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Despite the fact that the integral form of the equations of classical electrodynamics is well known, the

same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we

present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to

solve the long-standing problem of constructing conserved charges, for any field configuration, which are

invariant under general gauge transformations and not only under transformations that go to a constant at

spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-

Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral

form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them.

The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we

show that in many cases those charges must be quantized. Our results are important in the understanding

of global properties of non-Abelian gauge theories.
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I. INTRODUCTION

The integral form of the equations of classical electro-
dynamics precedes Maxwell equations and plays a crucial
role in the understanding of electromagnetic phenomena.
The non-Abelian gauge theories have been originally for-
mulated in a differential form through the Yang-Mills
equations, and its integral formulation has not been con-
structed. The aim of the present paper is threefold. First we
present the integral form of the classical equations of
motion of non-Abelian gauge theories, which allows us
to present the Yang-Mills equations as the equality of an
ordered volume integral to an ordered surface integral on
its border. Our construction was made possible by the
use of a generalization of the non-Abelian Stokes theorem
for two-form connections proposed some years ago in the
context of integrable field theories in dimensions higher
than two [1,2]. The volume- ordered integral presents some
highly nontrivial and nonlinear terms, involving the field
tensor and its Hodge dual, which certainly will play an
important role in the global aspects of the Yang-Mills
theory. The differential Yang-Mills equations are recovered
in the limit when the volume is taken to be infinitesimal.
The second goal of the paper is to solve the long-standing
problem of the construction of conserved charges that are
invariant under general gauge transformations. As it is well
known, the conserved charges presented in the Yang and
Mills original paper [3], as well as in modern textbooks,
are invariant under gauge transformations where the group
element, performing the transformation, goes to a constant
at spatial infinity. In the last decades several attempts were
made to find truly gauge-invariant conserved charges using

several techniques [4]. We show that our integral form of
Yang-Mills equations becomes a conservation law when
the volume where it is considered is a closed volume, i.e.,
a three-dimensional submanifold of the four dimensional
space-time which has no border. Using appropriate bound-
ary conditions, we obtain a closed expression for the con-
served charges as the eigenvalues of an operator obtained
by a volume-ordered integral, over the entire spatial sub-
manifold (fixed time). As a consequence of our integral
Yang-Mills equations, that operator can also be written as
an ordered surface integral on the border of the spatial
submanifold. That fact makes the evaluation of the charges
much simpler. We then show that such charges are invariant
under general gauge transformation, independent of the
parameterization of the volume, and on the reference
point used on that parameterization. The expression is
valid for any field configuration, and we evaluate it for
well-known solutions like monopoles, dyons, instantons
and merons.
The third goal of the paper is to construct the integral

form of the self-dual Yang-Mills equations. That is obtained
in a similar manner as that of the integral form of the full
Yang-Mills equations, but using instead the usual non-
Abelian Stokes for one-form connections. We show that
such integral formulation leads to gauge-invariant con-
served quantities, which are invariant under reparameteri-
zation of surfaces and independent of the reference point
used in such parameterization. The novelty is that the
charges are given by the eigenvalues of surface-ordered
integrals of the field tensor and its Hodge dual, and they
are shown to be constant on the other two coordinates
perpendicular to that surface.
The examples of monopoles, dyons, instantons and

merons discussed in the paper are very important to shed
light on the physical properties of the conserved charges.
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The first point is that for those well-known solutions, the
surface ordering becomes irrelevant in the evaluation of
the operators leading to the charges. In fact, those operators
tend to lie in the center of the gauge group, and the physical
charges are identified with the eigenvalues of the Lie
algebra elements which lead to those group elements under
the exponential map. That relation between charges and
elements in the center of the group leads, in many cases, to
the quantization of the physical charges. Another point is
that the charges are associated to the Abelian subgroup of
the gauge group. In the examples we have worked out,
there are no gauge-invariant conserved charges associated
to the generators lying outside the Abelian subalgebra.
A further point is that the charges associated to the
Wu-Yang monopole and the ’t Hooft-Polyakov monopole
are identical. In addition, they are shown to be conserved
due to the equations of motion, and no topological argu-
ments are used. The evaluation of the charges does not
involve the Higgs field and seems not to pay attention to the
symmetry-breaking pattern. The construction of the mag-
netic charges in our paper differs from the usual techniques
used in the literature involving homotopy-invariant quan-
tities, even though it leads to the same results. But our
methods allow us to evaluate charges for cases that were
not really known in the literature. We show that the merons
carry a charge, conserved in the Euclidean time, which is
identical to the magnetic charge of the Wu-Yang and ’t
Hooft-Polyakov monopoles.

Our construction explores loop-space techniques used in
the study of integrable theories in any dimension [1,2] and
may be important in the understanding of the integrability
properties of Yang-Mills theory as well as of its self-dual
sector. In fact, the most appropriate mathematical language
to phrase our results is that of generalized loop spaces.
There is quite a vast literature on integral and loop-space
formulations of gauge theories [5]. Our approach differs in
many aspects of those formulations even though it shares
some of the ideas and insights permeating them. We stress,
however, that the relevant loop space in our formulation
is that of the maps from the two-sphere S2 (and not from
the circle S1) onto the space-time, in the case of the full
Yang-Mills equations. For the self-dual sector, however,
the relevant loop space is that of the maps from the circle
S1 onto the space-time.

The connection between integrable field theories in any
dimension and loop-space techniques by exploring the
integral form of the equations of motion has been studied
in Ref. [6]. It was shown there that integrable field theories
in 1þ 1 dimensions, Chern-Simons theory in 2þ 1
dimensions, and Yang-Mills theory in 2þ 1 and 3þ 1
dimensions all admit a uniform formulation in terms of
integral equations on loop spaces, leading to a general
and unique method for constructing conserved charges.
The integral form of the Yang-Mills equations in 3þ 1,
discussed in this paper, already appears in Ref. [6]. In the

present paper we discuss further the physical consequences
for non-Abelian gauge theories of the existence of such
integral equation. In addition, we show that the self-dual
sector of Yang-Mills also admits an integral equation and
that it leads in a similar way to new conserved quantities.
The second part of the present paper is dedicated to the
application of our ideas to well-known solutions of
Yang-Mills theory, like Wu-Yang and ’t Hooft-Polyakov
monopoles and dyons, as well as Euclidean solutions like
instantons and merons. That is a very important contribu-
tion of the paper, since the conserved charges evaluated
for those solutions are new and were not explored in the
literature before. We believe that most of the physical
consequences of those charges are still to be explored
and, perhaps, we have to consider the quantum theory to
fully understand them.
The paper is organized as follows: in Sec. II we present

the main results of the paper in the form of very precise
statements, including the integral equations for the full
Yang-Mills theory as well as for its self-dual sector. In
this section we also present the closed expressions for the
conserved charges. In Sec. III, we give the proof for the
integral equation for the self-dual sector of the Yang-Mills
theory using the ordinary non-Abelian Stokes theorem. In
Sec. IV we give the proof for the generalized non-Abelian
Stokes theorem for a two-form connection based on the
results of Refs. [1,2]. Then in Sec. IV we use that theorem
to prove the integral equations for the full Yang-Mills
theory. In Sec. VI we discuss some consequences of our
integral equations and give the detailed construction of
the conserved charges for the full Yang-Mills equations
as well as for its self-dual sector. In Sec. VII we discuss
the examples of monopoles, dyons, instantons and merons
and explicitly evaluate the conserved charges for all
those solutions. Finally, in the Appendix we show how to
(classically) regularize the Wilson line operator in order to
evaluate the charges of the Wu-Yang monopole and dyon
solutions.

II. THE MAIN STATEMENTS

A. The integral Yang-Mills equation and its charges

Consider a Yang-Mills theory for a gauge group G, with
gauge field A�, in the presence of matter currents J�, on a

four- dimensional space-time M. Let � be any tridimen-
sional (topologically trivial) volume on M and @� be its
border. We choose a reference point xR on @� and scan �
with closed surfaces, based on xR, labeled by � , and we
scan the closed surfaces with closed loops based on xR,
labeled by �, and parametrized by �, as we describe
below. The classical dynamics of the gauge fields is gov-
erned by the following integral equations, on any such
volume �,

P2e
ie
R

@�
d�d�½�FW

��þ� ~FW
���dx�d� dx�

d� ¼ P3e
R

�
d�d�VJV�1

; (2.1)
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where P2 and P3 means surface- and volume-ordered
integration, respectively, ~F�� is the Hodge dual of the field

tensor, i.e.,

F�� ¼ @�A� � @�A� þ ie½A�; A��
~F�� � 1

2
"���	F

�	;
(2.2)

where e is the gauge coupling constant, � and � are free
parameters, and we have used the notation XW � W�1XW,
with W being the Wilson line defined on a curve �,
parameterized by �, through the equation

dW

d�
þ ieA�

dx�

d�
W ¼ 0; (2.3)

where x� (� ¼ 0, 1, 2, 3) are the coordinates on the four-
dimensional space-time M. The quantity V is defined on a
surface � through the equation

dV

d�
� VTðA; �Þ ¼ 0 (2.4)

with

TðA; �Þ � ie
Z 2


0
d�W�1½�F�� þ � ~F���W dx�

d�

dx�

d�
;

(2.5)

and where

J �
Z 2


0
d�

�
ie�~JW��	

dx�

d�

dx�

d�

dx	

d�
þe2

Z �

0
d�0½ðð��1ÞFW

��þ� ~FW
��Þð�0Þ;ð�FW

��þ� ~FW
��Þð�Þ�

�dx�

d�0
dx�

d�

�
dx�ð�0Þ

d�

dx�ð�Þ
d�

�dx�ð�0Þ
d�

dx�ð�Þ
d�

��
; (2.6)

where ~J��	 is the Hodge dual of the current, i.e.,
J� ¼ 1

3!"
���	~J��	. The Yang-Mills equations are recov-

ered from (2.1) in the case where � is taken to be an
infinitesimal volume. Under appropriate boundary condi-
tions, the conserved charges are the eigenvalues of the
operator

QS ¼ P2e
ie
R

@S
d�d�W�1ð�F��þ� ~F��ÞWdx�

d�
dx�

d�

¼ P3e
R

S
d�d�VJV�1

; (2.7)

where S is the three-dimensional spatial submanifold ofM.
Equivalently, the charges are TrQN

S .

B. The integral self-dual Yang-Mills equation
and its charges

Consider the self-dual sector of the Yang-Mills theory
defined by the first-order differential equations

F�� ¼ � ~F��; (2.8)

where � are the eigenvalues of the Hodge dual operation.
We shall be interested here in the case of a Euclidean
space-time, where � ¼ �1. We propose that the integral
equation for the self-dual sector of the Yang-Mills theory is
given by

P1e
�ie

H
@�

d�A�
dx�

d� ¼P2e
ie
R

�
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d� ;

(2.9)

where � is any two-dimensional surface in the space-time
M, @� is its border, and � is a free parameter. The symbols
P1 and P2 mean path- and surface-ordered integration,
respectively, and those are performed as follows. We

choose a reference point xR on the border of � and scan
� with closed loops, labeled by �, starting and ending at
xR, such that � ¼ 0 corresponds to the infinitesimal loop
around xR, and � ¼ 2
 corresponds to the border @�. Each
loop is parameterized by �, such that � ¼ 0 and � ¼ 2

correspond to xR. The quantity W appearing on the rhs of
(2.9) is obtained by integrating (2.3) on each loop from
� ¼ 0 (i.e., xR) up to the point of the loop corresponding to
�, where the integrand ½�F�� þ �ð1� �Þ ~F��� is eval-

uated. The lhs of (2.9) is obtained by integrating (2.3)
along the border of �. On the other hand, the rhs of (2.9)
comes from the integration of (2.4) with the same TðA; �Þ
given in (2.5), but with � replaced by � (1� �).
The self-dual equations (2.8) are recovered from (2.9) in

the limit where the surface � is taken to be infinitesimal.
The conserved charges associated to (2.9) are constructed
as follows: consider any two-dimensional planeD1 in the
space-time M, and let S11 be its border, i.e., a circle of
infinite radius on that plane. Under appropriate boundary
conditions, the eigenvalues of the operator

VðD1Þ ¼ P2e
ie
R

D1
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d�

¼ P1e
�ie

H
S11

d�A�
dx�

d� (2.10)

are constants, i.e., independent of the two coordinates
associated to the two-axis perpendicular to D1 in M.

