a system that expands longitudinally. In this case,
one expects naively that the longitudinal expansion pro-
duces a redshifting of the longitudinal momenta, thereby,
leading to a small longitudinal pressure that decreases faster
than the transverse one. If this conclusion was right, hydro-
dynamics would not be applicable to the description of such
an expanding system. Themain questionwewant to address
with this extension is whether the instabilities can keep the
longitudinal pressure close to the transverse one, despite the
longitudinal expansion. A study of these instabilities for an
expanding system has been presented in Ref. [74], but the
main focus of this work was not on isotropization.
We will mimic closely, in this scalar theory framework,

the color glass condensate description of high-energy,
heavy-ion collisions by assuming that the classical back-
ground field is independent of rapidity. The fluctuations that
are superposed on this classical field at the initial time are
the scalar analogues of the spectrum derived for QCD in
Refs. [65,66]. The derivation of this spectrum in the much
simpler scalar case is done in Sec. II. In Sec. III, we discuss
the lattice discretization of themodel. The time evolution of
the particle distribution is studied in the Sec. IV. This
discussion also shows why it is important to have a very
small lattice spacing in the rapidity direction. The time
evolution of the transverse and longitudinal pressures is
studied in Sec. V. We conclude that the instabilities are
indeed able to make the longitudinal pressure nearly equal
to the transverse one. In Sec. VI, we compare the results
obtained here in classical statistical field theory with expec-
tations from viscous hydrodynamics. SectionVII is devoted
to conclusions and to an outlook into the application of this
approach to QCD. Some technical notes and complements
are relegated to three appendices.

II. SPECTRUM OF FLUCTUATIONS
IN AN EXPANDING SYSTEM

FollowingRefs. [67,68],we consider amassless real scalar
field theory with a quartic coupling, whose Lagrangian den-
sity is given by

L ð�Þ ¼ 1

2
ð@��Þ2 � g2

4!
�4|ffl{zffl}

Vð�Þ

: (1)

The kinematics of a high-energy nuclear collision ismirrored
by picking a preferred spatial direction—the z direction in
this paper—to be the collision axis. For collisions in the high-
energy limit, the problem is invariant under finite Lorentz
boosts in this direction. A natural system of coordinates in
which this invariance takes a simple form are the proper time

2At leading order, the pressure is finite at all times, but the
longitudinal pressure is negative [54–56].

3To the best of our knowledge, this scheme was first used in
Refs. [58–60], in the context of preheating in postinflationary
cosmology. See also Ref. [61]. In the context of non-Abelian
plasma instabilities, it was used already in Ref. [62]. A similar
approach has also been applied to cold atom physics, in prob-
lems related to Bose-Einstein condensation (see for instance
Refs. [63,64]).

4This property is not mandatory, but it has simple implications
for the equation of state: � ¼ 3P, up to small corrections.

5These two features can only be transient because the particle
number is not conserved in this theory and eventually inelastic
processes will eliminate any excess in the particle number.
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� and the rapidity � coordinates that are related to the usual
Cartesian coordinates by the transformations

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
; � ¼ 1

2
ln

�
tþ z

t� z

�
; (2)

with the transverse coordinates x and y unchanged. In this
coordinate system, the d’Alembertian reads

h ¼ @2� þ 1

�
@� � 1

�2
@2� � r2

?: (3)

Longitudinal boosts preserve � and x? and shift the rapidity
by a constant. Thus, the invariance under longitudinal
boosts implies that physical quantities are independent of
the rapidity �.

A. Classical background field

In the CGC description of heavy ion collisions, the
leading order approximation is given by the retarded clas-
sical solution of the Yang-Mills equations. In subsequent
orders, this classical field plays the role of a background
field whereby all the propagators and vertices are dressed.
This classical background field is boost invariant. Thus, in
our scalar analog, we will require the background field to
be independent of �. The classical equation of motion for
such a field ’ is

€’þ 1

�
_’� r2

?’þ V 0ð’Þ ¼ 0; (4)

where the dot denotes a derivative with respect to the
proper time �. Note that we only consider here the evolu-
tion of the system after the collision (for � > 0). Because
the sources that describe the colliding projectiles have
support only on the axis z ¼ �t, the field evolution is
not driven by these sources; instead, they provide initial
conditions for the field at � ¼ 0þ.

To ascertain the nature of the initial conditions at � ¼ 0þ,
let us neglect for the time being the interaction term V0ð’Þ
and decompose the x? dependence of the field in Fourier
modes as

’ð�; x?Þ �
Z d2k?

ð2�Þ2 ’k?ð�Þeik?�x? : (5)

The Fourier coefficients obey the equation

€’ k? þ 1

�
_’k? þ k2?’k? ¼ 0: (6)

This is a Bessel equation of index n ¼ 0 and its general
solution is of the form

’k?ð�Þ ¼ ak?J0ðk?�Þ þ bk?Y0ðk?�Þ; (7)

where ak? and bk? are constants. Only the term that con-

tains J0 can smoothly approach the limit � ! 0þ. (If we
keep the Y0 term, the field would diverge as lnð1=�Þ and its
derivative as 1=� in this limit.)

Therefore, the solutions that are regular near the origin
are of the form,

’ð�; x?Þ ¼
Z d2k?

ð2�Þ2 e
ik?�x?ak?J0ðk?�Þ; (8)

where the ak? coefficients are just the Fourier transform of

the field at � ¼ 0

’ð0þ; x?Þ ¼
Z d2k?

ð2�Þ2 e
ik?�x?ak? : (9)

Note that its derivative tends to zero at the origin,

lim
�!0þ

_’ð�; x?Þ ¼ 0: (10)

The interaction term V0ð’Þ that we neglected in this
discussion introduces some mixing among the Fourier
modes and modifies the evolution of the solution.
However, this modification is negligible at short times
because the evolution of the field at very short times is
dominated by the expansion ratewhich is much larger than
the interaction rate. Therefore, the solution that we find by
neglecting the interaction term remains valid in the imme-
diate vicinity of the origin.6

B. Spectrum of fluctuations

We want now to perform for this scalar model the re-
summation described in Ref. [65,66] for theQCD case. This
resummation amounts to allowing the initial condition for
the classical field to fluctuate and to average observables
over these fluctuations. Following [66], we can construct
the Gaussian ensemble of initial conditions by superposing
on the background field ’ (independent of �) a fluctuating
�-dependent term, with the result expressed as

� ¼ ’þ
Z

d�K½cKaK þ c�Ka�K�: (11)

Here, the aK are mode functions propagating on top of
the classical background field ’ that obey the equation
of motion

€a K þ 1

�
_aK � 1

�2
@2�aK � r2

?aK þ V 00ð’ÞaK ¼ 0: (12)

This is a linear equation and the set of its solutions is a vector
space. The symbolK denotes collectively all the labels that
are necessary in order to index the basis for this vector
space, and d�K is the measure necessary to integrate over
this space. In Eq. (11) the aK’s must be positive frequency
solutions and they must form an orthonormal basis with
respect to the inner product

6How far in � this approximation is valid depends on the
magnitude of the field and of the coupling constant g, both of
which determine the strength of the neglected nonlinear terms.
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ðajbÞ � i�
Z

d�d2x?ða� _b� _a�bÞ: (13)

This means that one must have

ðaKjaLÞ ¼ �KL; (14)

where the � function on the space of the indices K is
normalized to ensureZ

d�K�KL ¼ 1: (15)

The coefficients cK are Gaussian random complex numbers
whose variance is defined by the equations,

hcKcLi ¼ hc�Kc�Li ¼ 0 hcKc�Li ¼
1

2
�KL: (16)

We emphasize that the normalization condition of the fluc-
tuations aK depends on how we define the integration
measure so that at the end of the day, the ensemble of �’s
defined byEq. (11) does not depend on this arbitrary choice.

