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Evolution of cusped lightlike Wilson loops and geometry of the loop space
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We discuss the possible relation between certain geometrical properties of the loop space and energy
evolution of the cusped Wilson exponentials defined on the light cone. Analysis of the area differential
equations for this special class of the Wilson loops calls for careful treatment of the ultraviolet and rapidity
divergences which make those loops nonmultiplicatively renormalizable. We propose to consider the
renormalization properties of the light-cone cusped Wilson loops from the point of view of the universal
quantum dynamical approach introduced by Schwinger. We discuss the relevance of the Makeenko-
Migdal loop equations supplied with the modified Schwinger principle to the energy evolution of some
phenomenologically significant objects, such as transverse momentum dependent distribution functions,

collinear parton densities at large x, etc.
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L. INTRODUCTION

Complete recast of QCD in the loop space would enable
us to use colorless gauge-invariant field functionals as the
fundamental degrees of freedom instead of the colored
gauge-dependent quarks and gluons [1,2]. The physical
observables are supposed to be expressed via the vacuum
averages of the Wilson loops depending, in general, on
multiple contours {I';}:
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Here and in what follows the gauge fields A, belong to the
fundamental representation of non-Abelian gauge group
SU(N.). Generically, dynamics of any reasonable function
of the gauge fields is properly determined by the set of the
Schwinger-Dyson equations in the following form:

(OIV , F#7|0) — i<0
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Being applied to the scalar functionals ®(I') (1.1) which
constitute the loop space, Eq. (1.2) results in the
Makeenko-Migdal (MM) equations [3]:
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where the key operations are the area §/60 ,,(x) and the
path 9, (x) derivatives [3]:
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where the contour I'8T" is obtained from the initial one, T,
after an infinitesimal area deformation 61" at some point x,
while the infinitesimal pinch of the path I' at the point x,

without changing its area, makes it possible to introduce
the single-point path derivative

D(6x;'Ts - oI
9, ®(I) = lim (O, T'0x,) = P
B |6x,]

(1.5)

Note that, alternatively, the area derivative can be written
in the Polyakov form
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The latter definition had been adopted in, e.g., Ref. [4]
to approach the similar problems from a different point
of view.

The standard way of derivation of the loop equations
within the general Schwinger-Dyson framework is based
on the Mandelstam formula
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80, (x)

(1.6)

(I) = ig Tr[F,, P(T))] (1.7)

and/or utilizes the Stokes theorem. This approach is cer-
tainly relevant to the class of smooth Wilson loops without
cusps.! The MM equations in the form (1.3) are exact and
nonperturbative and reflect the differential geometrical
structure of the loop space. However, the range of practical
use of the MM equations is quite restricted because of the
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following reasons [5]. First, most physically interesting
Wilson loops develop ultraviolet, infrared and light-cone
divergences; in addition to that, they possess specific ob-
structions, cusps and/or self-intersections, which yield yet
other problems with corresponding divergences. It is
known, however, that Eq. (1.3) cannot be applied straight-
forwardly to the lightlike Wilson loops with cusps. The
renormalized version of the MM equation which is valid
for these loops is not available. One of the reasons is that
the area functional derivative is not a well-defined opera-
tion for arbitrary contours with obstructions.

Next, there are subtle points related to the continuous
deformations of the paths in Minkowski space-time, mak-
ing the meaning of the derivatives unclear. In particular, in
Ref. [6] it is argued that Minkowski space-time is as
unconnected as a space can be with respect to a path
topology (this resembles the structure of the set of rational
numbers in the space of real numbers: although the rational
numbers are infinitely close to each other, one cannot move
from a rational number to another one without crossing a
real number). Several attempts to define a correct path or
loop space in order to solve this problem have been made
without success. Recently, the new developments in the
field of twistor theory have shown the MM equations to be
valid, but the calculations are implemented in a completely
different background (twistor space) [7]. General solutions
of the MM equations in the four-dimensional space-time
are also not known.