C. On the nature of the eigenvalues

All the quantities appearing in the formulas above are
either elements of the gauge Lie algebra (like A� and F��)

or of the gauge Lie group (like W and V). In order to
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perform the calculations, however, we need to choose a
matrix representation of the Lie group (or equivalently of
the Lie algebra) because equations like (2.3) and (2.4)
involve the product of Lie algebra and Lie group quantities
and so a definite representation has to be used. However,
the choice of that representation is quite arbitrary. Note
that not even the representation under which the matter
fields transform under gauge transformations is relevant.
Indeed, in the case of fermions, for instance, the current
has the form J� � �ab �c i
�RijðTaÞc jTb, where Ta,

a ¼ 1; 2; . . . dimG, are the generators of the gauge group
G,�ab is the inverse of the Killing form ofG, and Rij is the

matrix representation under which the spinors c i trans-
form, i; j ¼ 1; 2; . . . dimR. Therefore, J� � Jb�Tb is an

element of the Lie algebra for any choice of R, and in
order to perform our calculations J� can be taken in any

matrix representation irrespective of R. Consequently, the
conserved charges that are the eigenvalues of the operators
(2.7) and (2.10), which are in fact Lie group elements,
correspond to the eigenvalues of those operators in the
chosen representation of G. That choice of representation,
however, is arbitrary. We face, then, two possibilities. The
eigenvalues can be different in different representations
and then one finds an infinite spectrum of conserved
charges, or then there is only a finite number of charges
and the eigenvalues of the operators (2.7) and (2.10) are the
same in large (infinite) classes of representations. As we
will show in the examples of monopoles, dyons, instantons
and merons, the second possibility happens, i.e., we find a
finite number of charges, and the operators (2.7) and (2.10)
evaluated on those solutions tend to lie in the center of the
gauge group. In fact, we show that the path and surface
orderings become irrelevant for those solutions, and the
operators (2.7) and (2.10) are expressed as (products of)
ordinary exponentials of Lie algebra elements. The physi-
cal interpretation of the charges turns out to be associated
to the eigenvalues of those Lie algebra elements and not
really to the eigenvalues of the group elements (2.7) and
(2.10). The connection between the eigenvalues of the Lie
group and Lie algebra element leads, in many cases, to the
quantization of the physical charges.

III. THE CONSTRUCTION OF THE INTEGRAL
EQUATION FOR THE SELF-DUAL SECTOR

In order to prove that (2.9) does correspond to the
integral form of the self dual equations (2.8), we use the
ordinary nonabelian Stokes theorem for a one-form con-
nection C� given by [1,2,7]

P1e
�H

@�
d�C�

dx�

d� WR¼WRP2e
R

�
d�d�W�1H��W

dx�

d�
dx�

d� ; (3.1)

with H�� ¼ @�C� � @�C� þ ½C�;C�� being the curva-

ture of the connection C�, and where WR is an integration

constant, the value of W at xR. The meanings of the
path- and surface-ordered integrations are the same as

that in (2.9). For a simple and concise proof of the theorem
(3.1), see Sec. 2 of Ref. [1]. The proof of the non-Abelian
Stokes theorem (3.1) does not rely on the use of a metric
tensor, and so it is valid on any space-time (flat or curved)
of any dimension with any metric. The only requirements
are that the surfaces � are topologically trivial (no holes or
handles) and that the connection is a regular function of the
space-time coordinates. Note that one can obtain (2.9) from
(3.1) by the identifications

C�� ieA�; H��� ie½�F��þ�ð1��Þ ~F���;
WR2ZðGÞ; (3.2)

where ZðGÞ is the center of the gauge group G. However,
the first equation above implies that

H�� ¼ ieF��: (3.3)

The compatibility between (3.2) and (3.3) is provided by
(2.8). Note that the case � ¼ 1 is trivial since it leads to an
identity. Therefore, (2.9) is a direct consequence of the
non-Abelian Stokes theorem (3.1) and the self-dual Yang-
Mills equations (2.8). The condition that the integration
constantWR has to belong to ZðGÞ comes from the require-
ment that (2.9) has to transform covariantly under gauge
transformations. The argument for that is similar to the one
used in the paragraph below (5.2), in the context of the
integral equation for the full Yang-Mills equations.
On the other hand, the integral equations (2.9) imply the

differential equations (2.8) in the limit where the surface �
is infinitesimal. Indeed, take � to be of rectangular
shape on the plane x�x�, with infinitesimal sides �x�

and �x� (� and � fixed). We then evaluate both sides of
(2.9) by Taylor expanding the integrands around one given
corner of the rectangle and keeping things up to first
nontrivial order. One can check that the lhs of (2.9) gives
½1þ ieF���x

��x��, with no sum in � and �. In addition,

the rhs of (2.9) gives, up to first nontrivial order,
½1þ ieð�F�� þ �ð1� �Þ ~F��Þ�x��x�� (again no sum in

� and �). By equating those two quantities, one obtains
(2.8) for any value of �, except � ¼ 1, which should be
excluded.

IV. THE GENERALIZED NON-ABELIAN
STOKES THEOREM

In order to prove that (2.1) does correspond to an integral
formulation of the classical Yang-Mills dynamics, we shall
start by describing the generalization of the non-abelian
Stokes theorem as formulated in Refs. [1,2]. Consider a
surface � scanned by a set of closed loops with common
base point xR on the border @�. The points on the loops are
parameterized by � 2 ½0; 2
�, and each loop is labeled by
a parameter � such that � ¼ 0 corresponds to the infini-
tesimal loop around xR, and � ¼ 2
 to the border @�.
We then introduce, on each point of M, a rank-two
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antisymmetric tensor B��, taking values on the Lie algebra

G of G, and construct a quantity V on the surface �
through

dV

d�
� VTðB;A; �Þ ¼ 0 with

TðB;A; �Þ �
Z 2


0
d�W�1B��W

dx�

d�

dx�

d�
;

(4.1)

where the � integration is along the loop � labeled by �,
andW is obtained from (2.3), by integrating it along � from
the reference point xR to the point labeled by �, where B��

is evaluated. By integrating (2.4), from the infinitesimal
loop around xR to the border of �, we obtain

V ¼ VRP2e
R

2


0
d�
R

2


0
d�W�1B��W

dx�

d�
dx�

d� ; (4.2)

where P2 means surface ordering according to the parame-
terization of� as described above, and VR is an integration
constant corresponding to the value of V on an infini-
tesimal surface around xR. If one changes �, keeping its
border fixed, by making variations �x� perpendicular to�,
then V varies according to

�VV�1 �
Z 2


0
d�

Z 2


0
d�Vð�Þ

�
W�1½D	B�� þD�B�	 þD�B	��W dx�

d�

dx�

d�
�x	

�
Z �

0
d�0½BW

��ð�0Þ � ieFW
��ð�0Þ; BW

��ð�Þ� dx
�

d�0
dx�

d�

�
dx�ð�0Þ

d�
�x�ð�Þ � �x�ð�0Þ dx

�ð�Þ
d�

��
V�1ð�Þ; (4.3)

where D�� ¼ @� � þie½A�; ��. For a detailed account on
how to obtain (4.3), see Sec. 5.3 of Ref. [1], Sec. 2.3 of
Ref. [2], or the Appendix of Ref. [6]. The quantity Vð�Þ
appearing on the rhs of (4.3) is obtained by integrating (4.1)
from the infinitesimal loop around xR to the loop labeled by
� on the scanning of � described above. Note that the two
� integrations on the second term on the rhs of (4.3) are
performed on the same loop labeled by �. Consider now the
case where the surface � is closed, and the border of � is
contracted to xR. The expression (4.3) gives then the varia-
tion of V when we vary � keeping xR fixed. Therefore, if
one starts with an infinitesimal closed surface �R around

xR, one can blow it up until it becomes �. One can label
all those closed surfaces using a parameter � 2 ½0; 2
�,
such that � ¼ 0 corresponds to �R and � ¼ 2
 to �.
The expression (4.3) can be seen as a differential equation
on � , defining V on the surface �, i.e.,

dV

d�
�KV ¼ 0; (4.4)

whereK corresponds to the rhs of (4.3) with �x� replaced
by dx�

d� , i.e.,

K �
Z 2


0
d�

Z 2


0
d�Vð�Þ

�
W�1½D	B�� þD�B�	 þD�B	��W dx�

d�

dx�

d�
�x	

�
Z �

0
d�0½BW

��ð�0Þ � ieFW
��ð�0Þ; BW

��ð�Þ� dx
�

d�0
dx�

d�

�
dx�ð�0Þ

d�

dx�ð�Þ
d�

� dx�ð�0Þ
d�

dx�ð�Þ
d�

��
V�1ð�Þ: (4.5)

By integrating (4.4) from�R to�, one obtains V evaluated
on �, which is now an ordered volume integral, over the
volume � inside �, and the ordering is determined by the
scanning of � by closed surfaces as described above. But
this result has, of course, to be the same as that obtained in
(4.2), i.e., by integrating (4.1) when the surface is closed,
namely @�. Therefore, we obtain the generalized non-
Abelian Stokes theorem for a two-form connection B��,
parallel transported by a one-form connection A�

VRP2e
R

@�
d�d�W�1B��W

dx�

d�
dx�

d� ¼ P3e
R

�
d�KVR; (4.6)

where P3 means volume ordering according to the scan-
ning described above, and VR is the integration constant
obtained when integrating (4.1) and (4.4). It corresponds, in
fact, to the value of V at the reference point xR. Note that
such a theorem holds true on a space-time of any dimen-
sion, and since the calculations leading to it make no

mention of a metric tensor, it is valid on flat or curved
space-time. The only restrictions appear when the topology
of the space-time is nontrivial (existence of handles or
holes for instance).

V. THE CONSTRUCTION OF THE
INTEGRAL EQUATION FOR THE FULL

YANG-MILLS THEORY

One notes that (2.1) can be obtained from (4.6) by
replacing B�� by ie½�F�� þ � ~F��� and using the Yang-

Mills equations

D�F
�� ¼ J� D�

~F�� ¼ 0 (5.1)

to replace (D	B�� þD�B�	 þD�B	�) in (4.5) by

ð�ie�~J��	Þ, and so K introduced in (4.5) is now

given by K ¼ R
2

0 d�VJV�1, with J given in (2.6).
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Therefore, (2.1) is a direct consequence of the Yang-Mills
equations (5.1) and the Stokes theorem (4.6). Note that VR

introduced in (4.6) does not appear in (2.1) because it has
to lie in the center ZðGÞ of G to keep the gauge covariance
of (2.1). Indeed, consider a gauge transformation

A� ! gA�g
�1 þ i

e
@�gg

�1; F�� ! gF��g
�1;

J� ! gJ�g
�1:

(5.2)

From (2.3),W ! gfWg�1
i , with gi and gf being the values

of g at the initial and final points, respectively, of the path
determining W. Consequently, J defined in (2.6) trans-
forms as J ! gRJg�1

R , with gR being the value of g at xR.
One also has TðA; �Þ ! gRTðA; �Þg�1

R , and so from (2.4)
V ! gRVg

�1
R . Similarly, one sees thatK ! gRKg�1

R , and
so (4.4) also implies that V transforms as V ! gRVg

�1
R .

Note, however, that if V1 is a solution of (2.4) so is
V2 ¼ kV with k being a constant element of G.
Similarly, if V3 satisfies (4.4) so does V4 ¼ Vh, with
h 2 G being constant. Under a gauge transformation V1 !
gRV1g

�1
R , and V2 ! gRV2g

�1
R ¼ gRkV1g

�1
R . But k is any

chosen constant group element and it should not depend
upon the gauge field, so it should not change under
gauge transformations. In fact, the arbitrariness associated
to k corresponds to the choice of integration constants in
(2.4) and (4.4). From this point of view, we should have
V2 ! kgRV1g

�1
R . The only way to establish the compati-

bility is to have kgR ¼ gRk, i.e., k should be an element of
the center ZðGÞ of G. A similar analysis applies to V3 and
V4. Therefore, the transformation law V ! gRVg

�1
R , and

so the gauge covariance of (2.1), is only valid when the
integration constants in (2.4) and (4.4) are taken in ZðGÞ.
In such case, VR cancels out (4.6) and that is why it does
not appear in (2.1). Consequently, (2.1) transforms cova-
riantly under the gauge transformations (5.2).

The integral equation (2.1) implies the local Yang-Mills
equations. In order to see that, consider the case where� is
an infinitesimal volume of rectangular shape with lengths
dx�, dx� and dx	 along three chosen Cartesian axes
labeled by �, � and 	. We choose the reference point xR
to be at a vertex of�. By considering only the lowest-order
contributions, in the lengths of �, to the integrals in (2.1),
one observes that the surface and volume ordering become
irrelevant. We have to pay attention only to the orientation
of the derivatives of the coordinates with respect to the
parameters �, � and � , determined by the scanning of �
described above. In addition, the contribution of a given
face of� for the lhs of (2.1) can be obtained by evaluating
the integrand on any given point of the face since the
differences will be of higher order. Consider the two faces
parallel to the plane x�x�. The contribution to the lhs of
(2.1) of the face at xR is given by �ieð�F�� þ � ~F��ÞxR�
dx�dx�, with the minus sign due to the orientation
of the derivatives, and the contribution of the face at
xR þ dx	 is ieðW�1ð�F�� þ � ~F��ÞWÞðxRþdx	Þdx�dx�,

with WðxRþdx	Þ � 1� ieA	ðxRÞdx	. By Taylor expand-

ing the second term, the joint contribution is
ieD	ð�F�� þ � ~F��ÞxRdx�dx�dx	, with no sums in the

Lorentz indices. The contributions of the other two pairs
of faces are similar, and the lhs of (2.1) to lowest order is
1 þ ieðD	½�F�� þ � ~F��� þ cyclic perm:ÞxRdx�dx�dx	.
When evaluating the rhs of (2.1), we can take the integrand
at any point of � since the differences are of higher order.
In addition, the commutator term in J given in (2.6) is
of higher order with respect to the first term involving
the current. Therefore, the rhs of (2.1) to lowest order is
1þ ie�~J��	dx

�dx�dx	. Equating the coefficients of �

and �, one gets the pair of the (Hodge dual) Yang-Mills
equations (5.1).