1. Mode functions

Let us now solve Eq. (12) which determines the
mode functions. We wish only to obtain its solutions at
small times �; therefore, we shall neglect the time depen-
dence7 of the background field ’ and replace it by its limit
at � ! 0þ,

’0ðx?Þ � lim
�!0þ

’ð�; x?Þ: (17)

Since ’0 does not depend on the rapidity �, we can look
for solutions that have a well-defined wave number in the
variable � of the form

a	ð�; �; x?Þ ¼ ei	�b	ð�; x?Þ: (18)

The function b	 now obeys

€b 	 þ 1

�
_b	 þ 	2

�2
b	 � r2

?b	 þ V00ð’0Þb	 ¼ 0: (19)

We note that the x? dependence of the solution is con-
trolled by the operator �r2

? þ V00ð’0Þ. This operator is

real and symmetric and can therefore be diagonalized over
a basis of orthogonal functions 
kðx?Þ,

½�r2
?þV00ð’0Þ�
kðx?Þ¼�2

k
kðx?ÞZ
d2x?
�

kðx?Þ
lðx?Þ¼�kl:
(20)

The � function �kl is defined so that its integral over the
measure d�k in k space isZ

d�k�kl ¼ 1: (21)

The next step is to decompose the x? dependence of b	
on the basis provided by the 
kðx?Þ’s. This amounts to
looking for fluctuations that are of the form

a	kð�; �; x?Þ ¼ ei	�
kðx?Þb	kð�Þ: (22)

The remaining function b	kð�Þ depends only on time and
must obey the following equation

€b 	k þ 1

�
_b	k þ 	2

�2
b	k þ �2

kb	k ¼ 0: (23)

This is a Bessel equation whose general solution is a linear

combination of the Hankel functions8 Hð1Þ
i	 ð�k�Þ and

Hð2Þ
i	 ð�k�Þ. The latter is the positive frequency solution,

as can be seen from its asymptotic behavior at large
time.9 Thus, the aK’s in Eq. (11) can be chosen as

a	kð�; �; x?Þ ¼ �	ke
i	�
kðx?ÞHð2Þ

i	 ð�k�Þ: (24)

We need only to determine the constant prefactor �	k in
order to ensure that these solutions are properly normal-
ized. (They are, by construction, already mutually orthogo-
nal.) To obtain this, we can compute the inner product

ða	kja�lÞ¼ i�
Z
d�d2x?ða�	k _b�l� _a�	kb�lÞ

¼ i�2��ð	��Þ�klj�	kj2Hð2Þ�
i	 ð�k�Þ@

$
�H

ð2Þ
i	 ð�k�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�4ie��	=��

¼8�ð	��Þ�klj�	kj2e��	; (25)

where the identity used to go from the second to the third

line is the Wronskian between Hð1Þ
�i	 ¼ ðHð2Þ

i	 Þ� and Hð2Þ
i	 . If

we choose the integration measure over the indices 	, k to
be d�K � d	

2� d�k, then this inner product should be

2��ð	��Þ�kl, which can be satisfied by taking

�	k ¼
ffiffiffiffi
�

p
e�	=2

2
: (26)

2. Final form of the spectrum

Let us now summarize the results of this section. We
showed that the fluctuating fields defined in Eq. (11) should
have the explicit form

7Since we saw in the previous section that its time derivative
should vanish when � ! 0þ.

8One could also use the Bessel functions Ji	ð�k�Þ and
Yi	ð�k�Þ as the two independent solutions, but they are less
convenient in the problem at hand because they are both mix-
tures of positive and negative frequency components.

9For large arguments, one has

Hð2Þ
i	 ð�Þ �

�!þ1

ffiffiffiffiffiffiffi
2

��

s
e�ið��i�	=2��=4Þ:
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�ð�;�;x?Þ¼’ð�;x?Þþ
ffiffiffiffi
�

p
2

Z d	

2�
d�ke

�	=2c	ke
i	�

�
kðx?ÞHð2Þ
i	 ð�k�Þþc:c:; (27)

where the random coefficients in this linear superposition
have the variance

hc	kc�li ¼ 0; hc	kc��li ¼ ��ð	��Þ�kl: (28)

Thus far, we haven’t been very explicit about the nature of
the index k that labels the eigenfunctions of the operator
�r2

? þ V00ð’0Þ. This label is a two-dimensional continu-

ous index that plays the same role as the transverse mo-
mentum in the free case.10

The fields defined by Eq. (27) do not seem to have a
well-defined limit when � ! 0þ because the Hankel func-
tions oscillate like ��i	 as � approaches 0, and their
derivatives diverge. This forces us to start the time evolu-
tion at a small but finite time �0, rather than at exactly
� ¼ 0þ. In this respect the fields with rapidity-dependent
fluctuations superposed on the background field are quali-
tatively different from the background field, for which
starting from � ¼ 0þ poses no difficulty. However, the
finite �0 that we are forced to introduce as a consequence,
fortuitously has no effect on the physical results. Indeed,
since Eq. (27) is a solution of the equations of motion at
small �, one can prove that physical quantities computed at
some later time by averaging over these �’s will be inde-
pendent of the choice of �0 provided it is chosen to be small
enough. This will be checked in Sec. III C.

III. LATTICE IMPLEMENTATION

An explicit determination of the fields in Eq. (27)
requires that we solve the eigenvalue equation in Eq. (20).
Because this expression depends nonlinearly on the initial
background field, the solution has to be determined numeri-
cally. In this section, we will outline the numerical proce-
dure followed in the solution.

A. Discretization

In view of a numerical implementation, we discretize the
problem as follows (see Fig. 1):

(i) The transverse plane x? becomes a L� L lattice,
and the lattice sites are labeled by a pair of integers
ði; jÞ (that range from 0 to L� 1). We use periodic
boundary conditions. The indices i, j are thus de-
fined modulo L. We follow the convention to set the
transverse lattice spacing to unity, a? ¼ 1. All the
other dimensionful quantities of the problem are then

expressed in units of the appropriate power of the
transverse lattice spacing. For example, the values of
the time quoted later on in the paper should be
understood as values in units of �=a?.

(ii) We consider a unit slice of rapidity, discretized in N
intervals, labeled by an integer n that ranges from 0
to N � 1. We also adopt periodic boundary condi-
tions here. This is justified for high-energy colli-
sions because we expect observables to be invariant
by translation in � for the � range of interest for
thermalization. The index n is thus defined modulo
N. The lattice spacing in the rapidity direction is
dimensionless and its value is h � 1=N.