On the other hand, there are several approximations and
simplifications which might make life easier. First, in the ’t
Hooft large-N, limit, the factorization property allows
one to get the MM equation closed: W,(Cy, C,) =
Wi (C)) - Wi(C,) [3]. Second, restricting ourselves to
only light-cone rectangular contours, we end up with an
effectively two-dimensional case: the space-time dimen-
sion where there is hope to solve the MM equations.
Further, if one concentrates on the lightlike polygons,
then the angles between light rays are fixed and conserved
under any allowed area or path variation (that imposes
additional constraint on the possible variations, of course).
Hence, there are no angle-dependent contributions that
may make the area differentiation ill defined. Finally,
the power of divergency decreases under the area differen-
tiation, making it possible to construct appropriate
renormalization-group equations for those loops.

In this work, we address some of these issues, consid-
ering a special class of the Wilson loops, namely the
rectangular quadrilaterals with their sides being defined
on the light cone. Strong interest in the cusped lightlike
polygonal eikonal paths is related to the recently observed
duality between the n—gluon planar scattering amplitudes
in the 2N = 4 super Yang-Mills theory and the vacuum
average of the Wilson loops formed, correspondingly, by n
lightlike segments connecting the space-time points x;,
so that their lengths x; — x;+; = p; are set equal to the
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external momenta of the n—gluon amplitude (see, e.g.,
Ref. [8] and references therein). It has been shown that the
infrared evolution of the former is (or is expected to be)
dual to the ultraviolet evolution of the latter, with the cusp
anomalous dimension being the main ingredient of the
evolution equations [9]. Therefore, the dynamical content,
for instance, of a 2 — 2 scattering process in the momen-
tum space maps the local geometrical properties of the
lightlike quadrilateral Wilson loop defined in the coordi-
nate space. The local properties of Minkowskian paths in
the vicinity of the obstructions are known to be expressed
in terms of the universal path-independent cusp anomalous
dimension.

Further, the Wilson loops containing lightlike segments
were studied a couple of decades ago within a different
context [10]. It was demonstrated that the renormalization
properties of these objects are more complicated than the
renormalization-group behavior of the cusped Wilson
loops off the light cone. In particular, the light-cone
Wilson loops are not multiplicatively renormalizable due
to the peculiar light-cone singularities arising in addition to
the common ultraviolet and infrared ones. Still, it is pos-
sible to construct a combined renormalization-group equa-
tion reckoning with both the ultraviolet and the light-cone
divergences, so that its solution does not show any patho-
logical behavior. The cusp anomalous dimension which
enters this equation is known to be of remarkable univer-
sality: it controls, for example, the infrared asymptotic
behavior of phenomenologically important quantities
such as the QCD and QED Sudakov form factors, the gluon
Regge trajectory, the integrated (collinear) parton distribu-
tion functions at large x, the anomalous dimension of the
heavy quark effective theory, etc. [9-12].

On the other hand, recent study of the operator definition
of transverse momentum dependent parton densities

(¢) (d)

FIG. 1. The virtual one-loop Feynman graphs which produce
extra singularities: (a) vertex-type fermion-Wilson line interac-
tion in covariant gauge; (b) self-energy graph which yields the
extra divergences in the light-cone gauge; (c, d) the counterparts
of (a, b) from the soft factor made of the Wilson lines.
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(TMDs) reveals that these quantities, taken literally,
demonstrate the similar extra light-cone singularities
associated with rapidity divergences [13,14]. The virtual
Feynman graphs producing such terms are shown in Fig. 1.

Therefore, it is instructive to undertake a detailed study
of those properties shared by these apparently different
quantities which originate in their light-cone structure
and reveal themselves in the too much singular terms as
compared to the off-light-cone objects.