VI. PATH INDEPENDENCY ON LOOP SPACE
AND THE CONSERVED CHARGES

Let us discuss some consequences of (2.1). In order to
write it for a given volume�, we had to choose a reference
point xR on its border and define a scanning of � with
surfaces and loops. If one changes the reference point and
the scanning, both sides of (2.1) will change. However, the
generalized non-Abelian Stokes theorem (4.6) guarantees
that the changes are such that both sides are still equal to
each other. Therefore, one can say that (2.1) transforms
‘‘covariantly’’ under the change of scanning and reference
point. In fact to be precise, Eq. (2.1) is formulated not on�
but on the generalized loop space

L� ¼ f
: S2 ! �jnorth pole ! xR 2 @�g: (6.1)

The image of a given 
 is a closed surface � in �
containing xR. A scanning of � is a collection of surfaces
�, parametrized by �, such that � ¼ 0 corresponds to the
infinitesimal surface around xR and � ¼ 2
 to @�. Such
collection of surfaces is a path in L�, and each one
corresponds to � itself. In order to perform each mapping

, we scan the corresponding surface � with closed loops
starting and ending at xR, and each loop is parametrized by
�, in the same way as we did in the arguments leading to
(4.6). Therefore, the change of the scanning of � corre-
sponds to a change of path in L�. In this sense, the rhs of
(2.1) is a path-dependent quantity in L� and its lhs is
evaluated at the end of the path. Of course, we do not
want physical quantities to depend upon the choice of paths
in L� or on the reference point. Note that if we take, in the
four-dimensional space-time M, a closed tridimensional
volume �c, then the integral Yang-Mills equation (2.1)
implies that

P3e
H

�c
d�d�VJV�1 ¼ 1; (6.2)

since the border @�c vanishes, and the ordered integral of
the lhs of (2.1) becomes trivial. On the loop space L�c,�c

corresponds to a closed path starting and ending at xR.
Consider now a point 
 on that closed path, corresponding
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to a closed surface �, in such a way that �1 corresponds
to the first part of the path and �2 to the second, i.e.,
�c ¼ �1 þ�2, and � is the common border of �1

and �2. By the ordering of the integration determined
by (4.4), one observes that the relation (6.2) can be split

as P3e

R
�2

d�d�VJV�1

P3e

R
�1

d�d�VJV�1 ¼ 1. However, by
reverting the sense of integration along the path, one gets
the inverse operator when integrating (4.4). Therefore, �1

and ��1
2 are two different paths (volumes) joining the

same points, namely the infinitesimal surface around xR
and the surface �, which correspond to their border. One

then concludes that the operator P3e
R

�
d�d�VJV�1

is inde-
pendent of the path, and so of the scanning of�, as long as
the end points, i.e., xR and the border @�, are kept fixed.

A. The conserved charges for the
full Yang-Mills theory

The path independency of that operator can be used to
construct conserved charges using the ideas of Refs. [1,2].
First of all, let us assume that the space-time is of the form
S � R, with R being time and S the spatial submanifold
which we assume simply connected and without border.
An example is when S is the three-dimensional sphere S3.

It follows from (6.2) thatQS � P3e
H

S
d�d�VJV�1 ¼ 1. That

means that QS is not only conserved in time, but also that
there can be no net charge in S. In fact, there is the
possibility of getting charge quantization conditions in
such a case, if for some reason at the quantum level, �
and � are not free parameters. Indeed, take for instance
Maxwell theory [8], where G ¼ Uð1Þ, and so the commu-
tators in (2.6) drop, the surface and volume ordering are
irrelevant, and QS is unity if

Z
S
d�d�d�~J��	

dx�

d�

dx�

d�

dx	

d�
¼ 2
n

e�
(6.3)

with n integer. At the classical level, where � is a free
parameter, the only acceptable solution to (6.3) is n ¼ 0,
and so there should be no net charge is a space-time of the
form S � R, with S being closed, i.e., with no border.

Let us now assume that the space-time is not bounded,
but still simply connected, like R4. We shall consider two
paths (volumes) joining the same two points, namely the
infinitesimal surface around xR, which we take to be at the

time x0 ¼ 0, and the two-sphere at spatial infinity S2;ðtÞ1 , at
x0 ¼ t. The first path is made of two parts. The first part
corresponding to the whole space at x0 ¼ 0, i.e., the vol-

ume �ð0Þ
1 inside S2;ð0Þ1 , the two-sphere at spatial infinity at

x0 ¼ 0. The second part is a hypercylinder S21 � I, where I
is the time interval between x0 ¼ 0 and x0 ¼ t, and S21 is a
two-sphere at spatial infinity at the times on that interval.
The second path is also made of two parts. The first one
corresponds to the infinitesimal hypercylinder S20 � I,
where S20 is the infinitesimal two-sphere around xR and I

as before. The second part corresponds to �ðtÞ
1 , the whole

space at time x0 ¼ t, i.e., the volume inside S2;ðtÞ1 . From the
path independency following from (6.2), one has that the
integration of (4.4) along those two paths should give

the same result, i.e., VðS21�IÞVð�ð0Þ
1 Þ¼Vð�ðtÞ

1 ÞVðS20�IÞ,
where we have used the notation Vð�Þ � P3e

R
�
d�d�VJV�1

and where all integrations start at the reference point xR
taken to be at x0 ¼ 0, and at the border S2;ð0Þ1 of �ð0Þ1 . In
fact, one obtains Vð�Þ by integrating (4.4), and so one has
to calculateK ¼ R

2

0 d�VJV�1, on the surfaces scanning

the volume �. We shall scan a hypercylinder S2 � I with
surfaces, based at xR, of the form given in Fig. 1, with t0
denoting a time in the interval I. Each one of such surfaces
is scanned with loops, labeled by �, in the following way.
For 0 � � � 2


3 , we scan the infinitesimal cylinder as

shown in Fig. 1(a), then for 2

3 � � � 4


3 we scan the

sphere S2 as shown in Fig. 1(b), and finally for 4

3 � � �

2
 we go back to xR with loops as shown in Fig. 1(c). The
quantityK can then be split into the contributions coming
from each one of those surfaces as K ¼ Ka þKb þ
Kc. In the case of the infinitesimal hypercylinder S20 � I,
the sphere has infinitesimal radius and so it does not really
contribute to Kb. We shall assume the currents and field
strength vanish at spatial infinity as

J� � 1

R2þ�
and F�� � 1

R
3
2þ�0

with �, �0 > 0, for R ! 1. Therefore, the quantity J ,
given in (2.6), vanishes when calculated on loops at spatial
infinity. Consequently, in the case of the hypercylinder
S21 � I, the contribution to Kb coming from the sphere
with infinite radius vanishes, and we have that K calcu-
lated on the surfaces scanning S21 � I and S20 � I is the

same, and so VðS21 � IÞ ¼ VðS20 � IÞ. In fact, there is more

FIG. 1. We scan a hypercylinder S2 � I with surfaces of type
shown above. Such surfaces are then scanned with loops as
follows: as we go up the neck we scan it with loops as shown
in (a), then the sphere S2;ðt0Þ is scanned with loops as shown in
(b), finally as we go down the neck we scan it with loops as
shown in (c). In all cases the loops start and end at xR.
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to it, since when we contract the radius of the cylinders
in Fig. 1 to zero, the loops in Figs. 1(a) and 1(c) become
the same. Therefore, the quantities J calculated on them
are the same except for a minus sign coming from the
derivatives dx�

d� , since the loops in Fig. 1(a) get longer with

the increase of �, and in Fig. 1(c) the opposite occurs.
In addition, the quantity V inside the expression K ¼R
2

0 d�VJV�1 is insensitive to that sign since it is obtained

by integrating (2.4) starting at xR in both cases. Therefore,
it turns out that Ka þKc ¼ 0. The loops scanning
the sphere in Fig. 1(b) have legs linking the reference point
xR, at x0 ¼ 0, to the same space point but at x0 ¼ t0,
i.e., xt

0
R. Therefore, when integrating (2.4) one gets VxR ¼

Wðxt0R; xRÞ�1V
xt

0
R
Wðxt0R; xRÞ, whereWðxt0R; xRÞ is obtained by

integrating (2.3) along the leg linking xR to xt
0
R, and where

we have used the notation Vx, meaning V obtained from
(2.4) with reference point x. Using the same arguments and
notation, one obtains from (2.6) that on the loops of

Fig. 1(b), J xR ¼ Wðxt0R; xRÞ�1J
xt

0
R
Wðxt0R; xRÞ and so

Kb;xR¼Wðxt0R;xRÞ�1K
b;xt

0
R
Wðxt0R;xRÞ. The quantity Vð�ðtÞ1 Þ

is obtained by integrating (4.4) and by scanning the volume

�ðtÞ
1 with surfaces of the type shown in Fig. 1(b) and where

the radius of S2 varies from zero to infinity keeping the
point xtR fixed. Therefore, from the above arguments one
gets that

VxRð�ðtÞ
1 Þ ¼ WðxtR; xRÞ�1VxtR

ð�ðtÞ
1 ÞWðxtR; xRÞ: (6.4)

One then concludes that such operator has an isospectral
time evolution

VxtR
ð�ðtÞ1 Þ ¼ UðtÞVxRð�ð0Þ1 ÞUðtÞ�1 with

UðtÞ ¼ WðxtR; xRÞVðS20 � IÞ:
(6.5)

Therefore, its eigenvalues, or equivalently TrðVxtR
ð�ðtÞ1 ÞÞN ,

are constant in time. Note that from the Yang-Mills
equations (2.1), one has that such operator can be written
either as volume- or surface-ordered integrals, and so we
have proved (2.7).

Note that if VxtR
ð�ðtÞ1 Þ has an isospectral evolution, so

does gcVxtR
ð�ðtÞ

1 Þ, with gc 2 ZðGÞ, the center of the gauge
group. That fact has to do with the freedom we have to
choose the integration constants of (2.4) and (4.4) to lie
in ZðGÞ, without spoiling the gauge covariance of (2.1)
[see discussion in the proof of (2.1) above].

Properties of the charges. First of all we point out that
the conserved charges are gauge invariant. Indeed, using
the same arguments given below (5.2) for the proof of (2.1),
one has that under the gauge transformations (5.2) the
operator VxtR

transforms as

VxtR
ð�ðtÞ

1 Þ ! gRVxtR
ð�ðtÞ

1 Þg�1
R

with gR being the group element, performing the gauge
transformation, at xtR. Therefore, its eigenvalues, which
are the charges, are gauge invariant. Note that the operator
VxtR

is the same as that given in (2.7), since the volume

�ðtÞ1 corresponds to the spatial submanifold S at time
equals t.
Note that when one changes the reference point from xtR

to ~xtR, the operator VxtR
ð�ðtÞ1 Þ changes under conjugation by

Wð~xtR; xtRÞ, i.e., the holonomy of the gauge field A� through

a path joining those two points. Therefore, similarly to
(6.4), one has

VxtR
ð�ðtÞ

1 Þ ! Wð~xtR; xtRÞ�1VxtR
ð�ðtÞ

1 ÞWð~xtR; xtRÞ:

So the conserved quantities, being the eigenvalues of

VxtR
ð�ðtÞ

1 Þ, are also independent of the base points. Note

in addition that the reference points xtR and ~xtR are on the

border of the volume�ðtÞ
1; and so they lie at spatial infinity.

Our boundary conditions imply that the field strength goes
to zero at infinity and so the gauge potential is asymptoti-
cally flat, and consequentlyWð~xtR; xtRÞ is independent of the
choice of path joining the two reference points.
We have seen below (6.1) that the volume� can be seen

as a path in the loop space L�. In fact, there is an infinite
number of paths in L� representing the same physical
volume �, due to the infinite ways of scanning � with
closed surfaces based at xR. We have shown that, as a

consequence of (6.2), the operator P3e
R

�
d�d�VJV�1

is in-
dependent of the path on loop space, as long as the end
points, i.e., xR and the border @�, are kept fixed. When we
say that we have to keep the end points xR and @� fixed,
we mean that not only the physical point xR and surface @�
are kept fixed but also its scanning with loops. We do not
have to worry about the scanning of xR because that is
trivial. A reparameterization of the volume � corresponds
to a change of the path in loop space representing �.

Therefore, the operator VxtR
ð�ðtÞ

1 Þ, or equivalently the rhs of
(2.7) is independent of the reparameterization of the vol-

ume �ðtÞ1 . Consequently, the conserved charges, which are
the eigenvalues of that operator, are invariant under repar-

ameterization (scanning) of the volume�ðtÞ1 that keep fixed
its end points, i.e., keep fixed the physical point xR and

surface @�ðtÞ1 , as well as its scanning with loops.
We now have to analyze how the charges transform

when we fix the physical point xR and surface @�ðtÞ1 but

change the scanning of @�ðtÞ1 with loops. Again, we do not
have to worry about the scanning of the infinitesimal

surface around xR because that is trivial. The volume �ðtÞ
1

corresponds to the spatial submanifold S introduced in
(2.7), at time equals t. Therefore, we have to analyze
how the surface-ordered integral over @S given in (2.7)
transforms under the change of the scanning of @S with
loops. Remember, however, that such integral is obtained
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by integrating (2.4) over @S. In (4.3) we have shown how
such an integral changes when the surface of integration is
changed. The calculation in (4.3) is valid not only for a
change of the physical surface but also for a change of the
scanning of it with loops. In the latter case the variation
�x�ð�Þ of the loop is parallel to the surface, i.e., there are
no variations �x�ð�Þ perpendicular to the surface. Since
@S is a two-dimensional surface all three-forms on it
vanish. Therefore, the first term of (4.3) must vanish

trivially when we restrict �x	 to be parallel to the surface,
since dx�

d� and dx�

d� are, by definition, parallel to the surface.