(iii) We discretize the second derivatives in� and x? by
symmetric finite differences as

@2��! 1

h2
ð�nþ1ijþ�n�1ij�2�nijÞ

r2
?�!�niþ1jþ�ni�1jþ�nijþ1þ�nij�1�4�nij:

(29)

(iv) Time remains a continuous variable.11

On the lattice, the eigenvalue problem for finding the

k’s is transformed into the problem of finding the eigen-
values and eigenvectors of a real symmetric matrix, since

½�r2
?þV00ð’0Þ�
!ðD
Þij

�4
ij�
iþ1j�
i�1j�
ijþ1

�
ij�1þV 00
ij
ij: (30)

Thus, the L2 � L2 matrix Dij;kl that we must diagonalize

has the following expression

Dij;kl ¼ ð4þ V 00
ijÞ�ik�jl � ð�iþ1k þ �i�1kÞ�jl

� �ikð�jþ1l þ �j�1lÞ: (31)

This diagonalization will provide us a set of L2 eigenvec-

tors 
ðpÞ
ij such thatX

kl

Dij;kl

ðpÞ
kl ¼�2

ðpÞ

ðpÞ
ij

X
ij


ðpÞ�
ij 
ðqÞ

ij ¼L2�pq: (32)

Once this is done, the fields of Eq. (27) can be written as

�nijð�Þ ¼ ’ijð�Þ þ
ffiffiffiffi
�

p
2NL2h

XN�1

v¼0

e�	=2

� XL2�1

p¼0

½cvpe2i�vn
N 
ðpÞ

ij Hð2Þ
i	 ð�ðpÞ�Þ þ c:c:�; (33)

where 	 is an eigenvalue of the discretized operator @2�10In the free case, the corresponding measure and delta function
would thus be defined as

d�k � d2k?
ð2�Þ2 ; �kl � ð2�Þ2�ðk? � l?Þ:

11Time steps in the numerical implementation can be made as
small (and even changed dynamically) as needed to ensure the
desired accuracy.
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	2 ¼ 2

h2

�
1� cos

�
2�v

N

��
; (34)

and where the cvp are random Gaussian numbers with the

variance

hcnpc�mqi ¼ NL2h

2
�nm�pq: (35)

B. Special case of a uniform background field

If the background field ’ð�; x?Þ is independent of x?,
the diagonalization of the matrixDij;kl is trivial because V

00
ij

is just a constant mass term m2 ¼ g2 ’ð0þÞ2
2 , independent

of position in the transverse plane. The eigenfunctions
are, thus, plane waves labeled by two integers p, q between
0 and L� 1,


ðpqÞ
ij ¼ e

2i�ðpiþqjÞ
L ; (36)

and the corresponding eigenvalues are

�2
ðpqÞ ¼ m2 þ 2

�
2� cos

�
2�p

L

�
� cos

�
2�q

L

��
: (37)

C. Independence with respect to the initial time

As noted previously, one cannot take the time to zero in
Eq. (27) due to the oscillatory behavior of the Hankel
functions. Thus, one must choose a small initial time �0,
compute the initial fields at this time, and proceed with the
time evolution from there. However, since this initial time
is arbitrary, observables should not depend on it. One could
view this question within the framework of the renormal-
ization group: observables can be made independent of �0
by making the ensemble of initial fields depend on �0 in
such a way as to compensate for the fact that the time
evolution starts at �0. In fact, the time dependence of
Eq. (27) is precisely what is needed to achieve this.

In Fig. 2, we show the time evolution of the energy
density " and transverse pressure PT (see Eq. (48) for
explicit expressions in terms of the scalar field) of the
system for two different initial times, �0 ¼ 10�2 and
�00 ¼ 10�1. One can see that, for the times that are common

to the two evolutions, these physical quantities do not
depend on the time at which the system is initialized.
One should add a word of caution here. This statement is
true only as long as the initial time �0 is small compared to
the physical time scales in the problem (for example, the
period of the oscillations of the pressure in Fig. 2). Note
also that the classical background ’, itself, in Eq. (27)
evolves from �0 to �

0
0, although this is a small effect if both

initial times are small.

D. Unstable modes

A crucial aspect of dynamics in this theory is the
presence of instabilities that are amplified by parametric
resonance (see also Ref. [74] for a discussion of this
question). We saw in Ref. [67] that the resonance band
for a constant volume is fixed and that its boundaries are
proportional to the amplitude of the background classical
field. The situation becomes more complicated when the
system is free to expand in the z direction.
For simplicity, let us assume that the background field ’

is spatially homogeneous.12 The linearized equation of
motion for a small fluctuation of wave numbers 	 and k?
propagating over this background reads

10-1

10 0

10 1

10 2

10 3

10 4

10-2 10-1 100 101

τ

PT(τ0 =0.01)

ε(τ0 =0.01)

PT(τ0 =0.1)

ε(τ0 =0.1)

FIG. 2 (color online). Time evolution of some components
of the energy-momentum tensor, for two different initial
times �0 ¼ 0:01 (solid lines) and 0.1 (points). This computation
was done on a 20� 20� 20 lattice with 256 field configura-
tions. All the plots presented in this paper (with the exception
of Fig. 17 in Appendix B) correspond to coupling constant
g ¼ 4.

L

N
L

a⊥
h

x

y

η

FIG. 1 (color online). Details of the lattice discretization used
in our numerical implementation.

12This choice is the one for which the structure of the resonance
band is the simplest. See for instance Ref. [69].
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€aþ 1

�
_aþ

�
k2? þ 	2

�2
þ g2

2
’2ð�Þ

�
a ¼ 0: (38)

When the background field is not present (’ � 0), the
solutions of this equation are the Bessel functions
Ji	ðk?�Þ and Yi	ðk?�Þ. At late times, they oscillate with

an amplitude that decreases like ��1=2. When ’ � 0, one
can check (numerically) at any given time whether the
fluctuation of wave numbers 	, k? has the expected mag-
nitude, namely, if they were decreasing at the pace of the
aboveBessel functions or if they are larger than expected. If
the latter is the case, one interprets this mode to have been
amplified by the resonance in the course of its evolution.

In Fig. 3, we plot modes that are unexpectedly large at
the time � for three values of �. The number of modes that
have been affected by the resonance increases with time.
Moreover, the boundary of this region is well reproduced
by a line of constant k2? þ 	2=�2. This fact is easy to

understand semiquantitatively from what we know about
the resonance in the fixed volume case. There, the resonant
modes form a narrow band

R� < k2? þ k2z < Rþ; (39)

where R� are two numbers proportional to the amplitude
squared of the background field. The resonance occurs due
to a special tuning between the effective mass k2 of a mode
and its coupling to the oscillating background field. In the
expanding case, it is the combination k2? þ 	2=�2 that

plays the role of a mass term for the mode. For large times
such that the variations of 1=�2 are slow compared to the
oscillations of the background field, we can justly trans-
pose to this case the resonance condition obtained in the
nonexpanding case. We then get the resonance condition,

R� < k2? þ 	2

�2
< Rþ: (40)

These inequalities define a domain that has the shape of a
narrow corona in the 	, k? plane. The main effect of the

expansion is that this corona expands with time, starting
very close to the 	 ¼ 0 axis and progressively moving
towards larger values of 	. Therefore, the modes that are
unstable are not the same at all times. Moreover, a given 	,
k? mode can only be resonant during a finite amount of
time while the resonance band is sweeping through it.
During this time, it is amplified by some possibly large
but always finite factor.
From this discussion it is easy to understand Fig. 3. The

shaded areas represent all the modes that have been reso-
nant at some point between the initial time and the time �
of interest. This domain is the addition of the locations of
the resonance band for all the times up to �. In this
interpretation, the boundary of the domain (of equation
k2? þ 	2=�2 ¼ const) corresponds to the modes that are

just starting to become resonant at the time �. Note that the
modes that become resonant at late times are not amplified
as strongly as those that resonate early: indeed, as known
already for a fixed box, the Lyapunov exponent is propor-
tional to the amplitude of the background field, which in
this case decreases with time.