II. DYNAMICAL LOOP EQUATIONS, AREA
DEVELOPMENT AND ENERGY EVOLUTION

Evaluation of the cusped light-cone Wilson loops be-
yond the tree approximation in different (covariant, axial,
light-cone, contour, etc.) gauges and corroboration of
gauge independence of the result demand careful treatment
of different classes of divergences even in the one-loop
order. Special attention must by paid to the separation of
the light-cone (also known as rapidity) singularities and the
normal ultraviolet poles. We refer for more detailed dis-
cussion and further references to Refs. [2,10,13,15]. In the
large-N,. limit we have in the coordinate space [10]

1 N,
Wl =1- 012 o iof
+ [2N+N u* +i0]°)
N./1. . N*N~
n azsﬂc (§1n2 N + finite terms) + 0(a?),

(2.1

where the energy variables in the momentum space s =
(p; + p2)% t = (p, + p3)* match the geometrical area
variables in the coordinate null plane s/2 = —¢/2 —
N*N~. We will show in a separate paper that the result
(2.2) is not only gauge invariant but remarkably indepen-
dent of any regularization of light-cone and ultraviolet
divergences and of the way of their separation [16]. This
issue is of particular importance to the understanding of
the operator structure of transverse momentum dependent
parton densities and soft-collinear effective theory (see,
e.g., Refs. [14,17] and references therein). What happens
to the issue of regularization independence in the next-to-
leading order is not known yet and deserves its own dedi-
cated study.

Let us fix the transverse null plane by imposing the
condition z; = 0; therefore, the area differentials are
well defined:

dot” =N"SN~ — p,6p, = l(‘)‘s,
2 2.2)
50'7+ = _N78N+ — —p25p1 = 551‘
These operations are defined only at the angle points x;,
and one has to distinguish between left and right variations,
as shown in Fig. 2.
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FIG. 2. Infinitesimal area transformations for a light-cone rect-
angle in the null plane: we consider only those area variations
that conserve the angles between the sides. These variations are
defined in the corners x;.

W([I'p) is one of the best studied examples of the
(partially) lightlike objects which are known to lack
multiplicative renormalizability [10]. Another example is
provided by the transverse momentum dependent parton
density with purely lightlike semi-infinite gauge links
[13,14]: extra divergency stems from the one-loop
vertex-type graph Fig. 1(a) in covariant gauges or from
the self-energy graph Fig. 1(b) in the light-cone gauge (in
the large-N, limit)

2 €
TMDyygrLc = — aSNC F(E)I:47T_'u—p2:| X 8(1 — x)é‘@(kl)

f dx(l _ x)1+5

In both cases, the reason of the renormalizability break-
down is that the lightlike Wilson lines (or the seemingly
standard quark self-energy in the light-cone axial gauge)
are more singular than the usual Green functions.
Remarkable duality between these two cases will be dis-
cussed below.

In order to decrease the power of singularity, one can
follow the method proposed in Ref. [11]. With Eq. (2.2) in
mind, let us define the area logarithmic derivative on the
light cone

(2.3)

o
— =04 +o_ 2.4
8lno TS0, oo, 24
and apply this operator to the rhs of the Eq. (2.2):
N1
InW(ry) = — & _X[Z2N*N"p? + 0]
6 lno
+ [2N+N w? +i0]°). (2.5)
Then, the finite cusp anomalous dimension results from
d S InW (I
® ;“ (2.6)
@
Ty = 5 + 0(ad).

We get the finite result (2.6) by making use of the loga-
rithmic area derivative (2.4), given that the infinitesimal
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area variations are defined as in (1.4). Equation (2.6)
describes the dynamical properties of the lightlike
Wilson loops. We relate, therefore, the geometry of the
loop space (expressed in terms of the area differentials)
to the dynamics of the fundamental degrees of freedom—
the gauge invariant, regularization-independent lightlike
Wilson loops.

III. MODIFIED SCHWINGER APPROACH AND
THE COMBINED EVOLUTION

Let us show that the trick (2.6) is not just a handy
technical tool but a direct consequence of the geometrical
properties of the loop space, whose constituents are the
nonrenormalizable cusped lightlike Wilson loops. To this
end, we shall start with the fundamental quantum dynami-
cal principle proposed by Schwinger [18]. According to the
latter, the quantum action operator S governs variations of
arbitrary states:

5(a'|a’) =%<a’|55|a”>. 3.1
However, this equation, being valid for renormalizable
quantities, knows nothing about the nonrenormalizable
ones.