The argument we are using here is the same as that in the
proof of Theorem 2.1 of Ref. [2] for r-flat connections in
loop space. Replacing B�� by ie½�F�� þ � ~F��� we get

that (4.1) becomes (2.4) and (2.5). Therefore, the condition
for the surface-ordered integral over @S in (2.7), to be
invariant under changes of the scanning of @Swith loops, is

Z 2


0
d�

Z �

0
d�0½ð��1ÞFW

��ð�0Þþ� ~FW
��ð�0Þ;�FW

��ð�Þþ� ~FW
��ð�Þ�dx

�

d�0
dx�

d�

�
dx�ð�0Þ

d�
�x�ð�Þ��x�ð�0Þdx

�ð�Þ
d�

�
¼0;

(6.6)

where we have used the notation XW � W�1XW. Such
double integral in � and �0 is performed over a given
loop, based at xR, scanning the surface @S. Note, however,
that such surface is the border of the spatial submanifold S,
and so it lies at spatial infinity. Therefore, the field tensor
and its Hodge dual, appearing in the integrand, are to be
evaluated at spatial infinity.

There are at least two sufficient conditions for (6.6) to
hold true. The first one is that the field tensor and its dual
should fall at spatial infinity faster than 1=R2, whereR is the
radius (or a measure of size) of the surface @S, which
should be taken to infinity, i.e., R ! 1. That is so because
the integrand in (6.6) is quartic in variations of the Cartesian
coordinates x� and quadratic in the field tensor and its dual.
As wewill see in Sec. VII B, that is exactly what happens in
the case of instantons. So, the conserved (in the Euclidean
time) charges constructed as the eigenvalues of the operator
(2.7) are invariant under reparameterization of volumes and
surfaces for the instantons solutions.

The second sufficient condition is that the commutator in
the integrand of (6.6) must vanish, and so the field tensor
and its dual conjugated by the holonomy W has to lie in
an Abelian subalgebra. As we discuss in Secs. VII A and
VII B, that is exactly what happens in the cases of mono-
poles, dyons andmerons. For those solutions the field tensor
at spatial infinity has the form F�� � 1

r2
Gðr̂Þ, where r is the

radial distance, andGðr̂Þ is a Lie algebra element depending
on the unit vector r̂ and being covariantly constant, i.e.,
D�Gðr̂Þ ¼ 0. That fact implies thatW�1Gðr̂ÞW is constant

everywhere, and so all components of the field tensor and
its dual (conjugated by W) lies in the direction of that
element of the Lie algebra. Therefore, the commutator in
the integrand of (6.6) vanishes. Consequently, the con-
served charges constructed as the eigenvalues of the opera-
tor (2.7) are invariant under reparameterization of volumes
and surfaces for the monopole, dyon and meron solutions.

1. Comparing with the textbook conserved charges

The usual conserved charges for the non-Abelian gauge
theories discussed in textbooks are essentially those

proposed by Yang and Mills in their original paper [3],
and they are constructed as follows. Using Yang-Mills
equations (5.1) one introduces the currents

j� � @�F
�� ¼ J� � ie½A�; F

���
~j� � @� ~F

�� ¼ �ie½A�; ~F
���; (6.7)

which are conserved due to the antisymmetry of the field
tensor, i.e., @�j

� ¼ 0 and @�~j
� ¼ 0. Under appropriate

boundary conditions, the corresponding conserved charges
are given by

QYM ¼
Z

d3x@iF
i0 ¼

Z
S21

d ~� 	 ~E

~QYM ¼
Z

d3x@i ~F
i0 ¼ �

Z
S21

d ~� 	 ~B;

(6.8)

where S21 is a two-sphere at spatial infinity, and Ei � F0i,
Bi � � 1

2"ijkFjk are the non-Abelian electric and magnetic

fields, respectively. Under the gauge transformations (5.2),
one has

QYM !
Z
S21

d ~� 	 g ~Eg�1 ~QYM ! �
Z
S21

d ~� 	 g ~Bg�1:

(6.9)

If one restricts oneself to gauge transformations where the
group element g goes to a constant at spatial infinity, then
the charges transform covariantly, i.e.,QYM ! g1QYMg

�11
and ~QYM ! g1 ~QYMg

�11 , with g1 being the constant
group element on S21. Therefore, the eigenvalues of QYM

and ~QYM are invariant under those restricted gauge
transformation.
The conserved charges we construct in this paper,

namely the eigenvalues of the operator (2.7), differ in
many aspects from the charges (6.8). First, we show that
only the eigenvalues of the operator (2.7) are conserved in
time. The full operator has an isospectral time evolution.
Second, those eigenvalues are invariant under general
gauge transformations and not only under restricted trans-
formations where the group element goes to a constant at

INTEGRAL FORM OF YANG-MILLS EQUATIONS AND ITS . . . PHYSICAL REVIEW D 86, 085039 (2012)

085039-9



infinity. Third, the charges obtained from (2.7) are different
from those obtained from (6.8). Indeed, as we show in the
example of the monopole in Sec. VII A, all the charges
coming from (6.8) vanish, and those obtained from (2.7)
give the magnetic charge of the monopole, as well as its
quantization. There are two aspects to stress here. First, our
calculations work equally well for the Wu-Yang monopole
as well as for the ’t Hooft-Polyakov monopole, and the
conservation of the charge is dynamical and not necessarily
topological. Second, the magnetic charge which is con-
served is associated with the Abelian subgroup only (in the
case when the gauge group is SOð3Þ, to theUð1Þ subgroup)
and not to the full group as is the case of the charge coming
from (6.8). That is also true for the Wu-Yang monopole,
where the gauge symmetry is not spontaneously broken.
For those reasons, the construction of conserved charges
for non-Abelian gauge theories that we propose in this
paper constitutes a great advance with respect to what is
usually found in the literature.

B. The conserved charges for the self-dual sector

The integral equation (2.9) leads to some interesting
consequences which we now discuss. Consider the case
where the surface � is closed, i.e., it has no border. Then,
@� disappears and the lhs of (2.9) is trivial and so

P2e
ie
R

@�
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d� ¼ 1; (6.10)

where we have denoted � ¼ @�, i.e., the border of the
volume � contained inside �. Now, if one takes � ¼
�ð1� �Þ in (2.1), one observes that the second term in
the expression (2.6) for J vanishes, when the self-dual
Eq. (2.9), or equivalently (2.8), are imposed. Therefore,
(6.10) and (2.1) imply that

P3e
ie�ð1��Þ

R
�
d�d�d�V ~JW

��	
dx�

d�
dx�

d�
dx	

d� V
�1 ¼ 1: (6.11)

Since that has to be valid on any volume�, one concludes
that the current J� should vanish. That is an expected

result, and indeed the imposition of the Yang-Mills
equations (5.1) and the self-duality equations (2.8) imply
the vanishing of J�. In addition, the first-order differential

equations (2.8) imply the second-order equations (5.1)
when the current vanishes, since the second equation in
(5.1) is just an identity, the so-called Bianchi identity, i.e.,

D	F�� þD�F�	 þD�F	� ¼ 0: (6.12)

In order to understand that the integral self-dual Yang-
Mills equation (2.9) implies the full integral Yang-Mills
equation (2.1), we have to construct the integral version of
the Bianchi identity. One can obtain that by taking the
generalized non-Abelian Stokes theorem (4.6), which is
an identity, and choosing B�� ¼ ie	F��, with 	 a free

parameter, and using (6.12) to get

P2e
ie	

R
@�

d�d�FW
��

dx�

d�
dx�

d� ¼ P3e
R

�
d�d�VCV�1

(6.13)

with

C � e2	ð	� 1Þ
Z 2


0
d�

Z �

0
d�0½FW

��ð�0Þ; FW
��ð�Þ�dx

�

d�0

� dx�

d�

�
dx�ð�0Þ

d�

dx�ð�Þ
d�

� dx�ð�0Þ
d�

dx�ð�Þ
d�

�
:

(6.14)

The relation (6.13) is highly nontrivial for 	 � 0 or 1.
Indeed, for 	 ¼ 1 it leads to what one would naively expect
as the integral version of the Bianchi identity, i.e.,

P2e
ie
R

@�
d�d�FW

��
dx�

d�
dx�

d� ¼ 1. The relation (6.13) carries
important information about the flux of a non-Abelian field
strength F�� through a closed surface when that is rescaled

by a factor 	, and it certainly deserves further investiga-
tion. Now, by imposing the self-duality equation (2.9), or
equivalently (2.8), one observes that (2.1) becomes (6.13)
with 	 ¼ �þ ��. So, the self-duality condition does turn
the full integral Yang-Mills equation (2.1) into an identity,
namely (6.13), in a manner similar that (2.8) does to the full
differential Yang-Mills equation (5.1).
The other consequence of the relation (6.10) is that it

leads to conservation laws, in a manner similar to that
which (6.2) does in the case of the full Yang-Mills equa-
tions. In order to do that let us consider the loop space
associated to a surface �

L� ¼ f
: S1 ! �jnorth pole ! xR 2 @�g: (6.15)

A scanning of � with loops, in the way described below
(2.9), corresponds to a path in L�. In fact, there is an
infinity of paths in L� corresponding to the same physical
surface �. The closed surface @� is a closed path in L@�,
and the reference point xR is now any chosen point on @�
since it has no border. Let us now take a point in that closed
path corresponding to a loop in @�. It then splits the path
into two parts, or equivalently @� into two surfaces with a
common border, i.e., @� ¼ �1 þ �2. Consequently,
(6.10) can be written as

P2e
ie
R

�1
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d�

� P2e
ie
R

�2
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d� ¼ 1: (6.16)

By reverting the sense of integration along the path, one
gets the inverse operator. But �1 and �

�1
2 are two different

paths joining the same two points in the loop space L@�,
namely the infinitesimal loop around xR and the common
border of �1 and ��1

2 . Therefore, (6.16) implies that the
operator

Vð�Þ � P2e
ie
R

�
d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d� (6.17)

is independent of the path, or equivalently of the surface�,
as long as the end points (the border of � and the reference
point xR on it) are kept fixed. In addition, by fixing the
surface � and changing the path in the loop space L� that
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corresponds to it, we see that Vð�Þ is independent of the
choice of the scanning. Such path independency leads to
conservation laws as we now explain.

First of all, let us fix a plane in a Euclidean space-time
M, and let us denote by x� and x� (� and � fixed) the
Cartesian coordinates associated with the two orthogonal
axes lying on that plane. That could be done in a space-
time of any metric, but we are interested in real solutions of
the self-dual Yang-Mills equations (2.8), and so we choose
the Euclidean metric. We shall denote by x� and x� (� and
� fixed) the two Cartesian coordinates corresponding to
the directions orthogonal to the plane x�x�. In fact, we
shall work with a given fixed axis parameterized by t,
which is a linear combination of the x� and x� axis, i.e.,
we write

x�¼ tcos� x�¼ tsin� �1<t<1 0���
:

(6.18)

We shall choose two surfaces �1 and �2 with the same
border as shown in Fig. 2. The surface �1 is made of two

parts. The first part is a disc Dð0Þ1 of infinite radius on the
plane x�x� at t ¼ 0, i.e., it is the whole plane x�x� at
t ¼ 0. The second part is a cylinder S11 � I, where I is a
segment of the t axis going from t ¼ 0 to t ¼ t, and S11 is a
circle of infinite radius parallel to the plane x�x�. We
choose the reference point xR to lie on the border of

Dð0Þ
1 , i.e., on the circle S11 at t ¼ 0. The surface �2 is

also made of two parts. The first part is an infinitesimal
cylinder S10 � I , with I as before, and S10 a circle of

infinitesimal radius also parallel to the plane x�x�. We
choose the infinitesimal circle S10 such that xR lies on it at

t ¼ 0. The second part of �2 is a disc DðtÞ1 of infinite
radius, parallel to the plane x�x�, and at t ¼ t. We scan
the two surfaces with loops, as shown in Fig. 2, starting and
ending at the reference point xR (for a similar discussion on
how to do that, see Sec. 3.1 of Ref. [6]). Therefore, the
surfaces �1 and �2 are two different paths in the loop
space L@�, such that @� ¼ �1 þ��1

2 , with the same end

points, namely the infinitesimal circle at xR and the circle
S11 at t ¼ t. Since the operator (6.17) is independent of the
surface, it follows that it is the same calculated on those
two surfaces, i.e.,

Vð�1Þ ¼ Vð�2Þ ! VðDð0Þ1 ÞVðS11 � IÞ
¼ VðS10 � IÞVðDðtÞ1 Þ: (6.19)

Note that in fact, VðS10 � IÞ ¼ 1 since S10 is infinitesimal.