IV. OCCUPATION NUMBER

In the next two sections, we will discuss results from our
lattice simulations. In this section, wewill discuss results for
the occupation number. In the following section, results for
components of the stress-energy tensor will be presented.

A. Definition

We begin with the Fourier decomposition of a free scalar
field operator13 in the system of coordinates ð�; �; x?Þ

�̂ð�; �; x?Þ ¼
ffiffiffiffi
�

p
2

Z d2k?
ð2�Þ2

d	

2�
e�	=2Hð2Þ

i	 ðk?�Þâ	k?

� ei	�eik?�x? þ H:c:: (41)

One may check immediately that this expression is a
solution of the free-field equation of motion. This equation
can be inverted to obtain creation and annihilation opera-
tors expressed in terms of the field as

â	k? ¼ i�e�	=2
ffiffiffiffi
�

p
2

Z
d2x?d�e�ik?�x?

� e�i	�Hð2Þ�
i	 ðk?�Þ@

$
��̂ð�; �; x?Þ: (42)

The normalization in these formulas has been chosen to
satisfy

½â	k? ; ây	0l?
� ¼ ð2�Þ3�ð	� 	0Þ�ðk? � l?Þ; (43)

given the canonical commutation relations for the field
operator. When we set 	 ¼ 	0 and k? ¼ l?, the delta
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FIG. 3 (color online). Modes that have been amplified by the
instability at various times in the evolution.

13The seemingly peculiar normalization factors in this formula
will become clear after Eq. (43).
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functions on the right-hand side become S?L�, where S?
is the transverse area of the system and L� the length of the

rapidity interval under consideration.
As explained in Ref. [68] (Secs. IVA and IVB), it is

straightforward to obtain the expectation value of the sym-
metric combination ayaþ aay in the resummation
scheme we are using here. For creation and annihilation
operators normalized as in Eq. (43), it is natural to define
the occupation number as

1þ 2f	k? � 1

S?L�

hây	k? â	k? þ â	k? â
y
	k?i: (44)

From Eq. (42), the occupation number computed in our
resummation scheme can be expressed as

f	k?ð�Þ ¼ � 1

2
þ ��2e�	

4S?L�

���������
Z

d2x?d�e�i	�e�ik?�x?

�Hð2Þ�
i	 ðk?�Þ@

$
��ð�; �; x?Þ

��������2
	
: (45)

Here, �ð�; �; x?Þ is a classical solution of the field equa-
tion of motion, and the brackets denote the average over
the Gaussian ensemble of initial conditions.

A crucial aspect of Eq. (45) is the prefactor �2e�	 in
front of the integral that ensures that each mode is
weighted correctly at all times despite the dilution due to
the longitudinal expansion of the system. One can also
check that this formula gives a vanishing occupation num-
ber in the case of pure vacuum fluctuations (i.e., with �
replaced by Eq. (27) with ’ � 0). Moreover, we have
checked that, when evolved in time with the interacting
equation of motion, this vacuum ensemble of fields evolves
in such a way as to give a vanishing occupation number
over all the time range of interest.14

B. Time evolution

In Fig. 4, we show the occupation number at two times,
computed on a 40� 40� 80 lattice, for an initial classical
background field ’0ðx?Þ at � ¼ 0þ. As an example, we
take a background field that initially contains only a single
mode k?,

’0ðx?Þ ¼ ’0 � cosðk? � x?Þ: (46)

This is arguably a simplistic toy model of the classical
background field. In the color glass condensate description
of a heavy-ion collision, the classical background field
would contain a range of nonzero modes up to the satura-
tion momentum. The coupling constant used in this
computation, and in all the plots shown in this paper, is
g ¼ 4. The value of the background field has been taken to
’0 ¼ 15 and k? ¼ 0:77. At the time � ¼ 0:1, a harmonic
of the initial k? mode has already started to grow in the
distribution (see the second peak in the left plot of Fig. 4),
but its amplitude is comparatively very small (note that the
vertical axis is logarithmic). On the other hand, the distri-
bution in 	 is still confined at 	 ¼ 0 because the fluctuating
part of the fields is still very small compared to the boost
invariant classical background. The plot on the right of
Fig. 4, that represents the occupation number at the time
� ¼ 200, shows that a continuum of k? and 	 modes
eventually get populated after some evolution.
This plot also illustrates the main difficulty in simulating

an expanding system. Over time the distribution extends in
the 	 direction and eventually reaches the lattice cutoff in
this variable. The origin of this behavior can be easily
understood. For simplicity, let us assume that the system

FIG. 4 (color online). Occupation number at times � ¼ 10�1 and � ¼ 200, on a 40� 40� 80 lattice.

TABLE I. Maximal time as a function of the number of lattice
spacings in the � direction.

N �max

80 120

160 220

320 300

14If this evolution is carried to extremely large times, we
may expect that these vacuum fluctuations will eventually ther-
malize [75].
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has reached local thermal equilibrium and expands follow-
ing ideal Bjorken hydrodynamics. Then its energy density

decreases like �	 ��4=3 and its temperature decreases like

T 	 ��1=3. The temperature is roughly the extent of the
support of the occupation number in the variables k? and
kz. Therefore in these variables the support of the occupa-
tion number tends to shrink slowly with time. However, at
late times the variables kz and 	 are related by

kz 	 	

�
; (47)

and, therefore, a shrinkage as ��1=3 of the momentum kz
corresponds to an increase with �2=3 of the variable 	.
Therefore, if the system thermalizes15 or approaches ther-
mal equilibrium, there will always be a time when the
support of f	k? hits the lattice cutoff in the variable 	 no

matter how high this cutoff is.
This is a serious issue for our simulation because physi-

cal quantities computed after this time will be contaminated
by lattice artifacts. This is the case, in particular, for com-
ponents of the pressure tensor as they are sensitive to the
hardest populated modes in the system. When the occupa-
tion number reaches the upper 	 limit, the distribution in kz

is artificially cut off, which leads to a reduction of the
longitudinal pressure. If we were to pursue the time evolu-
tion much beyond this time, the system would effectively
become two-dimensional and we would get the incorrect
result PL 
 P?.
A computationally expensive but otherwise straightfor-

ward way to avoid this problem is to have a finer discre-
tization in the rapidity direction, dividing the unit rapidity
interval we are considering in a large number N of lattice
spacings. As N increases, we can push the time evolution
to later times. In Table I, we give an estimate (obtained by
computing the occupation number at various times and
observing when its support first reaches 	max) of the
maximal time, for a given N, when lattice artifacts are
negligible. In the rest of the paper, we shall present results
obtained on a 40� 40� 320 lattice, which allows us to
go safely up to � ¼ 300. The occupation numbers at the
times � ¼ 10, 50, 100, and 300 are shown in Fig. 5.

V. ENERGY-MOMENTUM TENSOR

A. Definition

We are now ready to explore the evolution of the energy-
momentum tensor. Besides the relaxation of the system
toward an equation of state, the longitudinal expansion
means that there is no guarantee that the transverse and

FIG. 5 (color online). Occupation number at times � ¼ 10, 50, 100, and 300, on a 40� 40� 320 lattice.