The previous results give us a clue to further analysis: let
us study the area variations defined in (2.2)

i(a/|a”) = i.<af’ 0 a”>,

oo h oo S
take into account the renormalization group invariance of
the Schwinger equation in the weak form and apply the
resulting operator to the cusped lightlike contours.

Given that the space under consideration is made of
scalar objects owning different geometrical and topologi-
cal properties, one concludes that the equations of motion
satisfied by those objects should prescribe the laws accord-
ing to which they change their form. The motions in the
loop space are, putting it formally, variations of the con-
tours [3]. Therefore, the problem arises of how to find the
correct form of the operator S, which is responsible for the
form variations of the lightlike cusped loops (Wilson null
polygons). Within the standard approach, one utilizes (3.1)
in the form (1.2) and obtains the set of the MM Egs. (1.3).
We will follow another strategy, trying to avoid using
operations which implicitly assume the smoothness of
the Wilson loops under consideration. For the sake of
clarity, consider at first a generic Wilson loop W(I') with-
out specifying whether it is smooth or not. Its perturbative
expansion reads

(3.2)

w() = wO + wi

_ g*Cr

=1
2 r

fr dz,dz,D*"(z — 7) + O(g"),
(3.3)
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where D*” is a free dimensionally regularized (w =4 — 2¢)
gluon propagator

DW= —ghtvA(z — 7)),

I'(l—e (mp)e
4m* [z -2 +i0]'"e

(34
Az —7) =

Here, we adopt the Feynman covariant gauge and extract the
scalar part of the propagator A(z). Important issues related
to the gauge and regularization independence of subsequent
calculations will be studied elsewhere [16]. Therefore, the
lhs of Eq. (3.2), being applied to the Wilson loop (3.4),
yields

00 ,, 2 ooy,

f f dz,dz*A(z — 7') + O(g*).
rJr
3.5)

The area differentiation can be performed by making use of
the Stokes theorem

f dz,0" = % f doy, (M 0P — 37 OV,

: > (3.6)

W=f&%@
r

where I' is considered as the boundary of the surface 2.
After simple manipulations and the path differentiation at
the same point x, one obtains the leading-order term of the
Makeenko-Migdal equation (1.3):

BW(FO) _ gch
éo,,(x) 2

f dy,8@(x —y) + 0(g".  (.7)
I'o

However, we have to be careful with this result: to derive
it, one tacitly assumed that the Stokes theorem is applicable
for all Wilson loops of interest. The latter is not the case, in
general; for that reason we denote the good (smooth-
enough) contours by a circle index I'n. It is worth noting
that in the two-dimensional QCD, the area differentiation
is reduced to the ordinary derivative, since the gluon
propagator (3.4) for w = 2 behaves as the logarithm of z,
which yields

2
&N,
3 py

W(o)?P = exp[ - ], 3 =areainsidel'o,  (3.8)
so that 21nW’2 = —g’N,. Calculating, in the similar
manner, the next-to-leading terms, one can come to the
full MM Eq. (1.3). Nevertheless, we shall stop at this
point and make a couple of steps backward, since we are
interested in the loops which apparently do not satisfy
the Stokes theorem conditions. For that reason, we will
try to learn something about the area variations of the
Wilson loops without using the Stokes theorem, but
taking into account instead an explicit form of the gluon
propagator (which develops a specific singularity on the
light cone), Eq. (3.4). Restricting ourselves with the area
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variations of the type (2.2), one obtains the area deriva-
tive of the Wilson rectangle