Now, if we impose the boundary conditions

F�� ¼ � ~F�� � 1

r2þ�
Tðr̂Þ for r ! 1; (6.20)

where � > 0, r is the radial distance in the x�x� plane, i.e.,
r2 ¼ ðx�Þ2 þ ðx�Þ2 (� and � fixed), and Tðr̂Þ is a Lie
algebra element depending only on the radial direction,

i.e., r̂ ¼ ~r
r . Those boundary conditions imply that the

integrand in (6.17) vanishes on the cylinder S11 � I, and

so VðS11 � IÞ ¼ 1. Therefore, one gets that VðDð0Þ
1 Þ ¼

VðDðtÞ
1 Þ. We cannot say yet we have a conserved quantity

in the parameter t, because both operators are calculated

using the same reference point xR at t ¼ 0. Let now xðtÞR be
a point with the same x� and x� coordinates but at t ¼ t,

i.e., lying at the border ofDðtÞ
1 (see Fig. 2). If we now scan

DðtÞ
1 with loops based at xR we get an operator V

xðtÞR
ðDðtÞ

1 Þ,
which is related to that, based at xR, as VxRðDðtÞ

1 Þ ¼
W�1ðxðtÞR ; xRÞVxðtÞR

ðDðtÞ1 ÞWðxðtÞR ; xRÞ, where WðxðtÞR ; xRÞ is the
holonomy of the gauge potential A�, obtained by integrat-

ing (2.3), along the line joining xR to xðtÞR , and where the

subindices, xR and xðtÞR , indicate the reference point used
in the calculation of the operator (6.17). Therefore, one
gets that

V
xðtÞR
ðDðtÞ

1 Þ ¼ WðxðtÞR ; xRÞVxRðDð0Þ
1 ÞW�1ðxðtÞR ; xRÞ: (6.21)

From (6.17) and the integral self-dual Yang-Mills
equation (2.9), we get that

V
xðtÞR
ðDðtÞ

1 Þ ¼ P2e
ie
R

DðtÞ
1

d�d�W�1½�F��þ�ð1��Þ ~F���Wdx�

d�
dx�

d�

¼ P1e
�ie

H
S
1;ðtÞ
1

d�A�
dx�

d�
; (6.22)

where S1;ðtÞ1 is the border of DðtÞ
1 .

The result we have obtained is that the operator (6.22)
has an isospectral evolution in t. Then, its eigenvalues, or

equivalently Tr½V
xðtÞR
ðDðtÞ1 Þ�N , are constant in t. But by

rotating the axis t [see (6.18)], one gets that those eigen-
values are constant on the whole plane x�x�. But since

V
xðtÞR
ðDðtÞ

1 Þ is integrated over the whole plane x�x�, it turns

out that the eigenvalues are in fact independent of all
coordinates of the Euclidean space-time M. In addition,
such construction is independent of the choice of the

FIG. 2. The surfaces �1 and �2, with the same border S1;ðtÞ1 ,
and reference point xR, used in the construction of conserved
charges.
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orientation of the plane x�x�. We stress that such con-
served charges are gauge invariant, independent of the
parametrization of the surfaces, and also of the choice of
the reference point xR. The arguments for such facts are
similar to those presented in the case of the conserved
charges of the full Yang-Mills equations [see paragraph
below (6.5)]. We have, therefore, proved the relation (2.10).

1. Interpreting the charges (2.10)

Note that the proof of (2.10), or equivalently (6.22), was
based on the equation (6.10) following from the integral
self-dual equation (2.9). However, if one takes (6.10) on
shell, i.e., when (2.8) holds true, then (6.10) becomes

P2e
ie
R

@�
d�d�W�1F��W

dx�

d�
dx�

d� ¼ 1: (6.23)

But that is just an identity following either from the usual
non-Abelian Stokes theorem (3.1) by taking C� � ieA�,

and � a closed surface, i.e., the border of a volume
� ¼ @�, or then from the integral Bianchi identity
(6.13) with 	 ¼ 1. Therefore, if the field tensor satisfies
the boundary conditions [see (6.20)]

F�� � 1

r2þ�
Tðr̂Þ for r ! 1 (6.24)

with � > 0, all the arguments leading to (6.22) hold true,
and we obtain an isospectral evolution for the operator

V0
xðtÞR
ðDðtÞ1 Þ ¼ P2e

ie
R

DðtÞ
1

d�d�W�1F��W
dx�

d�
dx�

d�

¼ P1e
�ie

H
S
1;ðtÞ
1

d�A�
dx�

d�
: (6.25)

Therefore, the eigenvalues of (6.25) are constant in the
time t introduced in (6.18). Note that such result applies
to any field configuration satisfying (6.24), and it does not
have necessarily to be a self-dual solution of the Yang-
Mills equations. In fact, it does not even have to be a
solution of the Yang-Mills theory since (6.23) follows
from identities.

Note that if DðtÞ
1 is a spatial surface, then

the surface-ordered integral in (6.25), namely

P2e
ie
R

DðtÞ
1

d�d�W�1F��W
dx�

d�
dx�

d�
, corresponds to the flux of the

non-Abelian magnetic field (Bi � � 1
2"ijkFjk) through that

surface. On the other hand, if DðtÞ1 has a time component
then that integral corresponds to the flux of the non-
Abelian electric field (Ei � F0i) through such spatial-
temporal surface. Note that the conservation of those fluxes
can be intuitively understood by the fact that the border of

DðtÞ
1 is the circle S1;ðtÞ1 of infinite radius. Therefore, if the

field configuration is localized in a region at a finite dis-

tance to the plane containing S1;ðtÞ1 , the solid angle defined
by that circle is 2
 spheroradians. If that field configura-
tion evolves in the time t, changing its distance to that
plane by a finite amount, the solid angle will remain the

same and so should the flux of the magnetic or electric
fields. Of course, that is an intuitive view, and so not
precise, of the conservation of the charge, but we will
show that it stands reasonable in the examples we discuss
in Sec. VII.

VII. EXAMPLES

We now evaluate the conserved charges obtained from
(2.7) and (2.10) for well-known solutions like monopoles,
dyons, instantons and merons. For simplicity, we restrict
ourselves to the case where the gauge group is SUð2Þ, since
it contains all the physically relevant aspects of the
construction.

A. Monopoles and dyons

In order to evaluate the operator (2.7), let us first work
with its form as a surface-ordered integral of the field
tensor and its dual and then consider the volume-ordered
integral form of it. Therefore, we need the field tensor
at spatial infinity only. The ’t Hooft-Polyakov [9] and
Wu-Yang [10] monopoles for a gauge group SUð2Þ have
the same behavior at infinity. Indeed, the gauge field and
field tensor at infinity are given by

Ai ¼ � 1

e
"ijk

r̂j
r
Tk ¼ 1

2

i

e
@igg

�1; A0 ¼ 0

Fij ¼ 1

e
"ijk

r̂k
r2

r̂ 	 T; F0i ¼ 0;

(7.1)

where r̂ ¼ ~r
r is unit vector in the radial direction, Ti are the

generators of the SUð2Þ Lie algebra satisfying
½Ti; Tj� ¼ i"ijkTk i; j; k ¼ 1; 2; 3; (7.2)

and g is the group element g ¼ expði
r̂ 	 TÞ. In the case of
the Wu-Yang monopole, the formulas (7.1) correspond to
the exact solution and not only to its behavior at infinity.
In the case of the ’t Hooft-Polyakov monopole, on the other
hand, (7.1) is true only in the limit r ! 1, and we do not
show the behavior of the Higgs field since it is not relevant
in the evaluation of the charges as we show below.
In order to calculate (2.7), we have to scan the two-

sphere at spatial infinity with loops starting and ending at
a chosen reference point xR. The quantity W is obtained
by integrating (2.3) from xR to a given point on the loop.
An important fact in such calculation is that the quantity
r̂ 	 T is covariantly constant, i.e.,

Dir̂ 	 T ¼ @ir̂ 	 T þ ie½Ai; r̂ 	 T� ¼ 0: (7.3)

Therefore, using (2.3) one gets that

d

d�
ðW�1r̂ 	 TWÞ ¼ 0: (7.4)

So, W�1r̂ 	 TW is constant along any loop, and conse-
quently constant everywhere. If we denote by TR the value
of r̂ 	 T at the reference point xR, one gets from (7.1) that

L. A. FERREIRA AND G. LUCHINI PHYSICAL REVIEW D 86, 085039 (2012)

085039-12



W�1FijW ¼ 1

e
"ijk

r̂k
r2

TR; (7.5)

and so it belongs to the Abelian subalgebra Uð1Þ generated
by TR. Therefore, the surface ordering becomes irrelevant
and the operator (2.7) becomes (since ~Fij ¼ 0)

QS ¼ e
ie�

R
S21

d�d�W�1FijW
dxi

d�
dxj

d� ¼ e
�ie�

R
S21

d ~�	 ~BR

¼ e
i�TR

R
S21

d�d�"ijk
r̂k

r2
dxi

d�
dxj

d� ¼ ei4
�TR; (7.6)

where we have introduced the Abelian magnetic field

BR
i � � 1

2 "ijkW
�1FjkW ¼ � 1

e
r̂i
r2
TR and have denoted

d�i ¼ "ijk
dxj

d�
dxk

d� d�d�. Using Gauss’s law we define the

magnetic charge as

Z
S21

d ~� 	 ~BR ¼ GR and so GR ¼ � 4


e
TR: (7.7)

According to our construction [see (2.7)], the eigenvalues
of QS are constant in time which, in view of (7.6), is
equivalent to saying that the eigenvalues of GR are con-
stants. At the end of Sec. II, where we discuss the nature of
the eigenvalues of the charges, we have shown that our
construction does not fix the vector space (representation)
where such eigenvalues should be evaluated. If we choose
to calculate them on a finite dimensional representation of
the gauge group SUð2Þ [or SOð3Þ], then the eigenvalues of
TR are integers or half-integers. Therefore, it follows that
the magnetic charges, on those representations, must be
quantized as

eigen values ofGR¼2
n

e
n¼0;�1;�2.. . : (7.8)

Let us now look at the evaluation of the magnetic charges
as volume-ordered integrals. From (2.7), (2.6), and (7.6),
one gets that

e�ie�GR ¼ P3e

R
space

d�d�VJ monopoleV
�1

(7.9)

with

J monopole

� e2�ð�� 1Þ
Z 2


0
d�

Z �

0
d�0½FW

ij ð�0Þ; FW
kl ð�Þ�

� dxi

d�0
dxk

d�

�
dxjð�0Þ
d�

dxlð�Þ
d�

� dxjð�0Þ
d�

dxlð�Þ
d�

�
;

(7.10)

where we have used the fact that ~Fij ¼ 0, and ~J123¼J0¼0,

since in the Wu-Yang case there is no current, and in
the ’t Hooft-Polyakov case we have a static solution with
A0 ¼ 0, and so the time component of the Higgs field
current vanishes. Note that (7.9) and (7.10) could also
have been obtained from the integral Bianchi identity
(6.13). In the case of the ’t Hooft-Polyakov monopole, it
follows that (7.5) is not true inside the monopole core and

we have a quite nontrivial expression for the magnetic
charge as a volume integral. We do not evaluate it in this
paper and so we do not have anything to add to the result
(7.8). Note, however, that even though the rhs of (7.9) is
integrated over the entire space, the Higgs field does not
contribute for such formula of the magnetic charge.
In the case of the Wu-Yang monopole, however, it is not

that difficult to evaluate (7.10) after performing a regulari-
zation of theWilson line, passing through the singularity of
the gauge potential (7.1). That calculation is given in the
Appendix, and the result is that J monopole vanishes in all

loops, and so [see (A10)]

e�ie�GR ¼ P3e

R
space

d�d�VJ monopoleV
�1 ¼ 1: (7.11)

Such result implies that the magnetic charge for the
Wu-Yang monopole is quantized as

eigen values ofGR¼2
n

e�
n¼0;�1;�2.. . : (7.12)

If the parameter � is indeed arbitrary, and there is no
physical condition to fix it, then the only acceptable value
for the integer n is n ¼ 0, and so the magnetic charge of the
Wu-Yang monopole should vanish. Perhaps, we have to go
to the quantum theory to settle that issue. It might happen
that quantum conditions restrict the allowed values of �.
That is one of the important points of our construction to be
further investigated.
Let us now consider the case of dyon solutions. For the

Wu-Yang and the ’t Hooft-Polyakov case, as calculated by
Julia and Zee [11], the space components of the gauge
potential and field tensor, namely Ai and Fij, i; j ¼ 1, 2, 3,

are the same as those in (7.1), and the time components, at
spatial infinity, are replaced by

A0 ¼ M

e
r̂ 	 T þ 


e

r̂ 	 T
r

þO

�
1

r2

�
;

F0i ¼ 


e

r̂i
r2

r̂ 	 T þO

�
1

r3

�
; r ! 1;

(7.13)

withM and 
 being parameters of the solution. In the case
of the Wu-Yang dyon, i.e., when there is no Higgs field and
no symmetry breaking, the formulas (7.13), as well as (7.1),
are true everywhere and not only at spatial infinity. In other
words, there are no terms of order r�2 and r�3 in A0 and
F0i; respectively. Using (7.4) we have, in anology to (7.5),

that

W�1 ~FijW ! �


e
"ijk

r̂k
r2
TR r ! 1: (7.14)

So,W�1 ~FijW also belongs to the Abelian subalgebra Uð1Þ
generated by TR, and it is in fact proportional toW

�1FijW.