15In contrast, if the system is free streaming, k?	const and kz	
��1. This corresponds to a constant support both in k? and in 	.
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longitudinal pressures will be equal. However, for hydro-
dynamics to be applicable, the anisotropy of the pressure
tensor should not be large. It is therefore of the utmost
importance to determine whether the longitudinal and
transverse pressures ever approach each other for the ex-
panding system.

In the ð�; �; x?Þ system of coordinates, the diagonal
components of the energy-momentum tensor are given
by

"¼1

2
ð _�2þðr?�Þ2þ��2ð@��Þ2ÞþVð�Þ

Txx¼1

2
ð _�2þð@x�Þ2�ð@y�Þ2���2ð@��Þ2Þ�Vð�Þ

Tyy¼1

2
ð _�2�ð@x�Þ2þð@y�Þ2���2ð@��Þ2Þ�Vð�Þ

�2T��¼1

2
ð _�2�ð@x�Þ2�ð@y�Þ2þ��2ð@��Þ2Þ�Vð�Þ:

(48)

The transverse pressure is PT � ðTxx þ TyyÞ=2, and the
longitudinal pressure is PL � �2T��. All these quantities,
written here for a single classical field configuration, must
of course be averaged over the Gaussian ensemble of initial
conditions derived in Sec. II.

When computing the energy momentum tensor, it is
important to do so on a lattice that has a fine enough
spacing in the rapidity direction, as explained in the pre-
vious section. The artifacts one obtains at large time if this
is not the case are illustrated and discussed in Appendix A.
In the rest of this section, all the numerical results have
been obtained on a 40� 40� 320 lattice.

It is also important to subtract the contribution of the
vacuum. Indeed, our resummation leads to severe ultravio-
let divergences in the energy-momentum tensor that be-
have generically like the fourth power of the ultraviolet
cutoff (here, the inverse lattice spacing). This unwanted
term is a pure vacuum contribution, and it can be removed
by subtracting the result from another computation in
which the background field ’ in Eq. (27) is set to zero
(vacuum). In all the quantities presented later on, this
subtraction has been performed.

B. Equation of state

The first thing to assess is whether the system obeys
an equation of state. Toward that end, we plot in Fig. 6
the energy density and the sum of the three pressures. As in
a system with a fixed volume (see Ref. [67]), the pressure
oscillates rapidly initially, with the oscillations being
damped and disappearing eventually. When this happens,
one sees that

� ¼ 2PT þ PL; (49)

within statistical errors.

If one recalls the conservation equation16 that drives the
time evolution of the energy density,

@�

@�
þ �þ PL

�
¼ 0; (50)

it is also instructive to compare the time dependence of the
energy density with two power laws that have a special
physical meaning:
(i) ��1, expected for a system whose longitudinal pres-

sure is negligible,

(ii) ��4=3, expected when PL ¼ PT ¼ �=3.

As one can see, at the beginning of the evolution, the
energy density decreases approximately like ��1, while it

is well fitted by ��4=3 at later times. This is suggestive of
the fact that the system is initially highly anisotropic, and
then becomes nearly isotropic later on.

C. Isotropization

Given the above results on the time dependence of the
energy density, let us now look at the evolution of the
transverse and longitudinal pressures separately. This is
illustrated in Fig. 7. (We also plot the energy density and
the sum of the three pressures in order to compare the time
scales for the relaxation of the pressures and for isotrop-
ization). In this plot, one can distinguish three stages in the
time evolution of the pressures:

10-2

10-1

100

101

 10  100

 τ

τ-4/3

τ-1

2PT + PL

ε

FIG. 6 (color online). Time evolution of the energy density and
of the trace of the pressure tensor, compared to the power law
behaviors ��4=3 and ��1. Note: we are plotting the absolute
value of the pressure, since at early times its sign changes
periodically.

16This is an exact equation, valid whether the system is in
equilibrium or not. Note that since the energy density has a
smooth derivative at � ¼ 0þ (see for instance Fig. 2), the
longitudinal pressure must be negative and equal to PL ¼ ��
at � ¼ 0þ. This is indeed the case but not obvious from the
figures, where we plot the absolute value of the pressures.
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(i) At early times (on time scales comparable to that of
the relaxation of the pressure or shorter), one sees
that the magnitude of the longitudinal pressure drops
very quickly. When well -defined quasiparticles can
be identified in the spectrum of the theory, this can be
understood from the kinetic theory formula for the
longitudinal pressure

PL ¼
Z d3p

ð2�Þ3
p2
z

jpj fðpÞ; (51)

as a consequence of the redshifting of the longitudi-
nal momenta due to the expansion of the system.
Indeed, particles with a nonzero pz eventually es-
cape from the unit slice of rapidity whose evolution
we are considering. This is illustrated in Fig. 8. At

early times, the system we are considering is
arguably not amenable to a description in terms of
quasiparticles. However, the above argument about
redshifting applies equally to the longitudinal
pressure of a system of fields and implies a rapid
decrease of its magnitude.

(ii) Next, a dramatic change of behavior occurs. The
longitudinal pressure increases rapidly and ap-
proaches the transverse pressure. This change be-
gins when the oscillations of the pressure have
become small. Moreover, from Fig. 5, we see that
this occurs when the particle distribution starts to
expand and occupy modes in the 	 direction.

(iii) Eventually, the longitudinal pressure becomes very
close to the transverse one, albeit at times much
later than the relaxation of the pressure. This con-
firms what was guessed on the basis of the time
dependence of the energy density alone.

The difference between the transverse and longitudinal
pressures essentially arises from the sign with which the
various spatial gradients of the field enter in the formulas
(48). In particular, it easy to see from these formulas that
the two pressures are equal provided that

1

2
ðr?�Þ2 ¼ 1

�2
ð@��Þ2: (52)

In order to better understand the evolution of the two
pressures, we have represented in Fig. 9 the expectation
values of the two quantities ðr?�Þ2=2 and ��2ð@��Þ2.
Note that these quantities have been vacuum subtracted,
as explained after Eq. (48), which means that they are not
necessarily positive. Negative values are indicated in the
plot by a dotted line instead of a solid one.

10-3

10-2

10-1

100

101

 0  50  100  150  200  250  300
 τ

2PT + PL

ε
PT

PL

FIG. 7 (color online). Time evolution of the diagonal compo-
nents of T�	 and of the trace of the pressure tensor. Note: we are
plotting the absolute value of the pressures, since at early times
their sign changes periodically.

τ1

τ2

FIG. 8 (color online). Evolution of the distribution of longitu-
dinal momentum in a slice of rapidity, for particles undergoing
free streaming. The thick arrows represent the velocities of the
particles. The thin straight lines represent the trajectories of free
particles—at constant velocity. At the time �1, we assume that
the rapidity slice under consideration contains particles with all
longitudinal momenta. After some period of free streaming to
the time �2, only particles whose momentum rapidity y equals
the space-time rapidity � are left.

10-4

10-3

10-2

10-1

100

101

 0  50  100  150  200  250  300
τ

PT

PL

[(∂φ/∂x)2+(∂φ/∂y)2] / 2

(∂φ/∂η)2 / τ2

FIG. 9 (color online). Time evolution of the transverse and
longitudinal gradients that enter in the pressures. The dotted line
means that the corresponding quantity is negative. (We have
plotted here its absolute value). We also plot the time evolution
of the transverse and longitudinal pressures for easy reference.
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At very early times, the transverse gradient is moder-
ately small and positive, while the longitudinal gradient
is large and negative (after we have subtracted the contri-
bution from the vacuum). Up to � � 10, the transverse
gradient remains roughly constant (more precisely, it os-
cillates around a constant value), while the magnitude of
the longitudinal gradient decreases very rapidly. (Note that
since it is negative, this means that it is in fact increasing
with time).