2 _ 2\e
5W(FD) CF I'(1 e)(;r,u, ) ) Z(vj‘v;\
00, 41r 00, Py
f j‘ drdr’
0 Jo [—(x; —x; — v, + 7jv))* +i0]'" "¢
(3.9

where the sides of the rectangle are parameterized as
7 = x# — v 7 with the vectors v; having the dimension
[mass_l] [10] It is a remarkable feature of the lightlike
loops that the area dependence gets factorized from the
integrals and can be evaluated explicitly [we note that
2(vyv,) = 2NT N~ in the notations of the Eq. (2.2)]

wi(y) = % C1“(1 — e)(mu?)(—2NTN")¢

drdt’

fﬁ[(l—r)r’]‘ <

On the other hand, lightlike Wilson lines with v? = 0
produce additional (compared to the off-light-cone case)
singularity, which shows up as a second-order pole in e,
while the cusps make the conformal invariance of the
Wilson loop anomalous due to the presence of the
skewed scalar products (v;v;) # 0 instead of the confor-
mal ones v?. Then, performing the area §/8Ino =
6/8In(2N*N~) and the mass scale (logarithmic) differ-
entiation of Eq. (3.10) and collecting all relevant
leading-order terms, we come to the result

- Z Fcusp’

which was anticipated in Eq. (2.6) and which is derived
now as a direct consequence of the Schwinger approach. It
is not surprising that this result resembles the situation in
two-dimensional QCD considered above. Here, again, the
area derivative turns into the ordinary derivative for the
same reason: the null plane, where the lightlike Wilson
rectangles are defined, is an effectively two-dimensional
space, where the set of MM equations becomes closed
and—at least in principle—solvable [3,5]. More detailed
technical discussion will be reported elsewhere [16].

Note that the rhs of Eq. (3.11) is given by the cusp
anomalous dimension, which is a universal (independent
of the form of a contour) quantity and is known pertur-
batively up to the O(«a?) order. Let us examine whether
the above result is only the one-loop approximation or
can be extended to the higher orders. To this end we
take into account the linearity of the (angle-dependent)
cusp anomalous dimension in the large-angle asymptotic
regime with respect to the logarithm of the cusp angle

x4 ”f) [9]:

(3.10)

an(F)] - 3.11)

d[ 8
'ud,u 6Ino
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(v,v))

2
lvillvil’

where the maximally non-Abelian numerical coefficients
are

lim Py (4, @) = D i C,(W)a,(W)In (3.12)

Nk
Ck -~ CFN§71 - —L,

2
and a, are cusp-independent factors. This regime corre-
sponds exactly to the light-cone situation given that the
angle-dependent logarithms turn into additional poles in

the regularization parameter e: Xﬁ@, see Refs. [9,10].
Namely, the area variable ~(v;v;) enters the regularized

area-dependent cusp anomalous dimension in the light-
cone limit as

(3.13)

Toplarea, € a,) = ¥ a?C,(W)a, (W),  (3.14)

and, after logarithmic area differentiation, one gets
the finite perturbative expansion of the cusp anomalous
dimension

dlp(area, €, ay)

lim

e—0 dlnarea = Z a?C'l(W)an(W),

(3.15)

supporting the validity of our result (3.11) in the higher
orders given that, by definition, I'c,, = —d InW/dInpu.
This means that the result (3.11) should be understood as
an all-order one, like MM equation (1.3): both are exact
and nonperturbative, while the rhs of each can be evaluated
order by order in perturbation theory. Explicit proof of this
statement will be given separately. Let us point out that
Eqg. (2.6) is consistent with the non-Abelian exponentiation
of the regularized Wilson loops with cusps:

W' e) = exp| FatCMFW) |
k=1

(3.16)

where the summation goes over all two-particle irreducible
diagrams, whose contribution is given by the web functions
F [9,19]. Therefore, Eq. (2.6) can be applied, in principle,
for computing the higher-order perturbative corrections to
the cusp anomalous dimension, given that we have a closed
recursion of the perturbative equations [16].