Therefore, the surface ordering is not relevant in the evalu-
ation of the operator (2.7), and we get in the dyon case that
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QS ¼ e
�ie½�

R
S21

d ~�	 ~BRþ�
R

S21
d ~�	 ~ER�

¼ e�ie½�GRþ�KR�

¼ ei4
½���
�TR ; (7.15)

where we have introduced the Abelian electric field

ER
i ¼ W�1F0iW ¼ 


e
r̂i
r2
TR, ~BR and GR are the same as

before, and using Gauss’s law we have defined the electric
charge as

Z
S21

d ~� 	 ~ER ¼ KR and so KR ¼ 4



e
TR: (7.16)

According to (2.7) the eigenvalues of QS are constant in
time, and so we conclude from (7.15) that the eigenvalues
of (�GR þ �KR) are constants. But if we assume that
the parameters � and � are arbitrary, it follows that the

eigenvalues of GR and KR are independently constant in
time.We have seen that, by evaluating the eigenvalues of TR

on finite dimensional representations of the gauge group
SUð2Þ, where they are integers or half-integers, the eigen-
values of the magnetic charge GR are quantized as in (7.8).
Under the same assumptions it follows from (7.16) that

eigen values of KR ¼ 2

n

e
n ¼ 0;�1;�2; . . . :

(7.17)

Again from (2.7) we can express the charges in terms of
volume-ordered integrals, and from (2.7), (2.6), and (7.15),
we get

e�ie½�GRþ�KR� ¼ P3e

R
space

d�d�VJ dyonV
�1

(7.18)

with

J dyon �
Z 2


0
d�

�
ie�~JWijk

dxi

d�

dxj

d�

dxk

d�
þ e2

Z �

0
d�0½ðð�� 1ÞFW

ij þ � ~FW
ij Þð�0Þ; ð�FW

kl þ � ~FW
kl Þð�Þ�

� dxi

d�0
dxk

d�

�
dxjð�0Þ
d�

dxlð�Þ
d�

� dxjð�0Þ
d�

dxlð�Þ
d�

��
: (7.19)

In the case of the Wu-Yang dyon we have ~J123 ¼ J0 ¼ 0,
since there are no sources. However, for the Julia-Zee dyon
we have that the Higgs field contributes to the current J�.
One can extract the magnetic and electric charges GR and
KR from (7.18), by setting � ¼ 0 and � ¼ 0 respectively.
Then, the Higgs field contributes to the electric charge
only.

In the case of theWu-Yang dyon it is possible to evaluate
(7.19) after a regularization of the Wilson line operator
passing through the singularity of the gauge potential (7.1).
That calculation is shown in the Appendix, and it was
found that J dyon vanishes in all loops for the Wu-Yang

dyon [see (A10)]. Therefore,

e�ie½�GRþ�KR� ¼ P3e

R
space

d�d�VJ dyonV
�1 ¼ 1; (7.20)

which implies that

eigen values of ½�GR þ �KR� ¼ 2
n

e

n ¼ 0;�1;�2; . . . :
(7.21)

Again, if the parameters � and � are indeed arbitrary, then
it follows from (7.21) that by taking� ¼ 0, the eigenvalues
of GR should obey (7.12). On the other hand, by taking
� ¼ 0, one concludes that (7.21) implies that

eigen values of KR ¼ 2
n

e�
n ¼ 0;�1;�2 . . . :

(7.22)

Now, if (7.12) and (7.22) should hold true for arbitrary
values of � and �, respectively, then the only acceptable

value of the integer n in both equations is n ¼ 0, and
consequently the electric and magnetic charges of the
Wu-Yang dyon should vanish. As discussed below (7.12),
we have perhaps to consider of the quantum theory to settle
that issue, since there could be quantum conditions restrict-
ing the values of � and �.
It is worth evaluating the conserved charges associated

to the operator (6.25) in the case of the monopole and dyon
solutions. For simplicity we shall take the circle of infinite

radius S1;ðtÞ1 to lie on the plane x1x2, for some constant
values of x3 and x0. The calculation for any other plane is
similar and leads, as we shall see, to similar results. We use
polar coordinates on the plane, with the polar angle being
the parameter � parameterizing the circle, i.e., x1 ¼
� cos�, x2 ¼ � sin�, and r2 ¼ �2 þ ðx3Þ2, with x3 con-
stant, and � ! 1. Therefore, for both the monopole and
dyon solutions, we get from (7.1) that on the circle of
infinite radius we have A�

dx�

d� ¼ 1
e T3, since on that circle

�� r ! 1 and the unit vector r̂, on that limit, has com-
ponents only on the plane x1x2. Therefore, from (6.25),
we have

V 0
xðtÞR
ðDðtÞ1 Þ ¼ P1e

�ie
H

S
1;ðtÞ
1

d�A�
dx�

d� ¼ e�i2
T3 : (7.23)

As shown in the arguments leading to (6.25) the eigen-
values of such operator are conserved in the time t which
in this case can be any linear combination of x0 and x3.
But that is equivalent to say that the eigenvalues of T3 are
conserved in t. Since those are integers or half-integers in a
finite dimensional representation of SUð2Þ, it follows that
the operator V 0

xðtÞR
ðDðtÞ1 Þ is either 1 or�1, i.e., an element of
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the center of SUð2Þ. As pointed out below (6.25) such
conserved charge can be interpreted as the non-Abelian

magnetic flux through the surface DðtÞ
1 , which border is

S1;ðtÞ1 . Indeed, we see that the argument of the exponential
in (7.23) is half of the argument of the exponential in (7.6),
if one takes � ¼ 1, and considers that TR and T3 have
the same norm and so the same eigenvalues. Remember TR

is the value of r̂ 	 T at the reference point xR and so
TrðTRÞ2 ¼ TrðTiTjÞr̂ir̂j ¼ 	, where TrðTiTjÞ ¼ 	�ij, and

	 depends upon the representation used. Since the argu-
ment of the exponential in (7.6) corresponds to the total
flux of the magnetic field through S21, we see that it is

the double of the flux through DðtÞ1 . Due to the spherical
symmetry of the solution that is compatible with interpre-
tation, given below (6.25), since S21 corresponds to a solid
angle of 4
 spheroradians as seen from the center of the

solution and DðtÞ
1 corresponds to only 2
 spherodradians.

There are several comments that are important to make
regarding the construction of charges for monopoles and
dyons. First of all, the charges we constructed are different
from those given by (6.8). Indeed, from (7.1) and (7.13) we
have that the magnetic and electric fields at spatial infinity
for the Wu-Yang and ’t Hooft-Polyakov cases are given by

Bi ! � 1

e

r̂i
r2

r̂ 	 T; Ei ! 


e

r̂i
r2
r̂ 	 T; r ! 1:

(7.24)

So, they do not lie on an Abelian Uð1Þ subalgebra like BR
i

and ER
i given above, and when integrated on the two-

sphere at infinity lead to the vanishing of the charges
(6.8), i.e.,

Q
monopole=dyon
YM ¼ ~Q

monopole=dyon
YM ¼ 0: (7.25)

Note that even though the evaluation of the charges (7.6)
and (7.15) rely on the choice of a reference point xR, which
leads to a particular generator TR, the charges do not
depend upon that reference point. Indeed, if one changes
the reference point from xR to ~xR, then the operator QS

changes as [see discussion below (6.5)]

QS ! Wð~xR; xRÞ�1QSWð~xR; xRÞ; (7.26)

where Wð~xR; xRÞ is the holonomy from the old reference
point xR to the new one ~xR. Therefore the charges, which
are the eigenvalues of QS, do not change.

Note that since the charges are the eigenvalues of the
operator (2.7), the number of charges is equal to the rank of
the gauge group G. However, since the field tensor and its
Hodge dual come multiplied by the arbitrary parameters �
and �, respectively, the number of charges is in fact twice
the rank of the gauge group. So, we have rank of G
magnetic charges and rank of G electric charges. In this
sense, the number of charges does not pay attention to the
pattern of symmetry breaking. Indeed, our calculations
have shown that the electric and magnetic charges are the

same for the Wu-Yang case, which is a solution of the pure
Yang-Mills theory, and for the ’t Hooft-Polyakov case
which has a Higgs field breaking the gauge symmetry
from SOð3Þ down to SOð2Þ. In fact, as we have shown
above the Higgs field does not play any role in the evalu-
ation of the charges. In addition the conservation of the
charges is dynamical, i.e., it follows directly from the
integral form of the equations of motion (2.1). That con-
trasts to the conservation of the magnetic charge of the ’t
Hooft-Polyakov monopole which follows from topological
(homotopy) considerations related to the mapping of the
Higgs field from the spatial infinity to the Higgs vacua.
Another point relates to the quantization of the magnetic
charge, which in the case of ’t Hooft-Polyakov monopole
comes from the topology again, i.e., the charge is deter-
mined by second homotopy group of the Higgs vacua. In
our case, the quantization of the charges comes from the
integral equations of motion themselves [more precisely
the integral Bianchi identity (6.13)], without any reference
to the Higgs field since it works equally well for the
Wu-Yang and ’t Hooft-Polyakov monopoles. It is worth
pointing out that the magnetic charges of monopoles of ’t
Hooft-Polyakov type have already been expressed in the
literature, as surface-ordered integral using the ordinary
non-Abelian Stokes theorem. See for instance Sec. V of
Goddard and Olive’s review paper [12]. However, that
construction is totally based on the properties of the
Higgs vacua, since the fact that the Higgs field must be
covariantly constant at spatial infinity leads to an equation
for it similar to (2.3) for the Wilson lineW. In addition, the
argument for the conservation of the magnetic charge is
particular to that type of solution since it is based on
topology considerations of the solution. The generalized
non-Abelian Stokes theorem (4.6), and consequently the
integral Yang-Mills equations (2.1) were not known by that
time. We believe that the role played by the integral
equation (2.1) in monopole and dyon solutions deserves
further study specially in the quantum theory. It might
connect to the so-called Abelian projection and arguments
for confinement.

B. Euclidean solutions

Note that the proof that the eigenvalues of the operator
(2.7) are constant in the time x0 did not really depend on the
particular properties of the metric on the Minkowski space-
time. In fact, the metric tensor was only necessary to
introduce the Hodge duals of the field tensor and of the
matter current. Therefore, one could evaluate those eigen-
values for Euclidean solutions, like instantons and merons,
and obtain charges conserved in the Euclidean time x4. We
will see that those charges are trivial in the case of instan-
tons but not in the case of merons, where they relate to
magnetic type charges. We shall also evaluate the charges
associated to the operator (6.25), or equivalently (2.10), for
the case of instantons and merons.
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1. Instantons

The instantons are Euclidean self-dual solutions, where
the gauge potentials become of the pure gauge form
at infinity, i.e., A� ! 1

e @�gg
�1, for s ! 1, with s2 ¼

x21 þ x22 þ x23 þ x24, where x�, � ¼ 1, 2, 3, 4, being the

Cartesian coordinates in the Euclidean space-time. That
fact simplifies many of the calculations and makes trivial
the eigenvalues of the operators (2.7) and (2.10). However,
as pointed out in Sec. . the physical charges may be related
to the eigenvalues of the Lie algebra elements associated
by exponentiation to the group elements corresponding to
the operators (2.7) and (2.10). We shall illustrate that with
the cases of the one- and two-instanton solutions.

Let us consider the case where the gauge group is SUð2Þ
and take the one-instanton solution [13] given by

A� ¼ � 2

e
���

x� � a�

ðx� � a�Þ2 þ 	2
;

F�� ¼ � ~F�� ¼ ���

e

4	2

½ðx� � a�Þ2 þ 	2�2
(7.27)

with � ¼ �1, and where a�, � ¼ 1, 2, 3, 4, and 	 are
parameters of the solution, and

�i4 ¼ ��Ti; �ij ¼ "ijkTk; ½Ti; Tj� ¼ i"ijkTk

(7.28)

with i; j; k ¼ 1, 2, 3, Ti being the generators of the
SUð2Þ Lie algebra, and the quantities ��� satisfy
1
2 "������� ¼ ����.

If one considers a two-sphere S21 of infinite radius
surrounding the instanton, then we have that the integrand
in the surface ordered integral in (2.7) behaves as

ð�þ ��ÞF��

dx�

d�

dx�

d�
! 1

r2
as r ! 1; (7.29)

where r is the radius of S21. Therefore, the operator (2.7) is
unity, i.e., QS21 ¼ 1, and that unity comes from the expo-

nentiation of the trivial element of the Lie algebra. So, the
one-instanton solution has indeed vanishing charges asso-
ciated with (2.7).