For a short period of time after � � 10, the transverse
gradient increases mildly. From the plots showing the
evolution of the occupation number in Fig. 5, this is clearly
related to the expansion of the particle distribution in k?.
During this period, the transverse gradient is much larger
than the longitudinal one (which is still negative), and
therefore the longitudinal pressure is much smaller than
the transverse one.

A qualitative change in behavior occurs around � � 50:
the longitudinal gradient evolves faster than the transverse
one and it increases rapidly, approaching zero to become
positive shortly after � � 100. The consequence on the
longitudinal pressure is a rapid increase despite the expan-
sion of the system. Microscopically the increase of the
longitudinal gradients is presumably due to the resonance
that can reshuffle efficiently momenta now that the expan-
sion rate of the system is lower. (Before that point, any
particle that was scattered at a nonzero pz immediately
escaped from the rapidity slice under consideration).
This trend continues until the transverse and longitudinal
gradients become comparable, at which point the two
pressures are nearly equal.

InAppendix B,we study how the isotropization timescale
varies when we change the amplitude of the background
field and the coupling strength; our results show that iso-
tropization is faster for larger fields and/or larger couplings.

VI. COMPARISON WITH HYDRODYNAMICS

The previous results indicate that the trace of the pressure
tensor relaxes to its equilibrium value. Subsequently, the
longitudinal pressure approaches the transverse one and the
system becomes isotropic despite the continuing longitudinal
expansion. A natural question to ask is whether the details of
this time evolution are compatible with hydrodynamics.17 Of
course it does not make sense to try answering this question
before the time at which the pressures become well defined,
namely, before the pressure oscillations have disappeared.
Further, it is clear that to map our pressures onto hydro-
dynamics, a minimal requirement is to include a shear
viscosity that will allow the pressure tensor to be anisotropic.
Given the geometry of our setup, it is sufficient to consider

boost invariant hydrodynamics. Also, since our problem is
translationally invariant in the transverse directions, we can
set the transverse fluid velocity to zero.

A. Energy and momentum conservation

In this situation, the time evolution of the energy density
is related to the longitudinal pressure,

@�

@�
¼ � �þ PL

�
: (53)

A first consistency check that we can make is to verify that
this equation holds from our numerical results. This is
shown in Fig. 10, where one clearly sees that this equation
is satisfied. This should, of course, not be a surprise be-
cause the equation comes directly from the conservation of
energy and momentum and should be satisfied regardless
of whether hydrodynamics applies or not.

B. Comparison with first-order viscous hydrodynamics

The previous check was merely a verification that our
numerical approach fulfills basic conservation laws. In
order to go further, let us recall that in first order viscous
Bjorken hydrodynamics the longitudinal and transverse
pressures would be given by

PT ¼ �

3
þ 2�

3�
PL ¼ �

3
� 4�

3�
; (54)

where � is the shear viscosity. This ansatz assumes that we
are already in the regime where � ¼ 2PT þ PL and attrib-
utes the difference between the two pressures to the effect
of the shear.
First of all, we can compare the time evolution of the

pressure anisotropy, ðPT � PLÞ=�, shown in Fig. 11, with
what one would expect in a hydrodynamical expansion.
From the time where the oscillations of the pressures have

0  50  100  150  200  250  300
τ

(PL + ε) / τ

- (dε / dτ)

0.0001

 0.001

 0.01

 0.1

1

FIG. 10 (color online). Comparison between the two sides of
Eq. (53).

17See Ref. [76] for a recent review on relativistic hydrodynam-
ics. One can also find an interesting comparison between an
exactly solvable (via the AdS/CFT correspondence) toy model at
strong coupling and relativistic hydrodynamics in Ref. [77].
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died out to the time where this anisotropy has become very
small, it can be fitted by an exponential form
expð��2=2a2Þ. At later times, the quality of the fit can

be improved slightly by adding a term in ��2=3. (Note that
at times greater than � * 280, the anisotropy rises again
due to lattice artifacts).

If the decrease of the anisotropy was driven by viscous
hydrodynamics, one would expect its behavior to be a

power law ��2=3, not an exponential. Although it is not
easy to pinpoint what precisely is causing this exponential
falloff of the anisotropy, it seems very plausible that the
presence of instabilities in the microscopic dynamics of the
system is responsible. One may argue that the hydrody-
namical regime only starts when the power law term in

��2=3 becomes important—roughly after �	 200 lattice

spacings. Then one could turn the coefficient b of the ��2=3

term into a value of the ratio �=s. The dimensionless ratio
�=s determines the strength of the viscous effects on the
hydrodynamical evolution of the system. In a scale-
invariant theory like the one we consider here, it is natural
that this ratio is a fixed number18 that depends only on the
value of the coupling constant g. In the hydrodynamical
regime, one would have

�
PT � PL

�

�
hydro

¼ 2
�

s

s

��
� �

s

2

A1=4|fflffl{zfflffl}
b

1

�2=3
; (55)

where we have used the Stefan-Boltzmann formulas to
estimate the energy and entropy density (assuming the
system is close to equilibrium),

� ¼ �2T4

30
; s ¼ 2�2T3

45
; s � �3=4; (56)

and where A is the coefficient in the asymptotic behavior of

the energy density, � � A��4=3. From this formula, we
extract the following value for the ratio �=s,

�

s
� 0:26; (57)

with a large systematic uncertainty due to the limitations of
our analysis outlined previously.
To go beyond this simple comparison, we should solve

Eq. (53) with the ansatz of Eq. (54) for the longitudinal
pressure. To close the equation, we need a way to relate� to
�, with Eq. (56). Even without solving the hydrodynamical
equations, we can use this approximation for the entropy
density in order to extract an effective �=s from our nu-
merical results. This amounts to rewriting Eq. (54) as

PT ¼�

3
þ 2

3�

�
�

s

�
eff
�3=4; PL¼�

3
� 4

3�

�
�

s

�
eff
�3=4: (58)

Contrary to the estimate in Eq. (57), where we attributed to
the viscosity only the power law term in the difference
PT � PL, we now define this effective viscosity from the
full difference, including also the exponential term. This
effective ratio can be computed at each time, and is shown
in Fig. 12. The first thing one sees is that it is not constant,
which certainly means that there are discrepancies with
hydrodynamics. The value of this ratio before � � 70
probably does not make much sense, because the pressures
are oscillating before this time. After that, the ratio starts
near a value of 10 and decreases rapidly to reach a value of
about 0.5. In addition to the nonconstancy of this ratio, it
should be noted that its value is quite small compared to the
perturbative value. For a real scalar field theory with a
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τ

(PT - PL) / ε

c*exp(-τ2/2a2) + b/τ2/3

c*exp(-τ2/2a2)
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FIG. 11 (color online). Time evolution of the pressure anisot-
ropy ðPT � PLÞ=�. Red dotted line: fit in expð��2=2a2Þ. Black
solid line:fit inexpð��2=2a2Þplusapower law.The relaxation time
in the exponential isa � 82:9 lattice spacings, and the coefficient of
the power law correction is b � 0:182 (in lattice units).
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FIG. 12 (color online). Evolution of the effective �=s ratio.
We have also represented the perturbative value of this ratio,
the value extracted from the power term [Eq. (57)], and the
conjectured lower bound 1=4� derived in AdS/CFT at strong
coupling.