Note that beside the rectangular lightlike Wilson loops
in the null plane, Eq. (3.11) is valid for the transverse
momentum densities with the longitudinal gauge links on
the light-cone ®(x, k| ), so that

In®d(x, kJ_)] = 20 cusps (3.17)

d [ d
Hauldme
where the corresponding area is hidden in the rapidity
cutoff @ ~ (N*N~)~! [14]. Another remarkable example
is given by the II-shape loop with one (finite) segment
lying on the light cone [20]. In the one-loop order, one has
in the large-N, limit
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N, 57
W) =1+ 22 4 [—LZ(NN—) +L(NN") —l],
oy 24

L(NN™) =%(ln(,uNN‘ +i0)+In(uNN~ +i0))%, (3.18)

where the area is defined by the product of the lightlike N~
and nonlightlike N vectors in the coordinate space. The
IT-shaped Wilson loop (3.19) obeys Eq. (3.11) as well:

i[ d
Hauldine

an(FH)] = — 2l (3.19)

the latter being responsible for the renormalization-group
behavior of the collinear parton densities in the large-x
regime and for the anomalous dimensions of conformal
operators with large Lorentz spin [20].

IV. DISCUSSION AND OUTLOOK

The quantum dynamical approach formulated by
Schwinger some half a century ago provides a full and
consistent description of the geometrical properties of the
loop space. The Wilson loops of arbitrary shape are the
fundamental degrees of freedom within this picture, and
the Makeenko-Migdal equations (1.3) can be derived from
the Schwinger-Dyson set of equations for the renormaliz-
able loops. In general, the system of the MM equations is
not closed and cannot be straightforwardly applied to
calculation of any useful quantity.

The problem we addressed in this paper is how to
construct an appropriate system of the dynamical equations
valid for the cusped lightlike Wilson loops, the latter hav-
ing stronger singularities than their off-light-cone relatives.
General solution of this problem is still lacking, but we
have found that there is a class of the loops for which some
simplifications are possible and helpful. In particular, in the
large-N, limit, in the case of the rectangular lightlike
Wilson loops defined in the null-plane z; = 0, the area
functional derivative is reduced to the normal derivative for
the dimensionally regularized (not renormalized) loops.
The area-evolution equations (which can be treated as the
nonrenormalizable counterparts of the MM equations) in
the coordinate space appear to be equivalent to the energy-
evolution equations for the cusped Wilson loops in the
momentum space. The nonperturbative nature of the dy-
namical loop equations enables us, in principle, to con-
struct a chain of equations for, e.g., the cusp anomalous
dimension, so that one can calculate it recursively in any
given order in «.

To conclude, we have taken a couple of first steps
towards the understanding of the connection between the
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~ 00y

FIG. 3. Generic infinitesimal area variations responsible for
the conjectured quantum-dynamical loop equations for Wilson
lightlike n—polygons. Upon finding, the corresponding area
differential will be reported separately.

differential geometrical properties of the loop space in
terms of the area evolution and the dynamics encoded in
the cusps—the angles between the light-like straight lines.
Within this picture, the dynamics of the elements of the
loop space can be taken into account by obstructions of
the (initially) smooth Wilson loops, with the obstructions
playing the role of the sources within Schwinger’s fields-
sources picture. We have shown that the Schwinger quan-
tum dynamical principle can be used as a guiding rule to
study at least one special class of the elements of the loop
space, the cusped Wilson exponentials on the light cone. So
far we have been able to implement the program only in
one of the simplest cases, the rectangular contour in the
transverse null plane. In Fig. 3, a more complicated con-
figuration is displayed: an arbitrary quadrilateral contour,
the area evolution of which is less trivial and deserves a
separate study. Another interesting application of the ap-
proach proposed in the present work can be found in study
of the gravity Wilson loops [21] and of the nonlightlike
Wilson polygons and the polyhedra [22]. Evaluation of the
minimal surface differentials for a variety of more compli-
cated cusped Wilson loops defined in nontrivial manifolds
is needed in order to derive corresponding area- and
energy-evolution equations based on the quantum dynami-
cal principle [23].
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