Let us now evaluate the charges associated with the
operator (2.10). Without any loss of generality, let us take

the circle S1;ðtÞ1 of infinite radius to lie on the plane x1x2, at
some constant values of x3 and x4. Due to the symmetries
of the one-instanton solution, the calculation on any other
plane is very similar. We shall use polar coordinates on
the plane x1 ¼ � cos�, and x2 ¼ � sin�, with s2 ¼ �2 þ
ðx3Þ2 þ ðx4Þ2, and � ! 1, and where we have taken the
polar angle � to be the same as the parameter which

parameterizes the circle S1;ðtÞ1 . Therefore, using (7.27), the
integrand of the path-ordered integral in (2.10) becomes

A�

dx�

d�
¼ �ð2=eÞ�ð��1� sin�þ �2� cos�Þ

� ðx� � a�Þ
ðx� � a�Þ2 � 	2

: (7.30)

As � ! 1, the only nonvanishing terms are those where x�

is one of the coordinates of the plane, i.e., x1 or x2. Then
A�

dx�

d� ! ð2=eÞ�12, and so (2.10) becomes

VðD1Þ ¼ P1e
�ie

H
S
1;ðtÞ
1

d�A�
dx�

d� ¼ e�i2
R

2


0
d��12 ¼ e�i4
T3 ;

(7.31)

whereD1 is the infinity disk with border S1;ðtÞ1 on the plane
x1x2. Adapting the interpretation given below (6.25), to the
Euclidean case at hand, such an operator should corre-
spond to the (Euclidean) magnetic flux � through D1,
i.e., VðD1Þ ¼ e�ie�ðD1Þ. If one takes finite dimensional
representations of SUð2Þ, the eigenvalues of T3 are integers
or half-integers and so VðD1Þ ¼ 1, which is compatible
with the fact that the connection A� for the one-instanton is

flat in the limit s ! 1. However, that fact also implies that
the flux should be quantized as

�ðD1Þ ¼ 2
n

e
n ¼ 0;�1;�2; . . . : (7.32)

However, following the same reasoning, the charges com-
ing from (2.7) should also be associated, in such a self-dual
case solution, to the (Euclidean) magnetic flux through the
closed sphere S21. But as we have shown below (7.29), that
flux must vanish. Therefore, the only compatible value of n
in (7.32) seems to be n ¼ 0.
Let us now consider the case of the two-instanton solu-

tion. A closed form for the regular (nonsingular) form of
that solution is not easy. However, we need only its asymp-
totic form to calculate the charges and that is provided
by Giambiagi and Rothe [14]. Consider a two-instanton
regular solution, where the position four-vector of each
instanton is given by a�1 and a�2 . Then the asymptotic form

of the connection is given by [14]

A� ! 4

ea2s2
½ðx 	 aÞ��	b	 þ b�x���	b	� as s ! 1;

(7.33)

where s2 ¼ x21 þ x22 þ x23 þ x24, ��� is the same as in

(7.28), a� is the difference between the two-position

four-vectors, and b� is the reflection of a� through the

hyperplane perpendicular to x�, i.e.,

a� � a�1 � a�2 b� � a� � 2
ðx 	 aÞ
x2

x� (7.34)

and so b2 ¼ a2.
The leading term of the connection given in (7.33) is flat,

and it falls as 1=s as s ! 1. Therefore, the leading term of
the field tensor which would fall as 1=s2 vanishes, and
therefore F�� falls at least as 1=s3. Consequently, the
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integrand of the surface-ordered integral in (2.7), namely
F��

dx�

d�
dx�

d� , falls faster than 1=s, and so it vanishes in the

limit s ! 1. We then conclude that, similarly to the one-
instanton case, the charges associated to the operator (2.7)
vanish when evaluated on the two-instanton solution.

We now evaluate the charges associated to the operator
(2.10) for the two-instanton solution. Given an infinite

plane (disk) D1 with border being the circle S1;ðtÞ1 of
infinite radius we can choose, without loss of generality,
the axis x1 and x2 to lie on that plane. We then split the
vector a� in its perpendicular and parallel parts with
respect to the plane, i.e., a� ¼ a

�
? þ a

�
k and take the

axis x1 to lie along a�k , and the axis x3 to lie along a�?.
In addition, we take polar coordinates on the plane x1x2,
such that x1 ¼ � cos� and x2 ¼ � sin�, with the polar
angle � being the same as the parameter in (2.10) parame-

trizing S1;ðtÞ1 . Then, the integrand of the path-ordered inte-

gral in (2.10) along the infinite circle S1;ðtÞ1 for the
connection (7.33) becomes (� ! 1)

A�

dx�

d�
!4

e

�jakj2
a2

T3þjakjja?j
a2

½cosð2�ÞT1þsinð2�ÞT2�
�
:

(7.35)

We now perform a gauge transformation A�!
ðg2g1ÞA�ðg2g1Þ�1þ i

e@�ðg2g1Þðg2g1Þ�1, with g1 ¼ ei2�T3

and g2 ¼ ei2’T2 . The angle ’ is defined as follows: since
a2 ¼ jakj2 þ ja?j2, we parametrize it as jakj ¼ jaj cos’
and ja?j ¼ jaj sin’, with 0 � ’ � 


2 . So, since the vector

a� was chosen to lie on the plane x1x3, ’ is the angle

between a� and the plane x1x2 measured along the plane

x1x3. Under such a gauge transformation, one gets that

A�

dx�

d�
! A0

�

dx�

d�
¼ 2

e
T3 (7.36)

and so

P1e
�ie

H
S11

d�A�
dx�

d�

! g1ð� ¼ 2
Þ�1g�1
2 P1e

�ie
H

S11
d�A0

�
dx�

d� g2g1ð� ¼ 0Þ:
(7.37)

Therefore, the operator (2.10) becomes

VðD1Þ ¼ P1e
�ie

H
S11

d�A�
dx�

d�

¼ e�i4
T3e�i2’T2e�i4
T3ei2’T2 : (7.38)

We can try to interpret that result in terms of the
(Euclidean) magnetic flux � through the infinite disk
D1. Since we are dealing with a non-Abelian gauge
theory, one should not expect a linear superposition of
the fluxes of each instanton. We have seen in (7.31) that
the exponentiated flux of a single instanton is e�i4
T3 . In
addition, since ’ is the angle between the line passing

through the centers of the instantons and the disc D1, the
result (7.38) could give a hint on how the fluxes compose.
That is certainly a point that deserves further study. Again,
as in any finite dimensional representation of SUð2Þ, we
have that e�i4
T3 ¼ 1, and so VðD1Þ ¼ 1, which is com-
patible with the fact that A� is flat at the leading order we

have performed the calculation. Using the flux interpreta-

tion of the charges, we can write VðD1Þ ¼ e�ie�2-inst:ðD1Þ,
and so the two-instanton flux �2-inst:ðD1Þ is quantized as
in (7.32).

C. Merons

Merons are singular Euclidean solutions, not self-dual,
with one-half unit of topological charge [15]. We shall
work here with such solutions in the Coulomb gauge, since
it is more suitable for the evaluation of the charges and it
also connects with monopole solutions. The solution for a
one-meron located at the origin is given by [15,16]

Ai ¼ � 1

e
"ijk

r̂j
r

0
B@1� x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x24 þ r2
q

1
CATk A4 ¼ 0; (7.39)

with r2 ¼ x21 þ x22 þ x23, i; j; k ¼ 1, 2, 3, and Tk are the

generators of the SUð2Þ Lie algebra. Note that for x4 ¼ 0,
the connection (7.39) coincides with that for the Wu-Yang
monopole given in (7.1). In addition, it interpoles between
two vacuum configurations, i.e., for x4 ! 1 the connec-
tion (7.39) vanishes, and for x4 ! �1 it becomes of a pure
gauge form Ai ¼ i

e @igg
�1, with g ¼ expði
r̂ 	 TÞ.

In order to evaluate the charges (2.7), we need the field
tensor at infinity, which is given by

Fij ! 1

e
"ijk

r̂k
r2
r̂ 	 T F4i ! 1

e
"ijk

r̂j

r2
Tk r ! 1:

(7.40)

Note that when taking the limit r ! 1, we have kept x4
finite. The double limit r ! 1 and x4 ! �1 is not well
defined. The asymptotic form of the space components of
the dual tensor is ("1234 ¼ 1)

~F ij ! � 1

e

1

r2
½r̂iTj � r̂jTi� r ! 1: (7.41)

If we evaluate the operator (2.7) on a spatial two-sphere S21
of infinite radius and centered at the origin, it turns out that

r̂ is perpendicular to S21 and the derivatives dxi

d� and dxi

d� , with

� parametrizing the loops scanning the sphere and � label-
ing them, are parallel to S21. Therefore, we have that
~Fij

dxi

d�
dxj

d� ¼ 0. Consequently, the calculation of the opera-

tor (2.7) for the one-meron solution is identical to that for
the monopole [see calculation leading to (7.6)]. So, we
have that
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QS ¼ P2e
ie
R

S21
d�d�W�1½�Fijþ� ~Fij�Wdxi

d�
dxj

d�

¼ e
�ie�

R
S21

d ~�	 ~BR

¼ e�ie�GR

¼ ei4
�TR; (7.42)

where we have introduced a (Euclidean) magnetic field in a

way similar to that in (7.6), i.e., BR
i � � 1

2"ijkW
�1FjkW ¼

� 1
e

r̂i
r2
TR, with TR being the value of r̂ 	 T at the reference

point xR used in the scanning of the sphere . Using the same
arguments as in the case of the monopole, we conclude that
the magnetic charges GR are quantized as in (7.8).

We then conclude that the one-meron solution has a
magnetic charge GR conserved in the Euclidean time x4,
and it is quantized in units of 2


e . What is not clear is what

happens to that charge in the limit x4 ! �1, since as we
have seen, the connection (7.39) becomes flat in that limit
and the charge should disappear. One of the difficulties in
answering that is the fact that the double limit r ! 1 and
x4 ! �1 of the connection (7.39) is not well defined.

The evaluation of the charges (6.25) for the one-meron
solution is also identical to that of the monopole, leading to

(7.23). Indeed, if we consider the circle S1;ðtÞ1 of infinite
radius to lie on spatial planes, then only the components Ai,
i ¼ 1, 2, 3, of the connection matters. But in the limit
r ! 1, the connection (7.39) becomes identical to that
for the monopole (7.1). Therefore, following the arguments
leading to (7.23), one gets that

V 0
xðtÞR
ðDðtÞ

1 Þ ¼ P1e
�ie

H
S
1;ðtÞ
1

d�Ai
dxi

d� ¼ e�i2
T3 : (7.43)

The eigenvalues of that operator are conserved in the
Euclidean time x4, and their interpretation [given below
(7.23)], in terms of the magnetic flux through the surface

whose border is S1;ðtÞ1 , remains valid. Again, we do not
know what happens to those charges in the limit x4 ! �1,
for the same reasons given above in the case of the one-
meron magnetic charge.

The two-meron solution in the Coulomb gauge corre-
sponding to one meron siting at the position x� ¼ a� ¼
ð0; 0; 0; aÞ and the other at x� ¼ b� ¼ ð0; 0; 0; bÞ is given
by [15,16]

Ai ¼ � 1

e
"ijk

r̂j
r

0
@1þ r2 þ ðx4 � aÞðx4 � bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� aÞ2ðx� bÞ2p

1
ATk

A4 ¼ 0:
(7.44)

Expanding it in powers of 1
r , one gets that

Ai ¼ i

e
@igg

�1 þ 1

e

ða� bÞ2
2

"ijk
r̂j

r3
Tk þO

�
1

r5

�
; (7.45)

with g ¼ expði
r̂ 	 TÞ, and so the leading term is of pure
gauge form, i.e., it is flat. Therefore, we have that

Fij �O

�
1

r4

�
F0i �O

�
1

r5

�
: (7.46)

Consequently, the integrand in (2.7), namely ð�Fij þ
� ~FijÞ dxid�

dxj

d� , behaves as Oð 1
r2
Þ in the limit r ! 1.

Therefore, the charges associated to (2.7) vanish, i.e.,
QS ¼ 1.
Note that in the limit r ! 1, the spatial component of

the connection (7.44) for the two-meron solution is twice
that of the one-meron solution (7.39). Therefore, the evalu-
ation of the charges associated with the operator (6.25) is
very similar to that leading to (7.43) and gives

V 0
xðtÞR
ðDðtÞ1 Þ ¼ P1e

�ie
H

S
1;ðtÞ
1

d�Ai
dxi

d� ¼ e�i4
T3 ¼ 1; (7.47)

where the last equality follows from the fact that the
leading term of Ai is flat. The interpretation for such
conserved charges, given below (6.25), holds true, i.e.,
they correspond to the magnetic flux through the surface

whose border is S1;ðtÞ1 , and such fluxes are also quantized.
The meron-antimeron solution in the Coulomb gauge,

corresponding to a meron and an anti-meron located
at x� ¼ �a� and x� ¼ a�, respectively, with a� ¼
ð0; 0; 0; aÞ, is given by [15,16]

Ai ¼ � 1

e
"ijk

r̂j
r

0
@1� x2 � a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ aÞ2ðx� aÞ2p

1
ATk A4 ¼ 0:

(7.48)

Again, expanding in powers of 1
r one gets

Ai ¼ � 2a2

e
"ijk

r̂j

r3
Tk þO

�
1

r5

�
: (7.49)

Then, similarly to the two-meron case, one has that
Fij �Oð 1

r4
Þ and F0i �Oð 1

r5
Þ, and so the charges coming

from (2.7) are trivial, i.e., QS ¼ 1. In addition, since the
connection falls faster than 1

r , the integrand in the operator

(6.25) vanishes, i.e., P1e
�ie

H
S
1;ðtÞ
1

d�Ai
dxi

d� ¼ 1. The corre-
sponding charges are also trivial in this case.