18This statement is true at the order at which we analyze the
system but would be violated once one includes running cou-
pling effects.
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g2�4=4! coupling, the lowest order perturbative result [78]
is roughly

�

s
	 104

g4
: (59)

Given that g ¼ 4 in our simulation, one would expect
�=s	 40, which is must larger than the effective ratio we
observe. In other words, the system of fields we have
studied is a much better fluid than one would expect on
the basis of the perturbative estimates of the viscosity to
entropy density ratio. This anomalously small value of the
�=s ratio is perhaps related to the phenomenon discussed in
Refs. [79,80] where it is argued that, in systems subject to
turbulent unstable fields, momentum transport may occur as
if the viscosity were much smaller than naive estimates
from transport cross sections.

To carry the comparison of our simulations with hydro-
dynamics even further, we must solve the hydrodynamic
equations; using Eq. (56), the evolution of � in viscous
hydrodynamics has the closed form

@�

@�
þ 4

3

�

�
� 4�

3s

�3=4

�2
¼ 0: (60)

Comparisons between the two frameworks can be per-
formed as follows:

(i) Choose an initial time �0, where hydrodynamics is
initiated. This time should be well after the oscilla-
tions in the pressures have disappeared.

(ii) Initialize the energy density so that it has the same
value in the two frameworks at �0.

(iii) Set the value of the ratio �=s in order to have the
right values for the transverse and longitudinal
pressures at �0. This is always possible if �0 is in
the region where � ¼ 2PT þ PL.

(iv) Solve (numerically) the differential equation (60)
from these initial conditions and compare with the
evolution one obtains in classical statistical field
theory.

The result of this comparison is shown in Fig. 13, for three
values of the initial time �0 for hydrodynamics. The main
lesson from this figure is that the pressure tensor isotrop-
izes much faster in classical statistical field theory than it
does in hydrodynamics. Hydrodynamics begun at earlier
times cannot compete and thus flow and viscosity bounds
derived from such exercises are suspect.

The last pair of hydro curves, with an initial time
�0 ¼ 200, remains close to the true evolution, but this is
only because it starts with an already small amount of
anisotropy. Therefore, for hydrodynamics to describe accu-
rately the evolution, hydrodynamical evolution should be
initiated at a time where the pressure tensor is already close
to isotropy. Our comparison is based on first-order viscous
hydrodynamics only. Arguably, viscous corrections are
large in the system when PT and PL differ substantially

and it is unclear whether first order hydrodynamics is a
valid approximation.
We close this section with a generic comment about the

isotropization time. The precise value of the time we obtain
in this model of scalar fields is of little relevance for
the analogous question in QCD because the two theories
are quite different in many respects. However, we expect
that the conclusion that the true isotropization time is
considerably shorter than the time one would infer from
hydrodynamics (or equivalently from a Boltzmann equa-
tion) is quite generic in theories with instabilities. The
other lesson from this comparison is that such systems
may have an effective viscosity-to-entropy density ratio
which is much smaller than what one expects from pertur-
bation theory. Therefore, one could have nearly ideal fluid
behavior without invoking strong coupling. Moreover, we
know from Ref. [68] that full thermalization of this system
takes much longer than the times considered here. We may
conclude that full thermalization is not necessary for a hydro-
dynamical description; only near isotropy is important.

VII. SUMMARYAND OUTLOOK

This work extends our previous study of the role of
quantum fluctuations on the thermalization of strong fields
(subject to instabilities) to the situation where the system
undergoes longitudinal expansion. We considered a one-
component scalar field theory, which is much simpler to
study numerically than Yang-Mills theory and imple-
mented the same resummation program that one would
employ in studying the early stages of heavy-ion collisions
in the color glass condensate framework.
As in the case of a system confined to a fixed box, the

trace of the pressure tensor exhibits rapid temporal oscil-
lations that are quickly damped via the phenomenon of

10-2

10-1

 50  100  150  200  250  300
 τ

  PT

  PL

   τ0 = 70 :

  PT

  PL

   τ0 = 100 :

  PT

  PL

   τ0 = 200 :

  PT

  PL

FIG. 13 (color online). Comparison between classical statisti-
cal field theory and first order viscous hydrodynamics, for
various starting times of the hydrodynamical evolution (�0 ¼
70, 100, 200). Solid lines: pressures in classical statistical field
theory. Dots: results of first-order viscous hydrodynamics.
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phase decoherence. Following this state we find that the
sum of the three pressures becomes equal to the energy
density (a well-define equation of state exists), but the
transverse and longitudinal pressures remain different until
full isotropization at an even later time.

The main new result of this study is that the pressure
tensor eventually becomes isotropic despite the longitudi-
nal expansion of the system. After an initial decrease due to
the rapid expansion at early times, the longitudinal pres-
sure increases at later times to reach a value that is very
close to that of the transverse pressure. This goes a long
way towards justifying the validity of the hydrodynamical
description for expanding systems, as encountered in
heavy-ion collisions.

We also studied the time evolution of the particle distri-
bution. Even with a very far from equilibrium initial con-
dition that has a single k? mode at � ¼ 0þ, a continuum of
modes rapidly gets filled by the nonlinear interactions of
the fields. This study of the occupation number highlights
an important limitation of numerical simulations that use
rapidity as the longitudinal coordinate, namely, the particle
distribution expands in 	—the conjugate momentum of
rapidity—over time and eventually reaches the ultraviolet
cutoff imposed on this variable by the lattice spacing.
Therefore, in order to pursue the study until sufficiently
large times without being affected by these lattice artifacts,
it is necessary to use a lattice that has a very fine mesh in
the rapidity direction. This issue is by no means specific to
a scalar theory and will be present when this approach is
applied to Yang-Mills theory.

In all the plots presented in this paper, all dimensionful
quantities were expressed in units of the appropriate power
of the transverse lattice spacing. Since the�4 scalar theory
in 3þ 1 dimensions is scale invariant at the classical level
(as is Yang-Mills theory), one can reexpress all of them in
terms of a single dimensionful physical parameter. In the
color glass condensate framework, this parameter would be
the saturation momentumQs of the colliding nuclei. Doing
this for QCD would provide an answer to the following
fundamental question: how long does isotropization take,
given the value of the saturation momentum and of the
strong coupling constant? However, the lessons of this
exercise in scalar field theory cannot be simply applied to
the gauge theory case because the former differs from QCD
in a number of crucial ways. To list a few, (i) the field
content of QCD is much richer, (ii) there is no meaningful
way to compare the coupling constants of the two theories,
and (iii) the strength of their instabilities is quite different,
both in range and in growth rate.

Thus, it is best to see the present work as a proof of the
concept that instabilities can isotropize the pressures of an
expanding system. The next step, obviously, is to apply the
same treatment to Yang-Mills theory. In a previous work
[66], we derived the spectrum of initial field fluctuations
that one must use in this computation. The numerical

implementation of this approach to a Yang-Mills theory
is underway but will require a significantly larger computa-
tional effort than what was needed for the present scalar
theory.
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APPENDIX A: LATTICE ARTIFACTS
AT LATE TIMES

As we have already explained in Sec. IVB, the
time extent of the simulation is limited by the finite
size of the lattice. We demonstrated that as the time in-
creases the particle distribution expands to larger 	 values,
(	 being the momentum conjugate to rapidity), until it is
artificially cut-off by the discretization in rapidity.
In Fig. 14, we show the practical significance of this

effect on the numerical computation of the components of
the energy-momentum tensor, for lattices with increasing
number of longitudinal spacings N (all describing a unit
slice of rapidity). We see that when the number of lattice
spacings in the rapidity direction is small (see the curves
for the 40� 40� 80 lattice), the ratio PL=� approaches
the isotropic value 1=3 and then departs from this value.
Likewise, the ratio PT=� approaches 1=3 from above,

0.0

0.2

1/3

0.4

0.6

 0  50  100  150  200  250  300
τ

PL / ε :     N = 80

PT / ε :     N = 80

 160

 160

 320

 320

FIG. 14 (color online). Time evolution of the ratios of longi-
tudinal and transverse pressure to the energy density, for several
choices of discretization in rapidity.
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before deviating from this value (in such a way that 2PT þ
PL remains equal to �). The time at which this occurs
agrees with the time when the particle distribution reaches
the longitudinal momentum cutoff as shown in Table I.
Figure 14 demonstrates that this artifact appears at later
times as the number of lattice spacings in rapidity is
increased.

The additional complication of renormalization must
also be considered when simulating scalar fields on a
lattice. While there is no mass term in our bare
Lagrangian, vacuum fluctuations induce a nonzero mass.
In a scalar �4 theory, the leading contribution stems from
the tadpole graph having a quadratic UV divergence. The
value of this tadpole is given as

m2 ¼ g2�

8

Z d2k?
ð2�Þ2

d	

2�
e�	jHð2Þ

i	 ðk?�Þj2: (A1)

which clearly exhibits the nature of its divergence. On the
lattice the above integral is replaced by a discrete sum
having a UV cutoff dictated by the size of the lattice
spacing. In �� � coordinates this mass is � dependent
(a fixed UV cutoff in 	 corresponds to a time dependent
cutoff in kz 	 	=�). Figure 15 shows the time evolutionm2

for various discretizations in rapidity. At intermediate
times the mass has a logarithmic sensitivity to the lattice
spacing.

In practice this means that computations done with the
same bare Lagrangian but having different longitudinal
discretizations correspond to different renormalized theo-
ries. The logarithmic dependence of this mass with N
means that it varies more rapidly at small N than at large
N, something that can be seen in Fig. 14 by comparing the
changes from N ¼ 80 to N ¼ 160 and from N ¼ 160 to
N ¼ 320. In the present work, we have not attempted to
renormalize the bare parameters as this will be further
complicated by the fact that we are treating the transverse

and longitudinal coordinates on different footings.
Therefore, one should keep in mind that the theory for
which results are presented in the paper is not a truly
massless theory, and the comparison between computa-
tions done at varying lattice spacings can only be made
qualitatively. We should stress that this issue should not
arise in gauge theories. In this case, gauge invariance of the
Wilson action prevents the generation of a mass term for
the gluons.

APPENDIX B: HOW GENERIC IS IT?
VARYING g2 AND ’

A natural question that arises is whether the isotropiza-
tion that we have observed is a generic phenomenon that
occurs for all choices of coupling strengths and back-
ground fields.
The scale invariance (at the classical level) of the theory

we are studying suggests that it should be generic for all
background fields since a larger background field can be
hidden in a rescaling of the time and spatial coordinates.
Due to the limitations inherent to the lattice setup, we
can only vary the background field in a limited window;
nevertheless, we have indeed observed numerically that
isotropization occurs regardless of the amplitude of the
background field. This is shown in Fig. 16, where the
time dependence of ðPT � PLÞ=� is represented for uni-
form background fields of amplitudes ’0 ¼ 15, 30, 50, 75.
Moreover, we see that the isotropization time decreases if
’0 increases. This decrease is expected because all time
scales should be inversely proportional to the field ampli-
tudes. Note that there are important lattice artifacts for the
smallest value of ’0 that are visible in the very small
change of the isotropization curve when going from ’0 ¼
15 to ’0 ¼ 30. In this regime of smaller fields, the tadpole
mass—due to the vacuum fluctuations that we have not
renormalized—seems to dominate the dynamics. This is a

 1
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N =  80
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FIG. 15 (color online). Tadpole contribution to the mass as a
function of time, for various longitudinal lattice spacings (and a
coupling constant g ¼ 4).

 0  50  100  150  200  250  300
τ

(PT - PL) / ε : φ0 =   15

30

50

75

0.01

 0.1

 1

FIG. 16 (color online). Dependence of the isotropization of the
pressure on the amplitude of the background field. The coupling
strength is the same in the three computations.
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lattice issue related to the breaking of the scale invariance
by lattice cutoffs of the theory we are simulating.

Less obvious is the question of what happens when
varying the coupling. We do expect the isotropization
time to decrease if we increase the coupling; however,
there could be some critical coupling below which isotrop-
ization never occurs. What we observe numerically over
the range of couplings explored (limited by the lattice
configurations) is that isotropization is faster at larger
coupling strengths, as shown in Fig. 17.

APPENDIX C: COMPUTATION OF HANKEL
FUNCTIONS OF IMAGINARY INDEX

In the computation of the initial conditions (Eq. (27))
and of the occupation number (Eq. (45)), we need Hankel

functions of imaginary index Hð2Þ
i	 . They are both needed at

small arguments (for the initial conditions), and at fairly
large arguments (for the occupation number). And we need
them for very large indices 	, since on a lattice with N
spacings in a unit rapidity interval, the maximal value of 	
is 	max ¼ 2N. Thus, for the value N ¼ 320 that we have

used in most of this paper, we need Hankel functions with
indices up to 640.
To the best of our knowledge, Hankel functions of

imaginary index are not implemented in the common
scientific numerical libraries such as CERNLIB or the
GNU Scientific Library, but it is fairly easy to evaluate
them numerically with high accuracy. First of all, one
should recall that they are solutions of the Bessel equation

f00 þ 1

�
f0 þ

�
1þ 	2

�2

�
f ¼ 0: (C1)

Naturally, a pair of linearly independent solutions of this
equation can be constructed numerically to any desired
accuracy. But the problem is to find the proper linear
combination of those that gives the desired Hankel func-
tion. It is best defined by its asymptotic expansion,

Hð2Þ
i	 ð�Þ¼

�
2

��

�
1=2

e�ið���=4Þe��	=2
Xn
k¼0

ð�1Þk
k!ð2i�Þk

�
	2þ12

4

�

�
�
	2þ32

4

�
���

�
	2þð2k�1Þ2

4

�
þOð��n�1Þ:

(C2)

This expansion should be used with caution, because it is
not a convergent series if summed to arbitrarily large n. But
at a given 	, one can find a sufficiently large � and an
optimal n such that the residual term is extremely small. In
practice, one computes the successive terms in Eq. (C2) for
a given 	 and a large �: they decrease for small k, but
eventually start increasing again for k larger than some n.
The last computed term before they start increasing is used
as an estimate of the error. If it is satisfactorily small, then
we compute the Hankel function and its first derivative by
summing the asymptotic expansion up to this n. If the error
is not small enough, we start over this process for the same
	, but a larger �.

At this point,weknow thevalue ofHð2Þ
i	 (and that of its first

derivative) for some value of �. The next step is to use these
as initial conditions to solve numerically the Bessel equa-
tion, both forward and backward in order to cover all the
desired range of arguments. This can be done to very high
accuracy by using a high order solver with adaptive steps.
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