D. Summary of the charges

As we have seen in the examples above, the surface- and
path-ordering are not necessary in the evaluation of the
operators (2.7) and (2.10) [or equivalently (6.25)] whose
eigenvalues are the charges. Therefore, those operators
can be written as an ordinary exponential of Lie algebra
elements. The only exception is the charge for the two-
instanton solution associated with the operator (2.10),
which involves a nonlinear superposition of fluxes
[see Eq. (7.38)]. Therefore, we shall write the operator
(2.7), defined on a volume inside a two-sphere S21 of
infinite radius, as
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P2e
ie
R

S21
d�d�W�1ð�F��þ� ~F��ÞWdx�

d�
dx�

d� ¼ e�ie½�GRþ�KR�;
(7.50)

where GR and KR are the magnetic and electric charges
defined as

GR ¼
Z
S21

d ~� 	 ~BR KR ¼
Z
S21

d ~� 	 ~ER; (7.51)

with BR
i � � 1

2"ijkW
�1FjkW and ER

i ¼ W�1F0iW, being

respectively the Abelian magnetic and electric fields.
Similarly, we shall write the operators (2.10) and (6.25)

on a surface D1 with the border being a circle S11 of
infinite radius, as

P1e
�ie

H
S11

d�A�
dx�

d� ¼ e�ie�ðD1Þ; (7.52)

where �ðD1Þ is interpreted as the magnetic flux through
the surface D1.

Note that the magnetic chargeGR is quantized due to the
integrable Bianchi identity (6.13). The electric charge KR

and the magnetic flux �ðD1Þ are quantized only if we
evaluate the operators (2.7), (2.10), and (6.25) on a finite
dimensional representation of the SUð2Þ gauge group,
where the eigenvalues of the generator T3 (or any other
element conjugated to it) are integers or half-integers,
which we shall denote by n

2 , with n integer.

With those definitions, we summarize the spectrum of
charges of the solutions discussed above in Table I.
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APPENDIX: REGULARIZATION
OF WILSON LINES

In order to calculate the rhs of the relations
(7.9) and (7.18), which give the conserved charges, as
volume-ordered integrals, for the Wu-Yang monopole
and dyon solutions, respectively, we have to evaluate

the Wilson line operator W, defined by (2.3), for the
connection

Ai ¼ � 1

e
"ijk

xj

r2
Tk; (A1)

which has a singularity at the origin of the coordinate
system. In the case of the dyon, the time component of
the connection is nonzero and it also presents a singularity
at the origin. However, it does not play a role in the charge
calculation, since all the Wilson line operators are defined
on space curves with no time component. We show in this
Appendix how the Wilson line operator can be regularized,
when it is integrated along a purely spatial (no time) curve
� passing through the origin. In order to do that, we shall

split � into three parts, � ¼ �1 [ ~�" [ �2, as shown in
part I of Fig. 3.
Therefore, the solution of (2.3) can be written as

W ¼ Wð�2ÞWð~�"ÞWð�1Þ: (A2)

The quantities Wð�1Þ and Wð�2Þ do not involve the singu-
larity and so we should not worry about them. We have to

evaluate Wð~�"Þ, which pass through the origin. We shall

take ~�" infinitesimally small in such a way that we can
approximate it by an infinitesimal straight line of length
2", containing the origin in its middle point. Note that the

quantity Ai
dxi

d� , appearing in (2.3), is invariant under rota-

tions, and so we can rotate the coordinate system in such a

way that the x3 axis lies parallel to ~�" and in the direction
of growing �, i.e., in the sense of integration of (2.3),
as shown in part II of Fig. 3. Along such infinitesimal

straight line ~�", parametrized as x3 ¼ �, we have that

Ai
dxi

d� ¼ � 1
e

1
r2
½x1T2 � x2T1�. However, on ~�" one has

x1 ¼ x2 ¼ 0, and so for r � 0 such expression vanishes.
On the other hand, for r ¼ 0 it diverges, and so we have
quite an ill-defined quantity.
In order to regularize the Wilson line, we shall replace

~�" by a semicircle �" of radius ", with diameter being the
previous straight line and lying on the plane x1x3 as shown
in part II of Fig. 3. We evaluate Wð�"Þ on such semicircle
and then take the limit " ! 0. The points in �" can be
parameterized as

x1 ¼ "sin� x2 ¼ 0 x3 ¼�"cos� 0���
:

(A3)

Therefore, for all such points, we have r ¼ ", and so from
(A1) one has

Ai

dxi

d�
¼ "ðA1 cos�þ A3 sin�Þ ¼ � 1

e
T2: (A4)

We note that it does not depend upon " and � and lies in
the direction of just one generator of SUð2Þ. Therefore, the
problem is Abelian, and the path ordering is not necessary.
Then from (2.3) we have

TABLE I. Eigenvalues of GR, KR and �ðD1Þ, for SUð2Þ
solutions.

GR KR �ðD1Þ
Monopole 2
n

e 0 
n
e

Dyon 2
n
e

2

n
e


n
e

1-instanton 0 0 2
n
e

2-instanton 0 0 see (7.38)

1-meron 2
n
e 0 
n

e

2-meron 0 0 2
n
e

meron-antimeron 0 0 0
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Wð�"Þ ¼ ei
T2 ; (A5)

which we take as the regularized expression for Wð~�"Þ.
Of course, we would obtain different results for different
choices of curves going around the origin, especially non-
planar curves. However, as shown below, the evaluation of
the rhs of the relations (7.9) and (7.18) is independent of
such choices, and the regularization of those quantities is
quite unique.

Note that for the Wu-Yang monopole and dyon solu-
tions, one has that

Fij¼1

e
"ijk

r̂k
r2
r̂ 	T; ~Fij¼�


e
"ijk

r̂k
r2
r̂ 	T; (A6)

with 
 ¼ 0 in the pure monopole case. In the evaluation of
(7.10) and (7.19), we have to deal with the conjugated
quantities FW

ij and ~FW
ij , and so essentially we have to worry

about the quantity W�1r̂ 	 TW. Our prescription is to scan
the volume (the whole space) with closed surfaces based at
xR, and each of those surfaces are scanned with loops
starting and ending at xR. The origin lies on a given surface
labeled by �0, and to just one loop, labeled by �0, on that
surface and corresponding to the point labeled by �0 on
that loop. For the surfaces corresponding to � < �0, there
are no problems in the integration since everything is
regular. On each loop on those surfaces, one can use the
relations (7.3) and (7.4) to conclude that, along such loops,
W�1r̂ 	 TW is constant and equal to TR, i.e., the value of
r̂ 	 T at the reference point xR where all loops are based.

Therefore, the commutators in (7.10) and (7.19) vanish
for � < �0, since the conjugated tensors FW

ij and ~FW
ij all lie

in the direction of TR on any point of any loop scanning the
surfaces for � < �0. On the surface for � ¼ �0, everything
is fine until we reach the loop corresponding to � ¼ �0.
In other words, the commutators in (7.10) and (7.19) also
vanish for � ¼ �0 and � < �0. Let us consider the loop
corresponding to � ¼ �0. For �< �0, we still have the
vanishing of those commutators since the singularity has
not been touched yet. After crossing the singularity,
we have that the Wilson line W becomes W2Wð�"ÞW1

[see (A2)], where W1 is the result of the integration

of (2.3) along �1, i.e., the curve from the reference point
xR up to the point marked �" on Fig. 3, along the loop
corresponding to � ¼ �0, which passes through the origin.
SimilarlyW2 is obtained by integrating (2.3) along �2, i.e.,
the curve from the point marked " on Fig. 3, up to some
generic point beyond the origin along that same loop.
In addition, Wð�"Þ is the regularized expression, given in

(A5), for the integration of (2.3) along ~�".
Along the curve �2, the connection (A1) is regular, and

so we can use (7.3) and (7.4) to conclude that

W�1
2 r̂ 	 TW2 ¼ ðr̂ 	 TÞ�0

2
; (A7)

where ðr̂ 	 TÞ�0
2
is the value of r̂ 	 T at the initial point of the

curve �2, which is the point marked " on Fig. 3. But since
we have rotated the coordinate system such that the x3 axis

lies along ~�", we have that ðr̂ 	 TÞ�0
2
¼ T3. Now using (A5),

we have that

W�1ð�"ÞW�1
2 r̂ 	 TW2Wð�"Þ ¼ e�i
T2T3e

i
T2

¼ �T3

¼ ðr̂ 	 TÞ�end
1
; (A8)

since�T3 is the value of r̂ 	 T at the final point of the curve
�1, which is the point marked �" on Fig. 3. Along the
curve �1 the connection (A1) is regular, and so we can use
(7.3) and (7.4) to get

W�1
1 W�1ð�"ÞW�1

2 r̂ 	 TW2Wð�"ÞW1 ¼ W�1
1 ðr̂ 	 TÞ�end

1
W1

¼ TR; (A9)

where TR is the value of ðr̂ 	 TÞ at the reference point xR,
which is the initial point of �1. Therefore, the field tensor
and its dual, given in (A6), lie in the direction of TR when
conjugated with W2Wð�"ÞW1, and so the commutators in
(7.10) and (7.19) vanish when evaluated on the loop cor-
responding to � ¼ �0, i.e., the one passing through the
singularity of (A1). Of course, the quantities (7.10) and
(7.19) will vanish on all loops scanning the surfaces for
� > �0, since the potential (A1) is not singular there, and
the relations (7.3) and (7.4) can be used to show that

FIG. 3. The regularization of the Wilson line operator is done by replacing the path that passes through to the origin by a path going
around it.
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W�1r̂ 	 TW ¼ TR, for W obtained by the integration of
(2.3) on such loops.

Consequently, all the commutators in (7.10) and (7.19)
vanish on any loop on the scanning of any surface on the
scanning of the volume. Since the Wu-Yang solutions have
no sources, we have ~J123 ¼ J0 ¼ 0, and so J monopole and

J dyon also vanishes. Therefore, we conclude that the rhs of

(7.9) and (7.18) are equal to unity, i.e.,

P3e

R
space

d�d�VJ monopoleV
�1 ¼ 1;

P3e

R
space

d�d�VJ dyonV
�1 ¼ 1:

(A10)

We now come to the issue of the uniqueness of the
regularization procedure. We have chosen to replace the

segment ~�" by the semi-cicle �". Let us now analyze what
happens to the quantity W�1ð�"Þðr̂ 	 TÞ�end

1
Wð�"Þ ¼

W�1ð�"Þð�T3ÞWð�"Þ, when we make arbitrary infinitesi-
mal variations on the semicircle �" keeping its end points
fixed, i.e., the points marked " and �" on Fig. 3. We have

�½W�1ð�"Þð�T3ÞWð�"Þ�
¼ ½W�1ð�"Þð�T3ÞWð�"Þ;W�1ð�"Þ�Wð�"Þ�
¼ ½T3; W

�1ð�"Þ�Wð�"Þ�; (A11)

where in the last equality we have used (A5) and (A8).
The variation of the Wilson line can be easily evaluated
using, for instance, the techniques of Sec. 2 of Ref. [1].
When the end points of the curve �" are kept fixed, one gets

W�1ð�"Þ�Wð�"Þ ¼
Z 


0
d�W�1FijW

dxi

d�
�xj; (A12)

where Fij is the curvature, given in (A6), of the connection

(A1), and whereW in the integrand in (A12), is obtained by
integrating (2.3) along �", from its initial point at � ¼ 0 to
the point� ¼ �, where the tensor Fij is evaluated. As long

as the transformed curve does not pass through the singu-
larity of the connection (A1), the relations (7.3) and (7.4)
can be used to show that W�1r̂ 	 TW ¼ �T3, where �T3

is the value of r̂ 	 T at the initial point of �". Therefore,
the integrand in (A12) always lies in the direction of T3,
and so

�½W�1ð�"Þð�T3ÞWð�"Þ� ¼ 0: (A13)

Consequently, any curve �, with the same end points as �",
and that can be continuously deformed into �", satisfies
W�1ð�"Þð�T3ÞWð�"Þ ¼ W�1ð�Þð�T3ÞWð�Þ ¼ T3. That
shows that our prescription for the regularization of the
Wilson line is independent of the choice of the curve

replacing the segment ~�".
Note that the special role being played by T3 is an

artifact of our choice of the orientation of the coordinate
axis with respect to the curve. Note, in addition, that our
results do not imply that the Wilson line does not change.
It is just the conjugation of T3 by the Wilson line that
remains invariant. In the cases where the variation of the
curve lies on the same plane as �", the Wilson line itself is
invariant. The reason is that the rhs of (A12) measures the
magnetic flux through the infinitesimal surface spanned by
the variation, and since the magnetic field is radial it is
parallel to such surface, and so �Wð�"Þ ¼ 0 in such cases.
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